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Chapter 1

Introduction

In this lecture, our goal is to modelize times elapsed before the occurrence of an event. Historically, the
studied events corresponded to deaths (that is why the term “lifetime” is currently used) but any event
can be studied in this framework.

Numerous and various domains are concerned:

• medicine and health: survival time of the patient, remission time of a disease...

• reliability: component lifetimes,

• economy: loss of employment,

• psychology: learning time of some specific skill,

• sociology: succession life events (wedding, birth, divorce,...).

The statistical community has been particularly active on this research domain during the 20th century:

• Kaplan and Meier (1958): non parametric estimator of the survival function,

• Peto and Peto (1972): logrank test to compare the survival of two groups,

• Cox (1972): semi-parametric model that now is the most popular in survival data analysis,

• Gill (1980): introduction to the theory of processes ad martingales.

1.1 Why specific methods?

Example 1: We are interested in the survival of a group of mice after the injection of cancer cells; all
the mice receive the injection at the same moment.
We can expect the death of all the mice and the exact lifetimes are observed and thus the standard
methods apply.

Example 2: Therapeutic trial (clinical research)
We want to test the efficiency of a vaccine against the hepatitis B.

• 2 randomized groups: treatment/placebo.

• Criterion: arisen a hepatitis B during the year that follows the injection.

• Various injection dates for the different patients.

12 months

Analysis of the experiment

I1

Beginning of the inclusion

I2 In

End of the inclusion

5



6 CHAPTER 1. INTRODUCTION

We observed 6 hepatitis on the 184 patients that received the vaccine but 7 patients has not been
controlled during an entire year.
How can we estimate the rate of hepatitis after 12 months?
6

184? 6
184−7?

Example 3: Assume that we are interested in the survival after surgery of men operated for a bronchial
cancer.
It is not realistic to wait for the death of all the subjects. Thus we fix a stopping time called point date.

Minimum hindsight

Point date

I1 I2 In

Conclusion: Examples 2 and 3 deal with individuals for whom the event time is not known; the only
thing that we know is that the event has occured in a certain interval: this notion is called censoring.
Only dealing with the non censored observations led to a loss of information which can be not insignificant.

↪→ One has to introduce specific methods to take into account the censored data.

1.2 Lifetime models

1.2.1 Lifetime and related functions

Let X be a non negative random variable having a known continuous distribution function. Assume that
X corresponds to the delay between a fixed original time and the occurrence of an event of interest.

Example: X is a survival variable and the event under concern corresponds to the death.

The usual functions such that the cumulative distribution function (c.d.f) F and the density probability
function (p.d.f.) f are not used in this research domain. One prefers working with more adapted functions
that are easier to interpret:

• The survival (or reliability) function is defined as the probability to survive until time t:

S(t) = 1− F (t) = P(X > t)

The survival function is sometimes denoted F̄ (·).

The mathematical expectation of X can be written in terms of the survival function:

E[X] =

∫ +∞

0

xdF (x) =

∫ +∞

0

S(x)dx.

Indeed, by an integration by parts,

E[X] =

∫ +∞

0

xdF (x)

= [−S(x)x]
+∞
0 +

∫ +∞

0

S(x)dx

=

∫ +∞

0

S(x)dx.
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• The hazard rate (or risk) function is given by

h(t) = lim
dt→0

P(t 6 X < t+ dt | X > t)

dt

for t > 0. h(t)dt represents the probability to die during the interval t and t+ dt for an individual
conditionally that he is still alive at time t; in other words, the hazard rate at point t is the
instantaneous probability of failure (or death) at time t given that failure (or death) has not occurred
before. The hazard rate function may have different shapes: the most famous is called the bathup
curve.

The function h(·) satisfies the following relations:

h(t) =
f(t)

S(t)
= −S

′(t)

S(t)
= − d

dt
lnS(t).

As a consequence, one has

S(t) = exp

{
−
∫ s

0

h(s)ds

}
,

f(t) = h(t) exp

{
−
∫ s

0

h(s)ds

}
.

Examples of hazard rate functions:

0 1 2 3 4 5

1
2

3
4

Différentes formes de la fonction de risque instantané

temps t

h(
t)
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• The cumulative hazard rate function is given by

H(t) =

∫ t

0

h(s)ds, for all t.

One has the following relationships:

S(t) = exp {−H(t)} ,

f(t) = h(t)S(t) = h(t) exp

{
−
∫ t

0

h(s)ds

}
.

Particular case: If the random variable X is discrete (i.e. valued in a countable set {x1, x2, · · · , xn, · · · }
with x1 < x2 < · · · < xn, · · · ), we have
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F (t) =
∑
i:xi6t

pi

where pi = P(X = xi). The hazard rate function is given by

h(xi) = P(X = xi|X > xi) =
pi

S(xi−1)

and the cumulative rate function by

H(t) =
∑
i:xi6t

h(xi).

Finally,

S(t) =
∏
i:xi6t

[1− h(xi)] .

• The residual life at time t, denoted by τt, is the random variable with distribution:

P(τt > s) = P(X − t > s|X > t) =
S(t+ s)

S(t)
.

• The mean residual function is defined for t > 0 by

m(t) = E[τt] = E[X − t|X > t] =

∫ +∞
t

S(s)ds

S(t)
.

1.2.2 Usual lifetime distributions

Let X be a non negative random variable. We are interested in random variables whose support is IR+.
As a consequence, the Gaussian distribution is no longer the reference distribution.

• The exponential E(λ) where λ > 0. One has, for any t > 0,

S(t) = e−λt

f(t) = λe−λt1 t>0

h(t) = λ.

The risk is then a constant function with respect to the time: this distribution is currently used in
models without aging. One has E[X] = 1

λ and Var(X) = 1
λ2 and

∀x, y > 0, P(X > x+ y | X > y) = P(X > x).

The exponential is said to have the memoryless property: the distribution of the survival times for
times greater than y is not affected by the knowledge that the individual has survived until y.

• The Weibull distribution W(α, λ), where λ > 0 and α > 0, is a generalization of the exponential
distribution (that is a particular case when α = 1). It allows to have increasing or decreasing risks.
The parameter λ is the scale parameter and α is the shape parameter.

Here one has, for any t > 0,

S(t) = e−(λt)
α

,

f(t) = αλαtα−1e−(λt)
α

1 t>0,

h(t) = αλαtα−1.

The risk is then a power of the time.
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– when 0 < α < 1: the risk decreases from +∞ to 0;

– when α = 1: the risk is constant (W(1, λ) = E(λ));

– when α > 1: the risk increases from 0 to +∞.

Property: If X ∼ W(α, λ) then Xα ∼ E(λα).

Warning: in the software R, the scale parameter is 1
λ .

• The Gamma distribution γ(a, λ) where λ > 0 and a > 0:

f(t) =
λa

Γ(a)
ta−1e−λt1 t>0

where Γ(a) =
∫ +∞
0

xa−1e−xdx.

The parameter λ is the scale parameter and α is the shape parameter.

Reminders on the Gamma function Γ:

Γ(1) = 1,

Γ(
1

2
) =
√
π,

∀a > 0, Γ(a+ 1) = aΓ(a),

∀n ∈ IN ∗,Γ(n) = (n− 1)!.

In this context, there is no explicit expression for S nor h.

One has: E[X] = a
λ and Var(X) = a

λ2 .

– when 0 < a < 1: the risk decreases from +∞ to 1
λ ;

– whena = 1: the risk is constant (γ(λ, 1) = E(λ));

– when a > 1: the risk increases from 0 to λ.

There exists other distributions that lead to monotone risks. To get non monotone risk functions, one
can use the following distributions:

• the log-normal distribution,

• the log-logistic distribution,

• the inverse Gaussian distribution,

• the generalized Weibull distribution.

1.3 Censored data

1.3.1 Censoring and truncation

1. The data are often censored, that means that the event under concern may not be observed and
one only knows that the delay of interest lies in a given time interval. There exists 3 different types
of censoring:

• right censoring (the most frequent): the event occurs after a given date C: X > C,
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• left censoring: the event occurs before a given date C: X < C,

• censoring by interval: the event occurs between two given dates C1 and C2: C1 < X < C2.

2. The truncation is a condition that hide some individuals in such a way that the statistician is
not aware of their existence: the individuals that not satisfy the condition are not included in the
study.

• Left truncation: the condition X > Y guarantees that the individual takes part to the study
where Y corresponds to the delay of occurrence of another event.

Example: one is interested in the survival of individuals that have contracted a given disease
and the sample is taken in an retirement home. The individuals prematurely dead (before
being retired) are not taken into account. Here, the survival X (that is the age at death) is
left truncated by Y that represents the age at the entry of the retirement home.

• Right truncation: only the individuals for whom the event under concern has occurred are
included in the study.

Example: Considering AIDS, one is interested in the distribution of the delay to develop the
disease after the inclusion of the HIV. In this study, only the patients that have developed
the HIV take part to the study: the healthy individuals that carry HIV are not known by the
clinician.

Warning: Beware of not making the confusion between truncation and censoring!

In medicine, a right censoring and a left truncation appear in the most famous models.

1.3.2 Some examples of censoring

Example of right censoring:

death0

death?0

lost death?0

point date

excluded-alive

We distinguish two different types of patients:

• the excluded-alive: patients still alive at the point date,

• the lost individuals: patients whose state is unknown at the point date.

Example of left censoring: the ethnologist

Age of child 1
0 X1

Age of child 2
0 C2 X2

0 C3X3
Age of child 3

Stay
of the ethnologist

A D

• Xi is the age of child i when is able to do a given task,
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• A and D are the arrival and departure times of the ethnologist,

• C2: age of child 2 when the ethnologist leaved,

• C3: age of child 3 at the arrival of the ethnologist.

• X1 is not censored,

• X2 is right censored by C2: X2 > C2,

• X3 is left censored by C3: X3 < C3.

Examples of censoring by interval: we consider a group of patients that are controlled frequently
during a clinical survey. Let X be the delay necessary for a biological variable to reach some level s. One
only knows that X lives in an interval between two successive controls: here, V2 < X < V3.

V0 V1 V2

Rate< s

X V3

Rate> s

V4

The censoring by interval appears also in reliability if periodical inspections are lead to check the good
functioning of the machines.

1.3.3 Right censoring

Since the right censoring is the most encountered in practice, we study it in details.

1. The censoring of type I: fixed

The delay Xi of the i-th individual is observed if and only if Xi 6 c where c is a fixed duration.
Otherwise, one only knows that Xi > c.
In other words, the censoring time c is known and fixed. One only observes the random variables
(Ti, δi)i=1···n defined by {

Ti = min(Xi, c)
δi = 1 {Xi6c}

for i = 1, · · · , n.

2. The progressive censoring of type I

The censoring times ci for i = 1, . . . , n are known and fixed. One only observes the random variables
(Ti, δi)i=1···n defined by {

Ti = min(Xi, ci)
δi = 1 {Xi6ci}

for i = 1, · · · , n.

Example: all the patients enter the study the same day. There are censored (excluded-alive) at
the point date.

3. The censoring of type II : waiting (commonly used in reliability)

One considers the survival time Xi of n individuals until r events occur and then stops the study:
the aim is to save time and money! The censoring occurs at X(r) the r-th order statistics. In other
words, the censoring time is given by the time of the r-th failure observed in the sample. One only
observes the random variables (Ti, δi)i=1···n defined by{

Ti = min(Xi, X(r))
δi = 1 {Xi6X(r)}

for i = 1, · · · , n and X(1) 6 X(2) 6 · · · 6 X(r) where are the r first order statistics.
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4. The censoring of type III: random

To each patient, we associate a survival time Xi and a censoring delay Ci. There is a tradeoff
between these two delays and one only observes the smaller denoted Ti:

• the observed delay is Ti = min(Xi, Ci);

• the event indicator is δi = 1Xi6Ci .

As a consequence, the sample consists in pairs (Ti, δi), i = 1, · · · , n and one only observes the
random variables (Ti, δi)i=1···n defined by{

Ti = min(Xi, Ci)
δi = 1 {Xi6Ci}

for i = 1, · · · , n and where C1, · · · , Cn are random variables with c.d.f. G1, · · · , Gn respectively.
The random variables X1, · · · , Xn and C1, · · · , Cn are generally assumed to be independent. In
this case, the c.d.f. of the random variable Ti is given by STi = SXSCi for i = 1, · · · , n.

In the sequel, we consider a random censoring and we assume that X and C are two independent random
variables. This assumption may be not satisfied in some practical examples: e.g. the treatment is stopped
if some secondary effects appear or by tiredness of the failure in the studies on the infertility.

Vocabulary from medicine

We denote X the delay of occurrence of the event under concern. To define correctly this delay, one needs
an origin and a date of end.

• The origin date (OD) corresponds to the original time of the individual. This is the principal
source of the randomness of the censoring.

Example: date of birth, date of first symptoms of a disease, date of the diagnosis by the doctor,
date of surgery, date of inclusion in a clinical experiment.

• The date of last news (DLN) corresponds to the date of death if the patient died. Otherwise it
corresponds to the latest date of inspection, control, monitoring...

• The monitoring duration is the delay between the origin and the date of latest news.

• The point date (PD) corresponds to the date (common to all individuals) when we decide to check
the state of the patients.

Remark: one does not take into account information posterior to the point date; otherwise a
bias is introduced. Usually, one has recent news of non representative patients sub-groups (e.g.
information on patients that relapse and no news of the ones that are in remission).

• The participation time corresponds to the “survival time” reported at the end of the analysis
that is

– if DDN 6 PD: the time of participation is the monitoring duration.

∗ if the patient is dead at the latest news, the time of participation is not censored.

∗ if the patient is still alive at the latest news, he is lost and his time of participation is
censored.

– if DDN > PD: the time of participation is censored and corresponds to the delay between the
origin and the date point. Th patient is then considered as an excluded-alive.

• The hindsight of an individual is the delay between the origin and the date point.
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1.4 Likelihood of a censored sample

1.4.1 Expression of the likelihood

Let X be a lifetime random variable whose density and survival functions are given by f(t) and S(t). Let
C be a censoring whose density and cumulative distribution functions are given by g(t) and G(t). We
assume that X and C are independent (we then deal with a model of censoring of type III).

As said before, the sample consists in n pairs (Ti, δi)16i6n where Ti = min(Xi, Ci) corresponds to the
observed delay and δi = 1Xi6Ci is the event indicator for the patient i. The distribution of the pair
(Ti, δi) is given by:

f(t, δ) = [f(t)G(t)]δ[g(t)S(t)]1−δ.

The likelihood of the sample becomes

Ln((T1, δ1), · · · , (Tn, δn)) =

n∏
i=1

f(Ti, δi).

If the distribution of the censoring does not depend on the parameters of the survival, the censoring is
non informative and the “useful” part of the likelihood is simply:

n∏
i=1

f(Ti)
δiS(Ti)

1−δi .

1.4.2 Estimation in parametric models

Let us consider a parametric model

F = {Pθ, θ ∈ Θ} or F = {fθ, θ ∈ Θ} or F = {Fθ, θ ∈ Θ}

for the lifetime X.

The question is how to estimate the (possibly multidimensional) parameter θ? Many different methods
are available...

• Without censoring, you already know how to do with a complete sample.

• With censoring, it is more difficult. Under the assumption of independence between lifetime and
censoring, the likelihood is given by

Ln((T1, δ1), · · · , (Tn, δn); θ) =

n∏
i=1

[fθ(Ti)(1−G(Ti))]
δi [Sθ(Ti)g(Ti)]

1−δi ,

where g (respectively G) still represents the p.d.f. (resp. c.d.f.) of the censoring C.

If the distribution of the censoring time does not depend on the parameter of interest θ, one can
consider the “useful” likelihood given by

Ln((T1, δ1), · · · , (Tn, δn); θ) =

n∏
i=1

[fθ(Ti)]
δi [Sθ(Ti)]

1−δi .

The maximum likelihood estimator (MLE) is the value of θ that maximizes the likelihood.
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1.5 The point process N(t)

Instead of studying the lifetime X, we may define the point process N(t) that is equal to 0 while the
event has yet occurred yet and is equal to 1 after:

N(t) = 1 {X6t}.

The process N(t) jumps by 1 in t = x when X = x. We denote dN(t) the process variation on the
interval [t, t+ dt[:

dN(t) = N((t+ dt)−)−N(t−)

lim
dt→0

P(dN(t) = 1/N(t−) = 0)

dt
= h(t)

P(dN(t) = 1/N(t−) = 1) = 0.

Then one has

lim
dt→0

P (dN(t) = 1/N(t−))

dt
= h(t)1X>t.

We denote λ(t) = h(t)1X>t: λ is the intensity of the counting process N . The cumulative intensity is
the function Λ defined by

Λ(t) =

∫ t

0

λ(u)du =

∫ t

0

λ(u)1 u6Xdu = H(t ∧X).

Example: For a lifetime X exponentially distributed with parameter θ > 0,

fX(t) = θe−θt1 t>0, SX(t) = e−θt, t > 0

h(t) = θ, H(t) = θt,

λ(t) = θ1X>t, Λ(t) = θ(t ∧X).

The difference between N(t) and Λ(t) is a martingale: M(t) = N(t)− Λ(t).

E[dM(t)/Ft− ] = E[dN(t)− λ(t)dt/Ft− ] = E[dN(t)/Ft− ]− λ(t)dt = 0

where Ft− = σ(N(u), u < t).

Point processes for censored data:

In the previous example, we add a right censoring and one observes T = min(X,C) instead of X. Let
δ = 1 {X6C}. The indicator of ”presence at risk of a subject” becomes:

Y (t) = 1 {t6X∧C}.

If there is n patients, we denote for i = 1, . . . , n,

Yi(t) = 1 Ti>t

Ni(t) = 1 Ti6t,δi=1.

We denote Ȳ =
∑n
i=1 Yi(t) and N̄(t) =

∑n
i=1Ni(t).

Moreover, if there is a left truncation (the subject is seen in the study only if X > U), we get

Y (t) = 1 U6t6X∧C .
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Chapter 2

Non parametric estimations

2.1 Without censoring

Assume that we observe a n sample X1, X2, · · · , Xn of the lifetime X. The empirical cumulative
distribution function

F̂n(x) =
1

n

n∑
i=1

1Xi6x

is an estimator of the c.d.f. F (·). As a consequence, a natural estimator of S(·) = 1 − F (·) is given
through the empirical cumulative distribution function F̂n:

Ŝn(x) = 1− F̂n(x) =
1

n

n∑
i=1

1Xi>x.

It is equivalent to estimate the hazard rate h(·) by

ĥn(X(i)) =
1

n− i+ 1
for i = 1, · · · , n

ĥn(x) = 0 for all x that is not an observation

where the sample has been ordered: X(1) 6 · · · 6 X(n).

The cumulative hazard rate function can be estimated by

Ĥn(x) =
1

n

∑
i:X(i)6x

1

n− i+ 1
.

Theorem 2.1.1 (Glivenko-Cantelli Theorem) The empirical c.d.f. is consistent: as n goes to infin-
ity

sup
x>0

∣∣∣F̂n(x)− F (x)
∣∣∣ a.s.→ 0

Theorem 2.1.2 (Donsker Theorem) The empirical cdf is weakly convergent:

√
n
(
F̂n(·)− F (·)

)
L→ B(·)

where B(·) is a centered Gaussian process with covariance function

Cov(B(s), B(t)) = F (s ∧ t)− F (t)F (s).

Remark 2.1.3 B(·) is called the Brownian bridge and is also defined by B(t) = W (t) − tW (1) for
any 0 6 t 6 1 and W (·) is a standard Brownian motion.

17
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Now one can deduce a confidence band or a pointwise confidence interval for F (·). For example,F̂n(x)− z1−α/2

√
F̂n(x)Ŝn(x)

n
, F̂n(x) + z1−α/2

√
F̂n(x)Ŝn(x)

n


is an asymptotic (1−α) confidence interval for F (x) where zα is the α-quantile of the standard Gaussian
distribution.

2.2 Kaplan-Meier estimator of the survival function

With right censored observations, the estimation of S only based on the uncensored observations does
not lead to an estimator that converges to S. More precisely, assume that we observe a sample of possibly
right censored data (Ti, δi), i = 1, · · · , n. Let n1 =

∑n
i=1 δi be the number of uncensored data in the

sample. One may want to use

Ŝ(1)
n (t) =

1

n1

n∑
i=1

1 Ti>t, δi=1

as an estimator of S(·). But this is not a good idea since one can show that

Ŝ(1)
n (t) −→

∫ +∞

t

(1−G(t))dF (t) 6= S(t)

except if G(t) = 0 for x > t which means that there is no censoring.

2.2.1 Construction of the estimator

The estimator of Kaplan-Meier (1958) is based on the following statement: being alive after t amounts
to being alive just before t and not dying at time t. Hence one has,

S(t) = P(X > t)

= P(X > t | X > t− 1)P(X > t− 1)

= · · ·
= P(X > t | X > t− 1)P(X > t− 1 | X > t− 2) · · ·P(X > 1 | X > 0)P(X > 0)

= Qt ×Qt−1 · · · ×Q1 × 1 (2.1)

where Qj = P(X > j | X > j − 1) represents the survival probability at j conditioned on being alive just
before j.

Then one estimates S(t) by the product of the estimations Q̂j of Qj where Q̂j is the observed proportion
of patients that are still alive after the j-th day among those alive just before j.

• If mj deaths have occurred at j, then

Q̂j =
ni −mi

ni
.

• If at day j, no death occurred, then Q̂j = 1.

As a consequence, only the death times appear in the estimation of S(·) and the estimator of S(·) is
constant between two death times.

Examples
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1. We observe 5 patients dead at days 3, 4, 6, 6 and 7. We want to estimate the survival probability
after the 6-th day. We get

Q̂1 = Q̂2 = 5/5 = 1

Q̂3 = 4/5 = 0.80 m3 = 1 n3 = 5

Q̂4 = 3/4 = 0.75 m4 = 1 n4 = 4

Q̂5 = 3/3 = 1

Q̂6 = 1/3 = 0.33 m6 = 2 n6 = 3

Then
Ŝ5(6) = Q̂6Q̂5Q̂4Q̂3Q̂2Q̂1 = Q̂6Q̂4Q̂3 = 4/5× 3/4× 1/3 = 1/5.

In this example, the probability to survive after day 6 is 20%. Since the data are uncensored, this
probability can be computed making the ratio of the persons that are still alive after the day 6 and
the total number of people.

2. Assume now that a right censoring has occurred at time 4. The survival times are then 3, 4+, 6, 6
and 7. One has

Q̂1 = Q̂2 = 5/5 = 1

Q̂3 = 4/5 = 0.80 m3 = 1 n3 = 5

Q̂4 = 4/4 = 1

Q̂5 = 3/3 = 1

Q̂6 = 1/3 = 0.33 m6 = 2 n6 = 3

Then
Ŝ5(6) = Q̂6Q̂3 = 4/5× 1/3 = 0.27.

Then the probability to survive after day 6 is 27%.

More generally, to estimate the survival function with a n-sample, one has to order the observations
increasingly according to their participation time. Let T(1) 6 · · · 6 T(n) be the n ordered observed times
and δ(1), · · · , δ(n) the corresponding indicators. Denote ni the number of subjects at risk at T(i) (not
dead nor censored) and mi the number of patients dead in T(i).

0 T(1) T(i)

ni

mi

︸ ︷︷ ︸
cicensoring

t T(i+1) T(k)

At the origin, T(0) = 0, m0 = 0 and c0 is the number of censored observations between 0 and T(1). As a
consequence, one has

ni = ni−1 −mi−1 − ci−1
and thus

ni = n0 −
i−1∑
j=1

mj −
i−1∑
j=1

cj

that means that the number of subjects at risk at T(i) is the number of subjects at the origin minus
the number of subjects dead before T(i) minus the number of subjects censored before T(i). A natural
estimator of the survival function is given by

Ŝn,KM (t) =
∏

i:T(i)6t

Q̂T(i)
=

∏
i:T(i)6t

ni −mi

ni
=

∏
i:T(i)6t

(
1− mi

ni

)
.
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using the decomposition (2.1) in product of S with i = T(i).

For t < T(1), one has by convention Ŝn,KM (t) = 1.

If there is no ex-æquo in the sample

One has ni = n − i + 1 and mi = 1 at each death time and one can estimate the hazard rate function
h(·) by

ĥn(T(i)) =
δ(i)

n− i+ 1
for i = 1, · · · , n

ĥn(t) = 0 otherwise.

The Nelson-Aalen estimator of the cumulative hazard rate function H(·) is then naturally given by

Ĥn,NA(t) =
∑

i:T(i)6t

δ(i)

n− i+ 1
.

We present in Section 2.4 the expression of the estimator in the general case.

The Kaplan-Meier estimator of the survival function S(·) is

Ŝn,KM (t) =
∏

i:T(i)6t

(
1−

δ(i)

n− i+ 1

)
=

∏
i:T(i)6t

(
1− 1

n− i+ 1

)δ(i)
.

If there are some ex-æquo in the sample

Let T ′1 6 · · · 6 T ′k be the k distinct and ordered observed times in the sample. The Kaplan-Meier
estimator of the survival function S(·) is written in its general form as

Ŝn,KM (t) =
∏

i:T ′
(i)

6t

(
1− mi

ni

)
.

If there is no censoring in the sample

If there is no censoring before T(i),

n1 = n0 −m0 = n0,

nj = n0 −
j−1∑
k=1

mk for any 1 < j 6 i.

Thus, for any T(j) < T(i), one has

Ŝn,KM =
n0 −m1

n0

n0 −m1 −m2

n0 −m1
× . . .× n0 −m1 −m2 − . . .−mj

n0 −m1 −m2 − . . .−mj−1

=
n0 −m1 −m2 − . . .−mj

n0
.

As a consequence, without censoring, Ŝn,KM is the observed proportion of the subjects still alive at t

that is simply the empirical survival function Ŝn = 1− F̂n.

Remark 2.2.1 1. This estimator is also called limit-product estimator since it can be obtained as the
limit of a product.
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2. The estimator Ŝn,KM is a stepwise function with jumps at the observed death times. It reaches 0
only if the last observed delay T(n) of the sample corresponds to a real event (death or failure..)
instead of a censoring i.e. if δ(n) = 1. When 0 is not reached, one observes a stage that traduces
in general a few number of subjects that are controlled during a long period. That corresponds to a
lack of information instead to a disappearance of the long-term risk.

3. Expression with the point processes:

Ŝn,KM (t) =
∏

i:T(i)6t

(
1−

∆N̄(T(i))

Ȳ (T(i))

)
where

• Ȳ (t) =
∑n
i=1 Yi(t) is the number of subjects at risk before t,

• N̄(t) =
∑n
i=1Ni(t) is the number of observed deaths before t,

• ∆N̄(t) corresponds to the number of observed deaths in t.

Remark 2.2.2 One can find another expression of the Kaplan-Meier estimator in the literature:

Ŝn,KM (t) =
∏

i:T(i)6t

(
1− 1

n− i+ 1

)δ(i)
1 {t6T(n)}.

Example of Freireich data: Freireich, in 1963, realized a therapeutic study in order to compare the
remission durations (in weeks) of patients that suffer from leukemia. The patients are divided into two
subgroups: some of them received a medicine (6 M-P) and the others a placebo. The results are the
following:

6-MP 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+,

19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+.

Placebo 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11,

11, 12, 12, 15, 17, 22, 23.

The patients with a + sign correspond to lost subjects at the considered time of observation: they are
censored, ”excluded-alive” of the study and one only knows that their remission duration is greater than
the observed delay.

2.2.2 Properties of the estimator

Proposition 2.2.3 (Optimality) Ŝn,KM maximizes the non parametric likelihood.

Theorem 2.2.4 (Consistency) Under some assumptions (fulfilled in particular as soon as X is abso-
lutely continuous) and if the censoring times are i.i.d. with common c.d.f. G, we have

sup
t>0

∣∣∣F̂n,KM (t)− F (t)
∣∣∣ a.s.−→ 0,

sup
t>0

∣∣∣Ŝn,KM (t)− S(t)
∣∣∣ a.s.−→ 0,

Theorem 2.2.5 (Asymptotic normality) Under some assumptions (fulfilled in particular as soon as
X is absolutely continuous) and if the censoring times are i.i.d. with common c.d.f. G, we have

√
n
(
F̂n,KM (·)− F (·)

)
L−→ S(·)B(W (·)),

√
n
(
Ŝn,KM (·)− S(·)

)
L−→ S(·)B(W (·)),

where B(·) is a Brownian motion on R+ and W (·) is the function defined by

W (t) =

∫ t

0

dF (u)

S2(u)(1−G(u−))
, for all t > 0.
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One can see that the process Z2(·) := S(·)B(W (·)) is a centered Gaussian process with covariance function

Cov(Z2(s), Z2(t)) = S(s)S(t)

∫ s∧t

0

dF (u)

S2(u)(1−G(u−))
.

2.2.3 Variance estimation and confidence intervals

Variance estimation

Let us denote the Greenwood estimator σ̂2
n(t) by

σ̂2
n,KM (t) = Ŝn,KM (t)2

∑
i:T ′

(i)
6t

mi

ni(ni −mi)
.

In particular, if there is no ex-æquo, this expression becomes

σ̂2
n(t) = Ŝn,KM (t)2

∑
i:T ′

(i)
6t

δi
(n− i)(n− i+ 1)

.

One can show that the Greenwood estimator σ̂2
n(t) is an estimation of the variance of the Kaplan-Meier

estimator and is a uniformly consistent estimator of the asymptotic variance function

S(t)2
∫ t

0

dF (u)

S2(u)(1−G(u−))
.

Without censoring, one recover the estimation of the variance of a proportion:

Ŝn,KM (t)(1− Ŝn,KM (t))

n0
.

In Section 2.3, we explain the origin of this estimator of the variance of Ŝn,KM (t).

Confidence interval for S(t)

Assuming the gaussianity of the asymptotic behavior of Ŝn,KM (t) an asymptotic (1 − α)-confidence
interval for S(t) is given by[

Ŝn,KM (t)− z1−α/2σ̂n,KM (t), Ŝn,KM (t) + z1−α/2σ̂n,KM (t)
]

where z1−α/2 is the 1− α/2 quantile of the standard Gaussian distribution.

This interval is the one given by the option conf.type = plain of the survfit function that is available
in R.

As an estimator of the expectation E[X] one can use

µ̂n =

∫ +∞

0

tdF̂n(t) =

k∑
i=1

T ′(i)∆F̂n(T ′(i)) =

k∑
i=1

T ′(i)
mi

ni

i−1∏
j=1

(
1− mi

ni

)
.

We have

µ̂n
a.s.−→

∫
xdF (x) = E[X], as n→ +∞.
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2.3 Breslow estimator of the cumulative hazard rate function

One can deduce from Ŝn,KM an estimator of the cumulative hazard rate function using the relation
H(t) = − lnS(t):

Ĥn,BR(t) = − ln Ŝn,KM (t) = −
∑

i:T(i)6t

ln Q̂T(i)
= −

∑
i:T(i)6t

ln
ni −mi

ni
.

Theorem 2.3.1 (Consistency) Under some assumptions (fulfilled in particular as soon as X is abso-
lutely continuous) and if the censoring times are i.i.d. with common c.d.f. G, we have

sup
t>0

∣∣∣Ĥn,BR(t)−H(t)
∣∣∣ a.s.−→ 0.

Theorem 2.3.2 (Asymptotic normality) Under some assumptions (fulfilled in particular as soon as
X is absolutely continuous) and if the censoring times are i.i.d. with common c.d.f. G, we have

√
n
(
Ĥn,BR(·)−H(·)

)
L−→ B(W (·)),

where B(·) is a Brownian motion on R+ and W (·) is the function defined by

W (t) =

∫ t

0

dF (u)

S2(u)(1−G(u−))
, for all t > 0.

Variance estimation

One has

Var
(
Ĥn,BR(t)

)
= Var

 ∑
i:T(i)6t

ln Q̂T(i)

 .

The random variables Q̂T(i)
are not independent, but assuming it is the case, on gets the following variance

approximation:

Var
(
Ĥn,BR(t)

)
≈

∑
i,T(i)6t

Var
(

ln Q̂T(i)

)
.

Now we apply the delta method [1] to approximate Var
(

ln Q̂T(i)

)
: for any regular function f ,

Var(f(X)) ≈ f ′(E[X])2Var(X)

and we use the fact that the random variables niQ̂T(i)
are binomial with parameters ni and QT(i)

. We
get

Var
(
Ĥn,BR(t)

)
≈

∑
i,T(i)6t

1− Q̂T(i)

niQ̂T(i)

≈
∑

i,T(i)6t

mi

ni(ni −mi)
.

Thus an approximation of the variance of Ĥn,BR(t) is given by

σ̂2
n,BR(t) =

∑
i:T(i)6t

mi

ni(ni −mi)
.

Confidence intervals for H(t) and S(t)

Assuming the gaussianity of the asymptotic behavior of Ĥn,BR(t), we deduce an asymptotic (1 − α)-
confidence interval for H(t):[

Ĥn,BR(t)− z1−α/2σ̂n,BR(t), Ĥn,BR(t) + z1−α/2σ̂n,BR(t)
]
,

where z1−α/2 is the 1− α/2 quantile of the standard Gaussian distribution.
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Using the relation that links S to H: S(t) = exp{−H(t)}, one deduces an asymptotic (1−α)-confidence
interval for S(t):[

exp
{
−(Ĥn,BR(t) + z1−α/2σ̂n,BR(t))

}
, exp

{
−(Ĥn,BR(t)− z1−α/2σ̂n,BR(t))

}]
. (2.2)

This interval is the one given by the option conf.type = log of the survfit function that is available
in R.

Remark 2.3.3 (Estimation of the variance of Ŝn,KM) The Greenwood estimator σ̂2
n,KM (t) of the

variance of Ŝn,KM can be deduced from the previous variance. It has been obtained by the following
considerations. We use once again the delta method [1] to S(t) = exp{− lnS(t)} with f(x) = ex and
X = − lnS(t) to get the following approximation

Var
(
Ŝn,KM (t)

)
≈ S(t)2 Var

(
ln Ŝn,KM (t)

)
≈ Ŝn,KM (t)2 Var

(
ln Ŝn,KM (t)

)
= Ŝn,KM (t)2 Var

(
Ĥn,BR(t)

)
≈ Ŝn,KM (t)2

∑
i,T(i)<t

mi

ni(ni −mi)

≈ Ŝn,KM (t)2 σ̂2
n,BR(t).

One deduces an asymptotic (1− α)-confidence interval for S(t):[
Ŝn,KM (t)

(
1− z1−α/2σ̂n,BR(t)

)
, Ŝn,KM (t)

(
1 + z1−α/2σ̂n,BR(t)

)]
and since, Ŝn,KM (t) = exp(−Ĥn,BR(t)), this interval corresponds also to:[

exp{−Ĥn,BR(t)}
(
1− z1−α/2σ̂n,BR(t)

)
, exp{−Ĥn,BR(t)}

(
1 + z1−α/2σ̂n,BR(t)

)]
. (2.3)

If σ̂n,BR(t) is close to 0, one gets an equivalent expression for both intervals in (2.2) and (2.3).

2.4 Nelson-Aalen estimator of the cumulative hazard function

For ds small, one as

H(s+ ds)−H(s) ≈ h(s)ds ≈ P(s < X < s+ ds | X > s) (2.4)

that is naturally estimated by mi
ni

that is the increasing of H(t) in T(i) where mi deaths are observed
among ni patients at risk.

Summing these quantities over the sub intervals of (0, t] and making their length tends to 0 in such a way
that they contains only at most one element, we derive the Nelson-Aalen estimator of the cumulative
hazard function:

Ĥn,NA(t) =
∑

i:T(i)6t

mi

ni
.

By convention, Ĥn,NA(t) = 0 for t < T(1).

Equivalent expression with the point processes

In terms of point processes, the difference (2.4) is naturally estimated by
(
N̄(s+ ds)− N̄(s)

)
/Ȳ (s). As

a consequence

Ĥn,NA(t) =

∫ t

0

dN̄(s)

Ȳ (s)
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that can be written in a discrete form:

Ĥn,NA(t) =
∑

i:T(i)6t

dN̄(T(i))

Ȳ (T(i))
.

Property and interpretation:

1. Ĥn,NA is a stepwise function whose jumps are equal to mi
ni

at each observed death T(i).

2. H(t) represents the mean number of deaths (or failures) on (0, t] for an individual perpetually
at risk: an electric component is working during t hours; at each failure, we replace the current
component by another component that has worked the same duration than the one we are replacing
(in reliability, this method is called protocol of minimal reparation).

3. The derivative of H represents the hazard rate function h. Since the estimator Ĥn,NA is a step-
wise function, it is not possible to compute its derivative. As a consequence, to estimate h, as for
the estimation of any density probability function, one needs to proceed to the smoothing of Ĥn,NA.

Variance estimation

A consistent estimator of the variance of Ĥn,NA(t) is given by

σ2
n,NA(t) =

∑
i:T(i)6t

dN̄(ti)

Ȳ (ti)2
=

∑
i:T(i)6t

mi

n2i
.

Confidence interval for H(t)

Assuming the gaussianity of Ĥn,NA(t), one deduces an asymptotic (1− α)-confidence interval for H(t):[
Ĥn,NA(t)− z1−α/2σn,NA(t), Ĥn,NA(t) + z1−α/2σn,NA(t)

]
.

2.5 Harrington and Fleming estimator of the survival function

Since S(t) = exp {−H(t)}, we deduce from the Nelson-Aalen estimator of the cumulative hazard rate
function the Harrington and Fleming estimator of the survival function:

Ŝn,HF (t) = exp
{
−Ĥn,NA(t)

}
.

The relation Ĥn,NA(t) =
∑

i:T(i)6t

mi

ni
yields

Ŝn,HF (t) = exp

− ∑
i:T(i)6t

mi

ni

 =
∏

i:T(i)6t

exp

{
−mi

ni

}

that we should compare to the Kaplan-Meier estimation Ŝn,KM (t) =
∏

i:T(i)6t

ni −mi

ni
of the survival func-

tion.

Variance estimation

By the delta method [1], Var(Ŝn,HF (t)) = Ŝn,HF (t)2Var(Ĥn,NA(t)) that leads to an estimator of the

variance of Ŝn,HF :

σ2
n,HF (t) exp

−2
∑

i:T(i)6t

mi

ni

 ∑
i:T(i)6t

mi

n2i
.
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Confidence interval for S(t)

Assuming the gaussianity of Ŝn,HF (t), one deduces an asymptotic (1− α)-confidence interval for S(t):[
Ŝn,HF (t)− z1−α/2σn,HF (t), Ŝn,HF (t) + z1−α/2σn,HF (t)

]
.

2.6 Comments

We introduced two different estimators of the cumulative hazard rate function H:

1. the Breslow estimator deduced for the Kaplan-Meier estimation of the survival function,

2. the Nelson-Aalen estimator.

One may find in the literature a third estimation of H that comes from the actuarial method. These
three different estimators of H are asymptotically equivalent and in practice one may prefer use the first
one because of its relation with the Kaplan-Meier estimator.



Chapter 3

Comparison of the survival functions
of two (or more) groups

3.1 The weighted logrank tests

These tests allows us to test the equality of K survival distributions through a sample of censored data.
Here,

H0 : S1(t) = S2(t) = . . . = SK(t) ∀t versus

H1 : at least two groups do not share the same survival function.

3.1.1 Comparison of two groups

The goal is to test

H0 : SA(t) = SB(t) ∀t versus

H1 : ∃t such that SA(t) 6= SB(t).

Let T(1) < T(2) < . . . < T(k) be the k ordered times of death of the sample that gathers the data of the
two groups A and B.

0 T(1) T(i)

ni = nAi + nBi (nb of subjects at risk before T(i))

mi = mAi +mBi (nb of deaths at T(i))

T(k)

where ni represents the number of subjects at risk in T(i) and mi the number of subjects that die in T(i).

For any time of death T(i), one can resume the information in the following 2× 2 tabular:

Dead Alive after T(i) Total
Group A mAi nAi −mAi nAi
Group B mBi nBi −mBi nBi

Total mi ni −mi ni

Under the null hypothesis H0, in T(i), the proportion of dead among the subjects at risk is identical in
both groups. Considering that the marginals of the tabular are fixed, under the null hypothesis H0, mAi

is distributed as an hypergeometric random variable whose parameters are (mi, nAi, nBi). Then,

27
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E(mAi) = eAi = mi
nAi
ni

,

Var(mAi) = vAi = mi
ni −mi

ni − 1

nAinBi
n2i

.

The random variable mAi−eAi is centered under H0 and on can prove that mAi and mAj are uncorrelated
as soon as i 6= j. Then we naturally define the statistics of the weighted logrank test by

UA =

k∑
i=1

wi

(
mAi −mi

nAi
ni

)
where the weight wi depends on T(i). Obviously,

LR =
UA√

Var(UA)
=

k∑
i=1

wi

(
mAi −mi

nAi
ni

)
√√√√ k∑

i=1

w2
i

(
mi

ni −mi

ni − 1

nAinBi
n2i

)

converges under H0 to a standard Gaussian random variable and equivalently

U2
A

Var(UA)

L−→
H0

χ2
1.

Remark 3.1.1 1. The weighted logrank statistics are ordered statistics: they only depend on the ranks
of the observations instead of their exact value.

2. Breslow proposed a simplified form of the logrank statistics that comes from another way to take
into account the ex-æquo:

LRBR =
UA√

VarUA
=

k∑
i=1

wi

(
mAi −mi

nAi
ni

)
√√√√ k∑

i=1

w2
imi

nAinBi
n2i

.

Examples of weighting:

1. The logrank test (also called Mantel-Haenszel test): wi = 1 ∀i.
All the deaths have the same weights. It is the simplest weighting. The test amounts to compare
the observed number OA of deaths in the group A to yhe expected number EA of deaths. Under
H0, we have

OA =

k∑
i=1

mAi and EA =

k∑
i=1

eAi.

The test statistics is then
(OA − EA)2∑k

i=1 vi

2. The Gehan test: wi = ni ∀i (available in the software SAS under the name Wilcoxon since it is a
generalization of the Wilcoxon- Mann-Whitney test in the context of censoring).
The first deaths have greater weights.
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3. The Peto and Prentice test (close to the Kaplan-Meier estimator): wi = Si ∀i with S∗i =
i∏

j=1

nj
nj +mj

(available in SAS).

The first deaths have greater weights.

4. The Tarone and Ware test: wi =
√
ni ∀i.

5. The Harrington and Fleming test: wi = Ŝn,KM (T(i))
ρ ∀i with 0 6 ρ 6 1.

The logrank test is a particular case of the Harrington and Fleming test when ρ = 0 and for ρ = 1,
we get a test that is close to the one of Peto and Prentice.

These tests are available in R (function survdiff).

Approximated logrank test
The observed total number of deaths in both groups is equal, under H0, to the expected total number of
deaths:

OA +OB = EA + EB

and

Var(OA − EA) = Var(OB − EB).

The logrank statistics can be rewritten equivalently

(OA − EA)2

Var(OA − EA)
or

(OB − EB)2

Var(OB − EB)
.

One can show that the statistics

(LRA)2 =
(OA − EA)2

EA
+

(OB − EB)2

EB

is always less than or equal to the logrank one.

1. This statistics is easier to compute than the previous one and is called the approximated logrank
statistics.

2. It reminds the χ2 statistics used to compare two observed proportions.

3. It is a conservative statistics: anytime it rejects H0, the classical logrank statistics would have given
the same conclusion. However the approximated logrank test is less powerful than the classical one.

Comparison criterion
In order to quantify the mortality difference between the groups and in analogy with the notion of relative
risk, the quantity

RR1 =
OB/EB
OA/EA

has been proposed as an estimation of the ratio of the risk functions in each group. One might be cautious
using this estimation since it is biased and the bias increases with the real ratio of the risk functions and
the sample size.

One may compute this relative risk using the Gehan or Peto and Prentice weighting introducing

Og =

k∑
i=1

wimgi and Eg =

k∑
i=1

wiegi.

the letter g stands for the group: A or B.
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Other estimators have been introduced: for example,

RR2 =

∑k
i=1mBi(nAi −mAi)/ni∑k
i=1mAi(nBi −mBi)/ni

or RR3 =

∑k
i=1mBinAi/ni∑k
i=1mAinBi/ni

.

Weighting choice
As usual, we are looking for the most powerful test. As a consequence the choice of the weighting depends
on the alternative hypothesis H1. One can prove that, for a given alternative, the optimal asymptotic

weights are proportional to ln
(
hA(t)
hB(t)

)
.

• Logrank test (wi = 1): optimal for the proportional alternatives

H0 : hA(t) = hB(t) ∀t versus H1 : hB(t) = rhA(t) ∀t.

These alternatives correspond to hypothesis of teh Cox model (we see in the chapter dedicated to
the Cox model that the logrank test corresponds to the scoring test of the Cox model with two
groups).

An equivalent expression is given by: SB(t) = SA(t)r .

• Peto and Prentice test: optimal for the alternatives such that ln
(
hA(t)
hB(t)

)
= SA(t).

The Gehan and Peto and Prentice tests are pretty well adapted when there are numerous premature
deaths.

3.1.2 Generalization to the comparison of K groups

The goal is to test
H0 : S1(t) = S2(t) = . . . = SK(t) ∀t

versus
H1 : at least two groups do not share the same survival distribution.

We compute the statistics U1, U2, . . . , UK−1, the weighted sums at each observed death time of the
difference between the observed number of deaths and the expected one under H0.
The test statistic is given by

X = (U1, U2, . . . , UK−1)Σ−1(U1, U2, . . . , UK−1)′

where Σ is the variance-covariance matrix of the vector (U1, U2, . . . , UK−1).
Under the null hypothesis H0, X converges to a χ2 distribution with K − 1 degrees of freedom.

3.2 Comparison with adjustment: stratified logrank test

Assume that the survival is strongly linked to the age of the patient (which is quite natural), then it is
more relevant to compare groups at a fixed given age.

In that view, we introduce a qualitative factor with M strata where each strata s corresponds to a sub
sample.

0 ts1 tsks

One defines

Us =

ks∑
i=1

(
mAsi −msi

nAsi
nsi

)
;

then

Var(Us) =

ks∑
i=1

(
msi

nsi −mi

nsi − 1

nAsinBsi
n2si

)
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The stratified logrank test statistics is then defined by

Ustratified =

M∑
s=1

Us√√√√ M∑
s=1

Var(Us)

L−→
H0

N (0, 1).

Expression through the point processes
The corresponding notation are:

ȲA(T(i)) ≡ nAi,
ȲB(T(i)) ≡ nBi,
Ȳ (T(i)) ≡ ni,
∆N̄A(T(i)) ≡ mAi,

∆N̄B(T(i)) ≡ mBi,

∆N̄(T(i)) ≡ mi.

We rewrite the logrank statistics as the sum of the differences at each death time between the observed
hazard rate in group A and the one expected under the null hypothesis H0. More precisely, the observed
hazard rate group A in T(i) is

∆N̄A(T(i))

ȲA(T(i))

while the expected hazard rate under H0 is

∆N̄(T(i))

Ȳ (T(i))
.

Then the weighted logrank test statistics is

UA =

k∑
i=1

Wi(T(i))

(
∆N̄A(T(i))

ȲA(T(i))
−

∆N̄(T(i))

Ȳ (T(i))

)
where Wi(T(i)) is a non negative weighting function that has usually the following form Wi(T(i)) =
ȲA(T(i))W (T(i)) with W a common weight to both groups.

One directly gets the following equivalent expression:

UA =

k∑
i=1

W (T(i))

(
∆N̄A(T(i))− ȲA(T(i))

∆N̄(T(i))

Ȳ (T(i))

)
.
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Chapter 4

Parametric regression models

The parametric regression models assume that the distribution of the lifetime random variable is a para-
metric function of time, possibly depending on one or more risk factors (covariates). Usually, it is the
risk function h(·) that is assumed to parametric.

Suppose that we have a n sample of independent observations of the triplet (T, δ, Z) where

T = min(X,C), δ = 1 {X6C} and Z = (Z1, . . . , Zp)

is a vector of p covariates.

We consider the risk function conditioned on Z:

h(t | Z) = lim
dt→0

P(t < X 6 t+ dt | X > t, Z)

dt
·

4.1 The exponential model

It is the simplest parametric model: the risk function is a constant with respect to the time. We want to
compare two groups A and B with risk functions:{

hA(t) ≡ hA
hB(t) ≡ hB .

}
Let eβ the ratio between the risk functions:

hB = hAe
β ,

which is called the relative risk of group B with respect to group A.

To compare the survival distributions, one has to estimate the parameter β and test the null hypothesis
{β = 0}. One proceeds computing the likelihood of the observations.

The exponential model is generalized taking into account one or more risk factors. Let Zi = (Zi1, Zi2, . . . , Zip)
′

the vector of the p covariates of subject i. The generalization is done considering the risk function of the
subject i

h(t | Zi) = h0e
β′Zi

where h0 is constant and β = (β1, β2, . . . , βp)
′ is the vector of parameters quantifying the effect of each

covariate on the survival.

The particular case of the comparison of two groups corresponds to the introduction of one binary
covariate Z taking the value 0 (respectively 1) when the individual belongs to group A (resp. B).

33
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4.2 The Weibull model

It generalizes the exponential model. The risk function of the Weibull distribution depends on two
parameters h0 and α and writes as mentioned in Section 1.2.2:

h(t) = αhα0 t
α−1.

where h0 is the scale parameter and α is the shape parameter.

The Weibull model assumes that the risk function of an individual whose covariate is Zi writes

h(t | Zi) = αhα0 t
α−1eβ

′Zi

where β is, as in the case of the exponential model, the vector of unknown parameters quantifying the
effect of each covariate on the survival.

4.3 The semi parametric Cox model

The Cox model allows a parametric relation between the risk function and the risk factors (covariates)
without expliciting nor precising the form of the survival distribution. As a consequence, it is a semi
parametric model. This model is the most popular to model the relation between a lifetime random
variable and covariates.

The Cox model modellizes the risk function of individual i whose covariate is Zi = (Zi1, . . . , Zip) by

h(t | Zi) = h0(t)eβ
′Zi

where β is the vector of the p unknown parameters and h0 is some given risk function.

Remark 4.3.1 1. This model generalizes the previous parametric models:

• exponential where the reference risk function is constant: h0(t) ≡ h0;

• and Weibull where the reference risk function is polynomial: h0(t) ≡ αhα0 tα−1.

2. The function exp may be changed into any positive function g(β′Zi).

Property In the Cox model, the ratio of the risk functions of two individuals i and i′ is a constant with
respect to the time:

h(t | Zi)
h(t | Zi′)

= eβ
′(Zi−Zi′ ).

As a consequence, this model is said to be of proportional risk functions and is often named “ model
of proportional risks”.

Interpretation of the model parameters:

h(t | Z = Zi)

h(t | Z = Zi′)
= eβ

′(Zi−Zi′ ).

Example 4.3.1 Comparison of two groups A and B

• If Z = 0 for group A and Z = 1 for group B, as assumed in the previous section, one gets

h(t | Z = 1)

h(t | Z = 0)
= eβ .

The constant r = eβ is named the relative risk (RR) of group B with respect to group A.

(i) if β > 0, RR > 1: the risk of death is higher in group B;

(ii) if β = 0, RR = 1: the risks of death are equal in both groups;
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(iii) if β < 0, RR < 1: the risk of death is smaller in group B.

• If Z is more general, one has

eβ =
h(t | Z + 1)

h(t | Z)
.

RR = eβ quantifies the ratio between the risks of two individuals whose covariates differs from one
unit.

For example, if Z represents the age, if β > 0, the risk of death increases with the age and RR = eβ

is the ratio between the risks of an individual and a one year younger individual (that is constant
whatever their ages!).

More generally, in a model with several covariates, βj measures the effect of the covariate Zj on the
increasing of the risk considering the other covariates fixed.

Remark 4.3.2 Considering the survival function, it gives

S(t | Zi) = S0(t)θ

where θ = eβ
′Zi .

Now we want to estimate the parameters βj that represent the effects on each covariate Zj on the survival
and realize significance tests on these parameters with no assumption on the distribution of the lifetime
variable X. In this setting, h0 will be considered as a nuisance parameter. The way to proceed in such a
context has been introduced by Cox (1972) and leads to consider the partial likelihood.

4.3.1 The Cox partial likelihood

Let T(1) < T(2) < . . . < T(k) be the k ordered observed times of death. We denote Ri the set of individuals
at risk at time T(i).

The Cox partial likelihood writes as a product of conditional likelihoods computed at each time T(i),
considered as fixed.

The contribution Vi(β) depending on β to the likelihood of the individual i whose covariate is Zi and
observed death time T(i) is equal to the probability, conditioned on Ri, that this individual dies precisely
at T(i) among those at risk at T(i) i.e. among those in Ri.

As a consequence, one has

Vi(β) =
h(ti | Zi)∑

j∈Ri

h(ti | Zj)
.

Under the Cox model, the nuisance term h0(ti) (the risk function of reference) cancels and the expression
of Vi reduces to

Vi(β) =
eβ
′Zi∑

j∈Ri

eβ
′Zj
·

The Cox partial likelihood is then the product of the contributions of the dead individuals:

V (β) =

k∏
i=1

Vi(β)

and the partial log-likelihood L = lnV is

L(β) =

k∑
i=1

β′Zi − ln

∑
j∈Ri

eβ
′Zj

 .
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Presence of ex æquo

The model considered is a continuous one and thus, theoretically, there is no ex æquo. Nevertheless, in
practice, if the time discretization is coarse (e.g. if the survival is measured in months), it may lead to
ex æquo death times. In this case, there exists several ways to proceed and to take into account the ex
æquo in the likelihood.

Consider the following example. Four individuals die at T(1) = T(2) < T(3) < T(4). We write ri for eβ
′Zi

to lighten notation. If the data have been more precise (i.e. if the discretization have been fine enough
to prevent the possibility of ex æquo), then the contributions of the individuals 1 and 2 on the likelihood
would have been:

either

(
r1

r1 + r2 + r3 + r4

)(
r2

r2 + r3 + r4

)
1 dead before 2

or

(
r2

r1 + r2 + r3 + r4

)(
r1

r1 + r3 + r4

)
2 dead before 1.

Since the real order of the deaths of the two first individuals is unknown, we should consider the mean
of these terms or at least an approximation of the mean.

1. Breslow likelihood: Breslow proposes to use the complete sum r1 + r2 + r3 + r4 in both denomi-
nators (

r1
r1 + r2 + r3 + r4

)(
r2

r1 + r2 + r3 + r4

)
which leads to the following partial log-likelihood:

L(β) =

k∑
i=1

β′ mi∑
j=1

Zj −mi ln

∑
j∈Ri

eβ
′Zj

 ,

where mi is the number of deaths in T(i).

Problem: the dead individuals are counted twice in the denominator and a bias appears that leads
to the under estimation of the parameter β.

2. Efron likelihood: Efron suggests to use the mean of the ri’s of the ex æquo individuals in the
second denominator (

r1
r1 + r2 + r3 + r4

)(
r2

1
2r1 + 1

2r2 + r3 + r4

)
.

Naturally, if the individuals 1,2 and 3 are ex æquo, we get(
r1

r1 + r2 + r3 + r4

)(
r2

2
3r1 + 2

3r2 + 2
3r3 + r4

)(
r3

1
3r1 + 1

3r2 + 1
3r3 + r4

)
.

The Efron method is the one used in the function coxph implemented in the software R.

4.3.2 Estimation of the parameters of the model

The estimation β̂ of β comes from the maximization of the partial likelihood. One can prove that β̂ shares
the same asymptotic properties with the classical MLE: it is consistent and asymptotically normal.

Assume that mi = 1 ∀i = 1, . . . , k, differentiating L with respect to the components of β, the score vector
of length p is

U(β) :=

(
d

dβ1
L(β), . . . ,

d

dβp
L(β)

)′
=

k∑
i=1

Zi −
∑
j∈Ri

Zje
β′Zj

∑
j∈Ri

eβ
′Zj

 .

The estimator β̂ is then obtained solving the system U(β) = 0 of p equations.
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4.3.3 Significance tests

Let I(β) the information matrix: I(β) = −E
[
∂2L(β)
∂β2

]
. To test the null hypothesis H0: β = 0, the usual

statistics considered are

• for the scoring test: U ′(0)I−1(0)U(0),

• for the Wald test: β̂′I(β̂)β̂,

• for the likelihood ratio test: −2
(
L(0)− L(β̂)

)
.

These statistics are asymptotically equivalent. Moreover, under H0, they are distributed as a χ2 random
variable with p degrees of freedom.

4.3.4 Estimation of the cumulative risk H0 associated to h0

The partial likelihood does not depend on the risk function of reference h0; thus it is not estimated by
solving the system of the p equations (the derivatives of the likelihood). Breslow proposes an estimator of
the cumulative risk H0 of reference that generalizes the Nelson-Aalen one used for homogeneous samples

ĤNA(t) =

∫ t

0

dN̄(s)

Ȳ (s)
that is ĤNA(t) =

∑
i:ti6t

mi

ni
.

Now let β̂ be the maximum partial likelihood estimator (MPLE) of β. The Breslow estimator writes

Ĥ0(t, β̂) =

∫ t

0

dN̄(s)∑n
i=1 Yi(s)e

β̂′Zi

with a similar estimation of the variance than the one used in the Nelson-Aalen estimator:

̂V ar(Ĥ0(t, β̂)) =

∫ t

0

dN̄(s)

[
∑n
i=1 Yi(s)e

β̂′Zi ]2
.

Equivalent expression without the point processes

Ĥ0(t, β̂) =
∑
i:ti6t

mi∑
j∈Ri e

β̂′Zj

Estimation of the cumulative risk

The estimator of the cumulative risk for an individual whose covariate is Z̃ is naturally given by:

Ĥ(t, β̂, Z̃) = Ĥ0(t, β̂)eβ̂
′Z̃

from which we derive a semi parametric estimation of the survival function

Ŝ(t, β̂, Z̃) = exp
(
−Ĥ(t, β̂, Z̃)

)
.

One may also construct a consistent estimation of the variance of Ĥ(t, β̂, Z̃) (see Andersen et al., 1993).

4.4 Validation of the Cox model

To check the adequation of a set of survival data to the Cox model, four aspects may be examined.

1. For each covariate, one may try to find the best functional form that explains its influence on the
survival function (Z,Z2, ln(Z), . . .).

2. For each covariate, one may check whether the assumption of proportional risks holds.
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3. One may quantify the efficiency of the model to predict the time interval until the occurence of an
event of interest for a given individual.

4. One may identify the outliers and their influence on the estimation of the model parameters.

The procedures of model validation are often based on the study of the residuals: the values computed for
each individual whose behavior is known (at least approximately) when the fitness to the model is correct.

Four principal types of residuals are defined in the Cox model setting:

1. the martingale residuals: to choose the best functional form of the covariates;

2. the deviation residuals: to detect the outliers;

3. the scoring residuals: to measure the influence of the individuals on the estimation of the model
parameters (one may use dfbeta in R);

4. the Schoenfeld residuals: useful to test the hypothesis of proportional risks (function cox.zph in
R).

The Cox-Snell residuals (less used) are not specific to the Cox model. They only allow to appreciate the
global adjustment to the model but do not give information on the deviation type.

Proposition 4.4.1 If X is a random variable with cumulative risk function H, then the random variable
H(X) is exponentially distributed with parameter 1.

Proof If F (respectively S) represents the distribution function (resp. the survival function) of X, one
has

FH(X)(t) = P(H(X) 6 t) = P(X 6 H−1(t)) = F (H−1(t))

= 1− S(H−1(t)) = 1− eH(H−1(t)) = 1− e−t

which is the required result.

If the model adjustment is correct, then Ĥ(Xi) is a realization of a standard exponential distributed
random variable.

4.4.1 The Cox-Snell residuals

The Cox-Snell residual of the individual i is given by

rCSi = Ĥ0(T(i))e
β̂′Zi

where Ĥ0(T(i)) is the Breslow estimation of the cumulative risk H0 of reference at time T(i).

If the rCSi are distributed as a sample of an E(1) random variable, then the cumulative risk function
should be close to H(t) = t. To check if it is the case:

• we compute the estimation Ĥn,NA of the cumulative risk of the rCSi and we plot each ĤNA(rCSi ),

• if the model adjustment is correct, Ĥn,NA is close to the first bisector.

Remark 4.4.2 The standard exponential distribution E(1) is the reference with the true values of β and
H0. When we replace them by their estimations to compute the residuals, errors with respect of the law
E(1) can be observed due to the uncertainty in the estimation of β and H0. This fact is particularly
verified when the sample size is small.
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4.4.2 The martingale residuals

The martingale residuals help the statistician to choose an adapted functional form to use for each
covariate to correctly explain the survival random variable. These residuals come from the individual
martingales

Mi(t) = Ni(t)−
∫ t

0

Yi(s)e
β′Zi(s)h0(s)ds.

One may interpret Mi(t) at any time t as the difference on (0, t] between the number of observed events
for the individual i and the number of expected events under the assumption of a Cox model.

Remark 4.4.3 The classical decomposition

data = model + noise

has an analog: the so-called Doob decomposition

counting process = compensator + martingale.

Once the model has been fitted to the data, we have the following decompositions

data = adjusted model + residuals

and the analog with the point processes is:

counting process = estimated compensator + martingale residual.

Replacing β (respectively H0) by β̂ (resp. Ĥ0), one obtains the residual process:

M̂i(t) = Ni(t)−
∫ t

0

Yi(s)e
β̂′Zi(s)dĤ0(s).

Now we define the martingale residual by

M̂i = M̂i(∞) = Ni(∞)−
∫ ∞
0

Yi(s)e
β̂′Zi(s)dĤ0(s).

When the covariates do not depend on time, we get

M̂i = δi − eβ̂
′ZiĤ0(Ti) = δi − rCSi .

Interpretation: the martingale residual is the difference between the number of observed events and
the number of expected events under the adjusted model.

Properties 4.4.4 One can show the following properties that are analog to the ones obtained in the
linear model:

1. E[Mi] = 0: the expected value of the residual is zero with the true parameter β;

2. E[M̂i]→ 0 when n→∞;

3.
∑n
i=1 M̂i = 0,

4. Cov(Mi,Mj) = 0;

5. Cov(M̂i, M̂j) 6 0 but this covariance goes to 0 as n→∞.

To determine the functional form of a covariate in the Cox model:

• we adjust a Cox model with no covariates and we compute the martingale residuals;

• we represent them with respect to each covariate separately and we fit a smoothing function;

• if the correct model for Zj is exp{βjf(Zj)}, then the obtained smoothing function of the residuals
with respect to Zj has the form of f .

It comes from E[M̂i | Zj ] = cf(Zj) where c is independent of Zj and depends on the censoring rate.



40 CHAPTER 4. PARAMETRIC REGRESSION MODELS



Bibliography

[1] A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Proba-
bilistic Mathematics. Cambridge University Press, Cambridge, 1998.

41


	Introduction
	Why specific methods?
	Lifetime models
	Lifetime and related functions
	Usual lifetime distributions

	Censored data
	Censoring and truncation
	Some examples of censoring
	Right censoring

	Likelihood of a censored sample
	Expression of the likelihood
	Estimation in parametric models

	The point process N(t)
	Bibliography

	Non parametric estimations
	Without censoring
	Kaplan-Meier estimator of the survival function
	Construction of the estimator
	Properties of the estimator
	Variance estimation and confidence intervals

	Breslow estimator of the cumulative hazard rate function
	Nelson-Aalen estimator of the cumulative hazard function
	Harrington and Fleming estimator of the survival function
	Comments

	Comparison of the survival functions of two (or more) groups
	The weighted logrank tests
	Comparison of two groups
	Generalization to the comparison of K groups

	Comparison with adjustment: stratified logrank test

	Parametric regression models
	The exponential model
	The Weibull model
	The semi parametric Cox model
	The Cox partial likelihood
	Estimation of the parameters of the model
	Significance tests
	Estimation of the cumulative risk H0 associated to h0

	Validation of the Cox model
	The Cox-Snell residuals
	The martingale residuals



