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1 Technical results

1.1 Convergence of random measures
In the sequel, we will denote by LZ the law of a random vector Z.

Lemma 1.1. There exists a measurable set Π ⊂ ΩW with PW -probability one such that
for any ωW ∈ Π,

πn(ωW ) := 1
n

n−2∑
j=1

δ( j
n+1 ,

j+1
n+1 ,

j+2
n+1 ,Wj(ωW ),Wj+1(ωW )) ⇒ π := L(X,X,X) ⊗ LW ⊗ LW ,

as n→∞ where as before X is uniformly distributed on [0, 1] and ⇒ stands for the weak
convergence of measures.
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Proof of Lemma 1.1. Let ωW ∈ ΩW . Let us consider the continuous and bounded func-
tions defined on R5 by

gs,s′,s′′,t,t′(x, x′, x′′, w, w′) = exp{i(sx+ s′x′ + s′′x′′ + tw + t′w′)},

for any s, s′, s′′, t, and t′ real numbers. To prove the weak convergence of the measures
(πn(ωW ))n, we show that πn(ωW )(gs,s′,s′′,t,t′) converges almost surely for any s, s′, s′′, t,
and t′ ∈ Q as n→∞. Finally, we will conclude by density of rational numbers in R.
Let (s, s′, s′′, t, t′) ∈ Q5 be fixed. To ease the reading, we use the shorthand notation g for
gs,s′,s′′,t,t′ and we omit the notation ωW as classically done in probability.
One has

πn(g) =
∫
gdπn = 1

n

n−2∑
j=1

e
i

(
s j

n+1 +s′ j+1
n+1 +s′′ j+2

n+1 +tWj+t′Wj+1

)
.

Obviously, by the independence of the sequence Wn and the convergence theorem of
Riemann sums,

E [πn(g)] = E
[
eitW

]
E
[
eit
′W
] 1
n

n−2∑
j=1

ei(s
j

n+1 +s′ j+1
n+1 +s′′ j+2

n+1) →
n→∞

E
[
eitW

]
E
[
eit
′W
] ∫ 1

0
ei(s+s

′+s′′)xdx.

Observe that the almost sure convergence of πn is equivalent to the almost sure conver-
gence of its real part and that of its imaginary part. Setting

Un,j = s
j

n+ 1 + s′
j + 1
n+ 1 + s′′

j + 2
n+ 1 + tWj + t′Wj+1,

we have <(πn(g)) = 1
n

∑n−2
j=1 cos (Un,j) . In order to apply the Borel-Cantelli lemma, we

need to control the fourth moment

E
[
(<(πn(g))− E[<(πn(g))])4

]
= 1
n4E


n−2∑
j=1

cos (Un,j)− E[cos (Un,j)]
4
 .

The random variables cos (Un,j)−E [cos (Un,j)] are real-valued, centered, and bounded so
that we can apply inequality (2.14) page 37 in [1]. Then we obtain

E


n−2∑
j=1

cos (Un,j)− E [cos (Un,j)]
4
 6 224n2

(
Λ2(α−1)

)2
(1)

where
Λ2(α−1) = sup

06m<n
(m+ 1)(αm) 1

2 ,

where (αm)m is the sequence f the strong mixing coefficients of the sequence (Un,j). Now
since the random variable Zn

j only depends on (Wj,Wj+1), αm equal zero as soon as
m > 2. Hence, there exists a positive constant K such that

1
n4E


n−2∑
j=1

cos (Un,j)− E [cos (Un,j)]
4
 6

K

n2 .
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It follows by Borel-Cantelli lemma that the real part of πn(g) converges almost surely.
Since the imaginary part can be treated using the exact same steps, the proof of Lemma
1.1 is almost complete. Hence, there exists a Borel set Ns,s′,s′′,t,t′ with P(Ns,s′,s′′,t,t′) = 1
so that the previous convergence holds on ΩW\Ns,s′,s′′,t,t′ . It remains to define Π :=
ΩW\ ∪(s,s′,s′′,t,t′)∈Q5 Ns,s′,s′′,t,t′ . Obviously, one has P(Π) = 1 and the almost sure conver-
gence holds on Π for all functions gs,s′,s′′,t,t′ with (s, s′, s′′, t, t′) ∈ Q5.
Finally, the result holding for any five-uplet (s, s′, s′′, t, t′) ∈ Q5, we conclude to the
required result by density of rational numbers in R.

The obvious following corollary is a direct consequence of Lemma 1.1.

Corollary 1.2. We use the notation of Lemma 1.1. For any ωW ∈ Π, as n→∞,

ηn := 1
n

n−1∑
j=1

δ( j
n+1 ,

j+1
n+1) ⇒ η := L(X,X),

κn := 1
n

n−1∑
j=1

δ( j
n+1 ,

j+1
n+1 ,

j+2
n+1) ⇒ κ := L(X,X,X),

µn(ωW ) := 1
n

n∑
j=1

δ( j
n+1 ,Wj(ωW )) ⇒ µ := LX ⊗ LW ,

νn(ωW ) := 1
n

n−1∑
j=1

δ( j
n+1 ,

j+1
n+1 ,Wj(ωW ),Wj+1(ωW )) ⇒ ν := L(X,X) ⊗ LW ⊗ LW .

1.2 Generalized L-Statistics
Lemma 1.3. Let (Ei)i>1 be a sequence of i.i.d. random variables with standard exponential
distribution and let ψ be a bounded measurable function on [0, 1]. We assume that the set
of discontinuity points of ψ has null Lebesgue measure. Then, the sequencen−1/2

n−1∑
j=1

ψ(j/n)(Ej − 1)

n∈N∗

converges in distribution to a centered Gaussian law with asymptotic variance: σ2
ψ :=∫

[0,1] ψ
2(x)dx.

Proof of Lemma 1.3. For k ∈ N∗, let cumk denotes the cumulant of order k of

1√
n

n−1∑
j=1

ψ(j/n)(Ej − 1).

Obviously, cum1 = 0 and, for k > 2, cumk = n−k/2
∑n−1
j=1 (ψ(j/n))k. So that, limn→∞ cum2 =∫

ψ2(x)dx while, for k > 3, limn→∞ cumk = 0.

Remark 1.4. The previous lemma obviously extends to the case of a continuous function
Ψ = (ψi) valued in Rd (d > 1). In this case, the asymptotic covariance matrix ΣΨ is
the Gram matrix

(∫
[0,1] ψi(x)ψj(x)dx; 1 6 i, j 6 d

)
. Indeed, the previous lemma holds

for any linear combination of such random vector sequence. A direct computation of the
asymptotic variance leads to the quadratic form built on ΣΨ.
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The next lemma is a generalization of the CLT for a L-statistics (see, e.g., [3, Chapter
22]).

Lemma 1.5. Let (U,B(U)) be a Polish space where B(U) denotes the Borel σ algebra
of U . We consider a sequence (χj)16j6n, n∈N∗ valued in U and Q a probability measure
on U × [0, 1]. We assume that the sequence of empirical measures

(
1
n

∑n−1
j=1 δχj ,j/n

)
n∈N∗

converges in distribution to Q.
Let ψ be a bounded measurable real function on U × [0, 1]. We assume that the set of
discontinuity points of ψ has null Q-probability. Then,

Dn := 1√
n

n−1∑
j=1

ψ (χj, j/n)
(
Xσn(j) −

j

n+ 1

)
L−→

n→∞
N
(
0, s2

ψ

)
,

where the asymptotic variance s2
ψ is given in (3).

Proof of Lemma 1.5. Recall that the sequence (Ei) has been defined in Lemma 1.3. We
have

Xσn(j) −
j

n+ 1
L=
∑j
i=1Ei∑n+1
i=1 Ei

− j

n+ 1 = 1
1

n+1
∑n+1
i=1 Ei

 1
n+ 1

j∑
i=1

Ei −
j

(n+ 1)2

n+1∑
i=1

Ei


= 1

1
n+1

∑n+1
i=1 Ei

 1
n+ 1

j∑
i=1

(Ei − 1)− j

(n+ 1)2

n+1∑
i=1

(Ei − 1)
 ,

so that,

Dn
L= 1√

n(n+ 1)
1

1
n+1

∑n+1
i=1 Ei

n−1∑
j=1

ψ (χj, j/n)
 j∑
i=1

(Ei − 1)− j

n+ 1

n+1∑
i=1

(Ei − 1)
 .

Using the assumption on the empirical measure, we get

1
n

n∑
j=1

ψ (χj, j/n) j

n+ 1 → I :=
∫
U×[0,1]

xψ(χ, x)dQ(χ, x).

Further, by the weak law of large numbers, (1/(n + 1))∑n+1
i=1 Ei converges in probability

to E[E1] = 1. Hence, by Slutsky’s lemma, we are led to consider the random vector

Vn := 1√
n

(
1

n+1
∑n−1
j=1 ψ (χj, j/n)∑j

i=1(Ei − 1)∑n+1
i=1 (Ei − 1)

)
.

Notice that the first coordinate of Vn can be rewritten as (up to the normalizing factor
n−1/2)

n−1∑
i=1

 1
n+ 1

n−1∑
j=1

ψ (χj, j/n)1i6j

 (Ei − 1).

For t ∈ [0, 1], let φ(t) :=
∫
U×[t,1] ψ(χ, x)dQ(χ, x). We will show below that

lim
n

sup
t∈[0,1]

∣∣∣∣∣∣
 1
n+ 1

n−1∑
j=1

ψ (χj, j/n)1i6j

− φ(t)

∣∣∣∣∣∣ = 0. (2)
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Let assume for a while that this result holds. Then, in our study, we may replace Vn by

V̂n := 1√
n

( 1
n+1

∑n−1
i=1 φ(i/n)(Ei − 1)∑n+1
i=1 (Ei − 1)

)

since (2) implies that limn→∞ E‖Vn − V̂n‖2 = 0. Using Remark 1.4, we obtain that the
sequence (V̂n)n∈N∗ converges in distribution to a centered Gaussian vector with covariance
matrix (∫ 1

0 φ
2(t)dt

∫ 1
0 φ(t)dt∫ 1

0 φ(t)dt 1

)
.

Finally, using the so-called delta method [3, Theorem 3.1], (Dn)n∈N∗ converges in distri-
bution to a centered Gaussian variable with variance

s2
ψ =

∫ 1

0
(φ(t)− I)2dt. (3)

It remains to show that (2) holds. First let assume that ψ > 0. Set, for j = 1, . . . n,
φn(j/n) := (1/(n+ 1))∑n−1

j=1 ψ (χj, j/n) and consider the piece-wise linear extension φn
defined on [0, 1]. The second Dini’s theorem [2] allows to conclude that the sequence of
functions (φn)n∈N∗ converges uniformly to φ yielding the result. In the general case, we
may mimic this reasoning on ψ+ = sup(ψ, 0) and ψ− = sup(−ψ, 0) and so conclude.

Notice that, using the definitions of φ and I and applying Fubini’s theorem, s2
ψ can be

explicited as follows:

s2
ψ =

∫ 1

0
(φ(t)− I)2dt =

∫ 1

0

(∫
U×[0,1]

ψ(χ, x)(1t6x − x)dQ(χ, x)
)2

dt

=
∫ 1

0

∫∫
(U×[0,1])2

ψ(χ1, x1)ψ(χ2, x2)(1t6x1 − x1)(1t6x2 − x2)dQ(χ1, x1)dQ(χ2, x2)dt

=
∫∫

(U×[0,1])2
ψ(χ1, x1)ψ(χ2, x2)

∫ 1

0
(1t6x1 − x1)(1t6x2 − x2)dtdQ(χ1, x1)dQ(χ2, x2)

=
∫∫

(U×[0,1])2
ψ(χ1, x1)ψ(χ2, x2)(x1 ∧ x2 − x1x2)dQ(χ1, x1)dQ(χ2, x2). (4)
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