
Exercises sheet n̊ 1 : Introduction to MC and IS

Exercise 1 - An example in Finance
In financial applications, we have to calculate quantities of the type

C = E
((
eβG −K

)
+

)
, (1)

G being a standard Gaussian rv and x+ = max(0, x). These quantities represent the price
of an option to buy, commonly called a “call”.

Similarly, an option to sell, called “put”, is defined by

P = E
((
K − eβG

)
+

)
. (2)

1. Prove the following explicit formula :

C = eβ
2/2N

(
β − logK

β

)
−KN

(
− logK

β

)
where N(x) =

∫ x
−∞ e

−u2/2 du√
2π

.

2. Similarly, prove the following explicit formula :

P = KN

(
logK

β

)
− eβ2/2N

(
logK

β
− β

)
.

3. We apply Monte Carlo simulation to estimate C and compare the exact value to
results of a simulation based on various sizes of samples in the case β = K = 1.

exact value : 6.72

n=100 estimated 95% CI : [0.08,11.39]

estimated value : 5.74

n=1000 estimated 95% CI : [4.20,10.01]

estimated value : 7.1

n=104 estimated 95% CI : [6.13,8.43]

estimated value : 7.28

n=105 estimated 95% CI : [6.59,7.69]

estimated value : 7.14

We compare these results with those obtained when evaluating an option to sell. We
then obtain

exact value : 0.23842

n=100 estimated 95% CI : [0.166,0.276]

estimated value : 0.220

n=1000 estimated 95% CI : [0.221,0.258]

estimated value : 0.240

n=10000 estimated 95% CI : [0.232,0.244]

estimated value : 0.238
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The approximation is much better than in the case of a call.
Prove theoretically this observation by a calculation of the variance.

4. [Importance sampling] We want to apply IS in the case of the calculation of a
put (2). Use a Taylor expansion at order 1 near 0 to rewrite P and derive another
estimation procedure for P .

We then obtain

exact value : 0.23842

n = 100 estimated 95% CI : [0.239,0.260]

estimated value : 0.249

n = 1000 estimated 95% CI : [0.235,0.243]

estimated value : 0.239

n = 104 estimated 95% CI : [0.237,0.239]

estimated value : 0.238

We note a significant improvement with respect to the results based on the classical
Monte Carlo : for a 104-sample, the RE becomes 1% instead of 6%.
Prove theoretically this observation by a calculation of the variance.

5. [Control variables] Find a simple relation between C and P .
Derive then a new estimation procedure for C from the one of P .
Conclude.

6. [Antithetic variables] Use the fact that the distribution of G is identical to that
of −G to calculate the price of a put (2).
Prove that in that case we reduce the variance of a coefficient almost by 2.

Exercise 2 - Importance sampling on a basic example
Assume that we want to estimate

I =

∫ 1

0

g(x)dx =

∫ 1

0

cos
(πx

2

)
dx.

1. Express the previous integral in terms of the expectation of a random variable.

2. To apply IS, we approximate g by a second degree polynomial. Since g is even and

equals to 0 at x = 1 and to 1 at x = 0, it is natural to take f̃(x) in the form λ(1−x2).
Determine the value λ so that the constraint

∫
f̃(x)dx = 1 is satisfied.

3. Calculate the variance of Z = g(Y )f(Y )/f̃(Y ) and show that we have reduced the
variance by a factor of 100.

Exercise 3 - A discrete-time Markov chain
To fix ideas and better understand the difficulties to choose a good change of measure,
we study the discrete-time Markov chain Y such as the one depicted in Figure 1 with
state space S = {0, 1, 2, 3} and 0 < a, b, c, d < 1. The chain starts at 1 and we wish to
evaluate the probability that it gets absorbed by state 3, that is to say I = P(X(∞) =
3|X(0) = 1). Obviously here, I = ac/(1− ad). For instance, when a and c are small, the
event {X(∞) = 3} becomes rare.
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Figure 1 – A small discrete-time Markov chain.

For instance, consider the case a = c = 1
4

and suppose that we decide to make the event

of interest {X(∞) = 3} more frequent by changing a to ã = 1
2

and c to c̃ = 3
4
. Define P

as the set of all possible paths of X starting at sate 1 :

P = {π = (x0, x1, . . . , xK), K > 1 with x0 = 1, xK = 0 or 3 and xi /∈ {0, 3} if 1 6 i 6 K − 1}

and Ps as the set of successful paths (those paths in P ending with state 3.

1. Observe that

Ps = {πk, k > 1}

where πk = (1, (2, 1)k, 2, 3) (the notation (2, 1)k meaning that the sequence (2, 1) is
repeated k times.

2. We have

P(πk) = (ad)kac =

(
1

4

3

4

)k
1

4

1

4
and P(π̃k) =

(
1

2

1

4

)k
1

2

3

4
.

We see that even in such a simple model, finding an appropriate change of measure
can be non-trivial.

3. Prove that P(π̃k) > P(πk) for k = 0, . . . , 4 but P(π̃k) < P(πk) for k > 5.

4. Now consider the following IS scheme : change a to ã = 1 and c to c̃ = 1− ad. Check
that

L(πk) =
ac

1− ad
= I

for all k which means that this is the optimal change of measure, the one leading to
a zero-variance estimator.

Exercise 4 - Control variables
We want to compute I =

∫ 1

0
g(x)dx =

∫ 1

0
exdx.

1. Express the previous integral in terms of the expectation of a random variable.

2. We approximate g by 1 + x and show that∫ 1

0

exdx =

∫ 1

0

(ex − 1− x)dx+
3

2
.

3. Prove that the variance in this method than reduces significantly.
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Exercise 5 - Importance sampling Suppose we want to evaluate the integral µ(G) =∫
G(x)µ(dx) of a nonnegative and bounded potential function G with respect to some

distribution µ on some measurable space (E, E). We associate with a sequence of inde-
pendent random variables (Xi)i>1 with common distribution µ the empirical measures

µN := 1
N

∑N
i=1 δXi

.

1. Check that E(µN(G)) = µ(G) and

NE
((
µN(G)− µ(G)

)2)
= µ

(
(G− µ(G))2

)
=: σµ(G).

2. For any probability measure µ such that µ � µ, prove that µ(G) = µ(G) with

G = Gdµ
dµ

. We let µN := 1
N

∑N
i=1 δYi be the occupation measure associated with a

sequence of N independent random variables (Yi)i>1 with common distribution µ.

Prove that E(µN(G)) = µ(G) and

NE
((
µN(G)− µ(G)

)2)
= µ

((
G− µ(G)

)2)
=: σµ(G)

= σµ(G)− µ
(
G2

(
1− dµ

dµ

))
.

3. An example of potential G. Roughly speaking, from the equation above, we see
that a reduction of variance is obtained as soon as µ is chosen such that dµ

dµ
< 1 on

regions where G is more likely to take large values. In other words, it is judicious
to choose a new reference distribution µ so that the sampled particles X i are more
likely to visit regions with high potential. For instance, if G = 1 A is the indicator
function of some measurable set A ∈ E , then prove that

σµ(G) = σµ(G)− µ
(

1A

(
1− dµ

dµ

))
.

If we choose µ such that dµ
dµ
6 1− δ for any x ∈ A, then check that

µ(A) > µ(A)/(1− δ) and σµ(G) + δµ(A) 6 σµ(G).

4. The optimal choice. Show that the optimal distribution µ is the Boltzmann-Gibbs
measure µ(dx) = µ(G)−1G(x)µ(dx) in the sense that σµ(G) = 0. This optimal stra-
tegy is clearly hopeless since the normalizing constant µ(G) is precisely the constant
we want to estimate !

5. A bad choice. Consider now the distribution µ defined by µ(dx) = µ(G−2)−1G−2(x)µ(dx),
then check that

σµ(G) > µ(G4)/µ(G2)− µ(G)2 > σµ(G).

Exercise 6 - Simple random walk Let (εn)n>0 be independent and identically distri-
buted random variables with common law P(εn = 1) = 1 − P(εn = −1) = p ∈ (0, 1). We
consider the simple random walk Xn on Z defined by Xn =

∑n
p=0 εp. Suppose we want to

evaluate (using a Monte Carlo scheme) the probability that Xn enters a subset A ⊂ N∗.
if we have p < 1/2, then the random walk Xn tends to move to the left. One natural
way to increase the probability that the random walk visits the set A is to change p by
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some p ∈ (p, 1). In this case, the random walk Yn defined as Xn by replacing p by p is
more likely to move to the right and as a result the event {Yn ∈ A} is more likely than
{Xn ∈ A}. The expected value of f(Xn) = 1 A(Xn) and the particle approximation mean
using the standard Monte Carlo method are given respectively by

E(f(Xn)) = P(Xn ∈ A) and f(Xn) =
1

N

N∑
i=1

1 A(X i
n)

where (X i
n)i61 is a collection of independent copies of Xn.

1. We let Pn be the distribution of the random sequence (εp)06p6n ∈ {−1,+1}n+1. Check
that

Pn(d(u0, . . . , un)) = (p(1− p))(n+1)/2 (p/(1− p))
∑n

k=0 uk/2 .

2. We let P n be the distribution of the random sequence (εp)06p6n ∈ {−1,+1}n+1

defined as (εp)06p6n ∈ {−1,+1}n+1 by replacing p by p ∈ (0, 1). Deduce from the

first question that P n � Pn and

dPn

dP n

(u0, . . . , un) = Gn

(
n∑
k=0

uk)

)
with Gn(x) =

(
p(1− p)
p(1− p)

)n+1
2
(
p(1− p)
p(1− p)

)x
2

.

3. Check that E(f(Xn)) = E(f(Yn)Gn(Yn)) for any f ∈ Bb(Z).

4. Let (Y i
n)i61 be a collection of independent copies of Yn. By the Central Limit Theorem,

prove that the sequence of random variables

WN
n (f) =

√
N
(
f(Xn)− E(f(Xn))

)
W

N

n (f) =
√
N
(
f(Yn)Gn(Yn)− E(f(Xn))

)

converges in law, as N → ∞, to a pair of Gaussian random variables with mean 0
and respective variance σ2

n(f) and σ2
n(f) defined by

σ2
n(f) = E

(
f(Xn)2

)
− E(f(Xn))2

σ2
n(f) = E

(
f(Yn)2Gn(Yn)2

)
− E(f(Xn))2

= σ2
n(f) + E

(
f(Xn)2 (Gn(Xn)− 1)

)
5. Prove that for any indicator functions f = 1 A with A ⊂ {Gn 6 1/an}, for some
an > 1, we have

σ2
n(f) 6 a−1n P(Xn ∈ A)− P(Xn ∈ A)2 6 σ2

n(f).
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Exercises sheet n̊ 2 : Branching Processes

Exercise 1 A culture of blood starts at time 0 with 1 red blood cell. After one minute,
a red blood cell dies and is replaced, with the following probabilities, by

• 2 red blood cells with probability 1/4 ;
• 1 red and 1 white with probability 2/3 ;
• 2 white blood cells with probability 1/12.

Every blood cell lives during one minute and gives birth in the same way that its parent.
Every white blood cell lives during one minute and dies without reproducing itself.

a) Evaluate the probability that no white blood cell still appeared at time n + 1/2
minute.

b) Evaluate the probability that the entire culture disappears.

Exercise 2 A disease is modelized by a branching process with initial size N germs. At
every grip of a medicine (1 a day), every germ has the probability p = 1

2
to disappear.

Determine the law of the duration T of the disease (or of the number of used medicine).
Same question, when every germ lives an exponential time of average 1

λ
= 2 days.

Determine also, for N = 3, in every case, the mean duration of the disease.

Exercise 3 We consider a population of bacteria of size Xt at time t such that X0 = 1.
Between t and t + ∆t, every bacteria is divided in two new bacteria with probability
λ∆t + o(∆t), dies with probability µ∆t + o(∆t) where λ 6= µ and does not evolve with
probability 1− (λ+ µ)∆t+ o(∆t).

a) Let G(s, t) = E
(
sXt
)

the probability generating function of Xt. Determine a partial
differential equation satisfied by satisfied by G and check that the unique solution such
that G(s, 0) = s is

G(s, t) =
eαt(1− s)− 1 + sρ

ρeαt(1− s)− 1 + sρ

where ρ = λ
µ

and α = λ−µ. Determine E(Xt), p0(t) and the extinction probability of the

bacteria.
b) When µ = 0 compare E(Xt) with the size of the process such that every bacterium

divides every λ−1 units of time.
c) Determine E(Xn) and the extinction probability for the discrete process such that

at every unit of time, a bacterium divides in two with probability λ
λ+µ

and dies with

probability µ
λ+µ

.

Exercise 4 We consider a population such that the number of direct descendents by
individual is distributed as a binomial B(2, p).

a) Assume we start with 1 individual, determine the extinction probability and the
probability that there is nobody anymore, for the first time, at the third generation.

b) Assume now that number of individuals at the first generation is Poisson distributed
with parameter λ. Prove that, for p > 1

2
, the extinction probability is π = exp[λ(1 −

2p)/p2].

Exercise 5 We consider a population of particles that undergo a shock every minute.
Then the particle may divide in 2 (with probability p) or disappear (with probability
1− p). We note Xn the population size after n minutes.
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a) Determine the extinction probability of the population if X0 = 1 and then if
P ([X0 = k]) = 1/2k for any k ∈ N∗.

b) We consider now that, independently for every particle, a shock occurs after an
exponential time with mean 1mn. Determine the extinction probability.

c) Evaluate in every case the mean size of the population after the n-th minute.

Exercise 6 We consider a population of males and females such that every female has
one descendent after an exponential time with rate λ : this descendent is a female (resp.
a male) with probability p (resp. 1 − p). The lifetimes of the females (resp. males) are
exponential with rate µ (resp. ν).
If Xt (resp. Yt) represents the number of females (resp. males) at time t and if (X0, Y0) =
(i, j), check that

MX(t) = E(Xt) = ie(λp−µ)t and MY (t) = E(Yt) =
iλ(1− p)
λp+ ν − µ

e(λp−µ)t+

(
j − iλ(1− p)

λp+ ν − µ

)
e−νt.
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Exercises sheet n̊ 3 : Splitting

An elementary gambler’s ruin problem

We consider a simple random walk Xn = x +
∑n

i=1 εi on E = Z, starting at some x ∈ Z
where (εi)i>1 is a sequence of independent and identically distributed random variables
with common law

P(ε1 = +1) = p and P(ε1 = −1) = q

with p, q ∈ (0, 1) and p + q = 1. If we use the convention
∑
∅ = 0, then we can interpret

Xn as the amount of money won or lost by a player starting with x ∈ Z euros in a
gambling game where he wins and loses 1 euro with respective probabilities p and q. If
we let a < x < b be two fixed parameters, one interesting question is to compute the
probability that the player will succeed in winning b − x euros, never losing more than
x− a euros. More formally this question becomes that of computing the probability that
the chain Xn (starting at some x ∈ (a, b)) reaches the set B = [b,∞) before entering into
the set C = (−∞, a]. When p < q (i.e. p < 1/2), the random walk Xn tends to move to
the left and it becomes less and less likely that Xn will succeed in reaching the desired
level B. We further assume that q > p. We introduce the stopping time

R = inf{n > 0; Xn = a}

as well as the first time the chain Xn reaches one of the boundaries

T = inf{n > 0; Xn ∈ {a, b}} 6 R.

Study of Px(R <∞)

1. Check that if we have |x − y| > n or y − x 6= n + 2k, for some k > 1 then Px(R <
∞) = 0. The case where y−x = k−(n−k) with 0 6 k 6 n corresponds to situations
where the chain has moved k steps to the right and n − k steps to the left. Prove
that Px(Xn = y) =

(
n
k

)
pkqn−k.

2. Show that the function α defined by

x ∈ [a,∞) 7→ α(x) = Px(R <∞)

is the minimal solution of the equation defined for any x > a by α(x) = pα(x+ 1) +
qα(x− 1) with the boundary condition α(a) = 1.

3. Whenever p < q, we recall that the general solution of the equation above has the
form α(x) = A+B(q/p)x with α(a) = 1 = A+B(q/p)a. Deduce from the above that

α(x) = 1 +B[(q/p)x − (q/p)a] and Px(R <∞) = 1 for any x.

4. Whenever p = q, we recall that the general solution of the equation above has the
form α(x) = Ax+B with α(a) = 1 = A+B(q/p)a. Deduce from the above that

α(x) = 1 +B[(q/p)x − (q/p)a] and Px(R <∞) = 1 for any x.
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Expectation of T

1. Check that for any n > 0 and λ > 0, we have

Px(R > n) = Px(Xn > a) 6 e−λaEx
(
eλXn

)
= e−λ(a−x)

(
peλ + qe−λ

)n
.

2. If we choose λ = log(q/p)/2 ∈ (0,∞), then prove that

Px(R > n) 6 (p/q)(x−a)/2(4pq)n/2.

3. Deduce from the above that for p 6= 1/2,

Ex(T ) 6 Ex(R) =
∑
n>1

Px(R > n) 6
(4pq)1/2

1− (4pq)1/2
(p/q)(x−a)/2.

Study of Px(T < R)

1. Show that for any a < x < b0, the stochastic processMn = (q/p)Xn is a Px-martingale
with respect to the filtration Fn = σ(X0, . . . , Xn) and if p < q, then Px-a.s. on the
event {T > n}, we have that

Ex (|Mn+1 −Mn||Fn) 6 2(q/p)b(q − p).
2. Since we have Ex(T ) < ∞ and Ex (|Mn+1 −Mn||Fn) 1 {T>n} < c for some finite

constant, prove by a well-known martingale theorem of Doob that Ex(MT ) = Ex(M0) =
(q/p)x and deduce that for any x ∈ [a, b]

(q/p)x = (q/p)bPx(T < R) + (q/p)a(1− Px(T < R)).

Finally conclude that for any p 6= q, we have

Px(T < R) =
(q/p)x − (q/p)a

(q/p)b − (q/p)a
. (3)

3. Using the strong Markov property, check that for any p and q, the function β(x) =
Px(T < R) = Ex(1 b(XT )) satisfies the equation

β(x) = pβ(x+ 1) + qβ(x− 1)

for any x ∈ (a, b) with the boundary conditions (β(a), β(b)) = (0, 1).
For p 6= q, check that the function (3) is the unique solution and for p = q = 1/2,
prove that the solution is given for any x ∈ [a, b] by

Px(T < R) = (x− a)/(b− a).

Splitting algorithm Assume that we want to fix the intermediate thresholds Bn in such
a way that the transition probability between two successive thresholds equals θ i.e.

Pbn
(
XTn+1 = bn+1

)
= θ,

where Tn = inf{k > 0; Xk ∈ {a, bn}}.
1. Show that the optimal solution is given recursively by

bn+1 = bn +

log

(
1 + (θ − 1)

(
p
q

)a−bn)
− log(θ)

log(p/q)
.

2. Deduce that as bn goes to infinity, if q > p,

bn+1 ∼ bn −
log(θ)

log(p/q)
.
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Practical on Scilab

1 Illustrative examples

1.1 Crude Monte Carlo

Assume that we want to calculate E := E(eβG) where G is a standard Gaussian rv.

1. Compute the exact value of E.

2. Propose an algorithm using the Monte Carlo scheme to evaluate

E
(
eβG
)

with β = 5 and G a standard Gaussian rv.

3. Determine also a 95%-confidence interval.

1.2 Methods to reduce the variance

We want to evaluate I =
∫ 1

0
exdx.

Propose algorithms using

1. crude Monte Carlo method

2. control variables method (see Exercise 4 of the sheet of exercises n̊ 1)

3. antithetic variables method

to evaluate by several ways I.
For each method, determine also a 95%-confidence interval.

2 An example in finance

Let us study Exercise 1 of the sheet of exercises n̊ 1. Here we take β = K = 1.
Determine

1. crude Monte Carlo estimations of C and P ;

2. an estimation of C based on control variables and the first estimation of P ;

3. an estimation of P with IS method.

4. an estimation of P with antithetic variables method.

For each method, determine also a 95%-confidence interval.
Conclude.

3 An example in queuing theory

Let us study a M/M/1 queue. See next Section for some reminders on queuing theory.
Take for example, λ = 0.1 and µ = 0.12. Determine

1. a crude Monte Carlo estimation of P(Q > L), L = [[1 : 5 : 150]] ;

2. a splitting estimation of P(Q > L), L = [[1 : 5 : 150]].

For each method, determine also a 95%-confidence interval.
Conclude.
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4 Comparison between IS and Splitting on the simple random
walk on Z

In this section, we want to compare numerically on Scilab the IS and Splitting methods
in the setting of the simple random walk on Z. The goal is to estimate the probability
that the line reaches length b before returning at 0.

4.1 General framework

4.2 Importance Sampling

Following exercise 6 of the sheet of exercises n̊ 1, we define a new random variable to
simulate and the corresponding likelihood ratio.

4.3 Splitting

Following the exercise of the sheet of exercises n̊ 3, we define the optimal thresholds and
run N simple random walks starting at 0. As soon as a queue reaches the next threshold
before returning to 0, it is duplicated in R sub queues that evolve from this threshold and
so on. The unbiased estimator of the probability under concern is then given by

P̂Splitt =
1

N

N∑
i0=1

1

RM

R∑
i1=1

. . .
R∑

iM=1

1 i01 i0i1 . . . 1 i0i1...iM

where 1 i0i1...ij represents the result of j-th trial (i.e. it is equals to 1 if the queue reaches
Bj, 0 esle).

4.4 Practical on Scilab

Write a program for both algorithms (IS and Splitting) to compare their performances
(accuracy estimation, cost...) for the simple random walk.
Check also that crude simulation fails to propose an estimator in that case.
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5 Comparison between IS and Splitting on the M/M/1 queue

In this section, we want to compare numerically on Scilab the IS and Splitting methods
in queuing theory. The goal is to estimate the probability that the line reaches length L0

before returning at 0.

5.1 General framework

See [1] or [2] for more details.

A queue is constituted by

a) an arrival flow that represents the instants of arrival of ”customers”. We consider
in general that the times between two successive arrivals are iid rvs. Then arrival flow is a
stationary renewal process. A simple and commonly used case is the one with exponential
inter arrivals ; the process is then a Poisson process.

b) a service characterized by
* a service duration : a customer that starts his service will be immobilized a ran-

dom duration with known distribution,
* a number of counter.

c) service rules that indicate how the service is proceeding :
* system with or without line (in a system without line, there is no queue ; a cus-

tomer that can not be served at his arrival is lost),
* service order : Fist In First Out (FIFO) (ex : line in the Post office), Last In

First Out (LIFO) (ex : print line an the photocopier)
* several classes of customers clients (definition of priority customers)
* capacity of the queue
* at his arrival, if the line is too long, a customer may quit the line with a proba-

bility depending on the length of the queue and other parameters. . .
. . .

A queue is characterized by its Kendall notation

A/B/C/. . .

A represents the arrival flow, B the service time, C the number of counters. Then we add
complementary information like policies. . . We use the following convention :

* M (like Markov) corresponds to a Poisson flow for the arrivals and to an expo-
nential time service.

* D (like deterministic) corresponds to constant inter arrival times and to a fix
time service for every customer.

* G (like general) corresponds to general distributions.

5.2 M/M/1 queue

This is the simplest and most studied queue.
* The arrivals correspond to a Poisson process with rate λ (the inter arrival times
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are iid rvs with parameter λ.
* The service time of the customers is exponentially distributed with parameter µ.
* There is a unique counter and the customers are served according to their order

of arrival. There is no capacity limitation.

Let Nt be the number of customers in the queue at time t. Nt is an homogenous in-
teger Markov process.

Proposition 5.1 We have
(i) Px(Nt = x) = 1− (λ+ (x ∧ 1)µ) + o(t) ;
(ii) the intensity of the process is given by

i(x) = λ+ (x ∧ 1)µ for x > 0;

(iii) the transition matrix of the embedded chain is given by{
P (x, x+ 1) = λ

λ+(x∧1)µ

P (x, x− 1) = (x∧1)µ
λ+(x∧1)µ .

The study of the transience of the process Nt amounts to that of the embedded chain.
Let ρ = λ

µ
the process intensity.

Proposition 5.2 A positive measure invariant for P is given by

m(x) = m(0)
P (0, 1) . . . P (x− 1, x)

P (1, 0) . . . P (x, x− 1)
= m(0)ρx

λ+ (x ∧ 1)µ

λ
.

Here we are interested by the case λ < µ.The previous measure is then bounded and we
get the existence of an invariant probability π given by

π(n) = ρn(1− ρ), n > 0.

Proposition 5.3 The performance parameters are given by
– the flow (arrival or departure) d is λ ;
– the counter use rate is ρ ;
– the average number L of customers in the system is

L = Eπ(Nt) =
ρ

1− ρ
;

– the average number Lq of customers in the queue is

Lq =
ρ2

1− ρ
;

– the sojourn time in the system is

W =
1

µ(1− ρ)
=

1

µ
+

ρ

µ(1− ρ)
;

– the sojourn time in the queue is

Wq =
ρ

µ(1− ρ)
.
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Proof First, the arrival flow is clearly λ and d = λ. Second, if a customer enters the
system with a queue of length n, its sojourn time Tq in the queue will be null if n = 0 and
the sum of n iid exponential distributed rvs with parameter µ if n > 0. As a consequence,

P (Tq 6 t) =
∑
n>0

P (Tq 6 t and n customers in the queue)

=
∑
n>0

P (Tq 6 t | n customers in the queue)P (n customers in the queue)

= π(0) +
∑
n>1

∫ t

0

µnxn−1

n!
e−µxdxρn(1− ρ)

= 1− ρ+ ρ(1− e−µ(1−ρ)t) = 1− ρe−µ(1−ρ)t

Then

Wq = E(Tq) =

∫ +∞

0

P(Tq > t)dt =
ρ

µ(1− ρ)
.

We then use the following relations

L = Lq + Ls and W = Wq +
1

µ

and the law of Little applied to the system, to the queue or to the counter

L = d W, Lq = d Wq and Ls =
1

µ
d.

�

5.3 Importance Sampling

From [3], the optimal change is given by{
λ∗ = µ

µ∗ = λ

We study N queues starting 1 according to the arrival and service rates λ∗ and µ∗. The
unbiased estimator of the probability under concern is then given by

P̂IS =
1

N

N∑
i=1

1 Yi>L0L(Yi)

Let

pλ =
λ∗

λ∗ + µ∗
λ+ µ

λ
and pµ =

µ∗

λ∗ + µ∗
λ+ µ

µ
.

The likelihood ratio should be updated at each new event by

L =

{
L× pλ = L× λ∗

λ∗+µ∗
λ+µ
λ

L× pµ = L× µ∗

λ∗+µ∗
λ+µ
µ
.
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5.4 Splitting

We define the optimal thresholds and run N queues starting at 1. As soon as a queue
reaches the next threshold before returning to 0, it is duplicated in R sub queues that
evolve from this threshold and so on. The unbiased estimator of the probability under
concern is then given by

P̂Splitt =
1

N

N∑
i0=1

1

RM

R∑
i1=1

. . .

R∑
iM=1

1 i01 i0i1 . . . 1 i0i1...iM

where 1 i0i1...ij represents the result of j-th trial (i.e. it is equals to 1 if the queue reaches
Bj, 0 esle).

5.5 Practical on Scilab

Write a program for both algorithms (IS and Splitting) to compare their performances
(accuracy estimation, cost...) on the M/M/1 queue.
For example, take λ = 0.4 and µ = 1.
Check also that crude simulation fails to propose an estimator in that case.
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