Supplement to Global Sensitivity Analysis: a novel generation of mighty estimators based on rank statistics

Fabrice Gamboa ${ }^{1}$, Pierre Gremaud ${ }^{2}$, Thierry Klein ${ }^{3}$, and Agnès Lagnoux ${ }^{4}$
${ }^{1}$ Institut de Mathématiques de Toulouse and ANITI; UMR5219.
Université de Toulouse; CNRS. UT3, F-31062 Toulouse, France.
${ }^{2}$ Department of Mathematics. NC State University. Raleigh, North Carolina 27695, USA.
${ }^{3}$ Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse; ENAC - Ecole Nationale de l'Aviation Civile, Université de Toulouse, France
${ }^{4}$ Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse; CNRS. UT2J, F-31058 Toulouse, France.

June 30, 2023

Key words Global sensitivity analysis, Cramér-von-Mises distance, Pick-Freeze method, Chatterjee's coefficient of correlation, Sobol indices estimation.

AMS subject classification 62G05, 62G20, 62G30.

1 Technical results

1.1 Convergence of random measures

In the sequel, we will denote by \mathcal{L}_{Z} the law of a random vector Z.
Lemma 1.1. There exists a measurable set $\Pi \subset \Omega_{W}$ with \mathbb{P}_{W}-probability one such that for any $\omega_{W} \in \Pi$,

$$
\pi_{n}\left(\omega_{W}\right):=\frac{1}{n} \sum_{j=1}^{n-2} \delta_{\left(\frac{j}{n+1}, \frac{j+1}{n+1}, \frac{j+2}{n+1}, W_{j}\left(\omega_{W}\right), W_{j+1}\left(\omega_{W}\right)\right)} \Rightarrow \pi:=\mathcal{L}_{(X, X, X)} \otimes \mathcal{L}_{W} \otimes \mathcal{L}_{W}
$$

as $n \rightarrow \infty$ where as before X is uniformly distributed on $[0,1]$ and \Rightarrow stands for the weak convergence of measures.

Proof of Lemma 1.1. Let $\omega_{W} \in \Omega_{W}$. Let us consider the continuous and bounded functions defined on \mathbb{R}^{5} by

$$
g_{s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}}\left(x, x^{\prime}, x^{\prime \prime}, w, w^{\prime}\right)=\exp \left\{i\left(s x+s^{\prime} x^{\prime}+s^{\prime \prime} x^{\prime \prime}+t w+t^{\prime} w^{\prime}\right)\right\}
$$

for any $s, s^{\prime}, s^{\prime \prime}, t$, and t^{\prime} real numbers. To prove the weak convergence of the measures $\left(\pi_{n}\left(\omega_{W}\right)\right)_{n}$, we show that $\pi_{n}\left(\omega_{W}\right)\left(g_{s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}}\right)$ converges almost surely for any $s, s^{\prime}, s^{\prime \prime}, t$, and $t^{\prime} \in \mathbb{Q}$ as $n \rightarrow \infty$. Finally, we will conclude by density of rational numbers in \mathbb{R}.
Let $\left(s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}\right) \in \mathbb{Q}^{5}$ be fixed. To ease the reading, we use the shorthand notation g for $g_{s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}}$ and we omit the notation ω_{W} as classically done in probability.
One has

$$
\pi_{n}(g)=\int g d \pi_{n}=\frac{1}{n} \sum_{j=1}^{n-2} e^{i\left(s \frac{j}{n+1}+s^{\prime} \frac{j+1}{n+1}+s^{\prime \prime} \frac{j+2}{n+1}+t W_{j}+t^{\prime} W_{j+1}\right)} .
$$

Obviously, by the independence of the sequence W_{n} and the convergence theorem of Riemann sums,
$\mathbb{E}\left[\pi_{n}(g)\right]=\mathbb{E}\left[e^{i t W}\right] \mathbb{E}\left[e^{i t^{\prime} W}\right] \frac{1}{n} \sum_{j=1}^{n-2} e^{i\left(\frac{j}{n+1}+s^{\prime} \frac{j+1}{n+1}+s^{\prime \prime} \frac{j+2}{n+1}\right)} \underset{n \rightarrow \infty}{\rightarrow} \mathbb{E}\left[e^{i t W}\right] \mathbb{E}\left[e^{i t^{\prime} W}\right] \int_{0}^{1} e^{i\left(s+s^{\prime}+s^{\prime \prime}\right) x} d x$.
Observe that the almost sure convergence of π_{n} is equivalent to the almost sure convergence of its real part and that of its imaginary part. Setting

$$
U_{n, j}=s \frac{j}{n+1}+s^{\prime} \frac{j+1}{n+1}+s^{\prime \prime} \frac{j+2}{n+1}+t W_{j}+t^{\prime} W_{j+1},
$$

we have $\Re\left(\pi_{n}(g)\right)=\frac{1}{n} \sum_{j=1}^{n-2} \cos \left(U_{n, j}\right)$. In order to apply the Borel-Cantelli lemma, we need to control the fourth moment

$$
\mathbb{E}\left[\left(\Re\left(\pi_{n}(g)\right)-\mathbb{E}\left[\Re\left(\pi_{n}(g)\right)\right]\right)^{4}\right]=\frac{1}{n^{4}} \mathbb{E}\left[\left(\sum_{j=1}^{n-2} \cos \left(U_{n, j}\right)-\mathbb{E}\left[\cos \left(U_{n, j}\right)\right]\right)^{4}\right] .
$$

The random variables $\cos \left(U_{n, j}\right)-\mathbb{E}\left[\cos \left(U_{n, j}\right)\right]$ are real-valued, centered, and bounded so that we can apply inequality (2.14) page 37 in [1]. Then we obtain

$$
\begin{equation*}
\mathbb{E}\left[\left(\sum_{j=1}^{n-2} \cos \left(U_{n, j}\right)-\mathbb{E}\left[\cos \left(U_{n, j}\right)\right]\right)^{4}\right] \leqslant 224 n^{2}\left(\Lambda_{2}\left(\alpha^{-1}\right)\right)^{2} \tag{1}
\end{equation*}
$$

where

$$
\Lambda_{2}\left(\alpha^{-1}\right)=\sup _{0 \leqslant m<n}(m+1)\left(\alpha_{m}\right)^{\frac{1}{2}},
$$

where $\left(\alpha_{m}\right)_{m}$ is the sequence f the strong mixing coefficients of the sequence $\left(U_{n, j}\right)$. Now since the random variable Z_{j}^{n} only depends on $\left(W_{j}, W_{j+1}\right), \alpha_{m}$ equal zero as soon as $m \geqslant 2$. Hence, there exists a positive constant K such that

$$
\frac{1}{n^{4}} \mathbb{E}\left[\left(\sum_{j=1}^{n-2} \cos \left(U_{n, j}\right)-\mathbb{E}\left[\cos \left(U_{n, j}\right)\right]\right)^{4}\right] \leqslant \frac{K}{n^{2}}
$$

It follows by Borel-Cantelli lemma that the real part of $\pi_{n}(g)$ converges almost surely. Since the imaginary part can be treated using the exact same steps, the proof of Lemma 1.1 is almost complete. Hence, there exists a Borel set $N_{s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}}$ with $\mathbb{P}\left(N_{s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}}\right)=1$ so that the previous convergence holds on $\Omega_{W} \backslash N_{s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}}$. It remains to define $\Pi:=$ $\Omega_{W} \backslash \cup_{\left(s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}\right) \in \mathbb{Q}^{5}} N_{s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}}$. Obviously, one has $\mathbb{P}(\Pi)=1$ and the almost sure convergence holds on Π for all functions $g_{s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}}$ with $\left(s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}\right) \in \mathbb{Q}^{5}$.
Finally, the result holding for any five-uplet $\left(s, s^{\prime}, s^{\prime \prime}, t, t^{\prime}\right) \in \mathbb{Q}^{5}$, we conclude to the required result by density of rational numbers in \mathbb{R}.

The obvious following corollary is a direct consequence of Lemma 1.1.
Corollary 1.2. We use the notation of Lemma 1.1. For any $\omega_{W} \in \Pi$, as $n \rightarrow \infty$,

$$
\begin{aligned}
& \eta_{n}:=\frac{1}{n} \sum_{j=1}^{n-1} \delta_{\left(\frac{j}{n+1}, \frac{j+1}{n+1}\right)} \Rightarrow \eta:=\mathcal{L}_{(X, X)}, \\
& \kappa_{n}:=\frac{1}{n} \sum_{j=1}^{n-1} \delta_{\left(\frac{j}{n+1}, \frac{j+1}{n+1}, \frac{j+2}{n+1}\right)} \Rightarrow \kappa:=\mathcal{L}_{(X, X, X)}, \\
& \mu_{n}\left(\omega_{W}\right):=\frac{1}{n} \sum_{j=1}^{n} \delta_{\left(\frac{j}{n+1}, W_{j}\left(\omega_{W}\right)\right)} \Rightarrow \mu:=\mathcal{L}_{X} \otimes \mathcal{L}_{W}, \\
& \nu_{n}\left(\omega_{W}\right):=\frac{1}{n} \sum_{j=1}^{n-1} \delta_{\left(\frac{j}{n+1}, \frac{j+1}{n+1}, W_{j}\left(\omega_{W}\right), W_{j+1}\left(\omega_{W}\right)\right)} \Rightarrow \nu:=\mathcal{L}_{(X, X)} \otimes \mathcal{L}_{W} \otimes \mathcal{L}_{W} .
\end{aligned}
$$

1.2 Generalized L-Statistics

Lemma 1.3. Let $\left(E_{i}\right)_{i \geqslant 1}$ be a sequence of i.i.d. random variables with standard exponential distribution and let ψ be a bounded measurable function on $[0,1]$. We assume that the set of discontinuity points of ψ has null Lebesgue measure. Then, the sequence

$$
\left(n^{-1 / 2} \sum_{j=1}^{n-1} \psi(j / n)\left(E_{j}-1\right)\right)_{n \in \mathbb{N}^{*}}
$$

converges in distribution to a centered Gaussian law with asymptotic variance: $\sigma_{\psi}^{2}:=$ $\int_{[0,1]} \psi^{2}(x) d x$.

Proof of Lemma 1.3. For $k \in \mathbb{N}^{*}$, let cum_{k} denotes the cumulant of order k of

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n-1} \psi(j / n)\left(E_{j}-1\right) .
$$

Obviously, $\operatorname{cum}_{1}=0$ and, for $k \geqslant 2, \operatorname{cum}_{k}=n^{-k / 2} \sum_{j=1}^{n-1}(\psi(j / n))^{k}$. So that, $\lim _{n \rightarrow \infty} \operatorname{cum}_{2}=$ $\int \psi^{2}(x) d x$ while, for $k \geqslant 3, \lim _{n \rightarrow \infty} \operatorname{cum}_{k}=0$.

Remark 1.4. The previous lemma obviously extends to the case of a continuous function $\Psi=\left(\psi_{i}\right)$ valued in $\mathbb{R}^{d}(d \geqslant 1)$. In this case, the asymptotic covariance matrix Σ_{Ψ} is the Gram matrix $\left(\int_{[0,1]} \psi_{i}(x) \psi_{j}(x) d x ; 1 \leqslant i, j \leqslant d\right)$. Indeed, the previous lemma holds for any linear combination of such random vector sequence. A direct computation of the asymptotic variance leads to the quadratic form built on Σ_{Ψ}.

The next lemma is a generalization of the CLT for a L-statistics (see, e.g., [3, Chapter 22]).

Lemma 1.5. Let $(U, \mathbb{B}(U))$ be a Polish space where $\mathbb{B}(U)$ denotes the Borel σ algebra of U. We consider a sequence $\left(\chi_{j}\right)_{1 \leqslant j \leqslant n, n \in \mathbb{N}^{*}}$ valued in U and Q a probability measure on $U \times[0,1]$. We assume that the sequence of empirical measures $\left(\frac{1}{n} \sum_{j=1}^{n-1} \delta_{\chi_{j}, j / n}\right)_{n \in \mathbb{N}^{*}}$ converges in distribution to Q.
Let ψ be a bounded measurable real function on $U \times[0,1]$. We assume that the set of discontinuity points of ψ has null Q-probability. Then,

$$
D_{n}:=\frac{1}{\sqrt{n}} \sum_{j=1}^{n-1} \psi\left(\chi_{j}, j / n\right)\left(X_{\sigma_{n}(j)}-\frac{j}{n+1}\right) \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}\left(0, s_{\psi}^{2}\right),
$$

where the asymptotic variance s_{ψ}^{2} is given in (3).
Proof of Lemma 1.5. Recall that the sequence $\left(E_{i}\right)$ has been defined in Lemma 1.3. We have

$$
\begin{aligned}
X_{\sigma_{n}(j)}-\frac{j}{n+1} & \stackrel{\mathcal{L}}{=} \frac{\sum_{i=1}^{j} E_{i}}{\sum_{i=1}^{n+1} E_{i}}-\frac{j}{n+1}=\frac{1}{\frac{1}{n+1} \sum_{i=1}^{n+1} E_{i}}\left(\frac{1}{n+1} \sum_{i=1}^{j} E_{i}-\frac{j}{(n+1)^{2}} \sum_{i=1}^{n+1} E_{i}\right) \\
& =\frac{1}{\frac{1}{n+1} \sum_{i=1}^{n+1} E_{i}}\left(\frac{1}{n+1} \sum_{i=1}^{j}\left(E_{i}-1\right)-\frac{j}{(n+1)^{2}} \sum_{i=1}^{n+1}\left(E_{i}-1\right)\right),
\end{aligned}
$$

so that,

$$
D_{n} \stackrel{\mathcal{L}}{=} \frac{1}{\sqrt{n}(n+1)} \frac{1}{\frac{1}{n+1} \sum_{i=1}^{n+1} E_{i}} \sum_{j=1}^{n-1} \psi\left(\chi_{j}, j / n\right)\left(\sum_{i=1}^{j}\left(E_{i}-1\right)-\frac{j}{n+1} \sum_{i=1}^{n+1}\left(E_{i}-1\right)\right)
$$

Using the assumption on the empirical measure, we get

$$
\frac{1}{n} \sum_{j=1}^{n} \psi\left(\chi_{j}, j / n\right) \frac{j}{n+1} \rightarrow I:=\int_{U \times[0,1]} x \psi(\chi, x) d Q(\chi, x) .
$$

Further, by the weak law of large numbers, $(1 /(n+1)) \sum_{i=1}^{n+1} E_{i}$ converges in probability to $\mathbb{E}\left[E_{1}\right]=1$. Hence, by Slutsky's lemma, we are led to consider the random vector

$$
V_{n}:=\frac{1}{\sqrt{n}}\left(\frac{\frac{1}{n+1} \sum_{j=1}^{n-1} \psi\left(\chi_{j}, j / n\right) \sum_{i=1}^{j}\left(E_{i}-1\right)}{\sum_{i=1}^{n+1}\left(E_{i}-1\right)}\right) .
$$

Notice that the first coordinate of V_{n} can be rewritten as (up to the normalizing factor $n^{-1 / 2}$)

$$
\sum_{i=1}^{n-1}\left(\frac{1}{n+1} \sum_{j=1}^{n-1} \psi\left(\chi_{j}, j / n\right) \mathbb{1}_{i \leqslant j}\right)\left(E_{i}-1\right) .
$$

For $t \in[0,1]$, let $\phi(t):=\int_{U \times[t, 1]} \psi(\chi, x) d Q(\chi, x)$. We will show below that

$$
\begin{equation*}
\lim _{n} \sup _{t \in[0,1]}\left|\left(\frac{1}{n+1} \sum_{j=1}^{n-1} \psi\left(\chi_{j}, j / n\right) \mathbb{1}_{i \leqslant j}\right)-\phi(t)\right|=0 . \tag{2}
\end{equation*}
$$

Let assume for a while that this result holds. Then, in our study, we may replace V_{n} by

$$
\widehat{V}_{n}:=\frac{1}{\sqrt{n}}\binom{\frac{1}{n+1} \sum_{i=1}^{n-1} \phi(i / n)\left(E_{i}-1\right)}{\sum_{i=1}^{n+1}\left(E_{i}-1\right)}
$$

since (2) implies that $\lim _{n \rightarrow \infty} \mathbb{E}\left\|V_{n}-\widehat{V}_{n}\right\|^{2}=0$. Using Remark 1.4, we obtain that the sequence $\left(\widehat{V}_{n}\right)_{n \in \mathbb{N}^{*}}$ converges in distribution to a centered Gaussian vector with covariance matrix

$$
\left(\begin{array}{cc}
\int_{0}^{1} \phi^{2}(t) d t & \int_{0}^{1} \phi(t) d t \\
\int_{0}^{1} \phi(t) d t & 1
\end{array}\right) .
$$

Finally, using the so-called delta method [3, Theorem 3.1], $\left(D_{n}\right)_{n \in \mathbb{N}^{*}}$ converges in distribution to a centered Gaussian variable with variance

$$
\begin{equation*}
s_{\psi}^{2}=\int_{0}^{1}(\phi(t)-I)^{2} d t \tag{3}
\end{equation*}
$$

It remains to show that (2) holds. First let assume that $\psi \geqslant 0$. Set, for $j=1, \ldots n$, $\phi_{n}(j / n):=(1 /(n+1)) \sum_{j=1}^{n-1} \psi\left(\chi_{j}, j / n\right)$ and consider the piece-wise linear extension ϕ_{n} defined on $[0,1]$. The second Dini's theorem [2] allows to conclude that the sequence of functions $\left(\phi_{n}\right)_{n \in \mathbb{N}^{*}}$ converges uniformly to ϕ yielding the result. In the general case, we may mimic this reasoning on $\psi^{+}=\sup (\psi, 0)$ and $\psi^{-}=\sup (-\psi, 0)$ and so conclude.

Notice that, using the definitions of ϕ and I and applying Fubini's theorem, s_{ψ}^{2} can be explicited as follows:

$$
\begin{align*}
s_{\psi}^{2} & =\int_{0}^{1}(\phi(t)-I)^{2} d t=\int_{0}^{1}\left(\int_{U \times[0,1]} \psi(\chi, x)\left(\mathbb{1}_{t \leqslant x}-x\right) d Q(\chi, x)\right)^{2} d t \\
& =\int_{0}^{1} \iint_{(U \times[0,1])^{2}} \psi\left(\chi_{1}, x_{1}\right) \psi\left(\chi_{2}, x_{2}\right)\left(\mathbb{1}_{t \leqslant x_{1}}-x_{1}\right)\left(\mathbb{1}_{t \leqslant x_{2}}-x_{2}\right) d Q\left(\chi_{1}, x_{1}\right) d Q\left(\chi_{2}, x_{2}\right) d t \\
& =\iint_{(U \times[0,1])^{2}} \psi\left(\chi_{1}, x_{1}\right) \psi\left(\chi_{2}, x_{2}\right) \int_{0}^{1}\left(\mathbb{1}_{t \leqslant x_{1}}-x_{1}\right)\left(\mathbb{1}_{t \leqslant x_{2}}-x_{2}\right) d t d Q\left(\chi_{1}, x_{1}\right) d Q\left(\chi_{2}, x_{2}\right) \\
& =\iint_{(U \times[0,1])^{2}} \psi\left(\chi_{1}, x_{1}\right) \psi\left(\chi_{2}, x_{2}\right)\left(x_{1} \wedge x_{2}-x_{1} x_{2}\right) d Q\left(\chi_{1}, x_{1}\right) d Q\left(\chi_{2}, x_{2}\right) . \tag{4}
\end{align*}
$$

References

[1] E. Rio. Théorie asymptotique des processus aléatoires faiblement dépendants, volume 31. Springer Science \& Business Media, 1999.
[2] W. Rudin. Real and complex analysis. 1987. Cited on, 156, 1987.
[3] A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

