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Introduction

What is a rare event ?

When does it occur ? In which domains ?

biology

reliability

telecommunications

aeronautics...

How to study the probability of such events ?

statistical analysis based on extreme value distributions
but needs a long observation period ;

modeling based on Monte Carlo simulations.



Introduction

Nevertheless, crude simulation is impracticable for estimating such
small probabilities : to estimate probabilities of order 10−10 with
acceptable confidence would require the simulation of at least 1012

events (which corresponds to the occurrence of only one hundred
rare events).

To overcome these limits, fast simulation techniques are applied :

Importance Sampling (IS) that relies on a change of
probability of the underlying process and requires a deep
knoweledge of the process studied ;

Importance Splitting (ISp) that relies on a partitioning of the
state space ;
Systems of particles introduced by P.Del Moral
RESTART introduced by J. and M. Villén Altamirano
complex but rely on a common simple basis ISp.
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INTRODUCTION



Introduction - Monte Carlo method

Assume we want to calculate

I =

∫
[0,1]d

g(u1, . . . , ud)du1 . . . dud .

Remark that

if we set X = g(U1, . . . ,Ud) where U1, . . . ,Ud are uniform iid rv
on [0, 1], we get

I = E(X ) = E(g(U1, . . . ,Ud)).



Introduction - Monte Carlo method

For the simulation, assume that (Ui , i > 1) is a sequence of iid
uniformly distributed rvs over [0, 1] and set

X1 = g(U1, . . . ,Ud),
X2 = g(Ud+1, . . . ,U2d) . . .

Then the sequence (Xi , i > 1) is a sequence of iid rvs under the
distribution X and a good approximation of I is given by

1

n
(X1 + . . .+ Xn).

This quantity is called the empirical mean of the sample.

We remark that this method is easy to program. It is also notable
that it does not depend on the regularity of f , which can be simply
measurable.



Introduction - Monte Carlo method

More generally, we often want to evaluate an integral in Rd of the
form

I =

∫
Rd

g(x1, . . . , xd)f (x1, . . . , xd)dx1 . . . dxd

where f (x) is positive and sums to one (i.e.
∫

f (x)dx = 1). Then I
can be written in the form E(g(X )) with X a rv valued in Rd

having probability density function f with respect to the Lebesgue
measure.

We can therefore approximate I by

În :=
1

n
(g(X1) + . . .+ g(Xn)),

if (Xi , i > 1) is sampled from the distribution f (x)dx .



Introduction - Monte Carlo method

One can easily check that

Proposition

În is an unbiased estimator of I (which means that E(̂In) = I ).

Probabilistic questions
→ How and when does this method converge ?
→ What can we say about the precision of the approximation i.e.
what is the rate of convergence ?



Introduction - Limits and convergence

The answers of the previous questions are given by two of the most
important probabilistic theorems.

Theorem (Strong Law of Large Numbers)

Let (Xi , i > 1) be a sequence of iid rvs distributed as a rv X . We
assume that E(|X |) < +∞. Then for almost every ω

E(X ) = lim
n→+∞

1

n
(X1 + . . .+ Xn).

This theorem then states that the empirical mean is a ”good”
approximation of I in the case where the function g is integrable :

În =
1

n
(g(X1) + . . .+ g(Xn)) −→

n→∞
E(g(X )) =

∫
Rd

f (x1, . . . , xd)g(x1, . . . , xd)dx ,

where x = (x1 . . . xd).



Introduction - Limits and convergence

The (random) error committed is given by

εn = E(g(X ))− 1

n
[g(X1) + . . .+ g(Xn)] = I − În.

We want to evaluate this error.

The Central Limit Theorem gives a quantity that is asymptotically
equal (in distribution) to the random error εn but which is also
random (standard Gaussian distributed).



Introduction - Limits and convergence

Theorem (Central Limit Theorem)

Let (Xi , i > 1) be a sequence of iid rvs distributed as a rv X . We
assume that E(X 2) < +∞ and denote by σ2 the variance of X .
Then √

n

σ
εn

(d)→ G ,

while n goes to infinity and G being a rv with a standard Gaussian
distribution.

This means that if h is a bounded Borel function E
(

h
(√

n
σ εn

))
converges to E(h(G )).



Introduction - Confidence intervals

The Central Limit Theorem never allows us to bound the random
error εn since the support of a Gaussian is equal to the whole of R.

Nevertheless it leads to a description of the error of the Monte
Carlo method by giving the standard deviation σ√

n
of εn or by

giving a (1− α)%-confidence interval (CI) for the result. That
means that the result is found with (1− α)% chance in the given
interval (and with α% chance of being outside). Indeed, we can
deduce from the previous theorem that for all c1 < c2,

lim
n→+∞

P
(
σ√
n

c1 6 εn 6
σ√
n

c2

)
=

∫ c2

c1

e−x
2/2 dx√

2π
.

In practical applications, we then approximate εn by a centered
Gaussian distribution with variance σ2

n .



Introduction - Confidence intervals

In our context, we then derive the following asymptotic
approximation for E(g(X )) :

P
(√n

σ
|εn| 6 zα

)
= P

(√n

σ
|I − În| 6 zα

)
≈ P(|G | 6 zα) = 1− α,

where zα is the (1− α)-quantile of the absolute value of a
standard Gaussian distribution.
In other words,

P
(
E(g(X )) ∈

[
În −

σ√
n

zα, În +
σ√
n

zα

])
≈ 1− α

or else the (1− α)%-CI is given by[
E(g(X ))− σ√

n
zα,E(g(X )) +

σ√
n

zα

]
.



Introduction - Estimate of the variance

The result above shows that it is important to know the order of
the size of the variance σ of the rv used in the Monte Carlo
technique. It is easy to estimate this variance.

The variance σ2n of the estimator În based on a n-sample
(Xi , i > 1) is given by

1

n − 1

n∑
i=1

(g(Xi )− În)2.

Remark : The reason for dividing by n − 1 instead of n is to have
an unbiased estimator (which means that E(σ2n) = σ2). Although
from the practical point of view it is not relevant since n will be
usually large enough.

σ2n is called the empirical variance of the sample.



Introduction - Estimate of the variance

We can therefore obtain a (1− α)%-CI by replacing σ by σn in the
CI given by the Central Limit Theorem :[

În −
σn√

n
zα, În +

σn√
n

zα

]
.

We therefore see that with no extra calculation (just by evaluating
σn on the sample already taken) we could give a dependable
estimate of the approximation error of I by În. It is one of the
greatest advantages of the Monte Carlo method to give a realistic
estimate of the error at a minimum cost.



Introduction - CI for rare event probabilities

If the quantity of interest I is a rare event probability (say less than
10−9), one might be cautious studying CI for εn. In that case, it is
more correct to study the relative random error instead of εn itself
and by the way

P
(√n

σ

|I − În|
I

6 zα
)

instead of P
(√n

σ
|I − În| 6 zα

)
.

We are then led to a (1− α)%-CI of the kind[
E(g(X ))− σ√

n
zαI ,E(g(X )) +

σ√
n

zαI

]
,

which means that

P
(
E(g(X )) ∈

[
În −

σ√
n

zαI , În +
σ√
n

zαI

])
≈ 1− α.



An example in telecommunications

In telecommunication, the loss probability of a packet of
information is less than 10−9. In other words, one must simulate a
billion of information packets by loss packet. To achieve a good
approximation one needs the simulation of at least 100 billions of
packets that would take hundred of days.

1 Determine the size n needed to achieve a fixed RE in function
of zα.

2 Application : I = 10−9, RE = 10% and α = 5%.



Second example

Assume that we want to calculate E := E(eβG ) where G is a
standard Gaussian rv.

1 Prove that clearly E = eβ
2/2.

2 To apply a Monte Carlo method, we consider the rv X = eβG .
Compute its variance.

3 Determine the size n needed to achieve a fixed RE.

4 Application : t = 10%, β = 5 and α = 5%.



Second example

The following tabular contains the results of a simulation based on
105 trials in the case β = 5 :

exact value : 268337

n=100000 estimated 95% CI : [-467647,2176181]

estimated value : 854267

This approximation is really far to be precise ! But importantly the
calculated CI contains the exact value.

This is the reassuring aspect of the Monte Carlo method : the
approximation may be mediocre but we are well aware of it. This
example shows the limit of the Monte Carlo method when the
variance of the rv used is large.
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IMPORTANCE SAMPLING



Importance Sampling (IS)

Assume that we want to calculate I = E(g(X )) where the
distribution of X is given by f (x)dx . The quantity that we want to
estimate is then

I = E(g(X )) =

∫
g(x)f (x)dx .

In that view, we introduce a new function f̃ such that f̃ > 0 and∫
f̃ (x)dx = 1. Obviously, the quantity to estimate can be written

as

E(g(X )) =

∫
g(x)f (x)

f̃ (x)
f̃ (x)dx = E

[
g(Y )f (Y )

f̃ (Y )

]
,

if Y follows the distribution f̃ (x)dx .



Importance Sampling (IS)

This means that we therefore have another method of estimating
E(g(X )) based on a n-sample Y1, Y2, . . . , Yn distributed as Y ,
the approximation being

În :=
1

n

n∑
i=1

g(Yi )f (Yi )

f̃ (Yi )
.

This procedure will be efficient if the rv Z defined by Z = g(Y )f (Y )

f̃ (Y )

has a smaller variance than that of g(X ). Easily we have

Var(Z ) = Var

(
g(Y )f (Y )

f̃ (Y )

)
=

∫
g(x)2f (x)2

f̃ (x)
dx − E(g(X ))2.

The quantity L(x) := f (x)

f̃ (x)
is called the likelihood ratio.



Importance Sampling (IS) - Optimal change

Note that if g > 0, the function

f̃ (x) =
g(x)f (x)

E(g(X ))

cancels the variance ! This means that there is an optimal change
of measure leading to a zero-variance estimator. The simulation
becomes a kind of “pseudo-simulation” leading to the exact value in
only one sample (unbiased estimator with variance equal to zero).

Unfortunately, this result is not tractable since this optimal
function f̃ depends on E(g(X )) the quantity to evaluate !



Importance Sampling (IS) - Optimal change

Nevertheless, this observation leads to two remarks :

1 there is an optimal change of measure which suggests that
there are other good and even very good changes of measures

2 it allows us to justify the following heuristic : in practice, we
choose f̃ as close as possible as |gf | then we proceed to a
normalization to recover a probability density function.



Importance Sampling (IS)
Remark : In order to avoid the calculation of the normalizing
constant, we use the following estimate

Ĩn =

∑n
i=1 g(Yi )f (Yi )/f̃ (Yi )∑n

i=1 f (Yi )/f̃ (Yi )
=

n∑
i=1

g(Yi )ωi

where Y1, . . . ,Yn are iid rvs with common distribution f̃ (x)dx and
the importance weights ω1, . . . , ωn are given by

ωi =
f (Yi )/f̃ (Yi )∑n
i=1 f (Yi )/f̃ (Yi )

.

For a fixed n, Ĩn is biased but it is asymptotically unbiased. Ĩn is
nothing more than the function g(x) integrated with respect to the
empirical measure

n∑
i=1

ωiδYi
(dy)

where δa is the Dirac measure at a.



IS - Rare event framework
In the rare event setting, the quantity of interest writes

Γ = P(X ∈ A) = E(1 A(X )) =

∫ +∞

−∞
1 A(x)f (x)dx

and can be estimated trough the Monte Carlo method using a
n-sample X1, . . . ,Xn iid with common density f (x)dx . It yields the
following unbiased estimator

Γ̂n =
1

n

n∑
i=1

1 A(Xi ).

As showed previously, the necessary sampling size to achieve a RE
less than t with probability 1− α should be

n =
(zασn

tΓ

)2
,

i.e. proportional to the inverse of the square root of the rare event
probability Γ.



IS - Rare event framework

Applying IS methodology, we rewrite Γ in the form

Γ =

∫ +∞

−∞
1 A(x)

f (x)

f̃ (x)
f̃ (x)dx = E(1 A(Y )L(Y ))

Now with a n-sample Y1, . . .Yn distributed following f̃ (x)dx , an
unbiased estimate of Γ is given by

Γ̂n =
1

n

n∑
i=1

1 A(Yi )L(Yi ).

To find a good change of measure, one needs to have a good
knowledge of the system under study. Moreover, it is possible that
IS does not lead to an improvement and even with a bad change of
measure, the result can be worse !



OTHER METHODS TO REDUCE THE

VARIANCE



Other methods - Control variables

The principle is the same as the one of IS : we want to evaluate
E(g(X )) that we write in the form

E(g(X )) = E(g(X )− h(X )) + E(g(X ))

where E(g(X )) can be calculated explicitly and Var(g(X )− h(X ))
is much more smaller than Var(g(X )).

We then use a Monte Carlo method to evaluate E(g(X )− h(X ))
and a direct evaluation for E(h(X )).



Other methods - Antithetic variables

If X is uniformly distributed over [0, 1] and since x 7→ 1− x leaves
the measure dx invariant, we also have

I =

∫ 1

0
g(x)dx = E(g(X )) =

1

2

∫ 1

0
(g(x) + g(1− x))dx

We can therefore apply the Monte Carlo technique to estimate I by

Î2n :=
1

n

n∑
i=1

1

2
(g(Xi ) + g(1− Xi )) =

1

2n

n∑
i=1

g(Xi ) + g(1− Xi ),

where (Xi , i > 1) iid rvs uniformly distributed over [0, 1].

If the function g is continuous and monotone, the quality of the
approximation is improved with respect to a direct Monte Carlo
method based on 2n realizations of the rv X .



Other methods - Method of stratification

Assume that we want to calculate

I = E(g(X )) =

∫
Rd

g(x)f (x)dx

where X is a rv valued in Rd following the distribution f (x)dx .

We take a partition (Di , 1 6 i 6 m) of Rd and we decompose the
integral in the following way

I =
m∑
i=1

E(1 Di
(X )g(X )) =

m∑
i=1

E(g(X )|X ∈ Di )P(X ∈ Di )

When we know the numbers pi := P(X ∈ Di ), we can use a Monte
Carlo method to estimate the integrals Ii := E(g(X )|X ∈ Di ) by
distributing optimally the n realizations.



Other methods - Method of stratification

Assume that we approximate the integral Ii by Îi based on ni
independent trials. The variance of the approximation error is then
given by σ2i /ni , if we denote σ2i := Var (g(X )|X ∈ Di ). We then
approximate I by

Î :=
m∑
i=1

pi Îi .

Since the samples used to obtain the estimates Îi are assumed to
be independent, the variance of the estimate Î is obviously given by

m∑
i=1

p2
i

σ2i
ni
.

It is then natural to minimize this error for a fixed number of trials
n =

∑m
i=1 ni .



Other methods - Method of stratification
We can check that the ni ’s minimizing Var

(
Î
)

are given by

ni = n
piσi∑m
i=1 piσi

.

The minimum of the variance of Î then becomes

1

n

(
m∑
i=1

piσi

)2

which is less than the variance obtained with n random trials by
the classical Monte Carlo method. In fact, the variance becomes

Var(g(X )) =
m∑
i=1

piE(g(X )2|X ∈ Di )−

(
m∑
i=1

piE(g(X )|X ∈ Di )

)2

=
m∑
i=1

piVar(g(X )|X ∈ Di ) +
m∑
i=1

piE(g(X )|X ∈ Di )
2

−

(
m∑
i=1

piE(g(X )|X ∈ Di )

)2

by using the definition of the conditional variance.



Other methods - Method of stratification

We then use twice the convexity inequality for x2

(
m∑
i=1

piai

)2

6
m∑
i=1

pia
2
i

if
∑m

i=1 pi = 1 to show that

Var(g(X )) >
m∑
i=1

piVar(g(X )|X ∈ Di ) >

(
m∑
i=1

piσi

)2

,

which proves that provided we have an optimal strategy of trials,
we can obtain by stratification, an approximation with lower
variance.



Other methods - Method of stratification

Remark

Unfortunately, note that it is possible to obtain an approximation
with greater variance than the initial estimate if the assignment of
the points is arbitrary. Despite this, there exist other strategies to
choose the points on domains that reduce the variance. For
example, if we assigns a number of points proportional to the
probability of the domain : ni = npi , we then obtain an
approximation with variance equals to

1

n

m∑
i=1

piσ
2
i .

Now we see that
∑m

i=1 piσ
2
i is a bound for Var(g(X )). This

allocation strategy is sometimes useful when we explicitly know the
probabilities pi .



Other methods - Average value or conditioning

Assume we want to calculate

E(g(X ,Y )) =

∫
g(x , y)f (x , y)dxdy

where f (x , y)dxdy is the distribution of the pair (X ,Y ). Let

h(x) =
1∫

f (x , y)dy

∫
g(x , y)f (x , y)dy

then E(g(X ,Y )) = E(h(X )). Indeed, the distribution of X is given
by m(x)dx :=

(∫
f (x , y)dy

)
dx and thus

E(h(X )) =

∫
h(X )m(x)dx =

∫
dx

∫
g(x , y)f (x , y)dy = E(g(X ,Y )).



Other methods - Average value or conditioning

We can recover that result noting that

E(g(X ,Y )|X ) = h(X ).

This interpretation as a conditional expectation allows us to prove
that the variance of h(X ) is lower than that of g(X ,Y ).

If we can not calculate directly h(x), we use a Monte Carlo
technique for h(X ).



Thank you for your attention

Cám o’n ban dã quan tâm cúa ban

See you tomorrow

Ban vào ngày mai


