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1 Introduction

The analysis of rare events is of great importance in many fields because of the risk associated to the
event. Their probabilities are often about 10−9 to 10−12. One can use many ways to study them: the
first one is statistical analysis, based on the standard extreme value distributions but this needs a long
observation period (see Aldous [1]). The second one lies on modeling and leads to estimate the rare event
probability either by analytical approach (see Sadowsky [24]) or by simulation.
In this course, we focus on the simulation approach based on Monte Carlo method. Nevertheless, crude
simulation is impracticable for estimating such small probabilities: to estimate probabilities of order
10−10 with acceptable confidence would require the simulation of at least 1012 events (which corresponds
to the occurrence of only one hundred rare events).
To overcome these limits, fast simulation techniques are applied. In particular, importance sampling
(IS) is a refinement of Monte-Carlo methods (see e.g. [20] or [21]). The main idea of IS is to make the
occurrence of the rare event more frequent. More precisely IS consists in selecting a change of measure
that minimizes the variance of the estimator. Another method is called splitting. The basic idea of
splitting (ISp) is to partition the space-state of the system into a series of nested subsets and to consider
the rare event as the intersection of a nested sequence of events (see [16]). When a given subset is entered
by a sample trajectory, random retrials are generated from the initial state corresponding to the state of
the system at the entry point. More refined versions of splitting as particles systems [9] or RESTART [27]
have been introduced in the last decades. Unlike IS, ISp does not change the underlying dynamics of the
particles.
The rest of the chapter is dedicated to basics in Monte Carlo method whereas the following one deals
with IS and other methods to reduce the variance. Chapter 3 presents branching processes that will
appear in Chapter 4 that considers ISp. Finally, all these techniques are illustrated on a practical in the
last chapter.

1.1 Description of the Monte Carlo method

The rest of the section is largely inspired from [20] and [21]).

To use the Monte Carlo method, we must rewrite the quantity to estimate in terms of the expected value
of a random variable (rv) say X. It then remains to simulate a sequence of independent and identically
distributed (iid) rvs (Xi, i > 1) distributed as X.

More precisely we want to calculate

I =

∫
[0,1]d

g(u1, . . . , ud)du1 . . . dud.

Remark that if we set X = g(U1, . . . , Ud) where U1, . . . , Ud are uniform iid rv on [0, 1], we get I = E(X) =
E(g(U1, . . . , Ud)).

For the simulation, assume that (Ui, i > 1) is a sequence of iid uniformly distributed rvs over [0, 1] and
set X1 = g(U1, . . . , Ud), X2 = g(Ud+1, . . . , U2d) . . . . Then the sequence (Xi, i > 1) is a sequence of iid
rvs under the distribution X and a good approximation of I is given by

1

n
(X1 + . . .+Xn).

This quantity is called the empirical mean of the sample.

We remark that this method is easy to program and it does not depend on the regularity of g, which can
be simply measurable.

More generally, we often want to evaluate an integral in Rd of the form

I =

∫
Rd
g(x1, . . . , xd)f(x1, . . . , xd)dx1 . . . dxd

3



where f(x) is positive and sums to one (i.e.
∫
f(x)dx = 1). Then I can be written in the form E(g(X))

with X a rv valued in Rd having probability density function f with respect to the Lebesgue measure.
We can therefore approximate I by

În :=
1

n
(g(X1) + . . .+ g(Xn)),

if (Xi, i > 1) is sampled from the distribution f(x)dx.

One can easily check that

Proposition 1.1 În is an unbiased estimator of I (which means that E(În) = I).

Probabilistic questions
→ How and when does this method converge?
→ What can we say about the precision of the approximation i.e. what is the rate of convergence?

1.2 Limits and convergence

The answers of the previous questions are given by two of the most important probabilistic theorems.

Theorem 1.2 (Strong Law of Large Numbers) Let (Xi, i > 1) be a sequence of iid rvs distributed
as a rv X. We assume that E(|X|) < +∞. Then for almost every ω

1

n
(X1 + . . .+Xn)

a.s.−→
n→∞

E(X).

This theorem then states that the empirical mean is a ”good” approximation of I in the case where the
function g is integrable (which is not surprising):

În =
1

n
(g(X1) + . . .+ g(Xn)) −→

n→∞
E(g(X)) =

∫
Rd
g(x1, . . . , xd)f(x1, . . . , xd)dx = I,

where x = (x1, . . . , xd).
The (random) error committed is given by

εn = E(g(X))− 1

n
[g(X1) + . . .+ g(Xn)] = I − În.

We want to evaluate this error. The Central Limit Theorem gives a quantity that is asymptotically equal
(in distribution) to the random error εn but which is also random (standard Gaussian distributed).

Theorem 1.3 (Central Limit Theorem) Let (Xi, i > 1) be a sequence of iid rvs distributed as a rv
X. We assume that E(X2) < +∞ and denote by σ2 the variance of X. Then

√
n

σ
εn

d−→
n→∞

G,

where G stands for a rv with a standard Gaussian distribution.

This means that if h is a bounded Borel function E
(
h
(√

n
σ εn

))
converges to E(h(G)) as n goes to infinity.

Confidence intervals

We note that the Central Limit Theorem never allows us to bound the random error εn since the support
of a Gaussian is equal to R. Nevertheless it leads to a description of the error of the Monte Carlo method
by giving the standard deviation σ√

n
of εn or by giving a (1−α)%-confidence interval (CI) for the result.

That means that the result is found with (1− α)% chance in the given interval (and with α% chance of
being outside). Indeed, we can deduce from the previous theorem that for all c1 < c2,

lim
n→+∞

P
(
σ√
n
c1 6 εn 6

σ√
n
c2

)
=

∫ c2

c1

e−x
2/2 dx√

2π
.
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In practical applications, we approximate εn by a centered Gaussian distribution with variance σ2

n .
In our context, we then derive the following asymptotic approximation for E(g(X)) :

P
(√

n

σ
|εn| 6 zα

)
= P

(√
n

σ
|I − În| 6 zα

)
≈ P(|G| 6 zα) = 1− α,

where zα is the (1−α)-quantile of the absolute value of a standard Gaussian distribution. In other words,

P
(
E(g(X)) ∈

[
În −

σ√
n
zα, În +

σ√
n
zα

])
≈ 1− α

or else the (1− α)%-CI is given by[
E(g(X))− σ√

n
zα,E(g(X)) +

σ√
n
zα

]
.

Estimate of the variance of the estimation

The result above shows that it is important to know the order of the size of the variance σ of the rv used
in the Monte Carlo technique. The variance σ2

n of the estimator În based on a n-sample (Xi, i > 1) is
given by

1

n− 1

n∑
i=1

(
g(Xi)− În

)2

.

σ2
n is called the empirical variance of the sample. Dividing by n− 1 instead of n conduces to an unbiased

estimator (which means that E(σ2
n) = σ2). Although from the practical point of view it is not relevant

since n will be usually large enough.

We can therefore obtain a (1 − α)%-CI by replacing σ by σn in the CI given by the Central Limit
Theorem: [

În −
σn√
n
zα, În +

σn√
n
zα

]
.

We therefore see that with no extra calculation (evaluating σn on the sample already generated) we could

give a dependable estimate of the approximation error of I by În. It is one of the greatest advantages of
the Monte Carlo method to give a realistic estimate of the error at a minimum cost.

Confidence intervals for rare event probabilities

If the quantity of interest I is a rare event probability (say less than 10−9), one might be cautious
studying CI for εn. In that case, it is more correct to study the relative random error instead of εn itself
and by the way

P

(√
n

σ

|I − În|
I

6 zα

)
instead of P

(√
n

σ
|I − În| 6 zα

)
.

We are then led to a (1− α)%-CI of the kind[
E(g(X))− σ√

n
zαI,E(g(X)) +

σ√
n
zαI

]
,

which means that

P
(
E(g(X)) ∈

[
În −

σ√
n
zαI, În +

σ√
n
zαI

])
≈ 1− α.

As a consequence, on the one hand, more the variance σ2 will be small more the CI will be precise (which
is true even in the general case). Hence the need to reduce the variance of the variable under concern.

On the other hand that type of crude simulation becomes inefficient to estimate rare event probabilities
as showed in the following example
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Example 1.1 In telecommunication, the loss probability of a packet of information is less than 10−9.
In other words, one must simulate a billion of information packets by loss packet. To achieve a good
approximation one needs the simulation of at least 100 billions of packets that would take hundred of days.

Moreover since P(|G| 6 1.96) ≈ 0.95,

P

(
|I − În|

I
6 t

)
≈ P

(
|G| 6

√
n

σ
tI

)
≈ 0.95

iif √
n

σ
tI =

√
n

I(1− I)
tI ≈

√
nIt ≈ 1.96 i.e. n ≈

(
1.96

t

)2
1

I
≈ 3.84 t−2109.

To illustrate this let us assume that we want a normalized relative error (RE) less than 10%. The con-
straint RE 6 0.1 translates into n > 3.84 1011. In other words, we need a few hundred billion experiments
to get a modest 10% relative error with a confidence of 95%.

If the system being simulated is complex enough, this will be impossible and something different must
be done in order to provide the required estimation. Thus one needs to introduce speed-up techniques of
simulation. More formally if we want to assess a fixed RE while the event probability goes to zero, we
need to increase the sample size as

n =
( zα
RE

)2 1

I
,

that is, in inverse proportion to I.

Example 1.2 Assume that we want to calculate E(eβG) where G is a standard Gaussian rv. It is known
that

E := E(eβG) = eβ
2/2.

If we apply a Monte Carlo method, we take X = eβG and the variance of X is then given by σ2 = e2β2−eβ2

.
Using a n-sample, the average relative error is of order of σ/(E

√
n) =

√
(eβ2 − 1)/n. If we want to achieve

an order of magnitude t for the RE, we see that this means that we must take n ≈ 4(eβ
2−1)/t2. If t = 0.1

and β = 5, we get n = 7 1012 which is too large. The following tabular contains the results of a simulation
based on 105 trials in the case β = 5:

exact value : 268337

n=100000 estimated 95% CI : [-467647,2176181]

estimated value : 854267

This approximation is really far to be precise! But importantly the calculated CI contains the exact value.
This is the reassuring aspect of the Monte Carlo method: the approximation may be mediocre but we are
well aware of it. This example shows the limit of the Monte Carlo method when the variance of the rv
used is large.

Example 1.3 In financial applications, we have to calculate quantities of the type

C = E
((
eβG −K

)
+

)
, (1)

G being a standard Gaussian rv and x+ = max(0, x). These quantities represent the price of an option
to buy, commonly called a “call”. In this case, we can give an explicit formula [19]:

C = eβ
2/2N

(
β − logK

β

)
−KN

(
− logK

β

)
where N is the probability distribution of a standard Gaussian rv that is N is defined by N(x) =∫ x
−∞ e−u

2/2 du√
2π

. We apply Monte Carlo simulation to estimate C and compare the exact value to re-

sults of a simulation based on various sizes of samples in the case β = K = 1.
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exact value : 6.72

n=100 estimated 95% CI : [0.08,11.39]

estimated value : 5.74

n=1000 estimated 95% CI : [4.20,10.01]

estimated value : 7.1

n=104 estimated 95% CI : [6.13,8.43]

estimated value : 7.28

n=105 estimated 95% CI : [6.59,7.69]

estimated value : 7.14

Let us now compare the results with those obtained when evaluating an option to sell, called “put”, that
is

P = E
((
K − eβG

)
+

)
. (2)

The explicit formula gives

P = KN

(
logK

β

)
− eβ

2/2N

(
logK

β
− β

)
.

We then obtain

exact value : 0.23842

n=100 estimated 95% CI : [0.166,0.276]

estimated value : 0.220

n=1000 estimated 95% CI : [0.221,0.258]

estimated value : 0.240

n=10000 estimated 95% CI : [0.232,0.244]

estimated value : 0.238

Here the approximation is much better than in the case of a call that can easily be proved by a calculation
of the variance.
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2 Methods to reduce the variance and Importance Sampling

We have seen that the rate of convergence of the Monte Carlo method is of the order of σ/
√
n. There

are numerous techniques (called reduction of variance techniques) to improve this method, which try to
reduce the value σ2. The general idea is to give another representation, in the form of an expected value,
of the quantity to be calculated:

E(X) = E(Y ),

trying to reduce the variance. We are going to go through several of these methods that are applicable
in practically all simulations.

See e.g. [20] and [21] for more details.

2.1 Importance Sampling

Importance Sampling (IS) is probably one of the most popular approach in rare event simulation. The
general setting is as follows. Assume that we want to calculate I = E(g(X)) where the distribution of X
is given by f(x)dx. The quantity that we want to estimate is then

I = E(g(X)) =

∫
g(x)f(x)dx.

In that view, we introduce a new function f̃ such that f̃ > 0 and
∫
f̃(x)dx = 1. Obviously, the quantity

to estimate can be written as

E(g(X)) =

∫
g(x)f(x)

f̃(x)
f̃(x)dx = E

[
g(Y )f(Y )

f̃(Y )

]
,

if Y is distributed as f̃(x)dx. This means that we therefore have another method of estimating E(g(X))
based on a n-sample Y1, Y2, . . . , Yn distributed as Y , the approximation being

În :=
1

n

n∑
i=1

g(Yi)f(Yi)

f̃(Yi)
.

This procedure will be efficient if the rv Z defined by Z = g(Y )f(Y )

f̃(Y )
has a smaller variance than that of

g(X). Easily we have

Var(Z) = Var

(
g(Y )f(Y )

f̃(Y )

)
=

∫
g(x)2f(x)2

f̃(x)
dx− E(g(X))2.

The quantity L(x) := f(x)

f̃(x)
is called the likelihood ratio.

Note that if g > 0, the function

f̃(x) =
g(x)f(x)

E(g(X))

cancels the variance! This means that there is an optimal change of measure leading to a zero-variance
estimator. The simulation becomes a kind of “pseudo-simulation” leading to the exact value in only one
sample (unbiased estimator with variance equal to zero). Unfortunately, this result is not tractable since

this optimal function f̃ depends on E(g(X)) the quantity to evaluate!

Nevertheless, this observation leads to two remarks: first there is an optimal change of measure which
suggests that there are other good and even very good changes of measures. Second, it allows us to justify
the following heuristic: in practice, we first choose f̃ as close as possible as |gf | then we proceed to a
normalization to recover a probability density function.
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Remark 2.1 In order to avoid the calculation of the normalizing constant, we use the following estimate

Ĩn =

∑n
i=1 g(Yi)f(Yi)/f̃(Yi)∑n

i=1 f(Yi)/f̃(Yi)
=

n∑
i=1

g(Yi)ωi

where Y1, . . . , Yn are iid rvs with common distribution f̃(x)dx and the importance weights ω1, . . . , ωn are
given by

ωi =
f(Yi)/f̃(Yi)∑n
i=1 f(Yi)/f̃(Yi)

.

For a fixed n, Ĩn is biased but it is asymptotically unbiased.

Remark that Ĩn is nothing more than the function g(x) integrated with respect to the empirical measure

n∑
i=1

ωiδYi(dy)

where δa is the Dirac measure at a.

Example 2.1 We present now a first simple example to fix ideas. Assume that we want to estimate

∫ 1

0

cos
(πx

2

)
dx;

that corresponds to g(x) = cos(πx2 ) and X uniformly distributed over [0, 1]. We will approximate g by a
second degree polynomial. Since g is even and equals to 0 at x = 1 and to 1 at x = 0, it is natural to take
f̃(x) in the form λ(1− x2) and more precisely equals to 3

2 (1− x2) to satisfy the constraint
∫
f̃(x)dx = 1.

A calculation of the variance of Z = g(Y )f(Y )/f̃(Y ) shows that we have reduced the variance by a factor
of 100.

Example 2.2 Let us consider Example 1.3 again. We shall show how to apply this method in the case
of the calculation of a put (2). The function x 7→ ex− 1 is close to x for small values of x. This suggests
to rewrite P as

P =

∫
R

(K − eβx)+

β|x|
β|x|e−x

2/2 dx√
2π

=

∫ +∞

0

(K − eβ
√
y)+ + (K − e−β

√
y)+√

2πy
e−y/2

dy

2
,

which means that

P = E

(
(K − eβ

√
Y )+ + (K − e−β

√
Y )+√

2πY

)

if Y is exponentially distributed with parameter 1/2. We then obtain

exact value : 0.23842

n = 100 estimated 95% CI : [0.239,0.260]

estimated value : 0.249

n = 1000 estimated 95% CI : [0.235,0.243]

estimated value : 0.239

n = 104 estimated 95% CI : [0.237,0.239]

estimated value : 0.238

We note a significant improvement with respect to the results based on the classical Monte Carlo: for a
104-sample, the RE becomes 1% instead of 6%.
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Rare event framework
We have seen that the basic idea of IS consists in changing the dynamics of the simulation in order
that the rare event occurs more frequently, which is done by changing the underlying distribution of the
system under concern. In the rare event setting, the quantity of interest writes

Γ = P(X ∈ A) = E(1 A(X)) =

∫ +∞

−∞
1 A(x)f(x)dx

and can be estimated trough the Monte Carlo method using a n-sample X1, . . . , Xn iid with common
density f(x)dx. It yields the following unbiased estimator

Γ̂n =
1

n

n∑
i=1

1 A(Xi).

As shown previously, the necessary sampling size to achieve a RE less than t with probability 1−α should
be

n =
(zασn
tΓ

)2

,

i.e. proportional to the inverse of the square root of the rare event probability Γ.

Applying IS methodology, we rewrite Γ in the form

Γ =

∫ +∞

−∞
1 A(x)

f(x)

f̃(x)
f̃(x)dx = E(1 A(Y )L(Y ))

Now with a n-sample Y1, . . . Yn distributed following f̃(x)dx, an unbiased estimate of Γ is given by

Γ̂n =
1

n

n∑
i=1

1 A(Yi)L(Yi).

To find a good change of measure, one needs to have a good knowledge of the system under study.
Moreover, it is possible that IS does not lead to an improvement and even with a bad change of measure,
the result can be worse!

Example 2.3 To fix ideas and better understand the difficulties to choose a good change of measure,
we study the discrete-time Markov chain Y such as the one depicted in Figure 1 with state space S =
{0, 1, 2, 3} and 0 < a, b, c, d < 1. The chain starts at 1 and we wish to evaluate the probability that it gets
absorbed by state 3, that is to say I = P(X(∞) = 3|X(0) = 1). Obviously here, I = ac/(1 − ad). For
instance, when a and c are small, the event {X(∞) = 3} becomes rare.

a c

db
30

1

1 2

1

Figure 1: A small discrete-time Markov chain.

For instance, consider the case a = c = 1
4 and suppose that we decide to make the event of interest

{X(∞) = 3} more frequent by changing a to ã = 1
2 and c to c̃ = 3

4 . Define P as the set of all possible
paths of X starting at sate 1:

P = {π = (x0, x1, . . . , xK),K > 1 with x0 = 1, xK = 0 or 3 and xi /∈ {0, 3} if 1 6 i 6 K − 1}
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and Ps as the set of successful paths (those paths in P ending with state 3. Observe that

Ps = {πk, k > 1}

where πk = (1, (2, 1)k, 2, 3) (the notation (2, 1)k meaning that the sequence (2, 1) is repeated k times. We
have

P(πk) = (ad)kac =

(
1

4

3

4

)k
1

4

1

4
and P(π̃k) =

(
1

2

1

4

)k
1

2

3

4
.

It can then be verified that P(π̃k) > P(πk) for k = 0, . . . , 4 but that P(π̃k) < P(πk) for k > 5. We see that
even in such a simple model, finding an appropriate change of measure can be non-trivial.

Before leaving this example, consider the following IS scheme. Change a to ã = 1 and c to c̃ = 1 − ad.
We can check that

L(πk) =
ac

1− ad
= I

for all k which means that this is the optimal change of measure, the one leading to a zero-variance
estimator.

The IS method is the most used in practice and in particular in the rare event context. Nevertheless there
exist other strategies to reduce the variance of the estimates that we present in the following subsection.

2.2 Other related techniques

2.2.1 Control variables

The principle is the same as the one of IS: we want to evaluate E(g(X)) that we write in the form

E(g(X)) = E(g(X)− h(X)) + E(h(X))

where E(g(X)) can be calculated explicitly and Var(g(X)−h(X)) is much more smaller than Var(g(X)).
We then use a Monte Carlo method to evaluate E(g(X)− h(X)) and a direct evaluation for E(h(X)).

Example 2.4 We want to compute
∫ 1

0
exdx. Remark that

∫ 1

0
exdx = E(g(X)) with g(x) = ex and X

uniformly distributed over [0, 1]. In a neighborhood of 0, we have ex ∼ 1 + x then we write∫ 1

0

exdx =

∫ 1

0

(ex − 1− x)dx+
3

2

and it is then easy to show that the variance of this method than reduces significantly.

Example 2.5 We now give another example by considering the price of a call (1) of Example 1.3. It is
easy to verify that the price P of the put and that of the call satisfy the relation

C − P = E
(
eβG −K

)
= eβ

2/2 −K.

The idea is then to write C = P + eβ
2/2 −K and to carry out a Monte Carlo method for P .

2.2.2 Antithetic variables

Assume that we want to calculate

I =

∫ 1

0

g(x)dx = E(g(X))

where X is uniformly distributed over [0, 1].

Since x 7→ 1− x leaves the measure dx invariant, we also have

I =
1

2

∫ 1

0

(g(x) + g(1− x))dx

11



We can therefore apply the Monte Carlo technique to estimate I by

Î2n :=
1

n

n∑
i=1

1

2
(g(Xi) + g(1−Xi)) =

1

2n

n∑
i=1

g(Xi) + g(1−Xi),

where (Xi, i > 1) is a sequence of iid rvs uniformly distributed over [0, 1].
We can prove that if the function g is continuous and monotone, the quality of the approximation is im-
proved with respect to a direct Monte Carlo method based on 2n realizations of the rv X. This technique
can be straightforwardly generalized to higher dimensions and to other transformations preserving the
distribution of the rv.

Example 2.6 If we want to calculate the price of a put (2) of Example 1.3, we can use the fact that the
distribution of G is identical to that of −G and reduce the variance of a coefficient almost by 2.

2.2.3 Method of stratification

This method is well known to statisticians and often used in surveys (see [5]). Assume that we want to
calculate

I = E(g(X)) =

∫
Rd
g(x)f(x)dx

where X is a rv valued in Rd following the distribution f(x)dx.

We take a partition (Di, 1 6 i 6 m) of Rd and we decompose the integral in the following way

I =

m∑
i=1

E(1Di(X)g(X)) =

m∑
i=1

E(g(X)|X ∈ Di)P(X ∈ Di)

When we know the numbers pi := P(X ∈ Di), we can use a Monte Carlo method to estimate the integrals
Ii := E(g(X)|X ∈ Di) by distributing optimally the n realizations. Assume that we approximate the

integral Ii by Îi based on ni independent trials. The variance of the approximation error is then given
by σ2

i /ni, if we denote σ2
i := Var (g(X)|X ∈ Di). We then approximate I by

Î :=

m∑
i=1

piÎi.

Since the samples used to obtain the estimates Îi are assumed to be independent, the variance of the
estimate Î is obviously given by

m∑
i=1

p2
i

σ2
i

ni
.

It is then natural to minimize this error for a fixed number of trials n =
∑m
i=1 ni. We can check that the

ni’s minimizing the variance of Î are given by

ni = n
piσi∑m
i=1 piσi

.

The minimum of the variance of Î then becomes

1

n

(
m∑
i=1

piσi

)2

which is less than the variance obtained with n random trials by the classical Monte Carlo method. In
fact, the variance becomes

Var(g(X)) = E(g(X)2)− E(g(X))2

=

m∑
i=1

piE(g(X)2|X ∈ Di)−

(
m∑
i=1

piE(g(X)|X ∈ Di)

)2

=

m∑
i=1

piVar(g(X)|X ∈ Di) +

m∑
i=1

piE(g(X)|X ∈ Di)
2 −

(
m∑
i=1

piE(g(X)|X ∈ Di)

)2

12



by using the definition of the conditional variance. We then use twice the convexity inequality for x2

(
m∑
i=1

piai

)2

6
m∑
i=1

pia
2
i

if
∑m
i=1 pi = 1 to show that

Var(g(X)) >
m∑
i=1

piVar(g(X)|X ∈ Di) >

(
m∑
i=1

piσi

)2

,

which proves that provided we have an optimal strategy of trials, we can obtain by stratification, an
approximation with lower variance.

Remark 2.2 Unfortunately, note that it is possible to obtain an approximation with greater variance than
the initial estimate if the assignment of the points is arbitrary. Despite this, there exist other strategies
to choose the points on domains that reduce the variance. For example, if we assigns a number of points
proportional to the probability of the domain: ni = npi, we then obtain an approximation with variance
equals to

1

n

m∑
i=1

piσ
2
i .

Now we see that
∑m
i=1 piσ

2
i is a bound for Var(g(X)). This allocation strategy is sometimes useful when

we explicitly know the probabilities pi.

2.2.4 Average value or conditioning

Assume we want to calculate

E(g(X,Y )) =

∫
g(x, y)f(x, y)dxdy

where f(x, y)dxdy is the distribution of the pair (X,Y ). Let

h(x) =
1∫

f(x, y)dy

∫
g(x, y)f(x, y)dy

then E(g(X,Y )) = E(h(X)). Indeed, the distribution of X is given by m(x)dx =
(∫
f(x, y)dy

)
dx and

thus

E(h(X)) =

∫
h(X)m(x)dx =

∫
dx

∫
g(x, y)f(x, y)dy = E(g(X,Y )).

We can recover that result noting that

E(g(X,Y )|X) = h(X).

This interpretation as a conditional expectation allows us to prove that the variance of h(X) is lower
than that of g(X,Y ). If we can not calculate directly h(x), we use a Monte Carlo technique for h(X).

2.3 Exercises

Exercise 2.1 [Importance sampling] Suppose we want to evaluate the integral µ(G) =
∫
G(x)µ(dx)

of a nonnegative and bounded potential function G with respect to some distribution µ on some measur-
able space (E, E). We associate with a sequence of independent random variables (Xi)i>1 with common

distribution µ the empirical measures µN := 1
N

∑N
i=1 δXi .

• Check that E(µN (G)) = µ(G) and

NE
((
µN (G)− µ(G)

)2)
= µ

(
(G− µ(G))

2
)

=: σµ(G).

13



• For any probability measure µ such that µ � µ, prove that µ(G) = µ(G) with G = Gdµ
dµ . We let

µN := 1
N

∑N
i=1 δYi be the occupation measure associated with a sequence of N independent random

variables (Yi)i>1 with common distribution µ. Prove that E(µN (G)) = µ(G) and

NE
((
µN (G)− µ(G)

)2)
= µ

((
G− µ(G)

)2)
=: σµ(G)

= σµ(G)− µ
(
G2

(
1− dµ

dµ

))
.

• An example of potential G. Roughly speaking, from the equation above, we see that a reduction
of variance is obtained as soon as µ is chosen such that dµ

dµ < 1 on regions where G is more likely to
take large values. In other words, it is judicious to choose a new reference distribution µ so that the
sampled particles Xi are more likely to visit regions with high potential. For instance, if G = 1 A is
the indicator function of some measurable set A ∈ E, then prove that

σµ(G) = σµ(G)− µ
(

1A

(
1− dµ

dµ

))
.

If we choose µ such that dµ
dµ 6 1− δ for any x ∈ A, then check that

µ(A) > µ(A)/(1− δ) and σµ(G) + δµ(A) 6 σµ(G).

• The optimal choice. Show that the optimal distribution µ is the Boltzmann-Gibbs measure
µ(dx) = µ(G)−1G(x)µ(dx) in the sense that σµ(G) = 0. This optimal strategy is clearly hope-
less since the normalizing constant µ(G) is precisely the constant we want to estimate!

• A bad choice. Consider now the distribution µ defined by µ(dx) = µ(G−2)−1G−2(x)µ(dx), then
check that

σµ(G) > µ(G4)/µ(G2)− µ(G)2 > σµ(G).

Exercise 2.2 [Simple random walk] Let (εn)n>0 be independent and identically distributed random
variables with common law P(εn = 1) = 1 − P(εn = −1) = p ∈ (0, 1). We consider the simple random
walk Xn on Z defined by Xn =

∑n
p=0 εp. Suppose we want to evaluate (using a Monte Carlo scheme) the

probability that Xn enters a subset A ⊂ N∗. if we have p < 1/2, then the random walk Xn tends to move
to the left. One natural way to increase the probability that the random walk visits the set A is to change
p by some p ∈ (p, 1). In this case, the random walk Yn defined as Xn by replacing p by p is more likely to
move to the right and as a result the event {Yn ∈ A} is more likely than {Xn ∈ A}. The expected value
of f(Xn) = 1 A(Xn) and the particle approximation mean using the standard Monte Carlo method are
given respectively by

E(f(Xn)) = P(Xn ∈ A) and f(Xn) =
1

N

N∑
i=1

1 A(Xi
n)

where
(
Xi
n

)
i61

is a collection of independent copies of Xn.

• We let Pn be the distribution of the random sequence (εp)06p6n ∈ {−1,+1}n+1. Check that

Pn(d(u0, . . . , un)) = (p(1− p))(n+1)/2
(p/(1− p))

∑n
k=0 uk/2 .

• We let Pn be the distribution of the random sequence (εp)06p6n ∈ {−1,+1}n+1 defined as (εp)06p6n ∈
{−1,+1}n+1 by replacing p by p ∈ (0, 1). Deduce from the first question that Pn � Pn and

dPn

dPn
(u0, . . . , un) = Gn

(
n∑
k=0

uk)

)
with Gn(x) =

(
p(1− p)
p(1− p)

)n+1
2
(
p(1− p)
p(1− p)

) x
2

.
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• Check that E(f(Xn)) = E(f(Yn)Gn(Yn)) for any f ∈ Bb(Z).

• Let
(
Y in
)
i61

be a collection of independent copies of Yn. By the Central Limit Theorem, prove that

the sequence of random variables

WN
n (f) =

√
N
(
f(Xn)− E(f(Xn))

)
W

N

n (f) =
√
N
(
f(Yn)Gn(Yn)− E(f(Xn))

)

converges in law, as N → ∞, to a pair of Gaussian random variables with mean 0 and respective
variance σ2

n(f) and σ2
n(f) defined by

σ2
n(f) = E

(
f(Xn)2

)
− E(f(Xn))2

σ2
n(f) = E

(
f(Yn)2Gn(Yn)2

)
− E(f(Xn))2

= σ2
n(f) + E

(
f(Xn)2 (Gn(Xn)− 1)

)
• Prove that for any indicator functions f = 1 A with A ⊂ {Gn 6 1/an}, for some an > 1, we have

σ2
n(f) 6 a−1

n P(Xn ∈ A)− P(Xn ∈ A)2 6 σ2
n(f).
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3 Branching processes

See e.g. Harris [13], Lyons [22] and Athreya and Ney [3].

Introduced by Galton and Watson in the XIX-th century to study the survival of a family name, branch-
ing processes constitute a mathematical model representing the development of a population along the
time. Nowadays there are particularly used in demography, genetics and nuclear physics.
Each individual (object) gives birth, independently from each other, to a random number of children.

Xt (resp. Xn) represents the total number of individuals at time t (resp. at generation n) in the contin-
uous framework (space time T = R+) (resp. in the discrete framework (T = N)).

Assumptions
→ the individuals do not interact from one another;
→ the lifetime of individuals of the same type is the same or has the same distribution;
→ the reproduction distribution does not depend on time and on how many individuals are present.

These assumptions induce that the process (Xt)t>0 (or (Xn)n∈N) is Markovian.

Probabilistic questions
→ Determine the distribution of Xt.
→ Compute the mean size of the population at time t (and eventually the standard deviation); less
precise than the distribution itself but informative however.
→ Does there exist a non-zero probability of extinction of the population?

To determine the distribution of Xt, we will compute its probability generating function that characterizes
the distribution and is defined by

GXt(s) =

+∞∑
j=0

sjP([Xt = j]) = E
(
sXt
)
.

We denote G(s, t) = E[X0=1]
(
sXt
)

=
+∞∑
j=0

sjp1,j(t).

Some reminders on the probability generating function:

If X is a rv valued in N, we define

GX(s) =

+∞∑
k=0

skP([X = k]).

GX is a power series with convergence radius greater or equal to 1 since GX(1) =
+∞∑
k=0

P([X = k]) = 1.

The probability generating function characterizes the law of the rv. It is then easy to derive the expec-
tation and the variance of X. Indeed,

E(X) = lim
s→1−

G′X(s) = G′X(1−) and Var(X) = G′′X(1−) +G′X(1−)− (G′X(1−))2.

Moreover, if X and X ′ are two independent rv valued in N, we have

GX+X′(s) = GX(s) GX′(s).

Since (Xt)t>0 (discrete or continuous) is Markovian, we have the following key relation:

Proposition 3.1 G(s, t+ τ) = G(G(s, τ), t).
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Proof G(s, t+ τ) =
+∞∑
j=0

sjp1,j(t+ τ).

But, as (Xt)t>0 is Markovian, one has P (t+ τ) = P (t)P (τ) and

+∞∑
j=0

sjp1,j(t+ τ) =

+∞∑
j=0

sj
+∞∑
k=0

p1,k(t)pk,j(τ) =

+∞∑
k=0

p1,k(t)

+∞∑
j=0

sjpk,j(τ) =

+∞∑
k=0

p1,k(t)E[X0=k](sXτ )

Moreover if X0 = k, Xτ = Xτ,1 + . . .+Xτ,k where Xτ,i represents the number of the descendents at time
τ of the initial i-th individual. The Xτ,i’s being k iid rv, we then have E[X0=k](sXτ ) = G(s, τ)k and

G(s, t+ τ) =

+∞∑
k=0

G(s, τ)kp1,k(t) = G(G(s, τ), t).

�

3.1 The Galton-Watson branching process

Example 3.1 a) Survival of a family name: we assume that only the men preserve and transmit their
name.

b) Electron multiplier: we insert on the electron trajectory a series of plates: when the electron hits a
plate, it generates a random number of new electrons.

Let Xn be the number of individuals at generation n and Y be the number of direct descendents of an
individual. We denote by G the probability generating function of Y and we define recursively Gn by

G1 = G et pour tout n > 1, Gn+1 = Gn ◦G = G ◦Gn.

We define also

m = E(Y ) et σ2 = Var(Y ).

Theorem 3.2 E[Xr=k]
(
sXr+n

)
= (Gn(s))k.

Proof By the time homogeneity, E[Xr=k]
(
sXr+n

)
= E[X0=k]

(
sXn

)
= G(s, n)k.

But G(s, 1) = G(s) = G1(s) and, if G(s, n) = Gn(s),by the key relation,

G(s, n+ 1) = G(G(s, n), 1) = G(Gn(s)) = Gn+1(s)

which means that G(s, n) = Gn(s) for any n > 1.

�
As a consequence,

Corollary 3.3 (i) E[Xr=k](Xn+r) = kmn.

(ii) If X0 = 1, then E(Xn) = mn et Var(Xn) =

{
σ2mn−1mn−1

m−1 si m 6= 1

nσ2 si m = 1
.

Proof This result can be derived recursively by deriving once and twice the function Gn+1 = Gn ◦G at
s = 1. �

Interpretation of (i)
if m < 1, E(Xn)→ 0, Var(Xn)→ 0: the mean is more and more significant;
if m > 1, E(Xn)→ +∞, Var(Xn)→ +∞: the mean is less significant;
if m = 1, E(Xn) = 1, Var(Xn)→ +∞: numerous families disappear and others grows widely.
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Extinction probability
We want to determine the probability that the population disappears. In that view, we must assume that
P([Y = 0]) ∈]0, 1[, or else if P([Y = 0]) = 1, the population will surely disappear and if P([Y = 0]) = 0,
extinction could not occur.

Theorem 3.4 Let π0 = lim
n→+∞

P([Xn = 0]). Then π0 = 1 iif m 6 1 (i.e. G′Y (1) 6 1) and if m > 1, π0

is the smallest positive solution of G(s) = s.

Proof π(n)0 = P([Xn = 0]) = Gn(0) if X0 = 1.
On one hand, if Xn = 0, then Xn+1 = 0 and Gn(0) 6 Gn+1(0). Thus (π(n)0)n is increasing and upper
bounded by 1: it then converges to a limit denoted π0.
On the other hand, π(n+ 1)0 = Gn+1(0) = G(Gn(0)) = G(π(n)0) and by the continuity of G, π0 = G(π0)
taking the limit.

If s0 is the smallest positive fixed point of G, we have 0 6 s0. Hence since G is increasing, G(0) 6
G(s0) = s0 and by successive compositions by G, Gn(0) 6 s0 and taking the limit leads to π0 6 s0. Then
π0 = s0 since π0 is a positive fixed point of G.

�

3.2 Discrete processes with a finite number of types

A first step in generalizing the simple Galton-Watson process is the consideration of processes involving
several types of individuals. For example, in the reproduction of certain bacteria, the usual form may
produce a mutant form that behaves differently. One can think also to the human beings classed following
the right-handed and left-handed persons or even by the gender.

In this subsection we restrict ourselves to two types of individuals. Each individual of type (1) gives
birth to individuals of type (1) and of type (2) and similarly each individual of type (2) gives birth to
individuals of type (1) and of type (2).
At each generation n, we are interested in the size of the population, but also in the numbers of individuals
of type (1) and of type (2).
We assume that an individual of type (1) generates at the end of the considered period a random number
Y (1) of descendents of type (1) and a random number Y (2) of descendents of type (2). In the same way
an individual of type (2) generates at the end of the same period, a random number Z(1) of descendents
of type (1) and a random number Z(2) of descendents of type (2). As done in the previous subsection,
we also suppose that
→ the individuals do not interact from one another;
→ the lifetime of each individual is the same.

Let Xn =
(
X

(1)
n , X

(2)
n

)
be the number of individuals at generation n. If Xn = (k1, k2), then X

(i)
n+1 =(

Y
(i)
1 + . . .+ Y

(i)
k1

)
+
(
Z

(i)
1 + . . .+ Z

(i)
k2

)
for i ∈ {1, 2}. We thus have

p(k1,k2)(j1,j2)(n) = P [Xm=(k1,k2)]([Xm+n = (j1, j2)]).

Let e1 = (1, 0), e2 = (0, 1) and for i ∈ {1, 2}, p(i)
(j1,j2) = pei,(j1,j2)(1) (the probability that an individual of

type (i) has j1 descendents of type (1) and j2 descendents of type (2).
We also define

G(i)(s1, s2) = E[X0=ei]

(
s
X

(1)
1

1 s
X

(2)
1

2

)
=
∑
j1,j2

sj11 s
j2
2 p

(i)
(j1,j2) and G(i)

n (s1, s2) = E[X0=ei]
(
s
X(1)
n

1 s
X(2)
n

2

)
.

Theorem 3.5

E[X0=(k1,k2)]
(
s
X(1)
n

1 s
X(2)
n

2

)
=
(
G(1)
n (s1, s2)

)k1 (
G(2)
n (s1, s2)

)k2
=
∑
j1,j2

sj11 s
j2
2 p(k1,k2)(j1,j2)(n).
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The probability generating function determines entirely the distribution and allows in particular to deduce
the population mean size at generation n.
In that view, we define M = (mij), where mij represents the mean number of descendents of type (j) of
an individual of type (i) i.e.

mij = E[X0=ei](X
(j)
1 ) = ∂jG

(i)(1, 1).

As a consequence,

Theorem 3.6 E[Xr=(k1,k2)](X
(1)
n+r, X

(2)
n+r) = (k1, k2)Mn.

Extinction probability

Theorem 3.7 Let π0 =
(
π

(1)
0 , π

(2)
0

)
where π

(i)
0 = lim

n→+∞
P [X0=ei] ([Xn = (0, 0)]) and ρ be the largest in

absolute value eigenvalue of M = (mij). Then π0 = (1, 1) iif ρ 6 1 and if ρ > 1, π0 is the smallest non

negative solution of

{
s1 = G(1)(s1, s2)
s2 = G(2)(s1, s2)

3.3 Markov branching processes (continuous time)

The discrete branching processes of the previous subsections are limited in the sense that the instants
of generation are fixed. Even though numerous examples (e.g. in genetics, genealogy) can be modelized
in such a way, a large proportion of natural reproducing processes occur in a continuous way. It is then
necessary and interesting to introduce branching processes in continuous time.

Let Xt be the number of individuals at time t: (Xt)t>0 is a continuous Markovian process. Let pkj(t) =
P [Xu=k]([Xu+t = j]). Then we have

p11(h) = 1 + a11h+ o(h) and p1j(h) = a1jh+ o(h) si j 6= 1,

with a11 6 0, a1j > 0 for j 6= 1 and
∑
j

a1j = 0. In order to lighten notation, we write aj instead of a1j .

We have P [Xt=1]([Xt+h 6= 1]) =

(∑
k 6=1

ak

)
h+o(h) and an individual “lives” an exponential time E(

∑
k 6=1

ak)

before transforming. We say that the individual is transformed at time time t, if at t we get 0 or a number
> 2 of individuals. Then we consider that an individual produces at the end of his life, a number D of
descendents, with D valued in N \ {1} (D = 1 is not taken into account since only the variations of the
size of the population matter). The distribution of D is given by

P([D = j]) =
aj∑

k 6=1

ak
pour j ∈ N \ {1}.

Then if j 6= 1, P [Xt=n]([Xt+h = n− 1 + j]) = najh+ o(h) since the change can only be produced by one
of the n individuals which is replaced by j new individuals.

Remark 3.8 If a0 = µ, a1 = −λ − µ, a2 = λ and ak = 0 pour k > 3, we are lead to a birth and death
process with linear growth and linear diminution.

Let u(s) =
+∞∑
j=0

ajs
j : u is sometimes called the instantaneous probability generating function. Then

Theorem 3.9 u satisfies the following partial differential equations:{
∂2G(s, τ) = u(G(s, τ))
G(s, 0) = s

(3){
∂2G(s, t) = u(s)∂1(G(s, t))
G(s, 0) = s

. (4)
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Proof By the key relation G(s, t+ τ) = G(G(s, τ), t) and a Taylor expansion

G(s, h) =

+∞∑
j=0

sjp1j(h) = s+ u(s)h+ o(h).

Taking t = h leads to G(s, τ + h) = G(G(s, τ), h) = G(s, τ) + u(G(s, τ))h+ o(h) and

∂2G(s, τ) = u(G(s, τ)).

Taking τ = h leads to G(s, t+ h) = G(s+ u(s)h+ o(h), t) = G(s, t) + u(s)h∂1G(s, t) + o(h) and

∂2G(s, t) = u(s)∂1G(s, t).

�
In particular,

Theorem 3.10 The mean number of individuals at time t starting with 1 ancestor is

E[X0=1](Xt) = eu
′(1)t.

Proof Deriving the first equation of (4) with respect to s, we get

∂1∂2G(s, t) = u(s)∂2
1G(s, t) + u′(s)∂1G(s, t)

and with s = 1 and using u(1) = 0,

∂1∂2G(s, t) = ∂2∂1G(1, t) = u′(1)∂1G(1, t).

But m(t) = ∂1G(1, t), then m′(t) = ∂2∂1G(1, t) = u′(1)m(t), m(t) = Ceu
′(1)t and since m(0) = 1, we get

C = 1 that leads to the required result.
�

Interpretation
if u′(1) < 0, then mt → 0 (this is the analog of m < 0 of the previous subsection);
if u′(1) = 0, then mt = 1 for any t;
if u′(1) > 0, then mt → +∞.

Extinction probability

Theorem 3.11 Let π0 = lim
t→+∞

P([Xt = 0]). Then π0 = 1 iif u′(1) 6 0; π0 is the smallest nonnegative

solution of u(s) = 0.

Proof π0(t) = P([Xt = 0]) = G(0, t) si X0 = 1.
If Xt = 0, then for τ > t, Xτ = 0 and π0(t) 6 π0(τ) thus t 7→ π0(t) is an increasing function upper
bounded by 1; it admits a limit π0 in +∞.

π0 = lim
t→+∞

G(0, t) = lim
t→+∞

G(0, t+ τ) = lim
t→+∞

G(G(0, t), τ) = G(π0, τ)

by continuity of G. Hence, G(π0, τ) est independent of τ and ∂2G(π0, τ) = 0.
By (4), we have u(π0)∂1G(π0, τ) = 0 for any τ . In particular, for τ = 0, G(s, 0) = E[X0=1](sX0) = s, then
∂1G(s, 0) = 1and u(π0) = 0.
If s0 is the smallest zero of u in [0, 1], then G(s0, τ) is independent of τ , car ∂2G(s0, τ) = 0. Then
G(s0, τ) = G(s0, 0) = s0.
Moreover, s 7→ G(s, t) =

∑
j

sjp1,j(t) is increasing, hence G(0, τ) 6 G(s0, τ) = s0 for any τ . Taking the

limit τ → +∞, π0 6 s0, π0 = s0 since π0 ∈ [0, 1] et u(π0) = 0.

�
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3.4 Continuous processes with a finite number of types

In this subsection, we generalize both the passage from discrete time to continuous time and the passage
of one type to two types. The notation still remain the same.

We denote X
(i)
t the number of individuals of type (i) at time t, e1 = (1, 0), e2 = (0, 1),

p(k1,k2)(j1,j2)(t) = P [Xu=(k1,k2)]([Xu+t = (j1, j2)]) and pei,(j1,j2)(t) = p
(i)
(j1,j2)(t).

Assume that p
(i)
(j1,j2)(h) = δei,(j1,j2) + a

(i)
(j1,j2)h+ o(h) with a

(i)
ei 6 0, a

(ei)
(j1,j2) > 0 else, and

∑
j1,j2

a
(ei)
(j1,j2) = 0,

i.e. each individual of type (i) gives birth in [t, t+ h[ to j1 descendents of type (1) and j2 descendent of
type (2) with probability

p
(i)
(j1,j2)(h) = δei,(j1,j2) + a

(i)
(j1,j2)h+ o(h).

We define also u(i)(s1, s2) =
∑
j1,j2

sj11 s
j2
2 a

(i)
(j1,j2) the instantaneous probability generating functions and

G(i)(s1, s2, t) = E[X0=ei]

(
s
X

(1)
t

1 s
X

(2)
t

2

)
=
∑
j1,j2

sj11 s
j2
2 p

(i)
(j1,j2)(t). We then have

E[X0=(k1,k2)]

(
s
X

(1)
t

1 s
X

(2)
t

2

)
=
(
G(1)(s1, s2, t)

)k1 (
G(2)(s1, s2, t)

)k2
=
∑
j1,j2

sj11 s
j2
2 p(k1,k2)(j1,j2)(t).

Since (Xt) is Markovian, we still have a key relation:

Theorem 3.12 G(i)(s1, s2, t+ τ) = G(i)
(
G(1)(s1, s2, τ), G(2)(s1, s2, τ), t

)
.

from which we deduce (as done in the setting with one type) the following partial differential equations:

{
∂3G

(i)(s1, s2, τ) = u(i)
(
G(1)(s1, s2, τ), G(2)(s1, s2, τ)

)
G(i)(s1, s2, 0) = si

(5){
∂3G

(i)(s1, s2, t) = u(1)(s1, s2)∂1G
(i)(s1, s2, t) + u(2)(s1, s2)∂2G

(i)(s1, s2, t)
G(i)(s1, s2, 0) = si

. (6)

Example 3.2 a) Branching process with immigration

Here we consider P [Xt=0]([Xt+h = j]) = δ0,j + bjh + o(h) with b0 6 0 and the others bj > 0. More
precisely, we denote

• bj the immigration rate of j individuals;
• aj the birth rate of j individuals.

To solve that kind of problem, we consider two types of individuals: the real ones and the fictive ones.
Naturally we are only interested in the size of the real population. The fictive persons constitute the
population that sends the immigrants. We can consider that it is reduced to a single individual that can
gives birth to a random number of descendents. We then denote

a
(1)
j1,j2

=

{
0 if j2 6= 0
aj1 if j2 = 0

and a
(2)
j1,j2

=

{
0 if j2 6= 1
bj1 if j2 = 1

.

If u(s) =
∑
j

ajs
j and v(s) =

∑
j

bjs
j, we deduce

u(1)(s1, s2) =
∑
j1,j2

sj11 s
j2
2 a

(1)
j1,j2

=
∑
j1

sj11 aj1 = u(s1);

u(2)(s1, s2) =
∑
j1,j2

sj11 s
j2
2 a

(2)
j1,j2

=
∑
j1

sj11 s2bj1 = s2v(s1).
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b) Replacement of one particle with γ(λ, 2) lifetime distribution by 2 particles

This example allows to solve a particular problem of continuous processes for which the lifetime of each
individual is not exponential (the process is not Markovian in that case). To fix it, we introduce 2 inde-
pendent and successive phases in the life of each particle, each phase being exponentially distributed E(λ).

Here X
(i)
t represents the number of particles in phase i at time t. Obviously we are interested in X

(1)
t +

X
(2)
t . To simplify we take λ = 1. Then

a
(1)
j1,j2

=

 −1 if (j1, j2) = (1, 0)
1 if (j1, j2) = (0, 1)
0 else

and a
(2)
j1,j2

=

 −1 if (j1, j2) = (0, 1)
1 if (j1, j2) = (2, 0)
0 else

.

We deduce u(1)(s1, s2) = s2 − s1 and u(2)(s1, s2) = s2
1 − s2.
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3.5 Exercises

Exercise 3.1 A culture of blood starts at time 0 with 1 red blood cell. After one minute, a red blood cell
dies and is replaced, with the following probabilities, by

• 2 red blood cells with probability 1/4;
• 1 red and 1 white with probability 2/3;
• 2 white blood cells with probability 1/12.

Every blood cell lives during one minute and gives birth in the same way that its parent. Every white
blood cell lives during one minute and dies without reproducing itself.

a) Evaluate the probability that no white blood cell still appeared at time n+ 1/2 minute.
b) Evaluate the probability that the entire culture disappears.

Exercise 3.2 A disease is modelized by a branching process with initial size N germs. At every grip of a
medicine (1 a day), every germ has the probability p = 1

2 to disappear. Determine the law of the duration
T of the disease (or of the number of used medicine).
Same question, when every germ lives an exponential time of average 1

λ = 2 days.
Determine also, for N = 3, in every case, the mean duration of the disease.

Exercise 3.3 We consider a population of bacteria of size Xt at time t such that X0 = 1. Between t and
t + ∆t, every bacteria is divided in two new bacteria with probability λ∆t + o(∆t), dies with probability
µ∆t+ o(∆t) where λ 6= µ and does not evolve with probability 1− (λ+ µ)∆t+ o(∆t).

a) Let G(s, t) = E
(
sXt
)

the probability generating function of Xt. Determine a partial differential
equation satisfied by satisfied by G and check that the unique solution such that G(s, 0) = s is

G(s, t) =
eαt(1− s)− 1 + sρ

ρeαt(1− s)− 1 + sρ

where ρ = λ
µ and α = λ− µ. Determine E(Xt), p0(t) and the extinction probability of the bacteria.

b) When µ = 0 compare E(Xt) with the size of the process such that every bacterium divides every
λ−1 units of time.

c) Determine E(Xn) and the extinction probability for the discrete process such that at every unit of
time, a bacterium divides in two with probability λ

λ+µ and dies with probability µ
λ+µ .

Exercise 3.4 We consider a population such that the number of direct descendents by individual is
distributed as a binomial B(2, p).

a) Assume we start with 1 individual, determine the extinction probability and the probability that
there is nobody anymore, for the first time, at the third generation.

b) Assume now that number of individuals at the first generation is Poisson distributed with parameter
λ. Prove that, for p > 1

2 , the extinction probability is π = exp[λ(1− 2p)/p2].

Exercise 3.5 We consider a population of particles that undergo a shock every minute. Then the particle
may divide in 2 (with probability p) or disappear (with probability 1−p). We note Xn the population size
after n minutes.

a) Determine the extinction probability of the population if X0 = 1 and then if P([X0 = k]) = 1/2k

for any k ∈ N∗.
b) We consider now that, independently for every particle, a shock occurs after an exponential time

with mean 1mn. Determine the extinction probability.
c) Evaluate in every case the mean size of the population after the n-th minute.

Exercise 3.6 We consider a population of males and females such that every female has one descendent
after an exponential time with rate λ: this descendent is a female (resp. a male) with probability p (resp.
1− p). The lifetimes of the females (resp. males) are exponential with rate µ (resp. ν).
If Xt (resp. Yt) represents the number of females (resp. males) at time t and if (X0, Y0) = (i, j), check
that

MX(t) = E(Xt) = ie(λp−µ)t and MY (t) = E(Yt) =
iλ(1− p)
λp+ ν − µ

e(λp−µ)t +

(
j − iλ(1− p)

λp+ ν − µ

)
e−νt.
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4 Importance Splitting

An alternative way to IS is to use trajectory splitting based on a completely different idea than IS. Im-
portance Splitting (ISp) is based on the idea that there exists some well identifiable intermediate system
states that are visited much more often than the target states themselves and behave as gateway states to
reach the rare event. In this model a more frequent occurrence of the rare event is achieved by performing
a number of simulation retrials when the process enters regions where the chance of occurrence of the
rare event is higher. In contrast to IS type algorithms, the step-by-step evolution of the system follows
the original probability measure.

The principle of the algorithm is at first to run simultaneously several particles starting from the level
Bi; after a while, some of them have evolved “badly”, the other have “well” evolved i.e. have succeeded
in reaching the threshold Bi+1. “Bad” particles are then moved to the position of the “good” ones and
so on until A is reached. In such a way, the more promising particles are favored; unfortunately that
algorithm is hard to analysis directly because of the interaction introduced between particles. Examples
of this class of algorithms can be found in [2] with the “ go with the winners” scheme, in [10, 15] in the
context of the approximate counting and in [7, 9, 11] in a more general setting.

Nevertheless, in practice the trajectory splitting method may be difficult to apply. For example, the
case of the estimation of the probability of a rare event in random dynamical systems is more complex,
since the difficulty to find theoretically the optimal Bi. Furthermore, the probability to reach Bi varies
generally with the state of entrance in level Bi−1. But it is not always the case e.g. for Markovian models
(like diffusion).

A mathematical tool well adapted to study this type of algorithms is the Feynman-Kac approach de-
veloped in [9]. Asymptotic results are derived, such as LLN, CLT, and Large Deviations principles; in
particular asymptotic variance of the estimator of the rare event probability is given. Non asymptotic
results such as uniform Lp mean error bounds and exponential concentration inequalities with respect
to the time horizon can be also found in this relevant book. Getting precise confidence intervals is more
challenging. Nevertheless, all these algorithms lie on a common base, simpler to analyze and called
branching splitting model. In this technique, interactions between particles are avoided and its relative
simplicity allow us to derive precise results and to have better knowledge and understanding on splitting
models in general.

We must precise here that we consider only one dimensional models as introduced in Garvels [12] or in
a more refined version: the RESTART method [25,26].

4.1 Importance Splitting model

The main hypothesis of splitting is that before entering the target event there exists intermediate states
visited more frequently than A by the trajectory: thus define a sequence of sets of states Bi such as
A = BM+1 ⊂ BM ⊂ . . . ⊂ B1, which determines a partition of the state space into regions Bi − Bi+1

called importance regions.

In this model, a more frequent occurrence of the rare event is achieved by performing a number of simu-
lation retrials when the process enters regions where the chance of occurrence of the rare event is higher.
The fundamental idea consists in generating N Bernoulli Ber(P1) and check whether the subset B1 is
reached or not. If so, we duplicate the trials in R1 retrials of Bernoulli Ber(P2) and check whether the
subset B2 is reached or not... This procedure is repeated at each level, until A is reached. If an event
level is not reached, neither is A , then we stop the current retrial. Using N independent replications of
this procedure, we have then considered NR1 . . . RM trials, taking into account for example, that if we
have failed to reach a level Bi at the i-th step, the Ri . . . RM possible retrials have failed. Clearly the
particles reproduce and evolve independently.

By the Bayes formula,

P(A) = P(A|BM )P(BM |BM−1) . . .P(B2|B1)P(B1) := PM+1PM . . . P2P1, (7)
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Figure 2: Splitting model

where on the right hand side, each conditioning event is “not rare” and Pi = P(Bi|Bi−1). Then P(A)
is the product of M + 1 quantities (conditional probabilities) that are easier to estimate and with more
accuracy than the probability P of the rare event itself, for a given simulation effort.

Example 4.1 To analyze the behavior of the different implementations described above, we perform a
simulation experiment using these methods. We consider a queuing network and we want to estimate the
occupancy of finite buffer queuing system M/M/1/C0. The results are presented in Figure 3.
As expected and since we proceed for a given cost C (C = 104), crude simulation stops after a few
iterations, the number of samples run at the beginning being not sufficient. However note that splitting
simulation gives very close results to the theoretical analysis.

4.2 The estimator and its properties

A natural estimator of P(A) is given by the quantity

P̂M =
NA

N
∏M
i=1Ri

, (8)

where NA is the total number of trajectories having reached the set A.

The estimator P̂M of P(A) defined in (8) can be rewritten as

P̂M =
1

NR1 . . . RM

N∑
i0=1

R1∑
i1=1

. . .

RM∑
iM=1

1 i01 i0i1 . . . 1 i0i1...iM

where 1 i0i1...ij represents the result of the j-th trial.

4.2.1 Link with the Galton-Watson branching processes

This algorithm can be represented by N independent Galton-Watson branching processes. Indeed, con-

sider N independent Galton-Watson branching processes (Z
(i)
n )n>0, i = 1, . . . , N where for any i, Z

(i)
n is
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the number of particles, issued from the i-th particle (Z
(i)
0 =1), that have reached threshold Bn. Then

P̂ =
1

N

N∑
i=1

Z
(i)
M+1

R1 . . . RM
. (9)

To lighten notation we consider N = 1 in the sequel and the process (Zn)n>0 with Z0 = 1. Then

Zn+1 =

Zn∑
j=1

X(j)
n (10)

where for each n, the rvs (X
(j)
n )j>1 are iid and binomial distributed with parameters (Rn, Pn+1) for n > 1

and Bernoulli distributed with parameter P1 for n = 0.

Notice that Zi+1 can be written as

Zi+1 =

Zi∑
j=1

Ri∑
k=1

Y
(j,k)
i

where the rvs Y
(j,k)
i are distributed as Bernoulli with parameter Pi+1.

4.2.2 Bias and variance of the estimator

First,

Proposition 4.1 The estimator P̂M is unbiased.

Proof Since

E(P̂M ) = E
(

NA
NR1 . . . RM

)
=

1

NR1 . . . RM

N∑
i0=1

R1∑
i1=1

. . .

RM∑
iM=1

E(1 i01 i0i1 . . . 1 i0i1...iM ) = P(A).

�

Remark 4.2 Notice that
E(Zn) = PnRn−1E(Zn−1).

Thus if PnRn−1 for any n > 1, the average number of particles at each threshold is constant and given
by N the number of initial particles.
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Second, as done in [25], the variance of the estimator P̂M is derived by induction and

Proposition 4.3 The variance of P̂M is given by

Var(P̂M ) =
P(A)2

N

[
M∑
i=0

1

ri

(
1

Pi+1|0
− 1

Pi|0

)]
(11)

where Pi|0 represents the probability to reach Bi i.e. Pi|0 = P1 . . . Pi.

Proof Clearly the formula holds in straightforward simulation i.e. when k = 0, since P̂M is a normalized
sum of iid Bernoulli variables with parameter P(A).

To go from k to k + 1, assume that the variance of the estimator P̂M is derived by induction and the
variance for k thresholds is given by

Var(P̂k) =
(P1 . . . Pk+1)2

N

[
k∑
i=0

1

ri

(
1

Pi+1|0
− 1

Pi|0

)]
(12)

where P̂k represents the estimator of P(A) in a simulation with k thresholds. We want to prove that this
formula holds for k + 1 thresholds.

First of all note that for all X and Y random variables which are independent given the set B and X
σ(B)-measurable we have

Var(XY ) = Var(X)Var(Y ) + Var(X)E(Y )2 + Var(Y )E(X)2 (13)

Now let

Xi0 = 1 i0 , Zi0 =
1

R1 . . . Rk+1

R1∑
i1=1

. . .

Rk+1∑
ik+1=1

1 i0i1 . . . 1 i0i1...ik+1

The random variables Xi0 are iid with common law Ber(P1) and conditionally to the event B1, Xi0 and
Zi0 are independent. Note that each Zi0 is the estimator of P(A) in a model with k thresholds, T2 to
Tk+1 for the trajectory issued from the success of Xi0 . Thus

E(Z) = P2 . . . Pk+2

and by the induction’s hypothesis,

Var(Z) = (P2 . . . Pk+2)
2

[
k+1∑
i=1

1

R1 . . . Ri

(
1

Pi+1|1
− 1

Pi|1

)]
.

So applying (13) with X ∼ Ber(P1) and Z ∼ Zi0 , we have

Var(P̂
(k+1)
M ) :=

1

N2
Var

(
N∑
i0=1

Xi0Zi0

)
=
P1

N

[
Var(Z) + (1− P1)E(Z)2

]
=

(P1P2 . . . Pk+2)
2

N

[
k+1∑
i=0

1

ri

(
1

Pi+1|0
− 1

Pi|0

)]

that concludes the proof. �

Remark 4.4 The induction principle has a concrete interpretation: if in a simulation with M steps, the
retrials generated in the first level are not taken into account except one that we call main trial, we have
a simulation with M − 1 steps.
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4.3 Cost of the algorithm

As said in the introduction, the aim is to minimize the variance for a fixed budget, giving optimal values
for N ,R1,. . . ,RM , P1, . . . , PM+1 and M . Therefore, we have to describe the cost of a given simulation:
each time a particle is launched, it generates an average cost function h. We assume that

• the cost h for a particle to reach Bi starting from Bi−1 depends only on Pi (and not on the starting
level),

• h is decreasing in x (which means that the smaller the transition probability is, the harder the
transition is and the higher is the cost),

• h is non-negative,

• h converges to a constant (in general small) when x converges to 1.

The (average) cost is then

CM = E(Nh(P1) +R1N1h(P2) +R2N2h(P3) + . . .+RMNMh(PM+1)) (14)

where Ni is the number of trials that have reached threshold i. Finally,

Proposition 4.5 The average cost of the algorithm is given by

CM = N

M∑
i=0

rih(Pi+1)Pi|0. (15)

Example 4.2 We want to study the model of the simple random walk on Z starting from 0 that we kill
as soon as it reaches the level −1 or k (success if we reach k, failure otherwise).
So let Xn such that X0 = 0 and Xn =

∑n
i=1 Yn where {Yn} is a sequence of random variables valued in

{−1, 1} with P(Yn = 1) = P(Yn = −1) = 1
2 and define Tk = inf{n > 0 : Xn = −1 or k}.

One can easily check that Xn and X2
n − n are martingales. By the Doob’s stopping theorem, E(XTk) = 0

and E(X2
Tk

) = E(Tk) which yields to

p := P(XTk = k) =
1

k + 1
and E(Tk) = k =

1

p
− 1

i.e. the cost needed to reach the next level is 1
p − 1 if p is the success probability.

4.4 Algorithm optimization

We now proceed to the optimization of the algorithm. To minimize the variance of P̂M , the optimal
values are derived in three steps:

1. The optimal values of N,R1, . . . , RM are derived when we consider that P1, . . . , PM+1 are constant
(i.e. the thresholds Bi are fixed).

2. Replacing these optimal values in the variance, we derive the optimal transition probabilities:
P1, . . . , PM+1.

3. Replacing these optimal values in the variance, we derive M the optimal number of thresholds.

Optimal values for N,R1, . . . , RM . Using the method of Lagrange multipliers, we get

Ri =
ri
ri−1

=

√
h(Pi)

h(Pi+1)

√
1

PiPi+1

√
1− Pi+1

1− Pi
i = 1, . . . ,M (16)

N =
1√
h(P1)

CM
√

1/P1 − 1∑M+1
i=1

√
h(Pi)

√
1
Pi
− 1

. (17)
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Optimal values for P1, . . . , PM+1. Thus the variance becomes

Var(P̂M ) =
P(A)2

CM

[
M+1∑
i=1

√
h(Pi)

√
1

Pi
− 1

]2

.

Proceeding as previously under the constraint P(A) = P1 . . . PM+1, we obtain that all the Pi’s satisfy

2
√
CMλ

√
h(x)( 1

x − 1) = h′(x)(1 − x) − h(x)
x . If we assume that there exists a unique solution to this

equation, we have Pi = g(λ), hence P(A) = g(λ)M+1 and g(λ) = P(A)
1

M+1 . Finally

Pi = P(A)
1

M+1 i = 1, . . . ,M + 1. (18)

Optimal value for M . The optimal values for P1, . . . , PM+1 imply that the optimal Ri becomes 1/Pi,
i = 1, . . . ,M and thus

Var(P̂M ) =
P(A)2

CM
(M + 1)2h(P(A)1/M+1)(P(A)−1/M+1 − 1)

that we want to minimize in M . Remark that RiPi = 1. Let

f(M) =
P(A)2

CM
(M + 1)2h(P(A)1/M+1)(P(A)−1/M+1 − 1),

whose derivative cancels in

F (y) := (2(1− ey) + y)h(ey)− y(1− ey)eyh′(ey) = 0, with y =
lnP(A)

M + 1
. (19)

Thus the optimal number of thresholds is given by ln P(A)
y0

where y0 solves F (y) = 0. In practice we will

take M =
[

ln P(A)
y0

]
− 1 or M =

[
ln P(A)
y0

]
to get an integer number of thresholds.

Example 4.3 For h = 1, we have to solve y = 2(ey − 1). We get y1 = 0 and y2 ≈ −1.5936. y2 is a
minimum and the optimal value of M is

M = [−0.6275 lnP(A)]− 1 or [−0.6275 lnP(A)]. (20)

In this case, the variance is given by

var(P̃ ) =
P(A)2

N
(M + 1)

(
1

P0
− 1

)
which corresponds to the asymptotic variance in the particle algorithm (see Part II of the course).

Note that M increases while P(A) decreases and with this value of M , each Ri and Pi become

Ri ≈ 5 and Pi ≈
1

5
. (21)

Thus the optimal sampling number and the optimal transition probabilities are independent of the rare
event probability.

Remark 4.6 The solution y = 0 corresponds to the following optimal values

M =∞, Pi = 1, Ri = 1, N ∼M→∞
C

(M + 1)h(1) + ln(P )h′(1)

But Pi = 1 implies that P = 1 and Ri = 1 means that we just perform a crude simulation.

Remark 4.7 (Link with the Galton-Watson branching processes) Notice first that the optimal
values (Ri)i: Ri = 1

P0
:= R and (Pi)i: Pi = P0 lead to

RiPi+1 = 1.

This result is not surprising since it means that the branching processes are critical Galton-Watson pro-
cesses (m = 1). In other words, optimal values are chosen in such a way to balance the loss of variance
from too little splitting and the exponential growth in computational effort from too much splitting.
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4.5 Numerical applications and practical issues

Application 4.1 (Knapsack Problem)
In approximate counting, remind that the goal is to estimate the number of Knapsack solutions i.e. the
cardinal of Ω defined by

Ω := {x ∈ {0, 1}n : a.x :=

n∑
i=1

aixi 6 b}

for given positive real vector a = (ai)
n
i=1 and real number b. We might try to apply the Markov Chain

Monte-Carlo method (MCMC) [23]: construct a Markov chainMKnap with state space Ω = {x ∈ {0, 1}n :
a.x 6 b} and transitions from each state x = (x1, . . . , xn) ∈ Ω defined by

• with probability 1
2 let y = x; otherwise

• select i uniformly at random in {1, . . . , n} and let y′ = (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn)

• if a.y′ 6 b then let y = y′ else let y = x

the new state is y. This random walk on the hypercube truncated by the hyperplane a.x = b converges
to the uniform distribution over Ω. This suggests a procedure for selecting Knapsack solutions almost
uniformly at random. Starting in state (0, . . . , 0), simulate MKnap for sufficiently many steps that the
distribution over states is ”close”1 to uniform, then return the current state. Of course sampling over Ω
is not the same as estimating the size of Ω. But the first task leads to the second.
Keep on taking the vector a fixed but allow b to vary. Note Ω(b) and MKnap(b) instead of Ω and MKnap

to emphasize on the dependence on b. Assume without loss of generality that a1 6 . . . 6 an and define
b1 = 0 and bi = min{b,

∑i−1
i=1 aj}. One can check that

|Ω(bi−1)| 6 |Ω(bi)| 6 (n+ 1)|Ω(bi−1)|.

Now write

|Ω(b)| = |Ω(bn+1)| = |Ω(bn+1)|
|Ω(bn)|

|Ω(bn)|
|Ω(bn−1)|

. . .
|Ω(b2)|
|Ω(b1)|

|Ω(b1)| := ρ−1
n . . . ρ−1

1 .

The ratio ρi = |Ω(bi)|
|Ω(bi+1)| may be estimated by sampling almost uniformly from Ω(bi+1) using the Markov

chain MKnap(bi+1) and computing the fraction of the samples that lie within Ω(bi).
Now take a = [1, 2, 3, 4], b = 3, h = 1, R = 5 and C = 2600. We chose the levels as proposed: first define
b1 = 0, b2 = 1, b3 = 3, b4 = 3 and b5 = b, secondly B0 = Ω, B1 = Ω(b4), B2 = Ω(b3), B3 = Ω(b2) and
B4 = Ω(b1). Thus here M = n − 1, N = C/n and nstep = 1020. Obviously Card(Ω) = 5. We run 3
different simulations: the first suggested in [15] consisting in estimating the n ratios independently, the
crude and splitting ones. We obtain different estimations for Card(Ω):

exact value : 5

estimation by crude simulation : 4.088

estimation by the n ratios ind. : 5.44

estimation by splitting simulation : 5.019

Even though the levels are not optimal, splitting carries out an improvement.

Application 4.2 (Tree and simulated annealing)
Here the state space is a rooted tree and the particles move from the root to the sheets of the tree. For
every node v of the tree, to each vertex vi (i = 1 . . .m) issued from v is associated a probability p(vi|v)
(i = 1 . . .m); a particle starting at v choose his following step according to these probabilities. The goal
of the algorithm is to find a “deep” node in the tree i.e. a node at depth at least d. If we truncate the tree

1 The problem is to bound the number of steps necessary to make the Markov chain MKnap(b) ”close” to stationarity.
More precisely, we need a bound of the mixing time:

τmix(ν) := min{t : ∆x(t′) 6 ν for all t′ > t}

where ∆x(t) = maxS⊂Ω |P t(x, S) − Π(S)| and Π the stationary distribution. In [15], it is shown that O(n9/2+ν) steps
suffice.
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at depth d, the problem amounts to evaluate the probability the the deepest node found by the algorithm
is at the maximal depth d. Obviously the transition probabilities are unknown p(vi|v); nevertheless, from
any node v of the tree, we know how to choose a vertex starting at v according to the probabilities p(vi|v)
(i = 1 . . .m).

Let us describe now the algorithm: we start with B initial particle at the root of the tree. At time i,
there is a random number of particles at maximal depth i. If all the particles are in leaves, we stop the
algorithm. Otherwise, we duplicate each particle that is not in a leaf in Ri − 1 new particles. We then
continue the algorithm by choosing randomly a vertex for each of the current particles.

The cost f the simulation is given by

C = N

[
r∑

i1=1

p(v1i1 |v1) +R1

r∑
i1=1

r∑
i2=1

p(v1i1i2 |v1i1)p(v1i1 |v1)

+ . . .+R1 . . . Rd−1

r∑
i1=1

. . .

r∑
id=1

p(v1i1...id |v1i1...id−1
) . . . p(v1i1 |v1)

]
.

Figure 4: Tree considered in the example

Let x ∈ [0, 1]. To illustrate this algorithm, we consider the tree, represented in Figure 4, having 18 nodes
such that

• every node has in most three vertices,

• the probabilities that a particle at node i goes to one of the vertices from v is given by the i-th line
of the matrix P given by

P t =

 (1− x)/2 x x 1 0 0 0 1 1/3 0 0 0 0 1 1− x 0 1 0
(1− x)/2 1− x− x2 1− x 0 0 0 0 0 1/3 0 0 0 0 0 x 0 0 0

x x2 0 0 0 0 0 0 1/3 0 0 0 0 0 x 0 0 0


One can easily evaluate analytically the probability of interest P(A) to reach a leaf at maximal depth:

P(A) = x2(2− x).

Taking for example x = 10−3, the event A becomes rare and

P(A) = (2− 10−3)10−6 ≈ 2 10−6.
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Simulation gives for equivalent costs

exact value : 2 10−6

crude simulation estimated 95%-CI length : 7 10−6

estimated value : 2.5 10−6

error : 5 10−7

splitting simulation estimated 95%-CI length : 3 10−6

estimated value : 2 10−6

error : 10−9

The following discussion (simplified and approximate) highlights the interest of such a tree exploration.
Let f a given function defined on S. There exists a natural way to define a tree such that his leaves
correspond to local minima of f . Each leave of the tree at depth h corresponds to a connected component
of {s : f(s) 6 h}. See Figure 5.

Figure 5: Correspondence between tree and simulated annealing

If a Metropolis algorithm is used to simulate the distribution

πT (s) = cT exp{−f(s)/T},

we get the distribution πT restricted to the connected component {s : f(s) 6 h(T )} that contains the
starting point for a given function h(T ). We identify this distribution to the corresponding point in the tree
at depth h(T ). Hence one can see the progression of the simulated annealing algorithm with a decreasing
temperature as a particle that evolves slowly to the back of the tree making randomly irreversible choices
and stopping at a leaf.

Practical issues

1. One can also consider a variant implementation: instead of creating for every particle that have
reached a new threshold a fixed number of offspring, one can create at each threshold a fixed total num-
ber of offspring. This is the strategy adopted in the particles algorithm (see [9]).

2. In practice, the adjustment of Pi close to the optimal value may be done during a first phase. The
proportion of the cost devoted to this learning part is the topic of the paper [18].
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3. But it soon appears that, even in the case of Pi’s close to optimals, the fact that the number of replicas
is not an integer destroys rapidly the accuracy of the algorithm: in such a case, one can take Ri equal
to the closest integer (k or k + 1) of the optimal value R but whatever the choice we have made, the
criticality of the Galton-Watson process will be lost and the loss of precision is significant.
In [17], the author study different strategies to overcome this problem. Lead by [2], he chooses at random
the sampling number with the hope of improving the simulation. In a first model (Random1), a Bernoulli
rv Ri on {k, k+1} for each particle having reached level i started from level i-1 is sampled. The parameter
p := P(R1 = k) is adjusted such that m = 1.
A second model (Random2) consists in sampling a random environmental sequence (R1, R2, . . . , RM )
of M iid Bernoulli random variables Ri on {k, k + 1} with common parameter p, derived by the same
previous optimization approach with an additional constraint (the link between the expectations of R
and its inverse). However, this problem is more complex and needs an approximate solution.
The author concludes that Random 1 provides the closest results from the optimals. Nevertheless the
gain being not significant, in practice the strategy adopted is the one that choose R as the closest integer
of the optimal value.

4. In dimension more than 1, the practitioner must be careful when defining the splitting surfaces. Indeed
unlike in dimension 1, the optimal surfaces are not so natural.

4.6 Confidence intervals

Here, we assume that we take the optimal values of 4.4:

Ri = R i = 1, . . . ,M, Pi = P0 = 1/R = P(A)1/(M+1) i = 1, . . . ,M + 1.

The control of the variance of P̂M gives a crude confidence interval for P(A). Indeed, we get by Markov
inequality

P

(
|P̂M − P(A)|

P(A)
> α

)
6

1

P(A)2α2
E
(

(P̂M − E(P̂M ))2
)

6
1

α2CM

[
(M + 1)2(P(A)−1/M+1 − 1)h(P(A)

1
M+1 )

]
≈ 4(M + 1)

α2N
h(P(A)

1
M+1 )

which is in general useless. For example, for h = 1, M = 12 and α = 10−2, the upper bound becomes

≈ 5 105

N . To obtain a bound lower than 1, we need N > 5 105.

To improve it, we shall use Chernoff’s bounding method that leads to

Proposition 4.8 Let ψ(λ) be the log-Laplace of W1 and ψ∗ be its Cramer transform:

ψ(λ) = E
(
eλW1

)
and ψ∗(τ) = sup

λ
[λτ − ψ(λ)] .

Thus

P

(
|P̂M − P(A)|

P(A)
> α

)
6 e−Nψ

∗(P(A)(1−α)) + e−Nψ
∗(P(A)(1+α)) (22)

6 2e−N min(ψ∗(P(A)(1−α)),ψ∗(P(A)(1−α))). (23)

Proof For any λ > 0,

P
(
P̂M > P(A)(1 + α)

)
= P

(
1

N

N∑
i=1

Wi > P(A)(1 + α)

)
= P

(
eλ

∑N
i=1Wi > eλNP(A)(1+α)

)
6 e−λNP(A)(1+α)E(eλW1)N

6 e−N [λP(A)(1+α)−ψ(λ)]
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where Wi =
Z

(i)
M+1

R1...RM
. Optimization on λ > 0 provides

P
(
P̂M > P(A)(1 + α)

)
6 e−N supλ>0[λP(A)(1+α)−ψ(λ)]

and similarly

P
(
P̂M 6 P(A)(1− α)

)
6 e−N supλ<0[λP(A)(1−α)−ψ(λ)].

�
So we are interested in accurate lower bounds of ψ∗.

Laplace transform of W1

To study the Laplace transform of W1, we turn to the theory of branching processes (see Section 3,
Harris [13], Lyons [22] and Athreya and Ney [3]). More precisely we consider our splitting model as a
Galton-Watson process, the thresholds representing the different generations. We straightforwardly have

f(s) = [P0s+ (1− P0)]R and ψ(λ) = E(eλW1) = g(fM (eλ/R
M

)).

The iterated function fM has no explicit tractable form and we shall derive bounds for fM (s) around
s = 1. To do this, we state a general result on the Laplace transform in critical Galton-Watson models,
which we could not find in the literature.

Proposition 4.9 Let α1 = f ′′(1)
2 = 1−P0

2 .

(i) For s close to 1, 0 6 s 6 1 and large n,

fn(s) 6 1− (1− s)[1− α1(1− s)]
1 + α1(1− s)(n− 1− α2

1(1−s)2
2 )

. (24)

(ii) For s close to 1 and s > 1 and large n,

fn(s) 6 1 +
s− 1

1− nα1(s− 1)
. (25)

Proof (i) Using Taylor’s expansion, with fn(s) 6 θn 6 fn(1) = 1,

fn+1(s) = f(fn(s)) = f(1) + (fn(s)− 1)f ′(1) +
(fn(s)− 1)2

2
f ′′(θn)

= fn(s) +
(fn(s)− 1)2

2
f ′′(θn),

since f ′(1) = 1. Let rn = 1− fn(s), rn satisfies

rn+1 = rn − r2
n

f ′′(θn)

2
.

Now let α0 = f ′′(0)
2 . Define the decreasing sequences (an) and (bn) satisfying

an+1 = an − a2
nα1, bn+1 = bn − b2nα0, a0 = b0 = 1− s.

Then
an 6 rn 6 bn. (26)

1) bn’s upper bound: since 0 6 bj 6 1 we have

1

bn
=

1

bn−1
+ α0

1

1− α0bn−1
=

1

b0
+ α0

n−1∑
j=0

1

1− α0bj
>

1

b0
+ nα0

Thus

bn 6
1− s

1 + α0n(1− s)
. (27)
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2) an’s lower bound: apply (27) to an (α0 becoming α1).

an 6
1− s

1 + nα1(1− s)
. (28)

By injecting (28) in 1
an

= 1
a0

+ α1

∑n−1
j=0

1
1−α1aj

, we get

an >
(1− s)[1− α1(1− s)]

1 + α1(1− s)(n− 1− α2
1(1−s)2

2 )
. (29)

Finally (26) and (29) lead to the upper bound of fn in (24).

(ii) Let h(s) = 1 + s−1
1−nα1(s−1) . Since f(1) = h(1) = 1, f ′(1) = h′(1) = 1 and f ′′(1) = h′′(1) = 2α1, the

sign of f−h trivially depends on the sign of the third derivative of f−h which is here obviously negative.
Then h 6 f . Since f is increasing, we deduce (25) by induction. �

About the geometric distribution

If the law of X is such that the probabilities pk are in a geometric proportion: pk = P(X = k) = bck−1

for k = 1, 2 . . . and p0 = 1− p1 − p2 . . . with b, c > 0 and b 6 1− c, then the associated g.f. is a rational
function:

h(s) = 1− b

1− c
+

bs

1− cs
.

Taking b = (1− c)2 and c = α1

1+α1
leads to

h(s) = 1 +
s− 1

1− α1(s− 1)
.

So we have compared the n-th functional iterate of a Binomial g.f. to the one of a geometric g.f. It
suggests us to compare the importance splitting models with Binomial and with geometric laws. The
second one is set in the following way: we run particles one after the other. As long as the next level is
not reached we keep on generating particles, then we start again from it (the geometric distribution is
the law of the first success).
This link is also underlined by Cosnard and Demangeot in [6]: for m = 1 and σ2 = f ′′(1) = 2α1, the
asymptotic behavior of f2n is the same as the one of a geometric with the same variance i.e. h.

Cramer transform of ψ

Considering the gradient of the functions, we prove that the supremum for λ > 0 is reached near 0
which justifies the use of the upper bounds for fM obtained in Proposition 4.9. We then get

Proposition 4.10

ψ∗(P(A)(1 + α)) > min {F (P(A)(1 + α)), G(P(A)(1− α))}

where  F (x) = supλ>0[λx− ln(1 + P0
(eλ/R

M
−1)

1−Mα1(eλ/RM−1)
)]

G(x) = supλ<0[λx− ln(1− P0
(1−eλ/R

M
)[1−α1(1−eλ/R

M
)]

u0
)].

Finally

P

(
|P̂ − P |
P

> α

)
6 2e−N min{F (P(A)(1+α)),G(P(A)(1−α))}.
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Figure 6: Upper bounds obtained by the variance and the Laplace transform

And one can easily obtain explicit but complex expressions for F (x) and G(x). We plot in Figure 6 the
upper bounds obtained by the variance and by the Laplace transform, for different values of the prescribed
error α of the CI. We take P(A) = 10−9 and the optimal values obtained above for the parameters.
Note that the upper bound given by the Laplace transform is not surprisingly better than the other one

(with the variance). We obtain P
(
|P̂M−P(A)

P(A) | > α
)
6 L. In the preceding example where P(A) = 10−9,

if we fix α = 0.05 and L close to 0.01, then the corresponding costs needed are 3 107 for the variance and
3 106 for the Laplace transform.
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4.7 Exercises

Exercise 4.1 [An elementary gambler’s ruin problem] We consider a simple random walk Xn =
x+

∑n
i=1 εi on E = Z, starting at some x ∈ Z where (εi)i>1 is a sequence of independent and identically

distributed random variables with common law

P(ε1 = +1) = p and P(ε1 = −1) = q

with p, q ∈ (0, 1) and p + q = 1. If we use the convention
∑
∅ = 0, then we can interpret Xn as the

amount of money won or lost by a player starting with x ∈ Z euros in a gambling game where he wins
and loses 1 euro with respective probabilities p and q. If we let a < x < b be two fixed parameters, one
interesting question is to compute the probability that the player will succeed in winning b−x euros, never
losing more than x − a euros. More formally this question becomes that of computing the probability
that the chain Xn (starting at some x ∈ (a, b)) reaches the set B = [b,∞) before entering into the set
C = (−∞, a]. When p < q (i.e. p < 1/2), the random walk Xn tends to move to the left and it becomes
less and less likely that Xn will succeed in reaching the desired level B. We further assume that q > p.
We introduce the stopping time

R = inf{n > 0; Xn = a}

as well as the first time the chain Xn reaches one of the boundaries

T = inf{n > 0; Xn ∈ {a, b}} 6 R.

Study of Px(R <∞)

• Check that if we have |x − y| > n or y − x 6= n + 2k, for some k > 1 then Px(R < ∞) = 0. The
case where y−x = k− (n− k) with 0 6 k 6 n corresponds to situations where the chain has moved
k steps to the right and n− k steps to the left. Prove that Px(Xn = y) =

(
n
k

)
pkqn−k.

• Show that the function α defined by

x ∈ [a,∞) 7→ α(x) = Px(R <∞)

is the minimal solution of the equation defined for any x > a by α(x) = pα(x+ 1) + qα(x− 1) with
the boundary condition α(a) = 1.

• Whenever p < q, we recall that the general solution of the equation above has the form α(x) =
A+B(q/p)x with α(a) = 1 = A+B(q/p)a. Deduce from the above that

α(x) = 1 +B[(q/p)x − (q/p)a] and Px(R <∞) = 1 for any x.

• Whenever p = q, we recall that the general solution of the equation above has the form α(x) = Ax+B
with α(a) = 1 = A+B(q/p)a. Deduce from the above that

α(x) = 1 +B[(q/p)x − (q/p)a] and Px(R <∞) = 1 for any x.

Expectation of T

• Check that for any n > 0 and λ > 0, we have

Px(R > n) = Px(Xn > a) 6 e−λaEx
(
eλXn

)
= e−λ(a−x)

(
peλ + qe−λ

)n
.

• If we choose λ = log(q/p)/2 ∈ (0,∞), then prove that

Px(R > n) 6 (p/q)(x−a)/2(4pq)n/2.

• Deduce from the above that for p 6= 1/2,

Ex(T ) 6 Ex(R) =
∑
n>1

Px(R > n) 6
(4pq)1/2

1− (4pq)1/2
(p/q)(x−a)/2.
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Study of Px(T < R)

• Show that for any a < x < b0, the stochastic process Mn = (q/p)Xn is a Px-martingale with respect
to the filtration Fn = σ(X0, . . . , Xn) and if p < q, then Px-a.s. on the event {T > n}, we have that

Ex (|Mn+1 −Mn||Fn) 6 2(q/p)b(q − p).

• Since we have Ex(T ) < ∞ and Ex (|Mn+1 −Mn||Fn) 1 {T>n} < c for some finite constant, prove
by a well-known martingale theorem of Doob that Ex(MT ) = Ex(M0) = (q/p)x and deduce that for
any x ∈ [a, b]

(q/p)x = (q/p)bPx(T < R) + (q/p)a(1− Px(T < R)).

Finally conclude that for any p 6= q, we have

Px(T < R) =
(q/p)x − (q/p)a

(q/p)b − (q/p)a
. (30)

• Using the strong Markov property, check that for any p and q, the function β(x) = Px(T < R) =
Ex(1 b(XT )) satisfies the equation

β(x) = pβ(x+ 1) + qβ(x− 1)

for any x ∈ (a, b) with the boundary conditions (β(a), β(b)) = (0, 1).
For p 6= q, check that the function (30) is the unique solution and for p = q = 1/2, prove that the
solution is given for any x ∈ [a, b] by

Px(T < R) = (x− a)/(b− a).

Splitting algorithm Assume that we want to fix the intermediate thresholds Bn in such a way that
the transition probability between two successive thresholds equals θ i.e.

Pbn
(
XTn+1

= bn+1

)
= θ,

where Tn = inf{k > 0; Xk ∈ {a, bn}}.

• Show that the optimal solution is given recursively by

bn+1 = bn +

log

(
1 + (θ − 1)

(
p
q

)a−bn)
− log(θ)

log(p/q)
.

• Deduce that as bn goes to infinity, if q > p,

bn+1 ∼ bn −
log(θ)

log(p/q)
.
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5 Practical on Scilab

5.1 Illustrative examples

Crude Monte Carlo

Let us study Example 1.2. Propose an algorithm using the Monte Carlo scheme to evaluate

E
(
eβG

)
with β = 5 and G a standard Gaussian rv.
Determine also a 95%-confidence interval.

Methods to reduce the variance

Let us study Example 2.4. We want to evaluate I =
∫ 1

0
exdx.

Propose algorithms using

1. crude Monte Carlo method

2. control variables method

3. antithetic variables method

to evaluate by several ways I.
For each method, determine also a 95%-confidence interval.

5.2 An example in finance

Let us study Example 1.3. Here we take β = K = 1.
Determine

1. crude Monte Carlo estimations of C and P ;

2. an estimation of C based on control variables and the first estimation of P ;

3. an estimation of P with IS method.

4. an estimation of P with antithetic variables method.

For each method, determine also a 95%-confidence interval.
Conclude.

5.3 An example in queuing theory

Let us study a M/M/1 queue. See next Section for some reminders on queuing theory.
Take for example, λ = 0.1 and µ = 0.12. Determine

1. a crude Monte Carlo estimation of P(Q > L), L = [[1 : 5 : 150]];

2. a splitting estimation of P(Q > L), L = [[1 : 5 : 150]].

For each method, determine also a 95%-confidence interval.
Conclude.
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5.4 Comparison between IS and Splitting on the simple random walk on Z
In this section, we want to compare numerically on Scilab the IS and Splitting methods in the setting
of the simple random walk on Z. The goal is to estimate the probability that the line reaches length b
before returning at 0.

General framework

Importance Sampling

Following exercise 2.2, we define a new random variable to simulate and the corresponding likelihood
ratio.

Splitting

Following exercise 4.1, we define the optimal thresholds and run N simple random walks starting at
0. As soon as a queue reaches the next threshold before returning to 0, it is duplicated in R sub queues
that evolve from this threshold and so on. The unbiased estimator of the probability under concern is
then given by

P̂Splitt =
1

N

N∑
i0=1

1

RM

R∑
i1=1

. . .

R∑
iM=1

1 i01 i0i1 . . . 1 i0i1...iM

where 1 i0i1...ij represents the result of j-th trial (i.e. it is equals to 1 if the queue reaches Bj , 0 esle).

Practical on Scilab

Write a program for both algorithms (IS and Splitting) to compare their performances (accuracy es-
timation, cost...) for the simple random walk.
Check also that crude simulation fails to propose an estimator in that case.
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5.5 Comparison between IS and Splitting on the M/M/1 queue

In this section, we want to compare numerically on Scilab the IS and Splitting methods in queuing theory.
The goal is to estimate the probability that the line reaches length L0 before returning at 0.

General framework See [4] or [8] for more details.

A queue is constituted by

a) an arrival flow that represents the instants of arrival of ”customers”. We consider in general that
the times between two successive arrivals are iid rvs. Then arrival flow is a stationary renewal process. A
simple and commonly used case is the one with exponential inter arrivals; the process is then a Poisson
process.

b) a service characterized by
* a service duration: a customer that starts his service will be immobilized a random duration

with known distribution,
* a number of counter.

c) service rules that indicate how the service is proceeding:
* system with or without line (in a system without line, there is no queue; a customer that can

not be served at his arrival is lost),
* service order: Fist In First Out (FIFO) (ex: line in the Post office), Last In First Out (LIFO)

(ex: print line an the photocopier)
* several classes of customers clients (definition of priority customers)
* capacity of the queue
* at his arrival, if the line is too long, a customer may quit the line with a probability depending

on the length of the queue and other parameters. . .
. . .

A queue is characterized by its Kendall notation

A/B/C/. . .

A represents the arrival flow, B the service time, C the number of counters. Then we add complementary
information like policies. . . We use the following convention:

* M (like Markov) corresponds to a Poisson flow for the arrivals and to an exponential time service.
* D (like deterministic) corresponds to constant inter arrival times and to a fix time service for

every customer.
* G (like general) corresponds to general distributions.

M/M/1 queue

This is the simplest and most studied queue.
* The arrivals correspond to a Poisson process with rate λ (the inter arrival times are iid rvs with

parameter λ.
* The service time of the customers is exponentially distributed with parameter µ.
* There is a unique counter and the customers are served according to their order of arrival. There

is no capacity limitation.

Let Nt be the number of customers in the queue at time t. Nt is an homogenous integer Markov
process.

Proposition 5.1 We have
(i) Px(Nt = x) = 1− (λ+ (x ∧ 1)µ) + o(t);
(ii) the intensity of the process is given by

i(x) = λ+ (x ∧ 1)µ for x > 0;
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(iii) the transition matrix of the embedded chain is given by{
P (x, x+ 1) = λ

λ+(x∧1)µ

P (x, x− 1) = (x∧1)µ
λ+(x∧1)µ .

The study of the transience of the process Nt amounts to that of the embedded chain. Let ρ = λ
µ the

process intensity.

Proposition 5.2 A positive measure invariant for P is given by

m(x) = m(0)
P (0, 1) . . . P (x− 1, x)

P (1, 0) . . . P (x, x− 1)
= m(0)ρx

λ+ (x ∧ 1)µ

λ
.

Here we are interested by the case λ < µ.The previous measure is then bounded and we get the existence
of an invariant probability π given by

π(n) = ρn(1− ρ), n > 0.

Proposition 5.3 The performance parameters are given by

• the flow (arrival or departure) d is λ;

• the counter use rate is ρ;

• the average number L of customers in the system is

L = Eπ(Nt) =
ρ

1− ρ
;

• the average number Lq of customers in the queue is

Lq =
ρ2

1− ρ
;

• the sojourn time in the system is

W =
1

µ(1− ρ)
=

1

µ
+

ρ

µ(1− ρ)
;

• the sojourn time in the queue is

Wq =
ρ

µ(1− ρ)
.

Proof First, the arrival flow is clearly λ and d = λ. Second, if a customer enters the system with a
queue of length n, its sojourn time Tq in the queue will be null if n = 0 and the sum of n iid exponential
distributed rvs with parameter µ if n > 0. As a consequence,

P (Tq 6 t) =
∑
n>0

P (Tq 6 t and n customers in the queue)

=
∑
n>0

P (Tq 6 t | n customers in the queue)P (n customers in the queue)

= π(0) +
∑
n>1

∫ t

0

µnxn−1

n!
e−µxdxρn(1− ρ)

= 1− ρ+ ρ(1− e−µ(1−ρ)t) = 1− ρe−µ(1−ρ)t

Then

Wq = E(Tq) =

∫ +∞

0

P(Tq > t)dt =
ρ

µ(1− ρ)
.
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We then use the following relations

L = Lq + Ls and W = Wq +
1

µ

and the law of Little applied to the system, to the queue or to the counter

L = d W, Lq = d Wq and Ls =
1

µ
d.

�

Importance Sampling

From [14], the optimal change is given by {
λ∗ = µ

µ∗ = λ

We study N queues starting 1 according to the arrival and service rates λ∗ and µ∗. The unbiased
estimator of the probability under concern is then given by

P̂IS =
1

N

N∑
i=1

1 Yi>L0
L(Yi)

Let

pλ =
λ∗

λ∗ + µ∗
λ+ µ

λ
and pµ =

µ∗

λ∗ + µ∗
λ+ µ

µ
.

The likelihood ratio should be updated at each new event by

L =

{
L× pλ = L× λ∗

λ∗+µ∗
λ+µ
λ

L× pµ = L× µ∗

λ∗+µ∗
λ+µ
µ .

Splitting

We define the optimal thresholds and run N queues starting at 1. As soon as a queue reaches the
next threshold before returning to 0, it is duplicated in R sub queues that evolve from this threshold and
so on. The unbiased estimator of the probability under concern is then given by

P̂Splitt =
1

N

N∑
i0=1

1

RM

R∑
i1=1

. . .

R∑
iM=1

1 i01 i0i1 . . . 1 i0i1...iM

where 1 i0i1...ij represents the result of j-th trial (i.e. it is equals to 1 if the queue reaches Bj , 0 esle).

Practical on Scilab

Write a program for both algorithms (IS and Splitting) to compare their performances (accuracy es-
timation, cost...) on the M/M/1 queue.
For example, take λ = 0.4 and µ = 1.
Check also that crude simulation fails to propose an estimator in that case.
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