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Framework

We consider a complicated regression function f defined on
E = E1 × E2 × · · · × Ep and valued in Rk depending on several
variables :

y = f (x1, . . . , xp), (1)

where

1 the inputs xi pour i = 1, . . . p are objects ;

2 f is deterministic and unknown. It is called a black-box.
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Probabilistic frame

In order to quantify the influence of a variable, it is common to
assume that the inputs are random :

X := (X1, . . . ,Xp) ∈ E = E1 × . . .× Ep.

Then f : E → Rk is a measurable function that can be evaluated
on runs and the output code Y becomes random too :

Y = f (X1, . . . ,Xp).

In this presentation, the inputs Xi are assumed to be mutually
independent.
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The so-called Sobol’ indices

Classically to quantify the amount of randomness that a variable or
a group of variables bring to Y , one computes the so-called Sobol’
indices.

For instance, the first order Sobol’ index with respect to
Xu = (Xi , i ∈ u) is given by

Su =
Var(E[Y |Xu])

Var(Y )

(assuming Y is scalar).

Such indices stem from the Hoeffding decomposition of the
variance of f (or equivalently Y ) that is assumed to lie in L2.
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Pick-Freeze estimation of Sobol’ indices (I)

To fix ideas assume for example p = 5, u = {1, 2} so that
∼ u = {3, 4, 5}.
We consider the Pick-Freeze variable Yu defined as follows :

draw X = (X1,X2,X3,X4,X5),

build Xu = (X1,X2,X
′
3,X

′
4,X

′
5) .

Then, we compute

Y = f (X ),

Yu = f (Xu).

A small miracle

Var(E[Y |Xu]) = Cov(Y ,Yu). So that Su =
Cov (Y ,Yu)

Var(Y )
.
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Pick-Freeze estimation of Sobol’ indices (II)

In practice Generate two N-samples.

One N-sample of X :
(
X i
)
i=1,...,N

.

One N-sample of Xu :
(
X i

u

)
i=1,...,N

.

Compute the code on both samples :

Y i = f (X i )i=1,...,N

Y i
u = f (X i

u)i=1,...,N .

Then estimate Su by

Su
N,PF =

1
N

∑
Y iY i

u −
(

1
N

∑
Y i
) (

1
N

∑
Y i

u

)
1
N

∑
(Y i )2 −

(
1
N

∑
Y i
)2
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Pick-Freeze scheme (III) : some statistical questions

Is the Pick-Freeze estimator a “good” estimator of the Sobol’
index ?

Is it consistent ? Response : YES SLLN.

If yes, at which rate of convergence ? Res. : YES CLT (cv in√
N).

Is it asymptotically efficient ? Resp. : YES.

Is it possible to measure its performance for a fixed N ?
Response : YES Berry-Esseen and/or concentration
inequalities.

Ref. : A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. “ Asymptotic
normality et efficiency of a Sobol’ index estimator”, ESAIM P&S, 2013.

F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. “ Statistical

Inference for Sobol’ Pick Freeze Monte Carlo method”, Statistics, 2015.
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Pick-Freeze scheme (IV) : consistency and CLT

Su
N,PF =

1
N

∑
Y iY i

u −
(

1
N

∑
Y i
) (

1
N

∑
Y i

u

)
1
N

∑
(Y i )2 −

(
1
N

∑
Y i
)2 , Su =

Var (E [Y |Xu]))

Var(Y )
.

Theorem (Janon, Klein, Lagnoux, Nodet, Prieur (2015))

1 One has Su
N,PF

a.s.−→
N→∞

Su.

2 If E[Y 4] <∞, then

√
N
(
Su
N,PF − Su

) L→
N→∞

N1

(
0, σ2

S

)
where σ2

S = Var((Y−E[Y ])[(Y u−E[Y ])−Su(Y−E[Y ])])

(Var(Y ))
2 .
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Pick-Freeze scheme (V) : concentration inequality

The Central Limit Theorem is a limit result. In real life, the
number of experiments is finite. Concentration inequalities allow to
quantify the error between the estimate and the index true value
for a fixed value of N.
Using soundly Bennett inequality, one gets

Proposition (Gamboa, Janon, Klein, Lagnoux, Prieur (2015))

Let u be a subset of {1, . . . , p}. Then,

P (|Su
N − Su| > t) 6 2 exp

(
−NVar(Y )2

128

(
1− 1

N

)2( t

3 + 2t

)2
)
.
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Extensions

Multidimensional and functional outputs
F. Gamboa, A. Janon, T. Klein, and A. Lagnoux. “Sensitivity
analysis for multidimensional and functional outputs”. Electron. J.
Stat, (2014). Volume 8, no. 1, pp 575–603.
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Drawbacks of the Pick-Freeze estimation

The cost (=number of evaluations of the function f ) of the
estimation of the p first-order Sobol’ indices is quite
expensive : (p + 1)N.

This methodology is based on a particular design of
experiment that may not be available in practice. For
instance, when the practitioner only has access to real data.

⇒ We are then interested in an estimator based on a N-sample
only.
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Mighty estimation based on ranks (I)

Here we assume that the inputs Xi for i = 1, . . . , p are scalar and
we want to estimate the Sobol’ index S1 with respect to X1 :

S1 =
Var (E[Y |X1])

Var(Y )

To do so, we consider a N-sample of the input/output pair (X1,Y )
given by

(X 1
1 ,Y1), (X 2

1 ,Y2), . . . , (XN
1 ,YN).
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Mighty estimation based on ranks (II)

The pairs (X
(1)
1 ,Y(1)), (X

(2)
1 ,Y(2)), . . . , (X

(N)
1 ,Y(N)) are rearranged

in such a way that

X
(1)
1 < . . . < X

(N)
1 .

Example

N = 6

Original sample (1, 5), (2, 9), (−2, 3), (6,−4), (0, 8)

Rearranged sample (−2, 3), (0, 8), (1, 5), (2, 9), (6,−4).

Ref. : S. Chatterjee. “A new coefficient of Correlation”, JASA, 2020.

F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. “ Global Sensitivity

Analysis : a new generation of mighty estimators based on rank statistics”,

Preprint Arxiv. 2021.
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Mighty estimation based on ranks (III)

We introduce

S1
N,Rank =

1
N

∑N−1
i=1 Y(i)Y(i+1) −

(
1
N

∑N
i=1 Yi

)2

1
N

∑N
i=1 Y 2

i −
(

1
N

∑N
i=1 Yi

)2 .

Theorem (Gamboa, Gremaud, Klein, Lagnoux, 2021)

1 One has S1
N,Rank

a.s.−→
N→∞

S1.

2 If the Xi ’s are uniformly distributed and under some mild
assumptions on f , then

√
N
(
S1
N,Rank − S1

) L→
N→∞

N1

(
0, σ2

R

)
.
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A real data example (I)

When designing a future aircraft, the manufacturer needs to satisfy
the so-called TLAR=“top level aircraft requirements” that
summarize the expected performance of the future aircraft.

One important task is to identify the TLARS that influence the
most the operating cost of an aircraft.

This example is borrowed from

Peteilh, N., Klein, T., Druot, T. Y., Bartoli, N., & Liem, R. P. (2020).
Challenging Top Level Aircraft Requirements based on operations analysis
and data-driven models, application to takeoff performance design
requirements. In AIAA AVIATION 2020 FORUM (p. 3171).

Marouane Felloussi’s project for the computation of the estimators based
on the rank’s method
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A real data example (II)

We restrict our study to 3 TLARS (input variables) :

1 TOFL=“take of length”∈ [1500, 5000] in m.,

2 altp=“altitude of the airport”∈ [0, 2500] in m.,

3 ∆TISA=“delta of temperature”∈ [−30, 30] in ◦C,

and study their influence on 5 different costs (output variables) :

1 the block fuel,

2 the block time,

3 the cash operating cost,

4 the direct operating cost,

5 the total fuel=block fuel+reserves.
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A real data example (III)
Estimation method

P&F Rank

Output names Input names Index values

TOFL 70.70% 73.5%
Block fuel altp 13.48% 8.8%

∆TISA 14.75% 8.2%
TOFL 67.54% 69.4%

Block time altp 12.44% 6.5%
∆TISA 18.30% 19.6%
TOFL 70.70% 73.5%

Cash operating cost altp 13.48% 8.8%
∆TISA 14.75% 8.2%
TOFL 70.73% 73.5%

Direct operating cost altp 13.49% 8.8%
∆TISA 14.79% 8.2%
TOFL 70.76% 73.6%

Total fuel altp 13.41% 8.8%
∆TISA 14.55% 7.8%
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Red-thread example : a non-linear model (I)

Let us consider the following non-linear model

Y = exp{X1 + 2X2},

where X1 and X2 are independent standard Gaussian random
variables. Then tedious computations lead to the Sobol’ indices S1

and S2 :

S1 = (e − 1)/(e5 − 1) ≈ 0.0117

S2 = (e4 − 1)/(e5 − 1) ≈ 0.3636
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Red-thread example : a non-linear model (II)

Code TP Sob.ipynb
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Motivation for a new index

Sobol’ indices are based on a variance decomposition.

They only quantify the influence around the mean.

In practice, one may be interested in the median or even in a
quantile rather than the mean.

It may also occur (eg. symmetric function variables with
identical two first moments) that the Sobol’ indices are not
suitable to discriminate the role of the inputs.
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Toy example (I)
Let X1 and X2 be two independent random variables with distinct
distributions sharing the four first moments. Consider

Y = X1 + X2 + X 2
1 X 2

2 .

Then

Var (E [Y |X1]) = Var(X1 + X 2
1 E
[
X 2

2

]
)

= Var(X2 + X 2
2 E
[
X 2

1

]
) = Var (E [Y |X2]) .

Y is a symmetrical function of X1, X2 but if X1 and X2 have
different distributions, X1 and X2 should act differently.

It seems important to consider sensitivity indices that take into
account not only the two first moments but the whole distribution.
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Construction of the Cramér-von Mises indices (I)

Let Z = f (X1, . . . ,Xp) ∈ Rk be the code output and F be its
cumulative distribution function defined for t = (t1, . . . , tk) ∈ Rk

by
F (t) = P (Z 6 t) = E

[
1{Z6t}

]
=: E [Y (t)].

Let F u(t) be the conditional cumulative distribution function
(conditionally Z knowing Xu) :

F u(t) = P (Z 6 t|Xu) = E
[
1{Z6t}|Xu

]
= E [Y (t)|Xu].
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Construction of the Cramér-von Mises indices (II)

First, we perform the Hoeffding decomposition of Y (t) :

Y (t) = 1 {Z6t} = E[Y (t)]︸ ︷︷ ︸
Mean effect

+ (E[Y (t)|Xu]− E[Y (t)]) + (E[Y (t)|X∼u]− E[Y (t)])︸ ︷︷ ︸
First order effects

+ R(t,u)︸ ︷︷ ︸
Second order effects or interaction:=IA

.
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Construction of the Cramér-von Mises indices (III)

Second, we compute the variance of both sides of the previous
equation :

Var(Y (t)) =E
[
(F u(t)− F (t))2

]
+ E

[
(F∼u(t)− F (t))2

]
+ Var(R(t,u))

by the decorrelation of the different terms involved in the
Hoeffding decomposition.
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Construction of the Cramér-von Mises indices (IV)

Finally, it remains to integrate in t ∈ Rk with respect to the
distribution of Z and to normalize to get :

Su
2,CVM :=

∫
Rk E

[
(F (t)− F u(t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
,

involving the Cramér-von Mises distance between L (Z ) and
L (Z |Xu)
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Properties and remarks

These new indices share the same properties as the classical Sobol’
indices, namely,

1 the different contributions sum to 1 ;

2 the indices are invariant by any translation, by any isometry,
and by any nondegenerated scaling of the components of Y .

Despite the fact that the Cramér-von Mises indices have no clear
dual formulation, our method represents at least three advantages :

1 the index always exists whatever the output distribution ;

2 such an integration weights the support of the output
distribution ;

3 the index can be easily estimated using a Pick-Freeze scheme.
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Estimation of the Cramér-von-Mises indices

1 First approach - Pick-Freeze estimation

2 Second approach - Pick-Freeze and U-stats

3 Third approach - Ranks
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Second approach - Pick-Freeze estimation (I)

Principle :

Multiple Monte-Carlo estimation procedure (one to handle the
integration part, one to handle the Pick-Freeze part).

Cost to estimate all first-order indices : N(1 + p + 1).

CLT OK.
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First approach - Pick-Freeze estimation (II)

To fix ideas assume for example p = 5, u = {1, 2} so that
∼ u = {3, 4, 5}.
We consider the Pick-Freeze variable Z u defined as follows :

draw X = (X1,X2,X3,X4,X5),

build Xu = (X1,X2,X
′
3,X

′
4,X

′
5) .

Then, we compute

Z = f (X ),

Zu = f (Xu).
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First approach - Pick-Freeze estimation (III)

The estimation of the numerator Nu
2,CVM of Su

2,CVM is based on

Nu
2,CVM =

∫
Rk

E
[
(F (t)− F u(t))2

]
dF (t)

= E
[
E
[
(F (W )− F u(W ))2

]]
= E [Var (E [Y (W )|Xu])]

= E [Cov (Y (W ),Yu(W ))]

= E [Cov (1Z6W ,1Zu6W )]

where W is an independent copy of Z .
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First approach - Pick-Freeze estimation (IV)

Then the estimation stands on a double Monte Carlo : we generate

1 two N-samples of Z : (Z u,1
j ,Z u,2

j ), 1 6 j 6 N ; (Pick-Freeze)

2 a third independent N-sample of Z : Wk , 1 6 k 6 N

resulting in

Nu
2,CVM,PF =

1

N

N∑
k=1

 1

N

N∑
j=1

1{Zu,1
j 6Wk}1{Zu,2

j 6Wk}

−

 1

2N

N∑
j=1

(
1{Zu,1

j 6Wk} + 1{Zu,2
j 6Wk}

)2 .
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First approach - Pick-Freeze estimation (V)

Low estimation cost.

Whatever the dimension of the output.

The sample required for their estimation also provides a
Sobol’ indices estimation.

Theorem (Gamboa, Klein, Lagnoux (2018))

Su
2,CVM,PF is strongly convergent as N goes to infinity.

If E[‖Z‖4] < +∞, the sequence Su
2,CVM,PF is asymptotically

Gaussian. More precisely,
√

N
(

Su
2,CVM,PF − Su

2,CVM

)
converge in

law to a centered Gaussian variable with explicit variance.

Ref. : F. Gamboa, T. Klein, and A. Lagnoux. “Sensitivity analysis based on

Cramér-von Mises distance ”, SIAM UQ, 2018.
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Second approach - U-statistics estimation (I)

Principle :

Dealing simultaneously with the Sobol’ part and the
integration part to get rid of the additional N-sample
(Wk)16k6N .

Cost to estimate all first-order indices : N(p + 1).

Elementary proof of the CLT using a CLT for U-stats
(Hoeffding 1948) and the classical delta method.
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Second approach - U-statistics estimation (II)
It suffices to rewrite Su

2,CVM as

Su
2,CVM =

I (Φ1)− I (Φ2)

I (Φ3)− I (Φ4)
,

where m(1) = m(3) = 2, m(2) = m(4) = 3,

Φ1(z1, z2) = 1{z26z1}1{zu
26z1}

Φ2(z1, z2, z3) = 1{z26z1}1{zu
36z1}

Φ3(z1, z2) = 1{z26z1}

Φ4(z1, z2, z3) = 1{z26z1}1{z36z1}

denoting by zi the pair (zi , z
u
i ) and, for j = 1, . . . , 4,

I (Φj) =

∫
Rk

Φj(z1, . . . , zm(j))dPu,⊗m(j)
2 (z1 . . . , zm(j)).
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Second approach - U-statistics estimation (III)
Finally, one considers the empirical version of Su

2,CVM :

Su
2,CVM,Ustat =

U1,N − U2,N

U3,N − U4,N
,

where, for j = 1, . . . , 4,

Uj ,N =

(
N

m(j)

)−1 ∑
16i1<···<im(j)6N

Φs
j

(
Zi1 , . . . ,Zim(j)

)
and the function :

Φs
j (z1, . . . , zm(j)) =

1

(m(j))!

∑
τ∈Sm(j)

Φj(zτ(1), . . . , zτ(m(j)))

is the symmetrized version of Φj .
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Second approach - U-statistics estimation (IV)

The estimator Su
2,CVM,Ustat has been proved to be consistent and

asymptotically Gaussian.

Theorem (Gamboa, Klein, Lagnoux, Moreno (2021))

If for j = 1, . . . , 4, E
[
Φs
j

(
Z1, . . . ,Zm(j)

)2
]
<∞ then

√
N
(
Su

2,CVM,Ustat − Su
2,CVM

) L−→
N→∞

N1(0, σ2)

where the asymptotic variance σ2 is explicitly known.

Ref. : F. Gamboa, T. Klein, A. Lagnoux, and L. Moreno. “Sensitivity analysis in

general metric spaces ”, RESS, 2021.
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Third approach - Rank-based estimation (I)

Principle :

Only when the inputs are scalar and to estimate the first-order
indices.

Cost to estimate all first-order indices : N.

CLT in progress.

Let πi (j) be the rank of X j
i in the sample (X 1

i , . . . ,X
N
i ) of Xi and

define

Ni (j) =

{
π−1
i (πi (j) + 1) if πi (j) + 1 6 N,

π−1
i (1) if πi (j) = N.



Introduction A first step to more generality GMS and universal indices

Third approach - Rank-based estimation (II)
Then the empirical estimator S i

2,CVM,Rank of S i
2,CVM is given by the

ratio between

1

N

N∑
i=1


[

1

N

N∑
j=1

1{Zj6Zi}1{ZN(j)6Zi}

]
−
[

1

N

N∑
j=1

1{Zj6Zi}

]2


and

1

N

N∑
i=1


[

1

N

N∑
j=1

1{Zj6Zi}

]
−
[

1

N

N∑
j=1

1{Zj6Zi}

]2
 .

Ref. : F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. “ Global Sensitivity

Analysis : a new generation of mighty estimators based on rank statistics”,

Preprint Arxiv. 2021.
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A real data example : giant cell arthritis (I)

“giant cell arthritis (GCA) is a vasculitis of unknown etiology that
affects large and medium sized vessels and occurs almost
exclusively in patients 50 years or older”.

This disease may lead to severe side effects (loss of visual
accuity, fever, headache,...). The risks of not treating it
include the threat of blindness and major vessels occlusion.

A patient with suspected GCA can receive a therapy based on
Prednisone. Unfortunately, a treatment with high Prednisone
doses may cause severe complications.
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A real data example : giant cell arthritis (II)

When confronted to a patient with suspected GCA, the clinician
must adopt a strategy among :

A : Treat none of the patients ;

B : Proceed to the biopsy and treat all the positive patients ;

C : Proceed to the biopsy and treat all the patients whatever
their result ;

D : Treat all the patients.

optimizing the patient outcomes measured in terms of utility. The
basic idea is that a patient with perfect health is assigned a utility
of 1 and the expected utility of the other patients (not perfectly
healthy) is calculated subtracting some “disutilities” from this
perfect score of 1.
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A real data example : giant cell arthritis (III)

The base value of some input parameters are reliable while the
others are really uncertain that leads us to consider them as
random.

As a consequence, if YA, YB , YC and YD represent the outcomes
corresponding to the four different strategies A to D, the clinician
aims to determine

max{E[YA],E[YB ],E[YC ],E[YD ]}.
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A real data example : giant cell arthritis (IV)

Sensitivity meas. Ranking CPU time

Multivariate 1 6 2 3 5 7 4 0.0624
N = 102 Borgonovo et al. 1 3 6 2 5 7 4 1.5132

Cramér-von Mises 1 6 2 3 7 5 4 0.9048

Multivariate 1 6 2 3 7 5 4 0.0156
N = 103 Borgonovo et al. 1 6 2 5 7 3 4 57.8452

Cramér-von Mises 1 6 2 3 7 5 4 10.1089

Multivariate 1 6 2 3 7 5 4 0.0312
N = 104 Borgonovo et al. 1 6 2 7 3 5 4 5.1988 103

Cramér-von Mises 1 6 2 3 7 5 4 436.8028
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Red-thread example : a non-linear model (I)

Let us consider the following non linear model

Y = exp{X1 + 2X2},

where X1 and X2 are independent standard Gaussian random
variables. Then tedious computations lead to the
Cramér-von-Mises indices S1

2,CVM and S2
2,CVM :

S1
2,CVM =

6

π
arctan 2− 2 ≈ 0.1145

S2
2,CVM =

6

π
arctan

√
19− 2 ≈ 0.5693.
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Red-thread example : a non-linear model (II)

Code TP CVM.ipynb
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Framework

We consider a family of test functions parametrized by m elements
of X with m ∈ N∗. For any a = (ai )i=1,...,m ∈ Xm, we consider the
test functions

Xm ×X → R
(a, x) 7→ Ta(x).

We assume that Ta(·) ∈ L2(P⊗m ⊗ P) where P denotes the
distribution of Z .
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Definition of the general metric space index

Recall the expression of the Cramér-von-Mises index

Su
2,CVM =

∫
Rk EX u

[
(EZ [1Z6t ]− EZ [1Zu6t ])

2
]

dF (t)∫
Rk F (t)(1− F (t))dF (t)

,

where EU stands for the expectation with respect to the r.v. U.

The general metric space sensitivity index with respect to u is
defined by

Su
2,GMS :=

∫
Xm EXu

[
(EZ [Ta(Z )]− EZ [Ta(Z )|Xu])2

]
dP⊗m(a)∫

Xm Var(Ta(Z ))dP⊗m(a)
.
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Definition of the general metric space index

By construction, Su
2,GMS ∈ [0, 1] and

1 the different contributions sum to 1 ;

2 the indices are invariant by any translation, by any isometry
and by any non-degenerated scaling of the components of Z .
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Particular examples

1 For X = R, m = 0 and Ta given by Ta(x) = x , one recovers
the classical Sobol’ indices.

2 For X = Rk and m = 0, one can recover the Sobol’ indices for
vectorial outputs in Gamboa et al. and Lamboni et al.

3 For X = Rk , m = 1 and Ta given by Ta(x) = 1{x6a}, one
recovers the index based on the Cramér-von-Mises distance.

4 Consider that X =M is a manifold, m = 2 and Ta is given by

Ta(x) = 1{x∈B̃(a1,a2)} = 1{‖x−(a1+a2)/2‖6‖a1−a2‖/2},

where B̃(a1, a2) will stand for the ball of diameter a1a2.
One recovers the indices defined in Fraiman et al .
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Estimation of the general metric space indices

1 First approach - Pick-Freeze estimation

2 Second approach - Pick-Freeze and U-stats

3 Third approach - Ranks
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First approach - Pick-Freeze estimation (I)

Principle :

Multiple Monte-Carlo estimation procedure (one to handle the
integration part, one to handle the Pick-Freeze part).

Cost to estimate all first-order indices : N(m + p + 1).

Non trivial proof of the CLT using Donsker theorem and the
functional delta method.

Design of experiment :

a classical Pick-Freeze N-sample, that is two N-samples of Z :
(Zj ,Z

u
j ), 1 6 j 6 N ;

m other N-samples of Z independent of (Zj ,Z
u
j )16j6N : Wl ,k ,

1 6 l 6 m, 1 6 k 6 N.
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First approach - Pick-Freeze estimation (II)
The estimator of the numerator of Su

2,GMS is then given by

1

Nm

∑
16i1,...,im6N

{[
1

N

N∑
j=1

TW1,i1
,··· ,Wm,im

(Zj)TW1,i1
,··· ,Wm,im

(Z u
j )

]

−
[

1

2N

N∑
j=1

(
TW1,i1

,··· ,Wm,im
(Zj) + TW1,i1

,··· ,Wm,im
(Z u

j )
)]2
}

while the one of the denominator is

1

Nm

∑
16i1,...,im6N

{[
1

2N

N∑
j=1

(
TW1,i1

,··· ,Wm,im
(Zj)

2 + TW1,i1
,··· ,Wm,im

(Z u
j )2
)]

−
[

1

2N

N∑
j=1

(
TW1,i1

,··· ,Wm,im
(Zj) + TW1,i1

,··· ,Wm,im
(Z u

j )
)]2
}
.
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Second approach - U-statistics estimation (I)

Principle :

Dealing simultaneously with the Sobol’ part and the
integration part with respect to dP⊗m(a) to get rid of the
additional N-samples (Wk,l)16k6N,16l6m.

Cost to estimate all first-order indices : N(p + 1).

Elementary proof of the CLT using a CLT for U-stats
(Hoeffding 1948) and the classical delta method.
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Second approach - U-statistics estimation (II)
It suffices to rewrite Su

2,GMS as

Su
2,GMS =

I (Φ1)− I (Φ2)

I (Φ3)− I (Φ4)
,

where,

Φ1(z1, . . . , zm+1) = Tz1,...,zm(zm+1)Tz1,...,zm(zu
m+1)

Φ2(z1, . . . , zm+2) = Tz1,...,zm(zm+1)Tz1,...,zm(zu
m+2)

Φ3(z1, . . . , zm+1) = Tz1,...,zm(zm+1)2

Φ4(z1, . . . , zm+2) = Tz1,...,zm(zm+1)Tz1,...,zm(zm+2)

denoting by zi the pair (zi , z
u
i ) and, for j = 1, . . . , 4,

I (Φj) =

∫
Xm(j)

Φj(z1, . . . , zm(j))dPu,⊗m(j)
2 (z1 . . . , zm(j)).
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Second approach - U-statistics estimation (III)
Finally, one considers the empirical version of Su

2,GMS :

Su
2,GMS,Ustat =

U1,N − U2,N

U3,N − U4,N
,

where, for j = 1, . . . , 4,

Uj ,N =

(
N

m(j)

)−1 ∑
16i1<···<im(j)6N

Φs
j

(
Zi1 , . . . ,Zim(j)

)
and the function :

Φs
j (z1, . . . , zm(j)) =

1

(m(j))!

∑
τ∈Sm(j)

Φj(zτ(1), . . . , zτ(m(j)))

is the symmetrized version of Φj .
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Second approach - U-statistics estimation (IV)

The estimator Su
2,GMS,Ustat has been proved to be consistent and

asymptotically Gaussian.

Theorem (Gamboa, Klein, Lagnoux, Moreno (2021))

If for j = 1, . . . , 4, E
[
Φs
j

(
Z1, . . . ,Zm(j)

)2
]
<∞ then

√
N
(
Su

2,GMS,Ustat − Su
2,GMS

) L−→
N→∞

N1(0, σ2)

where the asymptotic variance σ2 is explicitly known.
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Third approach - Rank-based estimation (I)

Principle :

Only when the inputs are scalar and to estimate the first-order
indices.

Cost to estimate all first-order indices : N.

CLT in progress.

Let πi (j) be the rank of X j
i in the sample (X 1

i , . . . ,X
N
i ) of Xi and

define

Ni (j) =

{
π−1
i (πi (j) + 1) if πi (j) + 1 6 N,

π−1
i (1) if πi (j) = N.
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Third approach - Rank-based estimation (II)

Then the empirical estimator Ŝ i
2,GMS,Rank of S i

2,GMS is given by the
ratio between

1

Nm

∑
16i1,...,im6N

{[
1

N

N∑
j=1

TZi1
,··· ,Zim

(Zj)TZi1
,··· ,Zim

(ZNi (j))

]

−
[

1

N

N∑
j=1

TZi1
,··· ,Zim

(Zj)

]2
}

and

1

Nm

∑
16i1,...,im6N

{[
1

N

N∑
j=1

TZi1
,··· ,Zim

(Zj)
2

]
−
[

1

N

N∑
j=1

TZi1
,··· ,Zim

(Zj)

]2
}
.
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Definition of the universal index

We have defined

Su
2,GMS :=

∫
Xm E

[
(E[Ta(Z )]− E[Ta(Z )|Xu])2

]
dP⊗m(a)∫

Xm Var(Ta(Z ))dP⊗m(a)
.

One may extend this definition allowing a to live in another space
and integrating with respect to a different probability measure Q
than P.

Definition (Fort, Klein, and Lagnoux (2021))

Su
2,Univ(Ta,Q) :=

∫
Ω E

[
(E[Ta(Z )]− E[Ta(Z )|Xu])2

]
dQ(a)∫

Ω Var(Ta(Z ))dQ(a)
.
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Ref. : F. Gamboa, T. Klein, A. Lagnoux, and L. Moreno. “Sensitivity analysis in
general metric spaces ”, RESS, 2021.

J.-C. Fort, T. Klein, and A. Lagnoux. “Global sensitivity analysis and

Wasserstein spaces”, SIAM UQ, 2021.
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Numerical application (I)

Consider F , F1, and F2 three elements of M2(R) and, for
a = (F1,F2), the family of test functions

Ta(F ) = T(F1,F2)(F ) = 1 W2(F1,F )6W2(F1,F2).

Then, for all u ⊂ {1, · · · , p}, the index is

Su
2,W2

= Su
2,Univ((F1,F2,F ) 7→ TF1,F2 (F ),P⊗2)

=

∫
W2(R)×W2(R)

E
[(
E[1 W2(F1,F)6W2(F1,F2)]− E[1 W2(F1,F)6W2(F1,F2)|Xu]

)2
]
dP⊗2(F1,F2)∫

W2(R)×W2(R)
Var(1 W2(F1,F)6W2(F1,F2))dP⊗2(F1,F2)

=

∫
W2(R)×W2(R)

Var
(
E[1 W2(F1,F)6W2(F1,F2)|Xu]

)
dP⊗2(F1,F2)∫

W2(R)×W2(R)
Var(1 W2(F1,F)6W2(F1,F2))dP⊗2(F1,F2)

.
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Numerical application (II)

Let X1,X2,X3 be 3 independent random variables Bernoulli
distributed with parameter p1, p2, and p3 respectively. We consider
the c.d.f.-valued code f , the output of which is given by

F(t) =
t

1 + X1 + X2 + X1X3
1 06t61+X1+X2+X1X3+1 1+X1+X2+X1X3<t .
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Numerical application (III)

Figure – Values of the indices S1
2,W2

, S2
2,W2

, S3
2,W2

, and S1,3
2,W2

(from left to
right) with respect to the values of p1 and p2 (varying from 0 to 1). In
the first row (resp. second and third), p3 is fixed to p3 = 0.01 (resp. 0.5
and 0.99).
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Numerical application (IV)

Figure – In the first row of the figure, regions where S1
2,W2

> S2
2,W2

(black),
S1

2,W2
6 S2

2,W2
(white), and S1

2,W2
= S2

2,W2
(gray) with respect to p1 and p2

varying from 0 to 1 and, from left to right, p3 = 0.01, 0.5, and 0.99.
Analogously, the second (resp. last) row considers the regions with S1

2,W2
and

S3
2,W2

(resp. S2
2,W2

and S3
2,W2

) with respect to p1 and p3 (resp. p2 and p3)
varying from 0 to 1 and, from left to right, p2 = 0.01, 0.5, and 0.99 (resp.
p1 = 0.01, 0.5, and 0.99).



Introduction A first step to more generality GMS and universal indices

Numerical application (V)

Only 450 calls of the computer code are allowed to estimate
the indices Su(F) and Su

2,W2
for u = {1}, {2}, and {3}.

Hence, the sample size allowed in the rank-based procedure is
N = 450. In the Pick-Freeze methodology, the estimation of
the Wasserstein indices Su

2,W2
requires one initial output

sample, three extra output samples to get the Pick-Freeze
versions (one for each index) and two extra samples to handle
the integration leading to an allowed sample size
N = b450/6c = 75 for the indices.

We only focus on the first-order indices since, as explained
previously, the rank-based procedure has not been developed
yet for higher-order indices.

We repeat the estimation procedure nr = 200 times.
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Numerical application (VI)

Figure – Here p1 = 1/3, p2 = 2/3, and p3 = 3/4. Boxplots of the mean
square errors of the estimation of the Wasserstein indices Su

2,W2
with a

fixed sample size N and nr = 200 replications. The indices with respect
to u = {1}, {2}, and {3} are displayed from left to right. The results of
the Pick-Freeze estimation procedure with N = 75 for the Wasserstein
indices Su

2,W2
are provided in the left side of each graphic. The results of

the rank-based methodology with N = 450 are provided in the right side
of each graphic.
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The Gaussian Plume Model (I)

We consider a point source that emits contaminant into a
uni-directional wind in an infinite domain. Such a model is also
applied, for instance, to volcanic eruptions, pollen and insect
dispersals, and is called the Gaussian plume model (GPM).
The contaminant concentration at location (x , y , 0) rewrites as :

C (x , y , 0) =
Q

2πKx
e
−u(y2+H2)

4Kx , (2)

where Q is the emission rate, u the wind speed, K the diffusion,
and H the effective height.
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The Gaussian Plume Model (II)

Figure – Plume model (2). Cross section at z = 0 of a contaminant
plume emitted from a continuous point source, with wind direction
aligned with the x-axis.
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The Gaussian Plume Model (III)

In this setting, the function f that defines the output of interest is
then given by :

f : R3 → L2(R2)
(Q,K , u) 7→ f (Q,K , u) = (C (x , y , 0))(x ,y)∈R2 ,

where Q, K , and u are assumed to be all independent with uniform
distribution U(0, 10).
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The Gaussian Plume Model (IV)

A first step consists in performing a GSA for spatial data, namely
an ubiquous sensitivity analysis. In other words, the sensitivity
indices are computed location after location leading to a sensitivity
map.
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The Gaussian Plume Model (V)

Figure – Plume model (2). Ubiquous sensitivity analysis with respect to
the emission rate Q (top left), the wind speed u (top right), the diffusion
K (bottom left), and the effective height H (bottom right).
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The Gaussian Plume Model (VI)

For two pollution concentrations C1 and C2 with domain in the
ground level (in R2), the distance used is the classical L2 distance

d(C1,C2) =

√∫∫
(C1(x , y , 0)− C2(x , y , 0))2dxdy .

To quantify the sensitivity on the contaminant concentration with
respect to Q, K , and u, we consider the family of functions Ta

given by T(a1,a2)(b) = 1b∈B(a1,a2)
, where a1, a2, and b

square-integrable are applications from R2 to R and B(a1,a2) stands
for the L2-ball centered at a1 with radius a1a2 (whence m = 2).
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The Gaussian Plume Model (VII)

N=1000 N=2000 N=5000
H K Q u K Q u K Q u

1 0.1365 0.1216 0.1330 0.1124 0.1419 0.1453 0.1425 0.1431 0.1562
2 0.1028 0.1197 0.1212 0.1291 0.1317 0.1171 0.1222 0.1627 0.1143
10 0.0813 0.0891 0.1010 0.1081 0.1077 0.1256 0.0893 0.0831 0.1001
20 0.1027 0.0246 0.1041 0.0620 0.0942 0.1030 0.0913 0.0091 0.0329

Table – Sensitivity indices for the plume model (2).
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Thanks for your attention !
Questions ?
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