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Introduction

Mathematical models are used in many fields (one can think of environmental risk assessment, nuclear safety, aero-
nautics...) to model real phenomena. This modeling gives birth to a computer code that is then used to perform
simulations of the model. These codes representing physical phenomena take as inputs (many) numerical param-
eters, physical variables (that can be real numbers, vectors or even functions) and give several outputs in general.
Nevertheless, in real applications, such codes may be very time consuming.

In general the inputs parameters are not well known, one said that they are uncertain. In the statistical approach,
we model this uncertainty by considering the inputs as random objects (random variables, random vectors or even
stochastic processes). One of the aim of sensitivity analysis (SA) is to study how the uncertainty in the output is
related to the input uncertainty. Hence SA can be for example used to detect the most influential variables, to detect
the variables that are not influential (and then fixed them to some nominal value), to calibrate model inputs. There
exists many different techniques to perform SA; several are local while others are global.

To illustrate the context of interest, we briefly present an example involving a functional input: the heat flow in a uni-
form rod. This example is borrowed from [35]. Consider the heat equation describing the evolution of the temperature
T (t , s) as a function of the position s ∈ [0,L] (L > 0), and the time t Ê 0 in a uniform rod with length L:

∂T

∂t
= X1

∂2T

∂s2 , T (t ,0) = T (t ,L) = X2, T (0, s) = X2 +X3(s).

Let t0 > 0 be given and consider the output Y depending on the inputs X1, X2, X3 in the following way: Y =G(X1, X2, X3) =
T (t0,L/2). This means that we are interested with the temperature at time t0 in L/2 as a function of X1, X2, X3. We have
d = 3, the diffusivity coefficient X1 and the border condition X2 both lay in E1 = E2 = R+ while the random non neg-
ative process X3(s) lies in E3 the set of all non negative continuous functions on [0,L] vanishing at 0 and L. Here, the
quantities X1, X2, X3 on which the solution of the previous equation depends are random and assumed to be stochas-
tically independent.

In this lecture, we focus on global sensitivity analysis (GSA) that is related to the ANOVA or Hoeffding decomposi-
tion. This technique is based on a decomposition of the variance that gives raise to the definition of indices (called
Sobol’ indices). As it will be shown later on, these indices can be seen as indicators on the importance of some inputs
parameters.

Here, we mainly restrain our presentation to the statistical analysis of Sobol’ indices. The first part of these notes are
strongly inspired from a lecture given by Thierry Klein. Another source of inspiration is the book [35].

7



8 CONTENTS



Chapter 1

Hoeffding decomposition and
variance-based indices

1.1 Introductory example: the linear model

Let X = (X1, . . . , Xd ) be random objects (inputs) and let Y = G(X) = G(X1, . . . , Xd ) be the random output. Here G is
assumed to be unknown. In some applications G is a computer code seen as a black box: if one gives to the computer
the values of the inputs, the code returns an answer. In others applications, G can be the measurement of a real
experience once the inputs are fixed. To model G , the first method used by statisticians is to propose an approximation
defined by a linear function, that is to consider that

Y =
d∑

j=1
β j X j .

In this case, if the inputs are independent, we simply have

Var(Y ) =
d∑

j=1
β2

j Var(X j ).

Hence β2
j

Var(X j )

Var(Y )
represents the part of the variance of Y that is due to the input X j .

Now if the model is not linear, one can proceed an ANOVA-type decomposition of the variance of the output Y in
order to quantify the importance of an input.

1.2 The ANOVA-Hoeffding decomposition of the variance

1.2.1 A simple example

In order to understand this decomposition, we will first consider a very simple example. Let X1 and X2 be two in-
dependent random variables distributed uniformly on {0,1} and {0,1,2} respectively. Let G be an application from
{0,1}× {0,1,2} to R and Y =G(X) =G(X1, X2). Then one may write

G(X) =G(X1, X2) =G;+G{1}(X1)+G{2}(X2)+G{1,2}(X1, X2), (1.1)

where

G; = 1

6
(G(0,0)+G(0,1)+G(0,2)+G(1,0)+G(1,1)+G(1,2)), (mean value of G)

G{1}(x1) = 1

3
(G(x1,0)+G(x1,1)+G(x1,2))−G;,∀x1 ∈ {0,1}, (deviation to the global behavior when only x1 varies)

G{2}(x2) = 1

2
(G(0, x2)+G(1, x2))−G;,∀x2 ∈ {0,1,2}, (deviation to the global behavior when only x2 varies)

G{1,2}(x1, x2) =G(x1, x2)−G{1}(x1)−G{2}(x2)−G;,∀(x1, x2) ∈ {0,1}× {0,1,2}, (residual part).

9
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One can see that

G; = E[G(X1, X2)],

G{1}(X1) = E[G(X1, X2)|X1]−E[G(X1, X2)],

G{2}(X2) = E[G(X1, X2)|X2]−E[G(X1, X2)],

G{1,2}(X1, X2) =G(X1, X2)−G;(X1, X2)−G{1}(X1, X2)−G{1}(X1, X2).

In addition, we have

E[G;G{1}(X1)] =G;
(1

3

2∑
j=0
E[G(X1, j )]

)
−G2

; =G;
(1

6

2∑
j=0

1∑
i=0

G(i , j )
)
−G2

; = 0 = E[G;G{2}(X2)] (by symmetry)

E[G{1}(X1)G{2}(X2)] =
(1

2

1∑
i=0
E[G(i , X2)]

)(1

3

2∑
j=0
E[G(X1, j )]

)
−G;

(1

3

2∑
j=0
E[G(X1, j )]

)
−G;

(1

2

1∑
i=0
E[G(i , X2)]

)
+G2

; = 0

E[G;G{1,2}(X1, X2)] = 0

E[G{1}(X1)G{1,2}(X1, X2)] = 0 = E[G{2}(X2)G{1,2}(X1, X2)] (by symmetry).

Hence the variables appearing in (1.1) are orthogonal so that we can simply perform a L2-decomposition of the vari-
ance:

Var(G(X1, X2)) = Var
(
G{1}(X1)

)+Var
(
G{2}(X2)

)+Var
(
G{1,2}(X1, X2)

)
. (1.2)

In summary, G can be decomposed as an orthogonal sum of constant, marginal, and joint functions. Then G{1,2}

represents the part of G that cannot be explained by either global or marginal effects.

In the next section, we generalize (1.2) without specifying the law and the supports of the inputs.

1.2.2 General case

Let (X1, . . . , Xd ) be independent random variables denoted by X and such that Xi belongs to a measurable Polish
space1 (Ei ,B(Ei )).

Example 1.1. For example, d = 4, X1 a Poisson random variable with parameter λ > 0 (i.e. for all k ∈ N, P (X1 = k) =
e−λ λ

k

k ! ), X2 a Gaussian random variable with parameters m andσ2, X3 an exponential random variable with parameter

1 (i.e. with density f (t ) = exp(−t ), for t Ê 0), and X4 a Cauchy random variable on R (i.e. with density h(t ) = 1
π(1+x2)

).

Example 1.2. For example, d = 3, X1 a Poisson random variable with parameter λ> 0, X2 a centered Gaussian vector
of dimension 3 with covariance matrix Σ, and X3 a Brownian motion.

We denote by L2 (PX) the set of all measurable function f on (E ,E ) such that E[ f 2(X)] < ∞ where E = ∏d
i Ei and

E =⊗d
i=1B(Ei ). The space L2 (PX) is an Hilbert space with inner product defined by for any f ∈ L2 (PX) and g ∈ L2 (PX)

〈 f , g 〉 = E[ f (X)g (X)].

For any A, B ⊂ {1, . . . ,d}, we set XA = (Xi )i∈A and L2
A the subspace of functions in L2 (PX) that are E A measurable

(E A =∏
i∈A Ei ) and

L2
B⊥A = { f ∈ L2

B | ∀g ∈ L2
A , E[ f (XB )g (XA)] = 0}.

1A Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a
countable dense subset.
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Theorem 1.3 (Hoeffding decomposition). Let G ∈ L2 (PX). Then G may be uniquely decomposed in L2 (PX) as the
following orthogonal expansion

G(X) = ∑
A⊂{1,...d}

G A(XA) a.s. (1.3)

where

1. G; constant a.s.,

2. ∀ A ⊂ {1, . . .d}, A 6= ;, ∀ i ∈ A,
∫

Ei
G A(xA)PXi (d xi ) = 0.

The unique solution writes, ∀ A ⊂ {1, . . .d},

G A(xA) = ∑
B⊂A

(−1)|A|−|B |E[G(X)|XB = xB ], a.s. (1.4)

Note that the results stated in this theorem are useful to define the Sobol’ indices in the next section but also in

• Chapter 3 - Section 3.2.1 for the generalization of the Sobol’ indices to multivariate and functional outputs,

• Chapter 5 - Section 5.2 for the definition of the Cramér-von Mises indices,

• Chapter 6 - Section 6.2 for some kernel generalizations in sensitivity analysis.

The proof could be done using induction and the same arguments as in the two dimensional example developed at
the beginning of this chapter. A smarter elegant method developed in a general context is also presented. Indeed, we
follow the proof proposed in [67] in the much more general context of a commuting projector collection (see Theorem
2.1 in [67]). In the sequel, we propose both proofs.

Proof of Theorem 1.3 by induction. For d = 2, we have (1.1). The different terms can be interpreted as follows: G; is
the projection of G on ∆;, the set of constant functions on E . G{1} (resp. G{2}) is the projection of G on ι;{1}, the set of

functions depending only on the first coordinate (resp. ι;{2}, the set of functions on E depending only on the second

coordinate). Moreover, as we have assumed that X1 and X2 are independent, ι;{1} and ι;{2} are orthogonal subspaces of

L2(PX). Finally, G{1,2} is the projection of G on ι{1}
{1,2} ∩ ι{2}

{1,2} which is the orthogonal subspace of ι;{1} ∪ ι;{2} ∪∆; in L2(PX).

Assume now that (1.3) holds for any dimension 2É p É d −1 and consider a square integrable function G of
(X1, X2, . . . , Xp , Xp+1). Here, as before the components X1, · · · , Xp+1 are assumed to be independent. Set first X̃1 :=
(X1, X2, . . . , Xp ) and X̃2 := Xp+1. Using the orthogonal decomposition (1.1) for these two variables we may write

G̃(X̃1, X̃2) :=G(X1, X2, . . . , Xp , Xp+1)

= G̃;+G̃{1}(X̃1)+G̃{2}(X̃2)+G̃{1,2}(X̃1, X̃2)

=G;+G̃{1}(X1, X2, . . . , Xd )+G̃{2}(X2)+G̃{1,2}(X̃1, X̃2).

Now, we may conclude using the induction hypothesis on G̃{1}(X1, X2, . . . , Xp ) and observing that, from the expansion
(1.1), G̃{1,2}(X̃1, X̃2) is centered and uncorrelated both from any square integrable function of X̃1 = (X1, X2, . . . , Xp ) and
any square integrable function of X̃2 = Xp+1.

Before turning to the second proof of Theorem 1.3, let us introduce some tools. A classical very interesting operator
acting on L2(PX) with values in L2

A is the orthogonal projector ProjA . For f ∈ L2(PX), ProjA f is the closest element in
L2

A of f (closest means having least L2 deviation). That is,

inf
h∈L2

A

E[( f (X)−h(XA))2] = min
h∈L2

A

E[( f (X)−h(XA))2] = E[( f (X)− (ProjA f )(XA))2].

As ProjA is a projection, we have

Proj2
A f = ProjA(ProjA f ) = ProjA f so that ProjA( f −ProjA f ) = ProjA f −ProjA f = 0.

The last equality implies that f −ProjA f is perpendicular to L2
A . So that, for any h ∈ L2

A ,

E[( f (X)− (ProjA f )(XA))h(XA)] = 0.
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Notice that this last property also characterizes ProjA f . That is, ProjA f is the unique function g of L2
A such that f − g

is perpendicular to any member of L2
A . In other words,

∀h ∈ L2
A ,〈h, g 〉 = 〈h, f 〉⇐⇒ g = ProjA f . (1.5)

Notice further that (1.5) also implies that ProjA is self-adjoint. Indeed, for f and g square integrable functions, we may
write

〈ProjA f , g 〉 = 〈ProjA f ,ProjA g 〉 = 〈ProjA g ,ProjA f 〉 = 〈ProjA g , f 〉 = 〈 f ,ProjA g 〉.
Last but not least, let I denotes the identity operator on L2(PX) (I f = f for all f ). Then, I −ProjA is the orthogonal
projector on (L2

A)⊥ the space of all square integrable functions that are orthogonal to all members of L2
A . As a matter

of fact, for f ∈ L2(PX) and h ∈ (L2
A)⊥, we may write

〈h, (I −ProjA) f 〉 = 〈h, f 〉−〈h,ProjA f 〉 = 〈h, f 〉,

and we may conclude using once more time (1.5) that I −ProjA = ProjA⊥ . A classical result of probability theory (see,
e.g., [120]), is that ProjA f is the conditional expectation with respect to the σ-field EA . In other words, we have,

(ProjA f )(XA) = E[ f (X)|X A].

Now, under the assumption that the components ofX are independent, the computation of E[ f (X)|X A] becomes eas-
ier as described in the following lemma.

Lemma 1.4. da2021basics Let f ∈ L2(PX) and A,B ⊂ {1, . . .d}. Recall that A denotes the complementary set of A. Then,
under the assumption that the components of X are independent, we have, for almost PX all x in E,

(ProjA f )(x) = E[ f (X)|XA = xA] =
∫

E A

f (x)P(dxA). (1.6)

(ProjB ProjA f )(x) = (ProjA∩B f )(x) = (ProjAProjB f )(x). (1.7)

Proof of Lemma ??. For h ∈ L2
A , as E = E A ×E A and by the independence assumption we may write,

〈h, f 〉 = E[h f ] =
∫

E A×E A

h(xA) f (x)PA(dxA)PA(dxA)

=
∫

E A

h(xA)

(∫
E A

f (x)PA(dxA)

)
PA(dxA)

=
∫

E A

h(xA)E[ f (X)|XA = xA]PA(dxA)

= 〈h,E[ f (X)|XA = xA]〉.

Here, the last equality comes from Fubini Theorem as h(xA) f (x) is integrable. This implies (1.6) by using (1.5). Let
now h ∈ L2

A∩B , as L2
A∩B ⊂ L2

A and L2
A∩B ⊂ L2

B , we have, by (1.5),

〈h,ProjB ProjA f 〉 = 〈h,ProjA f 〉 = 〈h, f 〉.

So that, we may conclude that (1.7) holds as A∩B = B ∩ A and using (1.5).

Proof of Theorem 1.3 using the projection operators.

Existence To begin with, let us first prove that there exists a decomposition of G in the form of (1.3) such that 1. and
2. hold. Let j ∈ {1, . . . ,d}. To alleviate the notation, we will write Proj− j for Proj{ j } where { j } is the complementary of

{ j } in {1, . . . ,d}. Notice that from (1.6) (Proj− j G)(x) does not depend any more on x j (a.s.). Moreover, from (1.7) for any
i , j ∈ {1, . . . ,d}, Proj−i and Proj− j are commuting. We may write

I =
d∏

j=1

(
Proj− j + (I −Proj− j )

)
.
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Taking into account the commutation in expanding the last product leads to

I = ∑
A⊂{1,...d}

(∏
j∈A

(I −Proj− j )

)∏
j∈A

Proj− j

 , (1.8)

Considering the complementary set, one may easily check that
⋂
j∈A

{ j } = A. So that, using (1.7), we have that
(∏

j∈A Proj− j

)
=

ProjA . Let us now define, for any A ⊂ {1, . . .d}, G A =
(∏

j∈A(I −Proj− j )
)

ProjAG . It follows directly from (1.8) that, a.s.,

G(x) = ∑
A⊂{1,...d}

G A(x).

By definition, we get G; = Proj;G = ∫
E G(x)P(dx) by (1.6), thus G; is a.s. constant. Moreover, by (1.7), we have a.s.

G A(x) =
(∏

j∈A
(I −Proj− j )

)
ProjAG(x) = ProjA

(∏
j∈A

(I −Proj− j )

)
G(x).

So that, G A(x) does not depend on xA and we may write G A(x) =G A(xA). Now, for i ∈ A and f ∈ L2, Proj−i (I−Proj−i ) f =
0. So that,

∫
Ei

G A(xA)PXi (d xi ) = Proj−i G A(x) = Proj−i (I −Proj−i )
∏

j∈A, j 6=i
(I −Proj− j )ProjAG(x) = 0 (a.s.).

Thus, we have proved that there exists a decomposition of G in the form (1.3) satisfying the properties 1. and 2.

Uniqueness Now, considering a decomposition of G in the form of (1.3)

G(x) = ∑
A⊂{1,...d}

G A(xA), a.s.

satisfying the properties 1. and 2., we will prove that it also satisfies (1.4), leading to a.s. uniqueness. First, note that
E[G(X)] = ∫

E G(x)PX(dx) =G;. Indeed, as G(x) =G;+∑
A⊂{1,...d},A 6=;G A(xA) and ∀ A ⊂ {1, . . .d}, A 6= ;, for any i ∈ A,∫

E
G A(xA)PX(dx) =

∫
∏

j 6=i E j

∫
Ei

G A(xA)PXi (d xi )︸ ︷︷ ︸
=0

∏
j 6=i
PX j (d x j ) = 0.

Now, let i ∈ {1, . . . ,d}. We have
∫∏

j 6=i E j
G(x)

∏
j 6=i PX j (d x j ) =G;+G{i }(Xi ) since, by property 2.,

∑
A 6=i ,A 6=;

∫
∏

j 6=i E j

G A(xA)
∏
j 6=i
PX j (d x j )︸ ︷︷ ︸

=0

= 0.

Thus, by (1.6) for any i ∈ {1, . . . ,d},

G{i }(xi ) =
∫
∏

j 6=i E j

G(x)
∏
j 6=i
PX j (d x j )−G; = E[G(X)|Xi = xi ]−EG(X).

More generally, let A ⊂ {1, . . .d}. We can write

G(x) = ∑
B⊂{1,...d},Ā∩B 6=;

GB (xB )+ ∑
B⊂A

GB (xB )

Let B ⊂ {1, . . .d}, Ā∩B 6= ;. For any i ∈ Ā∩B , we have using one more time property 2.

E[GB (XB )|XA = xA] =
∫
∏

j∉A E j

GB (xB )
∏
j∉A

PX j (d x j ) =
∫
∏

j∉A, j 6=i E j

∫
Ei

GB (xB )PXi (d xi )︸ ︷︷ ︸
=0

∏
j∉A, j 6=i

PX j (d x j ) = 0.

Using the assumed expansion of G and the last equation, we thus have, for PX-a.s. all x ∈ E ,

E[G(X)|XA = xA] = ∑
B⊂A

E[GB (XB )|XA = xA] = ∑
B⊂A

GB (xB ). (1.9)

Defining for PX-a.s. all x ∈ E , g (x, A) = E[G(X)|XA = xA] and f (x,B) = GB (xB ), we get g (x, A) = ∑
B⊂A f (x,B). Applying

the Rota inversion formula [101], we get

f (x, A) = ∑
B⊂A

(−1)|A|−|B |g (x,B) namely G A(xA) = ∑
B⊂A

(−1)|A|−|B |E[G(X)|XB = xB ].
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Remark 1.5. If we have a look to the proof of Theorem 1.3, we can see that, for any subset A of {1, . . . ,d}, one has by
induction:

G A(XA) = E[G(X)|XA]− ∑
B(A

GB (XB ).

Example 1.6. LetX= (X1, X2, X3) be a vector of three independent random variables and G a square integrable random
function of X1, X2, X3. Then the Hoeffding decomposition is

G(X) =G(X1, X2, X3) =G; +G1 +G2 +G3 +G1,2 +G1,3 +G2,3 +G1,2,3

with

G; = E [G(X)] =: m

G{1} = E [G(X)|X1]−m

G{2} = E [G(X)|X2]−m

G{3} = E [G(X)|X3]−m

G{1,2} = E
[
G(X)|X{1,2}

]−G{1} −G{2} −m

G{1,3} = E
[
G(X)|X{1,3}

]−G{1} −G{3} −m

G{2,3} = E
[
G(X)|X{2,3}

]−G{2} −G{3} −m

G{1,2,3} =G(X)−G{1,2} −G{1,3} −G{2,3} −G{1} −G{2} −G{3} −m.

Corollary 1.7. Let G ∈ L2(PX). Then, under the assumptions of Theorem 1.3, the two following properties hold.

1. Let A ∈ {1, . . . ,d} such that A 6= ;. Then, E[G A(XA)] = 0.

2. Let A 6= B ∈ {1, . . . ,d}. Then G A and GB are orthogonal in L2(PX) i.e. 〈G A ,GB 〉 = E[G A(XA)GB (XB )] = 0

Proof of Corollary 1.7. 1. Let A ∈ {1, . . . ,d} such that A 6= ;. Let i ∈ A. Using the point 2. of the previous theorem, we
have

E[G A(XA)] =
∫
∏

j∈A, j 6=i E j

∫
Ei

G A(xA)PXi (d xi )︸ ︷︷ ︸
0

∏
j∈A, j 6=i

PX j (d x j ).

2. Let A 6= B ∈ {1, . . . ,d}. As A 6= B , either there exists i ∈ A∩B̄ or there exists i ∈ B∩ Ā. Assume without loss of generality
that there exists i ∈ B ∩ Ā, as the other case can be handled similarly. We have

E[G A(XA)GB (XB )] =
∫
∏

j 6=i E j

∫
Ei

GB (xB )PXi (d xi )︸ ︷︷ ︸
0

G A(xA)
∏
j 6=i
PX j (d x j ) = 0.

The first term in the Hoeffding decomposition in (1.3) corresponds to the mean behavior of the model G . Then, any
higher-order term in this decomposition can be interpreted as the contribution on the initial function G of a group
of variables XA when removing all the lower-order interaction contributions related to XB ,B ⊂ A. For example, the
contribution G{i } (i = 1, . . . ,d) provides the centered effect of the variable Xi alone while G{i , j } (1 É i < j É d) describes
the centered interaction effect of the variables Xi and X j removing the single effects.

From Corollary 1.7, we know that the summand in the Hoeffding decomposition are centered (except for A =;) and
uncorrelated. Thus the variance of the function G(X) can be computed as the sum of the variances of the non constant
terms of the decomposition. This is the foundation stone for second-order methods in SA. The following corollary for-
mally states the variance decomposition.
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Corollary 1.8. Under the assumptions of Theorem 1.3 and if we set VA = Var(G A(XA)) = E[G A(XA)2], then

V = Var(G(X)) =
∑

A⊂{1,...,d},A 6=;
VA .

Furthermore,
VA = ∑

B⊂A
(−1)|A|−|B |Var(E[G(X)|XB ]).

Proof of Corollary 1.7. The first part of the corollary is straightforward from Corollary 1.7. Indeed, as G(X)−G; =∑
A∈{1,...,d},A 6=;G A(XA) and from the results in Corollary 1.7, we get

V = E[G(X)−G;]2 = ∑
A∈{1,...,d},A 6=;

EG2
A(XA)+ ∑

;ÚA 6=B∈{1,...,d}
E[G A(XA)GB (XB )] = ∑

A∈{1,...,d},A 6=;
Var(G A(XA)) = ∑

A∈{1,...,d},A 6=;
VA .

Now, let A ∈ {1, . . . ,d}, A 6= ;. From (1.9) in the proof of Theorem 1.3, we have PXA -p.s. for all xA , E[G(X)|XA = xA] =∑
B⊂A GB (xB ). Then, from Corollary 1.7, we get

Var(E[G(X)|XA]) = Var

( ∑
B⊂A

GB (XB )

)
= ∑

B⊂A
Var(GB (XB )).

Once more, applying the Rota inversion formula [101], we get

Var(G A(XA)) = ∑
B⊂A

(−1)|A|−|B |Var(E[G(X)|XB ]).

Remark 1.9. It is a well known fact that for L2 random variables the conditional expectation of E[Z |W ] is a W - measur-
able random variable that is the best approximation in the L2 sense of Z by a W -measurable random variable. Hence
G A is the best approximation of the function G in L2

A . So VA can be seen as the quantification of the sensitivity of G with
respect to the inputs XA . Now the quantity VA/Var(G(X)) would be the key quantity for the study of sensitivity analysis
for L2 random variables. In this lecture, we will restrict our study to these quantities.

1.3 Sobol’ indices

Definition 1.10. Let A ⊂ {1, . . . ,d},X= (X1, . . . , Xd ) where the Xi ’s are independent random variables, and G be a square
integrable function of X. We define the following indices.

1. The Sobol index associated to A is

S A = Var(G A(XA))

Var(G(X))
= VA

V
.

2. The first order Sobol index associated to the input X j is

S j = S{ j } = V{ j }

V
.

3. The total Sobol index associated to A is
S A,Tot = 1−S A .

In particular,

S j ,Tot = 1−S j = 1−
V{ j }

V
. = 1− VA

V

4. The closed Sobol index associated to A is

S A,Cl = ∑
B⊂A

SB = Var(E[G(X)|XA])

V
.

The Sobol’ index is equivalent to the square of the correlation ratio (measure of the relationship between the statistical
dispersion within individual categories and the dispersion across a whole population or a sample), well known in
statistics and introduced by Pearson in [96] as part of analysis of variance. In the sensitivity analysis domain, it has
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been introduced by Sobol’ in [109] in a general context but has appeared before in some applicative papers for the
case where A is a singleton (e.g. [31]). The Sobol’ index has often been called the variance-based importance measure.

Example 1.11. Let X1, X2, X3 be three independent random variables N (0,1) distributed and let a1, a2, a3, a4 be four
real numbers. Consider the following function

G(X) =G(X1, X2, X3) = a1X1 +a2X2 +a3X3 +a4X1X2.

1. Assume that a3 = a4 = 0. Then we have

E[G(X)|X1] = a1X1, E[G(X)|X2] = a2X2, and E[G(X)|X3] = 0,

and also

E[G(X)|X1, X2] = a1X1 +a2X2, E[G(X)|X1, X3] = a1X1, and E[G(X)|X2, X3] = a2X2.

Then the Sobol’ indices are given by

S1 = a2
1

a2
1 +a2

2

, S2 = a2
2

a2
1 +a2

2

, S3 = 0, S1,2 = 0, S1,3 = 0, S2,3 = 0, S1,2,3 = 0.

The closed Sobol’ index for {1,2} is S{1,2},Cl = S1,2 +S1 +S2 = 1.

2. General case a3 6= 0 and a4 6= 0. One has

S1 = a2
1

a2
1 +a2

2 +a2
3 +a2

4

, S2 = a2
2

a2
1 +a2

2 +a2
3 +a2

4

, S3 = a2
3

a2
1 +a2

2 +a2
3 +a2

4

,

S1,2 = a2
4

a2
1 +a2

2 +a2
3 +a2

4

, S1,3 = 0, S2,3 = 0,

S1,2,3 = 0.

The closed Sobol’ index for {1,2} is S{1,2},Cl = S1 +S2 +S1,2 = a2
1+a2

2+a2
4

a2
1+a2

2+a2
3+a2

4
6= 1.

To conclude this chapter, let us give some obvious properties of the Sobol’ indices.

1. If the function G does not depend on the random variable Xi , then S A = 0 for any A such that i ∈ A.

2. If S A,Tot = 1, then G only depends on the random variables, the indices of which are in A.

3. Si = Si ,Cl quantifies the part of the variability that is due to the action of variable Xi alone. We speak of the
first order importance of Xi . Si , j quantifies the part of the variability that is due to the interaction between the
variables Xi and X j when the first orders have been removed. To understand better this phenomenon, take
a1 = a2 = a3 = 0 in the previous example: G(X) = a4X1X2. Then S1 = S2 = 0, S1,2 = 1 meaning that alone X1 and
X2 have no influence on the variability of the output, but together they are responsible of all the variability.

4. It is clear from Corollary 1.8 that
1 = ∑

A∈{1,...,d}
S A and 0 É S A É 1.

In general, it is not possible to compute explicitly the Sobol’ indices. Indeed, in most applications, G is unknown or
very complicated, whence it is then impossible to perform analytic computations. Therefore the statistician wants to
give an estimation of these indices. This is the topic of Chapters 2 and 4.
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1.4 Exercises

Exercise 1 (Ishigami function). The Ishigami model is given by:

Y = f (X) = f (X1, X2, X3) = sin X1 +7sin2 X2 +0.1X 4
3 sin X1 (1.10)

where (X j ) j=1,2,3 are i.i.d. uniform random variables on [−π;π].

1. Show that
S1 = 0.3139, S2 = 0.4424, S3 = 0.

Comment.

2. Show that
S{1,2},Cl = 0.7563, S{1,3},Cl = 0.5575, S{1,3},Cl = 0.4424, S{1,2,3},Cl = 1.

Exercise 2 (Sobol g-function). Assume that X1, . . . , Xd are i.i.d. random variables uniformly distributed on [0,1]. Now
take d real numbers a1, . . . , ad and define the Sobol g-function by

Y = gsobol (X) = gsobol (X1, . . . , Xd ) =
d∏

k=1
gk (Xk ) =

d∏
k=1

|4Xk −2|+ak

1+ak
. (1.11)

Compute Si ,Cl for i ∈ {1, . . . ,d}.
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Chapter 2

First estimation of Sobol’ indices: Pick-Freeze
scheme

2.1 Pick-Freeze estimation of the Sobol’ indices

As previously, we consider a (non necessarily linear) regression model connecting an output Y ∈ R to independent a
random input X= (X1, . . . Xd ) with, for i = 1, . . .d , Xi belongs to the probability space Ei . We denote

Y = f (X) = f (X1, . . . , Xd ) (2.1)

where f is a deterministic real-valued measurable function defined on E = E1 × . . .Ed . We assume that Y is square
integrable and non deterministic (Var(Y ) 6= 0).

Since the knowledge of all closed indices allows to recover all the other indices, we focus on the estimation of the
closed indices that have in addition a simple expression: for any subset A of Id = {1, . . . ,d},

Su,Cl = Var[E[Y |Xu]]

Var[Y ]
. (2.2)

In practice, it is often important to be able to estimate simultaneously several indices. For this purpose, let u =
(u1, . . . ,uk) be k subsets of Id . The vector of the closed Sobol’ indices is then given by

Su,Cl =
(

Var(E[Y |Xu1 ])

Var(Y )
, . . . ,

Var(E[Y |Xuk ])

Var(Y )

)
=

(
Var(E[Y |Xi , i ∈ u1])

Var(Y )
, . . . ,

Var(E[Y |Xi , i ∈ uk])

Var(Y )

)
.

Example 2.1. Assume d = 5, k = 3, and take u = ({1}, {1,3,5}, {2,4}) in that case

Su,Cl =
(

Var(E[Y |X1]

Var(Y )
,

Var(E[Y |X1, X3, X5])

Var(Y )
,

Var(E[Y |X2, X4])

Var(Y )

)
.

It is easy to estimate Var(Y ) by the empirical variance; the problem here is to estimate quantities like Var(E[Y |Xuj ]).
Indeed in general, the estimation of conditional expectation is not an easy task.

In the sequel, we present a very nice trick allowing to transform the variance of the conditional expectation into a
covariance. To do so, we need some additional definitions.

Definition 2.2. For the input X and for any subset u of Id , we define Xu by the vector such that X u
i = Xi if i ∈ u and

X u
i = X ′

i if i ∉ u where X ′
i is an independent copy of Xi . Then we set

Y u = f (Xu).

Xu and Y u are named the Pick-Freeze versions of X and Y respectively. The idea to keep the variable if the index is in u
and to resample a new one if the index is not in u.

19
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Example 2.3. Assume d = 2 and Y = f (X1, X2) and assume v = {1}. Then X= (X1, X2) and Xv = (X1, X ′
2) where X ′

2 is an
independent copy of X2 (X ′

2 is also independent of X1). Finally,

Y = (X1, X2) and Yv = f(X1,X′
2).

The next lemma shows how to express the numerator of Su,Cl in terms of a covariance. This will lead to a natural esti-
mator.

Lemma 2.4. For any u ⊂ Id , one has
Var(E[Y |Xu]) = Cov

(
Y ,Y u)

. (2.3)

Proof of Lemma 2.4. It is clear that Y and Y u have the same law. In addition, we can assume without loss of generality
that E[Y ] = 0. Now conditioning on the variables Xi , for i ∈ u, Y and Y u are independent so

Cov
(
Y ,Y u)= E[Y Y u] = E[E[Y Y u|Xu]] = E[E[Y |Xu]E[Y u|Xu]] = E[E[Y |Xu]2] = Var(E[Y |Xu]).

A first estimation for Su,Cl

In view of Lemma 2.4, we are now able to define a first natural estimator of Su,Cl based on a N -sample (X1, . . . ,XN ) ofX
leading to a N -sample (Y1, . . . ,YN ) of Y . The estimation scheme also requires the Pick-Freeze versions ofX j and Y j for
all the subsets u1, . . .uk. Thus the observations consist in (Y j ,Y u1

j , . . . ,Y uk
j )(1É jÉN ) based on (X j ,Xu1

j , . . . ,Xuk
j )(1É jÉN ).

All sums are taken for j from 1 to N .

Su,Cl
N =

 1
N

∑
Y j Y u1

j − ( 1
N

∑
Y j

)( 1
N

∑
Y u1

j

)
1
N

∑
Y 2

j − ( 1
N

∑
Y j

)2 , . . . ,

1
N

∑
Y j Y uk

j − ( 1
N

∑
Y j

)( 1
N

∑
Y uk

j

)
1
N

∑
Y 2

j − ( 1
N

∑
Y j

)2

 . (2.4)

A second estimation for Su,Cl

Since the observations consist in (Y j ,Y u1
j , . . . ,Y uk

j )(1É jÉN ), a more precise estimation of the first and second moments

can be done and we are able to define a second estimator of Su,Cl taking into account all the available information.
Define

Z u
j = 1

k +1

(
Y j +

k∑
`=1

Y u`
j

)
, M u

j = 1

k +1

(
Y 2

j +
k∑
`=1

(Y u`
j )2

)
.

The second estimator is then given by

T u,Cl
N =

 1
N

∑
Y j Y u1

j −
(

1
2N

∑
(Y j +Y u1

j )
)2

1
N

∑
M u

j −
(

1
N

∑
Z u

j

)2 , . . . ,

1
N

∑
Y j Y uk

j −
(

1
2N

∑
(Y j +Y uk

j )
)2

1
N

∑
M u

j −
(

1
N

∑
Z u

j

)2

 . (2.5)

Remark 2.5. Let us just explain why the second estimator is going to be a little better. In Su,Cl
N in order to estimate the

expected value E[Y ], we only use one of the sample we have that is we compute 1
N

∑
Y j . Nevertheless, since we have a 2N

sample, it seems reasonable to use all the information we have and consider rather 1
2N

∑
(Y j +Y u1

j ). We see that in the

second case the variance of the estimator of the mean is reduced by a factor 2.

Here, we showed how to construct two estimators Su,Cl
N and T u,Cl

N of the Sobol’ indices. In the sequel, we focus our

study on Su,Cl
N ; it is easy following the same road map to perform the same study for T u,Cl

N . Two natural statistical
questions arises.

1. Are they consistent? That means do we have convergence almost sure of Su,Cl
N and T u,Cl

N ?

2. If yes, do we have a central limit theorem?

We recall in the next section the definition and properties of different stochastic convergences. Furthermore, the
method developed to answer the second question is based on the so-called Delta-method, which is also recalled in
the next section.
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2.2 Preliminary technical results

Here we recall some basic facts about stochastic convergences together with a well known result allowing to transfer
a Central Limit Theorem via differentiable functions.

2.2.1 Some basic facts about stochastic convergences

The results of this paragraph are well known results concerning stochastic convergences. The proofs can be found in
the book written by Ad van der Vaart [122].

Theorem 2.6. [Continuous mapping] Let g : Rk 7→Rm be continuous at every point of a ⊂C such that P(X ∈C ) = 1.

(i) If Xn
L−→
n

X , then g (Xn)
L−→
n

g (X );

(ii) If Xn
Pr−−→
n

X , then g (Xn)
Pr−−→
n

g (X );

(iii) If Xn
a.s.−−→

n
X , then g (Xn)

a.s.−−→
n

g (X ).

Theorem 2.7. [Prohorov’s theorem] Let Xn be random vectors in Rk .

(i) If Xn
L−→
n

X for some X , then (Xn)n is uniformly tight.

(ii) If Xn is uniformly tight, then there exists a subsequence with Xn j

L−→
n

X as j →∞, for some X .

Theorem 2.8. Let (Xn)n , (Yn)n and X ,Y be some random vectors and c be a constant .

i) If Xn
a.s.−−→

n
X then Xn

Pr−−→
n

X .

ii) If Xn
Pr−−→
n

X then Xn
L−→
n

X .

iii) Xn
Pr−−→
n

c if and only if Xn
L−→
n

c.

iv) If Xn
L−→
n

X and d(Xn ,Yn)
Pr−−→
n

0 then Yn
L−→
n

X .

v) (Slutsky) If Xn
L−→
n

X and Yn
Pr−−→
n

c then (Xn ,Yn)
L−→
n

(X ,c).

vi) If Xn
Pr−−→
n

X and Yn
Pr−−→
n

Y then (Xn ,Yn)
Pr−−→
n

(X ,Y ).

Lemma 2.9. [Slutsky] Let Xn , X and Yn be random vectors or variables. If Xn
L−→
n

X and Yn
L−→
n

c for a constant c, then

(i) Xn +Yn
L−→
n

X + c;

(ii) Yn Xn
L−→
n

c X ;

(iii) Y −l
n Xn

L−→
n

c−1X provided c 6= 0.

We introduce here some useful notations

• Xn = oP (1) means that Xn converges to 0 in probability and Xn = oP (Rn) means that Xn = YnRn where Yn converges
to 0 in probability.

• Xn =OP (1) means that the family (Xn)n is uniformly tight and Xn =OP (Rn) means that Xn = YnRn where the family
(Yn)n is uniformly tight.

Lemma 2.10. Let Xn be a sequence of random vectors going to zero in probability. Then for any p > 0, and any function
R such that R(0) = 0,

1. R(h) = o(‖h‖p ) =⇒ R(Xn) = oP (‖Xn‖p ).

2. R(h) =O(‖h‖p ) =⇒ R(Xn) =OP (‖Xn‖p ).
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Theorem 2.11 (Classical CLT). Let (Z j )i∈N∗ be i.i.d. random variables having the same distribution as a random vari-

able Z such that E[Z 2] <∞. Let m = E[Z ], σ2 = Var(Z ), and Z n = 1
n

∑n
i=1 Zi . Then

p
n

(
Z n −m

)
L−→

n→∞ N (0,σ2).

Remark 2.12. If the random variables belong to Rk and have the same distribution as Z = (Z1, . . . , Zk ), the result is
analogous and the limit distribution is the centered Gaussian vector with covariance matrix Σ defined for 1 É i É k and
1 É j É k by Σi , j = Cov(Zi , Z j ).

2.2.2 The Delta method

Assume that we are interested in some transformation of an unknown parameter θ; let’s say φ(θ). In addition, as-

sume that we know for some reason1 that
p

n ( Tn −θ)
L−→

n→∞ X . The natural question would then be: do we still have

something like
p

n
(
φ(Tn)−φ(θ)

) L−→
n→∞?

The answer is obviously yes if φ is linear since the continuous mapping theorem insures that

φ
(p

n ( Tn −θ)
) L−→

n→∞φ(X )

and then by linearity p
n

(
φ(Tn)−φ(θ)

) L−→
n→∞φ(X ).

The answer is not obvious in the general case. Nevertheless it seems reasonable to think that if φ is differentiable, φ
behaves locally as a linear mapping and the result should be true.

Theorem 2.13 (Delta method). Let φ be an application from Rk to Rm differentiable at the point θ. Let (Tn) be
a sequence of random vectors in Rk and (rn)n be a sequence of real numbers going to ∞. Then the difference
rn

(
φ(Tn)−φ(θ)

)−Dφ(θ) (rn(Tn −θ)) converges to zero in probability. Moreover,

rn
(
φ(Tn)−φ(θ)

) L−→
n→∞ Dφ(θ)(T );

as soon as rn (Tn −θ)
L−→

n→∞ T.

Proof of Theorem 2.13. Consider R(h) =φ(θ+h)−φ(θ)−Dφ(θ)(h). Sinceφ is differentiable, we know that R(h) = o(‖h‖)

as h → 0. Now Slutsky’s lemma (Lemma 2.9) shows that Tn −θ P−→
n→∞ 0. Applying Lemma 2.10,

φ(Tn)−φ(θ)−Dφ(θ)(Tn −θ) = R(Tn −θ) = oP (‖Tn −θ‖).

Multiplying both sides by rn , one gets

rnφ(Tn)− rnφ(θ)− rnDφ(θ)(Tn −θ) = rnoP (‖Tn −θ‖).

rnoP (‖Tn −θ‖) = oP (rn ‖Tn −θ‖). In addition, using Prohorov’s theorem (Theorem 2.7), since rn(Tn −θ)
L−→

n→∞ T , the

sequence (rn(Tn −θ))n is uniformly tight, whence oP (rn ‖Tn −θ‖) = oP (1) 2. We have just proved the first part of the
theorem.

Now Dφ(θ) being a continuous linear mapping, we have

rnDφ(θ)(Tn −θ)
L−→

n→∞ Dφ(θ)(T )

by the continuity mapping theorem (Theorem 2.6). We conclude using Theorem 2.8, item (iv).

1For example, using the CLT.
2One shall write oP (rn ‖Tn −θ‖) = rn ‖Tn −θ‖Zn with Zn = oP (1) then for an ε> 0 fixed, we take M such that P (rn ‖Tn −θ‖ > M) < ε. It is then

easy to see that ∀η> 0, P
(
rn ‖Tn −θ‖Zn > η)→ 0.
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Example 2.14 (Fundamental example). If
p

n (Tn −θ)
L−→

n→∞ N (0,Σ). Then

p
n

(
φ(Tn)−φ(θ)

) L−→
n→∞ N (0,Dφ(θ)ΣDφ(θ)T ).

Example 2.15. Let (Xi ) be a sequence of i.i.d. random variables distributed as E (λ), here λ is an unknown parameter in
(0,+∞). Then by the CLT we have

p
n

(
X n − 1

λ

)
L−→

n→∞ N (0,
1

λ2 ).

Now applying the Delta method with φ(x) = 1
x we get

p
n

(
1

X n
−λ

)
L−→

n→∞ N (0,λ2).

2.3 Asymptotic properties of the Pick-Freeze estimators

2.3.1 Consistency and CLT for Su,Cl
N and T u,Cl

N

Theorem 2.16 (Consistency). If E[Y 2] <+∞ then Su,Cl
N and T u,Cl

N converge a.s. to Su,Cl when goes to infinity.

Proof of Theorem 2.16. It is a simple application of the strong law of large numbers and the continuity mapping theo-
rem (Theorem 2.6).

Theorem 2.17 (Central limit theorem). Assume that E[Y 4] <∞. Then:

1. p
N

(
Su,Cl

N −Su,Cl
)

L→
N→∞

Nk
(
0,Γu,S

)
(2.6)

where Γu,S = (
(Γu,S )l , j

)
1Él , jÉk with

(Γu,S )l , j =
Cov(Y Y ul ,Y Y u j )−Sul ,ClCov(Y Y u j ,Y 2)−Su j ,ClCov(Y Y ul ,Y 2)+Su j ,ClSul ,ClVar(Y 2)

(Var(Y ))2

2. p
N

(
T u,Cl

N −Su,Cl
)

L→
N→∞

Nk
(
0,Γu,T

)
(2.7)

where Γu,T = (
(Γu,T )l , j

)
1Él , jÉk with

(Γu,T )l , j =
Cov(Y Y ul ,Y Y u j )−Sul ,ClCov(Y Y u j , M u)−Su j ,ClCov(Y Y ul , M u)+Su j ,ClSul ,ClVar(M u)

(Var(Y ))2 .

Proof of Theorem 2.17. Since Su,Cl
N and T u,Cl

N are invariant by any centering (translation) of the Y j ’s and Y ui
j ’s for i =

1, . . . ,k, we can simplify the next calculations translating by E[Y ]. For the sake of simplicity, Y j and Y ui
j now denote

the centered random variables.

Proof of (2.6). Recall that Su,Cl
N −Su,Cl is equal to

 1
N

∑
Y j Y u1

j − ( 1
N

∑
Y j

)( 1
N

∑
Y u1

j

)
1
N

∑
Y 2

j − ( 1
N

∑
Y j )2

−Su1,Cl, . . . ,

1
N

∑
Y j Y uk

j − ( 1
N

∑
Y j

)( 1
N

∑
Y uk

j

)
1
N

∑
Y 2

j − ( 1
N

∑
Y j )2

−Suk,Cl

 .
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Let W j = (Y j Y ui
j , i = 1, . . . ,k,Y j ,Y ui

j , i = 1. . . ,k,Y 2
j )t ( j = 1, . . ., N) and g the mapping from R2k+2 to Rk defined by

g (x1, . . . , xk , y, y1, . . . , yk , z) =
(

x1 − y y1

z − y2 , . . . ,
xk − y yk

z − y2

)
.

Let Σ denote the covariance matrix of W j and set

E = E[Y ], V = Var(Y ), and W = (Y Y u,Y ,Y u,Y 2)t

and

Σ=


Var(Y Y u) Cov(Y Y u,Y ) Cov(Y Y u,Y u) Cov(Y Y u,Y 2)

Cov(Y ,Y Y u) V Cov(Y ,Y u) Cov(Y ,Y 2)
Cov(Y u,Y Y u) Cov(Y u,Y ) V Cov(Y u,Y 2)
Cov(Y 2,Y Y u) Cov(Y 2,Y ) Cov(Y 2,Y u) Var(Y 2)


First, the following central limit theorem holds

p
N

(
1

N

∑
W j −E[W ]

)
L→

N→∞
N2k+2 (0,Σ)

We then apply the so-called Delta method to W and g so that

p
N

(
g (W N )− g (E[W ])

)
L→

N→∞
N

(
0, Jg (E[W ])ΣJg (E[W ])t ) .

with Jg (E[W ]) the Jacobian of g at point E(W ). Define g = (g1, . . . , gk ). For i , i ′ = 1, . . . ,k,



∂gi ′
∂xi

(E[W ]) = δi ,i ′/V
∂gi ′
∂y (E[W ]) = 0
∂gi ′
∂yi

(E[W ]) = 0
∂gi ′
∂z (E[W ]) =−Sui,Cl/V

with δi ,i = 1 and δi ,i ′ = 0 if i 6= i ′. Thus Γu,S = Jg (E[W ])ΣJg (E[W ])t is as stated in Theorem 2.17.

Proof of (2.7). The proof is similar to the one of (2.6). We now define W j = (Y j Y ui
j , i = 1, . . . ,k,Y j ,Y ui

j , i = 1. . . ,k, (Y u
j )2)t .

We apply the delta method to g from R2k+2 into Rk defined by

g (x1, . . . , xk , y, y1, . . . , yk , z) =
(

x1 −
( y+y1

2

)2

z − ( y+y1+...+yk
k+1

)2 , . . . ,
xk −

( y+yk
2

)2

z − ( y+y1+...+yk
k+1

)2

)
.

For i , i ′ = 1, . . . ,k,



∂gi ′
∂xi

u(E[W ]) = δi ,i ′/V
∂gi ′
∂y (E[W ]) = 0
∂gi ′
∂yi

(E[W ]) = 0
∂gi ′
∂z (E[W ]) =−Sui,Cl/V.

Remark 2.18. Note that in Theorem 2.17, we have the stronger assumption E[Y 4] <∞. Indeed, since we want a CLT for
sums of quantities like Y 2

i , it is necessary to impose that Y 2
i has a second order moment that is E[Y 4] <∞.
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Example 2.19. 1. Assume k = d, u = (
{1}, . . . , {p}

)
and E[Y 4] <∞. Here

Su,Cl =
(

Var(E[Y |X1])

Var(Y )
, . . . ,

Var(E[Y |Xd ])

Var(Y )

)
and

T u,Cl
N =

 1
N

∑
Y j Y 1

j −
(

1
2N

∑
(Y j +Y 1

j )
)2

1
N

∑
M u

j −
(

1
N

∑
Z u

j

)2 , . . . ,

1
N

∑
Y j Y p

j −
(

1
2N

∑
(Y j +Y p

j )
)2

1
N

∑
M u

j −
(

1
N

∑
Z u

j

)2

 .

The CLT becomes p
N

(
T u,Cl

N −Su,Cl
)

L→
N→∞

Nd
(
0,Γu,T

)
where Γu,T = (

(Γu,T )i ,i ′
)

1Éi ,i ′Éd with

(Var(Y ))2 (Γu,T )i ,i ′ = Cov(Y Y i ,Y Y i ′ )−Si ,ClCov(Y Y i ′ , M u)−Si ′,ClCov(Y Y l , M u)

+Si ,ClSi ′,ClVar(M u).

2. We can obviously have a CLT for any index of order 2. Indeed if we take, k = 1 and (i , i ′) ∈ {1, . . . ,d}2 with i 6= i ′ and
u = {i , i ′}. We get Z u = 1

2

(
Y +Y u

)
and M u = 1

2

(
Y 2 + (Y u)2

)
; thus

Su,Cl = Var(E[Y |Xi , Xi ′ ])

Var(Y )
and T u,Cl

N =
1
N

∑
Y j Y u

j −
(

1
2N

∑
(Y j +Y u

j )
)2

1
2N

∑(
Y 2

j + (Y u
j )2

)
−

(
1

2N

∑
(Y j +Y u

j )
)2 .

The CLT becomes p
N

(
T u,Cl

N −Su,Cl
)

L→
N→∞

N1
(
0,Γu,T

)
with

(Var(Y ))2 (Γu,T ) = Var(Y Y u)−2Su,ClCov(Y Y u,Y 2)+
(
Su,Cl

)2

2

(
Var(Y 2)+Cov(Y 2, (Y u)2)

)
.

3. One can also straightforwardly deduce the joint distribution of the vector of all indices of order 2. For example, if
p = 3 take k = 3 and u = ({1,2}, {1,3}, {2,3}) and apply Theorem 2.17.

Proposition 2.20. Assume that k = 1. The asymptotic varianceσ2
T of T u,Cl

N is always less than or equal to the asymptotic

variance σ2
S of T u,Cl

N , with equality if and only if Su,Cl = 0 or Su,Cl = 1.

To prove this Proposition, we need the following immediate Lemma:

Lemma 2.21. Y and Y u are exchangeable random variables, ie. (Y ,Y u)
L= (Y u,Y ).

Proof of Lemma 2.21. Assume that d = 2, u = {1} and denote X = X1 and Z = X2. The general case stems easily. For
any a,b ∈R, we have:

P(Y É a,Y X É b) =P( f (X , Z ) É a, f (X , Z ′) É b)

=
∫
P( f (X , Z ) É a, f (X , Z ′)|X = x)dP (x)

=
∫
P( f (X , Z ) É a|X = x)P( f (X , Z ′) É b|X = x)dP (x), by independence conditonally on X

=
∫
P( f (X , Z ) É b|X = x)P( f (X , Z ′) É a|X = x)dP (x), as Z

L= Z ′

=P(Y É b,Y X É a).

Proof of Proposition 2.20. The limiting variances σ2
S and σ2

T (given in Theorem 2.17) are translation-invariant, so that
one may assume without loss of generality that E[Y ] = 0. Expanding the variances and using the exchangeability of Y
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and Y u, (Var(Y ))2
(
σ2

S −σ2
T

)
is equal to:

(Var(Y ))2 (
σ2

S −σ2
T

)= (Su,Cl)2

2

(
Var(Y 2)−Cov

(
Y 2, (Y u)2)) .

We now use Cauchy-Schwarz inequality to see that:

Cov
(
Y 2, (Y u)2)É√

Var
(
Y 2

)
Var

(
Y u)2

)= Var
(
Y 2)

so the second term is always non-negative. This proves that the asymptotic variance of Su,Cl
N is greater than the asymp-

totic variance of T u,Cl
N .

For the equality case, we notice that Su,Cl = 0 implies the equality of the asymptotic variances. If Su,Cl 6= 0, equality
holds if and only if there is equality in Cauchy-Schwarz, ie. there exists k ∈R so that:

Y 2 = k(Y u)2 almost surely

by taking expectations and using Var(Y ) = Var(Y u) we see that k = 1 necessarily, hence Y = Y u almost surely, and
Su,Cl = 1 thanks to (2.3).

2.3.2 Asymptotic efficiency of T u,Cl
N

In this section we study the asymptotic efficiency of Su,Cl
N and T u,Cl

N . This notion (see [122], Section 25 for its definition)
extends the notion of Cramér-Rao bound to the semiparametric setting and enables to define a criteria of optimality
for estimators, called asymptotic efficiency.
Let P be the set of all cumulative distribution functions (cdf) of exchangeable random vectors in L2(R2). It is clear
that the cdf Q of a random vector of L2(R2) is in P if and only if Q is symmetric:

Q(a,b) =Q(b, a) ∀(a,b) ∈R2.

Let P be the cdf of (Y ,Y X ). We have P ∈P thanks to Lemma 2.21.

Proposition 2.22 (Asymptotic efficiency). (T u,Cl
N )N is asymptotically efficient for estimating Su,Cl for P ∈P .

We will use the following Lemma, which is also of interest in its own right:

Lemma 2.23 (Asymptotic efficiency in P ). 1. Let Φ1 : R → R be a function in L2(P ). The sequence of estimators
(Φ1

N )N given by:

Φ1
N = 1

N

∑ Φ1(Yi )+Φ1(Y X
i )

2

is asymptotically efficient for estimating E[Φ1(Y )] for P ∈P .

2. LetΦ2 :R2 →R be a symmetric function in L2(P ). The sequence (Φ2
N )N given by:

Φ2
N = 1

N

∑
Φ2

(
Yi ,Y X

i

)
is asymptotically efficient for estimating E[Φ2(Y ,Y X )) for P ∈P .

Proof of Lemma 2.23. Let, for g ∈ L2(P ) and t ∈R, P g
t be the cdf satisfying:

dP g
t = (1+ t g )dP.

It is clear that the tangent set of P at P is the closure of:

ṖP = {g bounded, E[g (Y ,Y X )] = 0 and g (a,b) = g (b, a) ∀(a,b) ∈R2}.

Let, for Q ∈P :
Ψ1(Q) = EQ [Φ1(Y )] and Ψ2(Q) = EQ

[
Φ2(Y ,Y X )

]
.
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We recall that EQ denotes the expectation obtained by assuming that the random vector (Y ,Y X ) follows the Q distri-
bution.
Following [122] Section 25.3, we compute the efficient influence functions ofΨ1 andΨ2 with respect to P and the tan-
gent set ṖP . These empirical influence functions are related to the minimal asymptotic variance of a regular estimator
sequence whose observations lie in P (op.cit., Theorems 25.20 and 25.21). Let g ∈ ṖP .

1. We have

Ψ1(P g
t )−Ψ1(P )

t
= EP

[
Φ1(Y )g (Y ,Y X )

]= EP

[(
Φ1(Y )+Φ1(Y X )

2
−E(Φ1(Y ))

)
g (Y ,Y X )

]
.

As: �Ψ1,P = Φ1(Y )+Φ1(Y X )

2
−E[Φ1(Y )] ∈ ṖP ,

it is the efficient influence function ofΨ1 at P . Hence the efficient asymptotic variance is:

EP

[(�Ψ1,P
)2

]
= Var

(
Φ1(Y )+Φ1(Y X )

)
4

.

As, by the central limit theorem, (Φ1
N ) clearly achieves this efficient asymptotic variance, it is an asymptotically

efficient estimator ofΨ1(P ).

2. We have:

Ψ2(P g
t )−Ψ2(P )

t
= EP

[
Φ2(Y ,Y X )g (Y ,Y X )

]= EP
[(
Φ2(Y ,Y X )−E(Φ2(Y ,Y X ))

)
g (Y ,Y X )

]
.

Thanks to the symmetry ofΦ2, we have that

�Ψ2,P =Φ2(Y ,Y X )−E(Φ2(Y ,Y X ))

belongs to ṖP , hence it is the efficient influence function ofΨ2. So the efficient asymptotic variance is:

EP

[(�Ψ2,P
)2

]
= Var

(
Φ2(Y ,Y X )

)
,

and this variance is achieved by (Φ2
N ).

2.3.3 Application to significance test

In order to simplify the notation, we write the vectors Su,Cl as column vectors. In this section, we give a general
procedure to build significance tests of level α. Then we illustrate this procedure on two examples.
Let u = (u1, . . . ,uk) so that for any i = 1, . . . ,k, uj is a subset of Id = {1, . . . ,d}. Similarly, let v = (v1, . . . ,vl) and w =
(w1, . . . ,wl) so that for any i = 1, . . . , l , viId and wi are subset of Id .
Consider the following general testing problem:

H0 : Su,Cl = 0 and Sv,Cl = Sw,Cl against H1 : H0 is not true.

Remark 2.24. Note that one can also perform tests of the following form:

H0 : Su,Cl É s against H1 : Su,Cl > s,

or
H0 : Su,Cl É Sv,Cl against H1 : Su,Cl > Sv,Cl.

Applying Theorem 2.17 we have

GN =
p

N

((
Su,Cl

N
Sv,Cl

N −Sw,Cl
N

)
−

(
Su,Cl

Sv,Cl −Sw,Cl

))
L→

N→∞
Nk+l (0,Γ) . (2.8)

Since we have an explicit expression of Γ in terms of variances and covariances, we can build an estimator ΓN of Γ
thanks to empirical means. Note that (ΓN )N converges a.s. to Γ. Define

G̃N =
p

N

(
Su,Cl

N
Sv,Cl

N −Sw,Cl
N

)
.
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Then:

GN = G̃N −
(

Su,Cl

Sv,Cl −Sw,Cl

)
.

Corollary 2.25. Under H0, G̃N
L→

N→∞
Nk+l (0,Γ). Under H1, |G̃N (1)|+ |G̃N (2)| a.s.→

N→∞
∞.

This corollary allows us to construct several tests. It is a well-known fact that in the case of a vectorial null hypothesis
"there exists no uniformly most powerful test, not even among the unbiased tests". In practice, we return to the
dimension 1 introducing a function F : Rk+l → R and testing H0(F ) : F (h) = 0 (respectively H1(F ) : F (h) 6= 0) instead
of H0 : h = 0 (resp. H1 : h 6= 0). The choice of a reasonable test "depends on the alternatives at which we wish a high
power".

Remark 2.26. If we take as test statistic TN = AG̃N where A is a linear form defined on Rl+k , then, under H0, TN
L→

N→∞
N

(
0, AΓA′). Replacing Γ by ΓN and using Slutsky’s lemma, we get

(AΓN A′)−1/2TN
L→

N→∞
N (0,1) .

Thus we reject H0 if (AΓN A′)−1/2TN Ê zα where zα is the 1−α quantile of a standard Gaussian random variable. One
can have a similar result when A is not anymore linear but only C 1 by applying the so-called Delta method.

Example 2.27. We compare 5 different test statistics through their power function. Let X= (X1, X2) ∼N (0, I2), and

Y = f (X) =λ1X1 +λ1X2 +λ2X1X2,

with 2λ2
1 +λ2

2 = 1. We consider here the following testing problem

H0 : S1,Cl = S2,Cl =λ2
1 = 0 against H1 : λ1 6= 0.

Computations lead to

Γ(1,1) = Γ(2,2) = 3−2λ2
1 −11λ4

1 +24λ6
1 −24λ8

1

Γ(2,1) = Γ(1,2) =−7λ4
1 +24λ6

1 −24λ8
1.

The Gaussian limit in Theorem 2.17 is N2(0,3I d2) under H0 while it is asymptotically distributed as N2(0,Γ) under H1.

Test 1: we take as test statistic TN ,1 = G̃N (1)+G̃N (2).

Under H0, TN ,1
L→

N→∞
N (0,6) so we reject H0 if TN ,1 > zα where zα/

p
6 is the (1−α) quantile of a standard Gaussian

random variable.While under H1, following the procedure of Remark 2.26 with A = (1 1).(
TN ,1 −2

p
Nλ2

1

)
/(2[Γ(1,1)+Γ(1,2)])1/2 L→

N→∞
N (0,1).

It is then easy to compute the theoretical power function.

Test 2: since the Sobol indices are non negative, the testing problem is naturally unilateral. However in view of
more general contexts we introduce the test statistic TN ,2 = |G̃N (1)|+ |G̃N (2)|. We reject H0 if TN ,2 > zα where zα/

p
3 is

the (1−α) quantile of the random variable having

2p
π

e−u2/4Φ(u/
p

2)1R+ (u)

as density (Φ being the distribution function of a standard Gaussian random variable). Under H1, the power function
of TN ,2 and the limit variance are estimated using Monte Carlo techniques.
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Test 3: in the same spirit, we introduce the test statistic TN ,3 = |G̃N (1)+ G̃N (2)|. We reject H0 if TN ,3 > zα where zα/
p

6
is the (1−α/2) quantile of a standard Gaussian random variable.Under H1, the power function of TN ,3 and the limit
variance are estimated using Monte Carlo techniques.

Test 4: we use the L2 norm and consider TN ,4 = (GN (1))2 + (GN (2))2. Under H0, TN ,4/3
L→

N→∞
χ2(2) so we reject

H0 if TN ,4 > zα where zα/3 is the (1−α) quantile of a χ2 random variablewith 2 degrees of freedom. Under H1, the
power function of TN ,4 and the limit variance are estimated using Monte Carlo techniques.

Test 5: we use the infinity norm and consider TN ,5 = max(|GN (1)|; |GN (2)|). We reject H0 if TN ,5 > zα where zα/
p

3 is the
[1+p

1−α]/2 quantile of a standard Gaussian random variable.Under H1, the power function of TN ,5 and the limit
variance are estimated using Monte Carlo techniques. In Figure 2.1, we thus present the plot of the different power

functions for N = 100, 500 and 1000. Figure 2.1 shows, as expected, that increasing N leads to a steeper power function

(hence, a better discrimination between the hypothesis), and that the estimated power function gets closer to the true
one. We also see that no test is the most powerful, uniformly in λ1, in accordance with the theory quoted above.
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Figure 2.1: Estimated power functions for different values of N .
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Numerical application: a real test case

It is customary in aeronautics to model the fuel mass needed to link two fixed countries with a commercial aircraft by
the Bréguet formula:

M f uel =
(
Mempt y +Mpl oad

)(
e

SFC ·g ·Ra
V ·F 10−3 −1

)
. (2.9)

The fixed variables are

• Mempt y : Empty weight = basic weight of the aircraft (excluding fuel and passengers)

• Mpl oad : Payload = maximal carrying capacity of the aircraft

• g : Gravitational constant

• Ra : Range = distance traveled by the aircraft

The uncertain variables are

• V : Cruise speed = aircraft speed between ascent and descent phase

• F : Lift-to-drag ratio = aerodynamic coefficient

• SFC : Specific Fuel Consumption = characteristic value of engines

We model the uncertainties as presented in Table 2.1.

variable density parameter

V Uniform (Vmi n ,Vmax )
F Beta (7,2,Fmi n ,Fmax )

SFC θ2 e−θ2(u−θ1)
1[θ1,+∞[ θ1 = 17.23,θ2 = 3.45

Table 2.1: Uncertainty modeling

The probability density function of a beta distribution on [a,b] with shape parameters (α,β) is

g(α,β,a,b)(x) = (x −a)(α−1)(b −x)β−1

(b −a)β−1B(α,β)
1[a,b](x) ,

where B(·, ·) is the beta function. We take the nominal and extremal values of V and F as in Table 2.2.

variable nominal value min max

V 231 226 234
F 19 18.7 19.05

Table 2.2: Minimal and maximal values of uncertain variables

The uncertainty on the cruise speed V represents a relative difference of arrival time of 8 minutes.
The airplane manufacturer may wonder whether he has to improve the quality of the engine (SFC ) or the aerodynam-
ical property of the plane (F ). Thus we study the sensitivity of M f uel with respect to F and SFC and we want to know

if H0 : SSFC ,Cl > SF,Cl or H1 : SSFC ,Cl É SF,Cl. Applying the test procedure described previously we can not reject H0.

2.4 Concentration inequalities

2.4.1 Motivation

The starting point is the strong law of large numbers.

Theorem 2.28. Assume (XN )NÊ1 is a sequence of i.i.d. random variables such that E[|XN |] <+∞ then

X1 + . . .+XN

N
a.s.−→

N→∞
E[X1].
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For the statistician, E[X1] represents an unknown quantity to be estimated and (X1 + . . .+XN )/N is an natural estima-
tor. In the real life N never goes to infinity, we only have a finite number of observations (N = 100, N = 1000). It is
then natural to wonder for a fixed N if (X1 + . . .+ XN )/N is close or far from E[X1]. The speed of convergence is also
unnatural question we can be interested in. The first answer concerning the rate of convergence is given by the central
limit theorem.

Theorem 2.29. Let (XN )NÊ1 be a sequence of i.i.d. random variables such that the variance σ2 exists (i.e. E[X 2
1 ] <+∞)

then p
n

( X1 + . . .+XN

N
−E[X1]

)
L−→

N→∞
N (0,σ2).

Roughly speaking this theorem, tells us that (X1+ . . .+XN )/N goes at rate
p

N to E[X1]. Nevertheless, this is an asymp-
totic result and gives no information when N is fixed (in particular if N is small).
The aim of concentration inequalities is to give non asymptotic results allowing to quantify the error (X1+. . .+XN )/N−
E[X1] for a fixed N .

There exists several concentration inequalities, we only present the one needed for our purpose.

2.4.2 Bennett’s inequality

For u ∈R, set φ(u) = eu −u −1 and for u Ê−1, h(u) = (1+u) log(1+u)−u.

Theorem 2.30 (Bennett’s inequality). Let X1, . . . , XN be N independent random variables with finite variance. Assume
that for all index i , Xi É b. Set

S =
N∑

j=1

(
X j −E[X j ]

)
and v =

N∑
j=1
E[X 2

j ].

1. For t > 0

logE[e tS ] É N log

(
1+ v

N b2φ(bt )

)
É v

b2φ(bt ) (2.10)

2. For x > 0,

P (S Ê x) É exp

(
− v

b2 h

(
bx

v

))
É exp{− x2

2(v +bx/3)
}. (2.11)

Proof of Theorem 2.30. Left in Exercise 6.

2.4.3 Concentration inequalities for Su,Cl
N

In this section we give concentration inequalities satisfied by the Sobol indices in one dimension (i.e. k = 1). Classi-
cally, these exponential inequalities can then be used to construct non-asymptotic confidence intervals with a guar-
anteed coverage probability.

Let us introduce the following random variables

U±
j = Y j Y u

j − (Su,Cl ± y)(Y j )2 et J±j = (Su,Cl ± y)Y j −Y u
j

Set V +
U (resp. V −

U , V +
J and V −

J ) the moment of order 2 of the variables U+
j (resp. U−

j , J+j and J−j ).
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Theorem 2.31. Soit b > 0 et y > 0. We assume that Y j and Y u
j belongs to [−b,b]. Then

P
(
Su,Cl

N Ê Su,Cl + y
)
É M1 +2M2 +2M3, (2.12)

P
(
Su,Cl

N É Su,Cl − y
)
É M4 +2M2 +2M5, (2.13)

where

M1 = exp

{
−NV +

U

b2
U

h

(
bU

V +
U

yV

2

)}

M2 = exp

{
−NV

b2 h

(
b

V

√
yV

2

)} M3 = exp

{
−

NV +
J b2

b2
U

h

(
bU

bV +
J

√
yV

2

)}

M4 = exp

{
−NV −

U

b2
U

h

(
bU

V −
U

yV

2

)}

M5 = exp

{
−

NV −
J b2

b2
U

h

(
bU

bV −
J

√
yV

2

)}

and bU = b2(1+Su,Cl + y).

Proof of Theorem 2.31. Since Su,Cl and Su,Cl
N are invariant when one translates the variables Y and Y u we can assume

that E[Y ] = 0.

1. U+
j et U−

j are bounded by bU , J+j and J−j by bU /b. Moreover

E[U+
j ] =−yV E[J+j ] = 0

E[U−
j ] = yV E[J−j ] = 0

and

V ±
U = Var(Y Y u)+ (Su,Cl + y)2Var(Y 2)−2(Su,Cl ± y)Cov(Y Y u,Y 2)+ y2V 2

V ±
J = ((Su,Cl ± y)2 +1)V −2(Su,Cl ± y)Cu .

2. Proof of (2.12). As

{a +b Ê c} ⊂ {a Ê c/2}∪ {b Ê c/2} et {ab Ê c} ⊂ {|a| Êp
c}∪ {|b| Êp

c}

we have

P
(
Su,Cl

N Ê Su,Cl + y
)
=P

 1
N

∑N
j=1 Y j Y u

j −Y N Y
u
N

1
N

∑N
j=1(Y j )2 −

(
Y N

)2 Ê Su,Cl + y


=P

(
1

N

N∑
j=1

(
U+

j −E[U+]
)
+Y N J

+
N Ê yV

)

ÉP
(

N∑
j=1

(
U+

j −E[U+]
)
Ê N

yV

2

)
+P

(
N∑

j=1
Y j Ê N

√
yV

2

)

+P
(

N∑
j=1

(−Y j ) Ê N

√
yV

2

)
+P

(
N∑

j=1
J+j Ê N

√
yV

2

)

+P
(

N∑
j=1

(−J+j ) Ê N

√
yV

2

)
.

Inequality (2.12) comes from the application of Bennett’s inequality (apply Bennett’s result five time).
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3. Proof (2.13). Similarly we have

P
(
Su,Cl

N É Su,Cl − y
)
=P

(
1

N

N∑
j=1

(
−U−

j +E[U−]
)
+ (−Y N )J

−
N Ê yV

)

ÉP
(

N∑
j=1

(
−U−

j +E[U−]
)
Ê N

yV

2

)
+P

(
N∑

j=1
Y j Ê N

√
yV

2

)

+P
(

N∑
j=1

(−Y j ) Ê N

√
yV

2

)
+P

(
N∑

j=1
J−j Ê N

√
yV

2

)

+P
(

N∑
j=1

(−J−j ) Ê N

√
yV

2

)
.

Inequality (2.13) comes from the application of Bennett’s inequality (apply Bennett’s result five time).

2.5 Conclusion and remarks on the Pick-Freeze estimation

The Pick-Freeze estimators have desirable statistical properties such as consistency, central limit theorem with a rate
of convergence in

p
n, concentration inequalities and Berry-Esseen bounds, and asymptotic efficiency. However,

the Pick-Freeze scheme has two major drawbacks. First, it relies on a particular experimental design that may be
unavailable in practice. Second, its cost may be prohibitive when estimating several indices. Naturally, the cost of
an estimator depends on the cost of each evaluation of the code and on the number of evaluations. The number of
model calls to estimate all first-order Sobol’ indices grows linearly with the number of input parameters. For example,
if we consider d = 99 input parameters and only N = 1000 calls are allowed, then only a sample of size N /(d +1) = 10
is available to estimate each single first-order Sobol’ index. It is a poor amount of information to get a satisfying
estimation of the Sobol’ indices.
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2.6 Exercises

Exercise 3. Show that Su,Cl
N is invariant by any centering (translation) of the Yi ’s and Y ui

j ’s for i = 1, . . . ,k.

Exercise 1 continued. Ishigami function Recall that the Ishigami model is given by:

Y = f (X ) = f (X1, X2, X3) = sin X1 +7sin2 X2 +0.1X 4
3 sin X1 (2.14)

where (X j ) j=1,2,3 are i.i.d. uniform random variables in [−π;π]. Remind that

S1 = 0.3139, S2 = 0.4424, S3 = 0.

1. Make a program, that gives the Pick and Freeze estimator of these indices (see Equations (2.4) and (2.5)).

2. Illustrate Theorem 2.17 in dimension 1.

3. Perform simulations in order to show that our test procedure allows us to recover the fact that S3,Cl = 0, even for
relatively small values of N .

Exercise 2 continued. Sobol g-function Recall that the Sobol g-function is given by

Y = gsobol (X) = gsobol (X1, . . . , Xd ) =
d∏

k=1

|4Xk −2|+ak

1+ak
,

where X1, . . . , Xd are i.i.d. random variables uniformly distributed on [0,1].

1. Make a program, that gives the Pick and Freeze estimator of these indices (see Equations (2.4) and (2.5)).

2. Illustrate Theorem 2.17 in dimension 1.

Exercise 4. Let Y = X1 +X2 with X1 and X2 i.i.d. N (0,1) distributed. Let u = ({1}, {2}) so that

Su,Cl =
(

Var(E[Y |X1])

Var(Y )
,

Var(E[Y |X2])

Var(Y )

)
.

Compute Su,Cl and give an explicit formula for the covariance matrices of Theorem 2.17.

Exercise 5. Let Y = X1 + X2 where X1 and X2 are i.i.d. uniformly distributed on [0,1]. Let u = {1}. Compute Su,Cl and
give the bounds M1, M2 and M3 of Theorem 2.31.

Exercise 6. The aim here is to prove (2.10) and (2.11).

1. Check that one can assume (without loss of generality) that b = 1.
2. Proof of (2.10).

- Show that u 7→φ(u)/u2 is an increasing function and that u 7→ log(1+u) is a concave function.
- Deduce that e t X j É 1+ t X j +X 2

j

(
e t − t −1

)
.

- Give then an upper bound of ψS (t ) = logE[e tS ].
- Conclude to (2.10) using the concavity of u 7→ log(1+u).

3. Proof of (2.11).
- Using Markow inequality, prove Markov exponential inequality:

P(X Ê x) É e−t x+logE[e t X ]

for any nonnegative random variable X and x Ê 0.
- Deduce an upper bound of P(S Ê x).
- Verify that

h(u) = (1+u) ln(1+u)−u Ê u2

2(1+u/3)
.

to conclude to (2.11).

Exercise 7. Let X= (X1, X2, X3) ∼N (0, I3), 2λ2
1 +λ2

2 = 1 and

Y = f (X) =λ1(X2 +X3)+λ2X1X2.

Compute the Sobol’ indices and test if X1 has any influence on the output i.e. H0 : S1,Cl = 0, S{1,2},Cl = S2,Cl and S{1,3},Cl =
S3,Cl.



Chapter 3

Extension to multivariate and functional
outputs

3.1 Motivation

We begin by considering two examples that enlighten the need for a proper definition of sensitivity indices for multi-
variate outputs.

Example 3.1. Let us consider the following nonlinear model

Y = f a,b(X1, X2) =
(

f a,b
1 (X1, X2)

f a,b
2 (X1, X2)

)
=

(
X1 +X1X2 +X2

aX1 +bX1X2 +X2

)
where X1 and X2 are assumed to be i.i.d. standard Gaussian random variables.
First, we compute the one-dimensional Sobol indices Sj( f a,b

i ) of f a,b
i with respect to X j (i , j = 1,2). We get

(S1( f a,b
1 ),S1( f a,b

2 )) = (1/3, a2/(1+a2 +b2))

(S2( f a,b
1 ),S2( f a,b

2 )) = (1/3,1/(1+a2 +b2)).

So that, the ratios
S1( f a,b

i )

S2( f a,b
i )

, i = 1,2

do not depend on b. Moreover, for |a| > 1, as this ratio is greater than or equal to 1, X1 seems to have more influence on
the output.
Now let us perform a sensitivity analysis on ‖Y ‖2. Straightforward calculus lead to

S1(‖Y ‖2) Ê S2(‖Y ‖2) ⇐⇒ (a −1)(a3 +a2 +5a +5−4b) Ê 0.

For the quantity ‖Y ‖2, the region where X1 is the most influential variable depends on the value of b. This region is not
very intuitive and cannot be deduced by our first component-by-component sensitivity analysis. See Figure 3.1.

A second motivation to introduce new Sobol indices is related to the statistical problem of their estimation. As the
dimension increases the statistical estimation of the whole vector of scalar Sobol indices becomes more and more
expensive. Moreover, the interpretation of such a large vector is not easy. This strengthens the fact that one needs
to introduce Sobol indices of small dimension, which condense all the information contained in a large collection of
scalars.

In the next section we define new Sobol indices generalizing the scalar ones and containing all the information.
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Figure 3.1: Plot of (a −1)(a3 +a2 +5a +5−4b) Ê 0. The blue corresponds to regions where S1(‖Y ‖2) Ê S2(‖Y ‖2).

3.2 Case of multivariate outputs

3.2.1 Definition of the new indices

Let us recall the notation. We denote byX= (X1, . . . , Xd ) the random input, defined on some probability space (Ω,F ,P)
and valued in some measurable space E = E1 ×·· ·×Ed . We denote also by Y the output

Y = f (X) = f (X1, . . . , Xd ),

where f : E → Rk is an unknown measurable function (d and k are positive integers). We assume that X1, . . . , Xd are
independent and that Y is square integrable (i.e. E[‖Y ‖2] <∞). We also assume, without loss of generality, that the
covariance matrix of Y is positive definite.
Let u be a subset of {1, . . . ,d} and denote by ∼ u its complement in {1, . . . ,d}. Further, we set Xu = (Xi , i ∈ u) and
Eu =∏

i∈u Ei .
As the inputs X1, . . . , Xd are independent, f may be decomposed through the Hoeffding decomposition as in Theorem
1.3:

f (X ) = c + fu(Xu)+ f∼u(X∼u)+ fu,∼u(Xu, X∼u), (3.1)

where c ∈Rk , fu : Eu →Rk , f∼u : E∼u →Rk and fu,∼u : E →Rk are given by

c = E[Y ], fu = E[Y |Xu]− c, f∼u = E[Y |X∼u]− c, fu,∼u = Y − fu − f∼u − c.

Thanks to L2-orthogonality, computing the covariance matrix of both sides of (3.1) leads to

Σ=Cu +C∼u +Cu,∼u. (3.2)

HereΣ, Cu, C∼u and Cu,∼u are denoting respectively the covariance matrices of Y , fu(Xu), f∼u(X∼u) and fu,∼u(Xu, X∼u).

Remark 3.2. Notice that for scalar outputs (i.e. when k = 1), the covariance matrices are scalar (variances), so that
(3.2) may be interpreted as the decomposition of the total variance of Y . The summands traduce the fluctuation in-
duced by the input factors Xu and X∼u, and the interactions between them. The (univariate) Sobol index Su( f ) =
Var(E[Y |Xu))/Var(Y ) is then interpreted as the sensibility of Y with respect to Xu. Due to non-commutativity of the
matrix product, a direct generalization of this index is not straightforward.

In the general case (k Ê 2), for any square matrix M of size k, the equation (3.2) can be scalarized in the following way

Tr(MΣ) = Tr(MCu)+Tr(MC∼u)+Tr(MCu,∼u).
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This suggests to define as soon as Tr(MΣ) 6= 0 the M-sensitivity measure of Y with respect to Xu as

Su(M ; f ) = Tr(MCu)

Tr(MΣ)
.

Of course we can analogously define

S∼u(M ; f ) = Tr(MC∼u)

Tr(MΣ)
, Su,∼u(M ; f ) = Tr(MCu,∼u)

Tr(MΣ)
.

The following lemma is obvious.

Lemma 3.3.

1. The generalized sensitivity measures sum up to 1

Su(M ; f )+S∼u(M ; f )+Su,∼u(M ; f ) = 1. (3.3)

2. 0 É Su(M ; f ) É 1.

3. Left-composing f by a linear operator O of Rk changes the sensitivity measure accordingly to

Su(M ;O f ) = Tr(MOCuOt )

Tr(MOΣOt )
= Tr(Ot MOCu)

Tr(Ot MOΣ)
= Su(Ot MO; f ). (3.4)

4. For k = 1 and for any M 6= 0, we have Su(M ; f ) = Su( f ).

3.2.2 The important identity case

We now consider the special case M = Idk (the identity matrix of dimension k). We set Su( f ) = Su(Idk ; f ). The index
Su( f ) has the following obvious properties.

Proposition 3.4.

1. Su( f ) is invariant by left-composition of f by any isometry of Rk i.e.

for any square matrix O of size k s.t. Ot O = Idk , Su(O f ) = Su( f );

2. Su( f ) is invariant by left-composition by any nonzero scaling of f i.e.

for any λ ∈R, Su(λ f ) = Su( f );

Remark 3.5. The properties in this proposition are natural requirements for a sensitivity measure. In the next section,
we will show that these requirements can be fulfilled by Su(M ; f ) only when M = λIdk (λ ∈ R∗). Hence, the canonical
choice among indices of the form Su(M ; f ) is the sensitivity index Su( f ).

3.2.3 Identity is the only good choice

The following proposition can be seen as a kind of reciprocal of Proposition 3.4.

Proposition 3.6. Let M be a square matrix of size k such that

1. M does not depend neither on f nor u;

2. M has full rank;

3. Su(M ; f ) is invariant by left-composition of f by any isometry of Rk .

Then Su(M ; ·) = Su(·).
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Proof of Proposition 3.6. We can write M = MSym+MAnti s ym where M t
Sym = MSym and M t

Anti s ym =−MAnti s ym . Since,

for any symmetric matrix V , we have
Tr(MAnti s ymV ) = 0, we deduce that Su(M ; f ) = Su(MSym ; f ) (Cu and Σ being symmetric matrices). Thus we assume,
without loss of generality, that M is symmetric.
We diagonalize M in an orthonormal basis: M = PDP t , where P t P = Idk and D diagonal. We have

Su(M ; f ) = Tr(PDP t Cu)

Tr(PDP tΣ)
= Tr(DP t CuP )

Tr(DP tΣP )
= Su(D ;P t f ).

By assumption 1. and 3., M can be assumed to be diagonal.
Now we want to show that M = λIdk for some λ ∈ R∗. Suppose, by contradiction, that M has two different diagonal
coefficients λ1 6= λ2. It is clearly sufficient to consider the case k = 2. Choose f = Id2 (hence, p = 2), and u = {1}. We
have Σ = Id2 and Cu = (

1 0
0 0

)
. Hence on one hand Su(M ; f ) = λ1

λ1+λ2
. On the other hand, let O be the isometry which

exchanges the two vectors of the canonical basis of R2. We have Su(M ;O f ) = λ2
λ1+λ2

. Thus 3. is contradicted if λ1 6=λ2.
The case λ= 0 is forbidden by 2. Finally, it is easy to check that, for any λ ∈R∗, Su(λIdk ; ·) = Su(Idk ; ·) = Su(·).

We now give a toy example to illustrate our definition.

Example 3.1 (continued) We consider the nonlinear model

Y = f a,b(X1, X2) =
(

f a,b
1 (X1, X2)

f a,b
2 (X1, X2)

)
=

(
X1 +X1X2 +X2

aX1 +bX1X2 +X2

)
where X1 and X2 are assumed to be i.i.d. standard Gaussian random variables.
We have

S1( f a,b) = 1+a2

4+a2 +b2 and S2( f a,b) = 2

4+a2 +b2

and obviously
S1( f a,b) Ê S2( f a,b) ⇐⇒ a2 Ê 1.

This result has the natural interpretation that, as X1 is scaled by a, it has more influence if and only if this scaling
enlarges X1’s support i.e. |a| > 1.

3.2.4 Estimation of Su( f )

The Pick-Freeze estimator

In practice, the covariance matrices Cu and Σ are not analytically available. So as in the scalar case (k = 1),we will
estimate Su( f ) by using a Monte-Carlo Pick-Freeze method, which uses a finite sample of evaluations of f .
For this purpose we set Y u = f (Xu, X ′∼u) where X ′∼u is an independent copy of X∼u which is still independent of Xu.
Let N be an integer. We take N independent copies Y1, . . . ,YN (resp. Y u

1 , . . . ,Y u
N ) of Y (resp. Y u). For l = 1, . . . ,k,

and j = 1, . . . , N , we also denote by Y j ,l (resp. Y u
j ,l ) the l th component of Y j (resp. Y u

j ). We then define the following

estimator of Su( f ):

Su
N ( f ) =

∑k
l=1

(
1
N

∑N
j=1 Y j ,l Y u

j ,l −
(

1
N

∑N
j=1

Y j ,l+Y u
j ,l

2

)2)
∑k

l=1

(
1
N

∑N
j=1

Y 2
j ,l+(Y u

j ,l )2

2 −
(

1
N

∑N
j=1

Y j ,l+Y u
j ,l

2

)2) . (3.5)

Remark 3.7. Note that this estimator can be written

Su
N ( f ) = Tr

(
Cu,N

)
Tr(ΣN )

(3.6)

where Cu,N and ΣN are the empirical estimators of Cu = Cov(Y ,Y u) and Σ= Var(Y ) defined by

Cu,N = 1

N

N∑
j=1

Y u
j Y t

j −
(

1

N

N∑
j=1

Y j +Y u
j

2

)(
1

N

N∑
j=1

Y j +Y u
j

2

)t

and

ΣN = 1

N

N∑
j=1

Y j Y t
j +Y u

j (Y u
j )t

2
−

(
1

N

N∑
j=1

Y j +Y u
j

2

)(
1

N

N∑
j=1

Y j +Y u
j

2

)t

.
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Asymptotic properties

A straightforward application of the Strong Law of Large Numbers leads to the following proposition.

Proposition 3.8 (Consistency). Su
N ( f ) converges almost surely to Su( f ) when N →+∞.

We now study to the asymptotic normality of (Su
N ( f ))N .

Proposition 3.9 (Asymptotic normality). Assume E[Y 4
l ] <∞ for all l = 1, . . . ,k. For l = 1, . . . ,k, we set

Ul = (Y1,l −E[Yl ])(Y u
1,l −E[Yl ]), Vl = (Y1,l −E[Yl ])2 + (Y u

1,l −E[Yl ])2.

Then p
N

(
Su

N ( f )−Su( f )
) L→

N→∞
N1

(
0,σ2) (3.7)

where

σ2 = a2
∑

l ,l ′∈{1,...,k}

Cov(Ul ,Ul ′ )+b2
∑

l ,l ′∈{1,...,k}

Cov(Vl ,Vl ′ )+2ab
∑

l ,l ′∈{1,...,k}

Cov(Ul ,Vl ′ ), (3.8)

with

a = 1∑k
l=1 Var(Yl )

, b =−a

2
Su( f ).

3.3 Case of functional outputs

In many practical situations the output Y is functional. It is then useful to extend the vectorial indices to functional
outputs. This is the aim of this section.

3.3.1 Definition

Let H be a separable Hilbert space endowed with the scalar product 〈·, ·〉 and the norm || · ||. Let f be a H-valued
function, i.e. Y and Y u areH-valued random variables. Recall that E[Y ] is defined by duality as the unique member of
H satisfying

E[〈h,Y 〉] = 〈h,E[Y ]〉 for all h ∈H.

We assume that E[‖Y ‖2] < ∞. Recall that the covariance operator associated with Y is the endomorphism Γ on H

defined, for h ∈H by Γ(h) = E[〈Y ,h〉Y ]. We also recall that it is a well known fact that E[‖Y ‖2] <∞ implies that Γ is then
a Trace class operator and its trace is then well defined. We generalize the definition of Su( f ) introduced in Section 3.2
for functional outputs.

Definition 3.10. Su,∞( f ) = Tr(Γu)
Tr(Γ) , where Γu is the endomorphism onH defined by Γu(h) = E[〈Y u,h〉Y ] for any h ∈H.

In the next lemma, we give the so-called polar decomposition of the traces of Γ and Γu.

Lemma 3.11. We have

Tr(Γ) = E[‖Y ‖2]−‖E[Y ]‖2

Tr(Γu) = 1

4

[
E[

∥∥Y +Y u∥∥2 −E[
∥∥Y −Y u∥∥2]−4‖E[Y ]‖2

]
.

Let (ϕl )1Él be an orthonormal basis ofH. Then

‖Y ‖2 =
∞∑

i=1
〈Y ,ϕi 〉2.
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Now, in order to proceed to the estimation of Su,∞( f ) (and thus first to the estimation of Tr(Γ) and Tr(Γu)), we truncate
the previous sum by setting

‖Y ‖2
m =

m∑
i=1

〈Y ,ϕi 〉2.

Remark 3.12. It amounts to truncate the expansion of Y to a certain level m. Let Ym be the truncated approximation
of Y :

Ym =
m∑

l=1
〈Y ,ϕi 〉ϕl ,

seen as a vector of dimension m. Thus the results of Section 3.2.4 can be applied to Ym . Notice that Ym is then the
projection of Y onto Span(ϕ1, . . . ,ϕm).

3.3.2 Estimation of Su,∞( f )

As in Section 3.2.4, we define the following estimator of Su,∞( f ):

Su,m
N ( f ) =

1
4N

∑N
j=1

(∥∥∥Y j +Y u
j

∥∥∥2

m
−

∥∥∥Y j −Y u
j

∥∥∥2

m
−

∥∥∥Y +Y u
∥∥∥2

m

)
1
N

∑N
j=1

( ∥∥Y j
∥∥2

m+
∥∥∥Y u

j

∥∥∥2

m
2 −

∥∥∥ Y +Y u

2

∥∥∥2

m

) .

Let T be aH-valued random variable. For any sequence (T j )i∈N∗ of iid variables distributed as T , we define

DN ,m(T ) = 1

N

N∑
j=1

(
‖Ti‖2

m −
∥∥∥T

∥∥∥2

m

)

and

e j = E[〈Ti ,ϕ j 〉]
v j = E[〈Ti ,ϕ j 〉2]

Zi , j = 〈Ti ,ϕ j 〉−e j

Wi , j = 〈Ti ,ϕ j 〉2 − v j .

In the spirit of [43], we decompose DN ,m(T ) and give asymptotics for each of the terms of the decomposition.
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Proposition 3.13.

1. DN ,m(T ) can be rewritten as the sum of a totally degenerated U-statistic of order 2, a centered linear term and a
deterministic term in the following way

DN ,m(T )−E(‖T ‖2)+‖E (T )‖2 =−UN K (T )+PN L(T )−Bm(T ) (3.9)

where

UN K (T ) :=
m∑

l=1

1

N 2

∑
1Éi 6= jÉN

Zi ,l Z j ,l

PN L(T ) := 1

N

(
1− 1

N

) m∑
l=1

N∑
i=1

(
Wi ,l −2el Zi ,l

)
Bm(T ) := ∑

l>m

(
vl −e2

l

)+ 1

N

m∑
l=1

(
vl −e2

l

)
.

2. Assume that there exists δ> 1 so that
vl = E

(〈T,ϕl 〉2)=O(l−(δ+1)) (3.10)

and δ′ > 1 so that
E
(〈T,φl 〉4)=O(l−δ

′
). (3.11)

Then for any m = m(N ) so that:
m(N )

N
1

2δ

→+∞,
m(N )p

N
→ 0, (3.12)

we have

(a) B 2
m(T ) = o (1/N )

(b) E
(
(UN K (T ))2

)= o (1/N )

(c) PN L(T )−PN L′(T ) = oP
(

1p
N

)
where PN L′(T ) := 1

N

(
1− 1

N

)∑∞
l=1

∑N
i=1

[
Wi ,l −2el Zi ,l

]
.

Theorem 3.14. Suppose that conditions (3.10), (3.11) and (3.12) of Proposition 3.13 are fulfilled. Then we have: Under
some mild assumptions, one has p

N (Su,m
N ( f )−Su,∞( f ))

L→
N→∞

N (0,σ2) (3.13)

with σ2 depending on the moments of (DN ,m(Y ),DN ,m(Y +Y u),DN ,m(Y −Y u)).
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3.4 Exercises

Exercise 8. We consider the following model:

Y = f (X1, X2) =
(

f1(X1, X2)
f2(X1, X2)

)
=

(
X1 +X2 +X1X2

aX1 +bX1X2 +X2

)
where X1 and X2 independent uniform random variables on [−1,1].
Compute

• the sensitivity indices of each of the coordinates of Y : S1( f1), S1( f2) and S2( f1) and S2( f2);

• the global sensitivity indices of Y : S1( f ) and S2( f ).

Exercise 9. We study the following two-dimensional model

Y = f (X1, X2) =
(

f1(X1, X2)
f2(X1, X2)

)
=

(
X1 cos X2

X1 sin X2

)
with (X1, X2) ∼ Unif([0;10]) ⊗ Unif([0;π/2]).
Compute

• the sensitivity indices of each of the coordinates of Y : S1( f1), S1( f2) and S2( f1) and S2( f2);

• the sensitivity indices of ‖Y ‖2: S1(‖Y ‖2) and S2(‖Y ‖2);

• the global sensitivity indices of Y : S1( f ) and S2( f ).

Exercise 10. We consider as first example

Y = f a(X1, X2) =
(

aX1

X2

)
,

with X1 and X2 i.i.d. standard Gaussian random variables.



Chapter 4

Another estimation of Sobol’ indices:
rank-based procedure

In a recent work [28], Chatterjee studies the dependence between two variables by introducing an empirical correla-
tion coefficient based on rank statistics, see Section 4.1.1 below for the precise definition. Further, the quantification
of the dependence has also been investigated in the bivariate case (namely, in the copula setting), see [4, 37, 121]. The
striking point of [28] is that this empirical correlation coefficient converges almost surely (a.s.) to the Cramér-von-
Mises index priorly introduced in [49] as the sample size goes to infinity.
In this paper, we show how to embed Chatterjee’s method in the GSA framework, thereby eliminating the two draw-
backs of the classical Pick-Freeze estimation mentioned above. Thus no particular design of experiment is needed for
the estimation that can be done with a unique n-sample. In addition, we generalize Chatterjee’s approach to allow the
estimation of a large class of GSA indices which includes the Sobol’ indices (defined in Section 1.3 of Chapter 1) and
the higher-order moment indices proposed by Owen [91–93] (defined in Section 5.1 of Chapter 5). Using a single sam-
ple of size n, it is now possible to estimate at the same time all the first-order Sobol’ indices, the Cramér-von-Mises
indices, and other useful sensitivity indices. Furthermore, we show that this new procedure provides estimators also
converging at rate

p
n by proving a CLT in the estimation of the first-order Sobol’ indices.

4.1 A novel generation of estimators based on rank statistics

4.1.1 Chatterjee’s correlation coefficient

In [28], Chatterjee considers a pair of real-valued random variables (V ,Y ) and an i.i.d. sample (V j ,Y j )1É jÉn . In or-
der to simplify the presentation, we assume that the laws of V and Y are both diffuse (ties are excluded). The pairs
(V(1),Y(1)), . . . , (V(n),Y(n)) are rearranged in such a way that

V(1) < . . . <V(n).

Then let π( j ) be the rank of V j in the sample (V1, . . . ,Vn) of V and define

N ′( j ) =
{
π−1(π( j )+1) if π( j )+1 É n,

j if π( j ) = n.
(4.1)

The new correlation coefficient defined by Chatterjee in [28] is denoted ξn(V ,Y ) and given by

1

n

n∑
j=1

( 1

n

n∑
k=1

1{YkÉY j }1{YkÉYN ′( j )} −
( 1

n

n∑
k=1

1{Y j ÉYk }

)2)/ 1

n

n∑
j=1

Fn(Y j )(1−Fn(Y j )) (4.2)

where Fn stands for the empirical distribution function of Y : Fn(t ) = 1
n

∑n
k=11{YkÉt }.

The author proves that ξn(V ,Y ) converges a.s. to a deterministic limit ξ(V ,Y ) given by

ξ(V ,Y ) =
∫
Rk E

[(
F (t )−F u(t )

)2
]

dF (t )∫
Rk F (t )(1−F (t ))dF (t )

=
E
[
E
[(

F (Z )−F u(Z )
)2

]]
∫
Rk F (t )(1−F (t ))dF (t )

.

This quantity is equal to the Cramér-von-Mises sensitivity index SV
2,CV M with respect to V as soon as V is one of the

random variables X1, ..., Xp in the model (2.1) that are assumed to be real-valued. See Section 5.2 of Chapter 5 for the
definition and properties of the Cramér-von Mises indices.
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Further, he also proves a CLT when V and Y are independent. Observe that the analogue of the Pick-Freeze version
Y V with respect to V of Y becomes YN ′ and

Var(E[1{Y Ét }|Xu]) = Cov(1{Y Ét },1{Y uÉt }).

is replaced by the formula
E[1{Y j Êt }1{YN ′( j )Êt }|V1, . . . ,Vn] =GV j (t )GVN ′( j )

(t ) (4.3)

for all j = 1, . . . ,n that is mentioned in the proof of Lemma 7.10 in [28, p.24], with GV the conditional survival function:
GV (t ) =P(Y Ê t |V ). It is worth noticing that a unique n sample of input-output provides consistent estimations of the
p first-order Cramér-von-Mises indices.

4.1.2 Generalization of Chatterjee’s method

In this section, we propose a universal estimation procedure of expectations of the form

E[E[g (Y )|V ]E[h(Y )|V ]],

for two integrable functions g and h. In fact, we consider a more general random element V (no longer assumed to
be real) and a more general permutation denoted by τn . This result is a generalization of (4.3) and can be interpreted
as an approximation of Var(E[Y |Xu]) = Cov(Y ,Y u). To this end, we introduce the functionΨV defined by

ΨV (g ) = E[g (Y )|V ] (4.4)

for any integrable function g . Let Fn be the σ-algebra generated by {V1, . . . ,Vn}. Note that in Section 5.2 of Chapter 5
dealing with the Cramér-von Mises indices, we will consider g (x) = g t (x) =1{xÊt } so thatΨV (g ) =P(Y Ê t |V ) =GV (t ).

Lemma 4.1. Let g and h be two integrable functions such that g h is also integrable. Let (V j ,Y j )1É jÉn be an n-sample
of (V ,Y ). Consider a Fn-measurable random permutation τn such that τn( j ) 6= j , for all j = 1, . . . ,n. Then

E
[
g (Y j )h(Yτn ( j ))|V1, . . . ,Vn

]=ΨV j (g )ΨVτn ( j ) (h). (4.5)

The previous lemma (the proof of which has been postponed to Appendix A.1) leads to a generalization of the first
part of the numerator of ξn defined in (4.2). Following the same lines as in [28], one may prove that such a quantity
converges a.s. as n →∞ under some mild conditions. The reader is referred to Appendix A.1 for the detailed proof of
Proposition 4.2.

Proposition 4.2. Let g and h be two bounded measurable functions. Consider a Fn-measurable random permutation

τn with no fix point (i.e. τn( j ) 6= j for all j = 1, . . . ,n) and such that Vτn (i )
L= Vτn ( j ) for any i and j = 1, . . . ,n. In addition,

we assume that for any j = 1, . . . ,n, Vτn ( j ) →V j as n →∞ a.s. Then χn(V ,Y ; g ,h) defined by

χn(V ,Y ; g ,h) = 1

n

n∑
j=1

g (Y j )h(Yτn ( j )) (4.6)

converges a.s. as n →∞ to χ(V ,Y ; g ,h) = E[ΨV (g )ΨV (h)], whereΨV has been defined in (4.4).

Notice that the permutation τn = N defined by

N ( j ) =
{
π−1(π( j )+1) if π( j )+1 É n,

π−1(1) if π( j ) = n.
(4.7)

satisfies the assumptions of Lemma 4.1 and Proposition 4.2. Observe that N only differs from N ′ defined in (4.1) at j
such that π( j ) = n.

4.2 The rank estimator of the first-order Sobol’ indices

4.2.1 Estimation procedure based on rank statistics

We can now leverage the above results and construct a new family of estimators for Sobol’ indices. More precisely, let
us consider the model (2.1) and assume we want to estimate the first-order Sobol’ index S1 defined in (2.2) with respect
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to V = X1 assumed to be real-valued. We then define N as in (4.7) where π is the rank of X1. Taking g (x) = h(x) = x
and τn = N , (4.5) provides the analogue to ξn to estimate the classical Sobol’ indices:

ξSobol
n (X1,Y ) :=

1
n

∑n
j=1 Y j YN ( j ) −

(
1
n

∑n
j=1 Y j

)2

1
n

∑n
j=1(Y j )2 −

(
1
n

∑n
j=1 Y j

)2 , (4.8)

where the denominator is reduced to the empirical variance of Y . As the functions g and h are here unbounded,
Proposition 4.2 does not apply and thus offers no asymptotic information. However, the quantity of interest Y being
generally bounded in practice, appropriately truncated versions of g and h could be considered.

4.2.2 A central limit theorem

We establish a CLT for the estimator ξSobol
n (X1,Y ) of the first-order Sobol’ index with respect to X1 (assumed to be real-

valued) under some mild assumptions on the model f and the random input X1 in (2.1). The proof of the theorem is
given in Appendix A.2.

Theorem 4.3. Assume that X1 is uniformly distributed on [0,1] and f in (2.1) is a twice differentiable function with
respect to its first coordinate. Further, we suppose that f and its two first derivatives (with respect to its first coordinate)
are bounded. Then p

n
(
ξSobol

n (X1,Y )−S1
)

is asymptotically Gaussian with zero mean and explicit variance σ2 given in Appendix A.2.4.

Remark 4.4. The boundedness of f implies that f has a fourth moment, that is the minimal assumption to get a CLT.

Moreover, let us observe that Theorem 4.3 only implies the convergence in probability. Nevertheless, under the assump-
tions of Theorem 4.3 (f bounded so is Y ), Proposition 4.2 applies to derive the almost sure convergence of ξSobol

n (X 1,Y ).

The assumption on the distribution of X1 can be relaxed as stated in the following corollary.

Corollary 4.5. Let FX1 be the cumulative distribution function of X1. Assume that f ◦ F−1
X1

is a twice differentiable

function such that f ◦F−1
X1

and its two first derivatives are bounded. Then the conclusion of Theorem 4.3 still holds.

Theorem 4.3 and Corollary 4.5 naturally allow to build statistical tests for testing H0 : S1 = 0 against H1 : S1 6= 0. One
can note that Chatterjee [28] result allows to test the independence of the input X1 with respect to the output Y which
is a stronger assumption than S1 = 0, this was for example studied in [106]. In addition, our result allows to compute
the power of the statistical test against any alternative of the kind H1,0 : S1 > s1

0 for any s1
0 > 0.

Remark 4.6. A careful reading of the different steps of the proof shows that Theorem 4.3 can be slightly extended to more
general situations involving more than two successive order statistics and with more general second variable (X2, . . . , Xp ).
See the forthcoming paper [50].

The proof of our CLT is a bit long and technical and is postponed to the Appendix A.2. In a nutshell, this proof stands
on three main ingredients. First, the regularity assumption on the function f allows to expand the statistic under
study as a quadratic functional of the two independent sequences of random variables. The quadratic part for the
first sequence involves order statistics of the uniform distribution and may be linearized. The second ingredient is
the distribution representation of uniform order statistics by ratios of exponential convolution. The third ingredient
is less classical and involves a conditional trick to show a central limit theorem for an empirical mean of a product.
Let sketch the idea on a simple example. Let (ξn)n and (δn)n be two independent sequences of centered square
integrable random variables. We set Mn = n−1/2 ∑n

j=1 ξ jδ j and let T be the σ-field generated by the sequence (δn).
Of course, the classical CLT gives that Mn converges in distribution towards a centered Gaussian distribution with
variance Var(ξ1)Var(δ1). A less classical proof of this result consists in showing that, a.s., conditionally to T the same
convergence in distribution holds. Indeed, this last result follows directly from the Lindeberg CLT and the strong law
of large numbers for n−1 ∑n

j=1δ
2
j .
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4.2.3 Comparison of the different estimation procedures

The estimator based on rank statistics ξSobol
n (X1,Y ) defined in (4.8) can be compared to the classical Pick-Freeze esti-

mators S1
n and T 1

n given in (2.4) and (2.5) respectively (with u = {1}) but also to a sequence of estimators involving the
estimators T̂n introduced in [34].

Required sample sizes With the rank-based procedure, a unique n-sample of input-output provides consistent and
asymptotically normal estimations of the p first-order Sobol’ indices (together with consistent and asymptotically
normal estimations of the p first-order Cramér-von-Mises indices with no extra cost). In contrast, using the Pick-
Freeze estimation, if one wants to estimate all the p first-order Sobol’ indices and the p Cramér-von-Mises indices,
(p + 2)n calls of the computer code are required. The number of calls grows linearly with respect to the number of
input parameters. This is a practical issue for large input dimension domains. A second drawback of the Pick-Freeze
estimation scheme comes from the need of the particular Pick-Freeze design that is not always available.

Limiting variances Since the empirical mean and variance are already known to be asymptotically efficient in the
statistical sense1 to estimate the expectation and the variance of the output, we restrict our study to the comparison
of the limiting variances obtained via the Pick-Freeze and the rank-based procedures in the estimation of E[E[Y |X1]2]
only.
In view of the proof of [62, Proposition 2.2], the Pick-Freeze limiting variance obtained using both S1

n and T 1
n in

estimating E[E[Y |X1]2] = E[Y Y 1] is simply given by Var(Y Y 1), where Y 1 = f (X1,W 1) is the Pick-Freeze version of
Y = f (X1, X2, . . . , Xp ) = f (X1,W ).
Using the above Lemmas A.1 and A.2 together with (A.19) leads to the rank-based limiting variance obtained using
ξSobol

n (X1,Y ):

Σ1,1
B +Σ1,1

C = E[
Var

(
Y Y 1|X1

)]+E[
Cov

(
Y Y 1,Y Y 11|X1

)]−E[(Y +Y 1) fx (X1,W )X1]2

+E[(Y +Y 1)(Ỹ + Ỹ 1) fx (X1,W ) fx (X̃1,W̃ )(X1 ∧ X̃1)], (4.9)

where Y = f (X1, X2, . . . , Xp ) = f (X1,W ), Y 1 = f (X1,W 1), Y 11 = f (X1,W 11), Ỹ = f (X̃1,W̃ ), and Ỹ 1 = f (X̃1,W̃ 1) with X1

and X̃1 i.i.d., W , W̃ , W 1, and W 11 i.i.d. also independent of X1 and X̃1. Note that Y 1 and Y 11 (respectively Ỹ 1) are
Pick-Freeze versions of Y (resp. Ỹ ). The paragraph’s aim is to compare the limiting variances obtained by the two
methods (Pick-Freeze and rank-based).
To do so, we recall that the Pick-Freeze experiment requires n(p +1) observations (or computations of the black-box
code) to estimate the p first-order Sobol’ indices. In order to have a fair comparison of both estimation methods, we
then consider that we have n(p +1) i.i.d. observations of Y given by model (2.1) to estimate the p first-order Sobol’
indices using the rank statistics. With n(p +1) observations instead of n, the asymptotic variance obtained using the
rank-based methodology is divided by (p +1), so that we want to compare

VPF := (p +1)(Var(Y Y 1), . . . ,Var(Y Y p ))> to VRank := (Σ1,1
B +Σ1,1

C , . . . ,Σp,p
B +Σp,p

C )>

where Y i is the Pick-Freeze version of Y with respect to Xi (for i = 2, . . . , p) and Σi ,i
B +Σi ,i

C has the same expression as

Σ1,1
B +Σ1,1

C in (4.9) replacing the superscripts and the subscripts 1 by i (for i = 2, . . . , p).

Example. We consider the following linear model

Y = f (X1, . . . , Xp ) =αX1 +X2 + . . .+Xp , (4.10)

where α> 0 is a fixed constant, X1, X2, . . ., and Xp are p independent and uniformly distributed random variables on
[0,1].
We denote by m1,p and m2,p the two first moments of Zp := X2 + . . .+Xp and m1,p,α and m2,p,α the two first moments
of Zp,α := αX1 + X3 + . . .+ Xp . In addition, let vp and vp,α be the variances of Zp of Zp,α. Hence vp = m2,p −m2

1,p ,

vp,α = m2,p,α−m2
1,p,α,

m1,p = 1

2
(p −1), m2,p = 1

12
(p −1)(3p −2), m1,p,α = 1

2
(α+m1,p−1) = 1

2
(α+p −2),

m2,p,α = 1

3
α2 +αm1,p−1 +m2,p−1 = 1

3
α2 + 1

2
(p −2)α+ 1

12
(p −2)(3p −5).

1The reader is referred to [122, Section 25] for the definition of the asymptotic efficiency and related results.
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By symmetry, after obvious computations, one gets, for i = 2, . . . , p,

Var(Y Y 1) = 4

45
α4 + 1

3
m1,pα

3 + 1

3

(
2vp +m2

1,p

)
α2 +2m1,p vpα+ vp (vp +2m2

1,p ),

Var(Y Y i ) = 4

45
+ 1

3
m1,p,α+ 1

3

(
2vp,α+m2

1,p,α

)
+2m1,p,αvp,α+ vp,α(vp,α+2m2

1,p,α)

while

V 1
Rank =

4

45
α4 + 1

3
m1,pα

3 + 1

3

(
4vp +m2

1,p

)
α2 +4m1,p vpα+ vp

(
vp +4m2

1,p

)
,

V i
Rank =

4

45
+ 1

3
m1,p,α+ 1

3

(
4vp,α+m2

1,p,α

)
+4m1,p,αvp,α+ vp,α

(
vp,α+4m2

1,p,α

)
.

We compare these limiting variances in Figures 4.1 and 4.2. The results are clear and illustrate the fact that the rank-
based methodology works much better for all value of p Ê 2. In addition, the more the value of p increases the greater
the gain, as expected.

Figure 4.1: Linear model defined in (4.10). The limiting variances with respect to X1 (plain lines) and to X2 (plain lines
with +) are plotted. The rank-based estimation procedure is represented in blue while the Pick-Freeze estimation
procedure is represented in red. As explained, the Pick-Freeze estimation procedure has been weighted by (p +1) to
have a fair comparison. The number of variables involved in the model varies from p = 2 to p = 7.

Remark 4.7. Observe that a more precise comparison should consists in comparing (via definite-positiveness) the lim-
iting covariance-variance matrices involving both the limiting variances and the limiting covariances. If it is straight-
forward to compute the covariance terms for the Pick-Freeze methodology: for i = 2, . . . , p,

Cov(Y Y 1,Y Y i ) = 1

24
α4 + 1

12
m1,p−1α

3 +
( 7

144
+ 1

4
vp−1 + 1

6

(
m1,p−1 + 1

2

)2)
α2

+
(1

8
+ 1

12
m1,p−1 + 1

2
vp−1 + vp−1m1,p−1

)
α+ vp−1

(
m1,p−1 + 1

2

)2
,

it is much more tricky to deal with the rank-based procedure. Indeed, to do so a joint CLT is required for the vector of all
p first-order Sobol’ indices whose proof is not a direct generalization of the proof of Theorem 4.3. Such an extension will
be done in a forthcoming paper.

Asymptotic efficiency The two previous procedures do not rely on the same design of experiment so that it is not
possible to determine which one is the more efficient in the sense of [122, Section 25].
By [48, Proposition 2.5], the sequence of estimators (T 1

n )n is asymptotically efficient to estimate S1 when the distribu-
tion P of (Y ,Y 1) belongs to P , the set of all c.d.f. of exchangeable random vectors in L2(R2).
Using a unique n-sample, one may compare the rank-based estimators introduced in this paper and the procedure
involving the estimators T̂n defined in [34, page 11]. Such estimator is particularly tricky to compute and not easily
tractable in practice. More precisely, the initial n-sample is split into two samples of sizes n1 and n2 = n−n1. The first
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Figure 4.2: Linear model defined in (4.10). The difference between the limiting variances with respect to X1 (left panel)
and to X2 (right panel) are plotted. As explained, the Pick-Freeze estimation procedure has been weighted by (p +1)
to have a fair comparison. The number of variables involved in the model varies from p = 2 to p = 7.

sample is dedicated to the estimation of the joint density of (X ,Y ) while the second one is used to compute a Monte-
Carlo estimation of the integral involved in the quantity of interest. In a work under progress [52], another estimator
based on kernels and the same design of experiment is proposed. This estimator is more tractable in practice.
By [34, Theorems 3.4 and 3.5], the sequence of estimators (T̂n)n is asymptotically efficient to estimate E[E[Y |X ]2]
leading to an asymptotically efficient sequence of estimators of S1. The proof of the following proposition has been
postponed in Appendix A.3.

Proposition 4.8. Consider the sequence of estimators T̂n introduced in [34, page 11]. Assume that the joint dis-
tribution P of (X ,Y ) is absolutely continuous with respect to the product probability PX ⊗ PY , namely P (d x,d y) =
f (x, y)PX (d x)PY (d y). Then the sequence (R1

n)n

R1
n = T̂n − ( 1

n

∑n
i=1 Yi

)2

1
n

∑n
i=1 Y 2

i − ( 1
n

∑n
i=1 Yi

)2

is asymptotically efficient in estimating S1. In addition, its (minimal) variance σ2
min is

σ2
min := 1

Var(Y )2 Var
(
2E[Y ](1−S1)Y +S1Y 2 +E[Y |X ](E[Y |X ]−2Y )

)
.

Thus we are interested in the comparison of σ2
min and σ2 given in Theorem 4.3. Let us consider again the example of

the linear model (4.10) introduced in the previous paragraph.
Example (continued). We consider the model defined in (4.10). As done in the previous paragraph, we only compare
V 1

Eff
:= Var(E[Y |X1](2Y −E[Y |X1])) to Σ1,1

B +Σ1,1
C and V i

Eff
:= Var(E[Y |Xi ](2Y −E[Y |Xi ])) to Σi ,i

B +Σi ,i
C for i = 2, . . . , p. After

some trivial computations, one gets

V 1
Eff =

4

45
α4 + 1

3
m1,pα

3 + 1

3

(
4vp +m2

1,p

)
α2 +4m1,p vpα+4vp m2

1,p ,

V i
Eff =

4

45
+ 1

3
m1,p,α+ 1

3

(
4vp,α+m2

1,p,α

)
+4m1,p,αvp,α+4vp,αm2

1,p,α.

We compare these limiting variances in Figure 4.3. We observe that the limiting variances obtained with the rank
methodology do not differ much from the efficient variances.

4.2.4 Recovering other classical indices

In [44], the authors considered computer codes of the form (2.1) valued on a compact Riemannian manifold. In this
framework, they proposed a sensitivity index in the flavour of the Cramé-von-Mises index and they used the Pick-
Freeze scheme to provide a consistent estimator. The authors of [51] extend the previous indices to the context of
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Figure 4.3: Linear model defined in (4.10). The limiting variances with respect to X1 (plain lines) and to X2 (plain
lines with +) are plotted. The rank-based estimation procedure is represented in blue while the efficient variances are
represented in red. The number of variables involved in the model varies from p = 2 to p = 7.

general metric spaces and propose U-statistics-based estimators improving the classical Pick-Freeze procedure. In
light of Section 4.1.1, one may introduce a novel estimation of the indices introduced in [51] requiring a unique n-
sample. The reader is referred to [42] for more details on the procedure.
Following [92, 93], extensions to Sobol’ indices are obtained by replacing their numerator by higher-order moments.
In [49], the authors construct a Pick-Freeze estimator for such extensions. One again, we are now able to propose
another estimation scheme based on a unique n-sample. The reader is referred to [50] for the generalization of Lemma
4.1 and the corresponding asymptotic study.



50 CHAPTER 4. RANK-BASED ESTIMATION OF SOBOL’ INDICES



Chapter 5

Beyond variance-based indices: the
Cramér-von Mises index and its extensions

As pointed out before, Sobol’ indices are based on L2 decomposition. As a matter of fact, Sobol’ indices are well
adapted to measure the contribution of an input on the deviation around the mean of Y . We begin by considering two
examples that enlighten the need for more general indices in a sense to be defined later.

Example 5.1. Let X1 and X2 be two independent random variables with distinct distributions sharing the four first
moments. Consider

Y = X1 +X2 +X 2
1 X 2

2 .

Then

Var(E [Y |X1]) = Var(X1 +X 2
1E

[
X 2

2

]
)

= Var(X2 +X 2
2E

[
X 2

1

]
) = Var(E [Y |X2])

so that S1 = S2. Nevertheless, Y is a symmetrical function of X1, X2 but if X1 and X2 have different distributions, X1 and
X2 should act differently.

It seems important to consider sensitivity indices that take into account not only the two first moments but eventually
on the whole distribution. it leads us to consider moment-independent importance measures.

5.1 A first approach to go beyond variance-based indices: higher order moment-
based indices

Using the classical Hoeffding decomposition, for a singleton v ∈ Id , the numerator of the classical Sobol index with
respect to v is given by

H 2
v = E

[(
E[Y |X v]−E[Y ]

)2
]

. (5.1)

Following [93] and [92], we generalize this quantity by considering higher order moments. Indeed, for any integer
p Ê 2, we set

H p
v := E[(

E[Y |X v]−E[Y ]
)p]

. (5.2)

Hv = H 2
v . The following lemma gives the Pick and Freeze representation of H p

v for p Ê 2.

Lemma 5.2. For any v ∈ Id , one has

E
[(
E[Y |X v]−E[Y ]

)p]= E[
p∏

i=1

(
Y v,i −E[Y ]

)]
. (5.3)

Here, Y v,1 = Y and for i = 2, . . . , p, Y v,i is constructed independently as Y v defined in equation (5.18).

51
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Obviously, H p
v is non negative for even p and ∣∣H p

v

∣∣É E[|Y −E[Y ]|p]
.

Further, H p
v is invariant by any translation of the output.

Estimation procedure In view of the estimation of H p
v , we first expand the product in the right-hand side of (5.3) to

get that

H p
v =

p∑
l=0

(
p

l

)
(−1)p−lE [Y ]p−l E

[
l∏

i=1
Y v,i

]
.

with the usual convention
∏0

i=1 Y v,i = 1. Second, we use a Monte Carlo scheme and consider the following Pick and
Freeze design constituted by the following p ×N -sample(

Y v,i
j

)
(i , j )∈Ip×IN

.

We define for any any N ∈N∗, j ∈ IN and l ∈ Ip ,

P v
l , j =

(
p

l

)−1 ∑
k1<...<kl∈Ip

(
l∏

i=1
Y v,ki

j

)
and P

v
l = 1

N

N∑
j=1

P v
l , j .

The Monte Carlo estimator is then

H v
p,N =

p∑
l=0

(
p

l

)
(−1)p−l

(
P

v
1

)p−l
P

v
l . (5.4)

Notice that we generalize the estimation procedure of [48] and use all the available information by considering the
means over the set of indices k1, . . . ,kl ∈ Id , kn 6= km . The following theorem provides asymptotic properties of H v

p,N .

Theorem 5.3. H v
p,N is consistent and asymptotically Gaussian:

p
N

(
H v

p,N −H v
p

)
L→

N→∞
N

(
0,σ2) (5.5)

where

σ2 = p
[
Var(Y )+ (p −1)Cov(Y ,Y v,2)

](
p∑

l=1
al bl

)2

,

al =
l

p
E[Y ]l−1, l = 1, . . . , p

b1 = (−1)p−1p(p −1)E[Y ]p−1 +
p−1∑
l=2

(
p

l

)
(−1)p−l (p − l )E[Y ]p−l−1E

[
l∏

i=1
Y v,i

]
and

bl =
(

p

l

)
(−1)p−lE[Y ]p−l , l = 1, . . . , p.

Proof of Theorem 5.3. The consistency follows from a straightforward application of the strong law of large numbers.
The asymptotic normality is derived by two successive applications of the delta method [122] .

(1) Let W 1
j = (Y v,1

j , . . . ,Y v,p
j )T ( j = 1, . . . , N ) and g 1 the mapping from Rp to Rp whose l -th coordinate is given by

g 1
l (x1, . . . , xp ) =

(
p

l

)−1 ∑
k1 < . . . < kl

ki ∈ Ip , i = 1, . . . , l

(
l∏

i=1
xki

)
.
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LetΣ1 be the covariance matrix of W 1
j . Clearly, one hasΣ1

i i = Var(Y ) for i ∈ Ip whileΣ1
i j = Cov(Y v,i ,Y v, j ) = Cov(Y ,Y v,2).

The multidimensional central limit theorem gives with m = (E[Y ], . . . ,E[Y ])T

p
N

(
1

N

N∑
j=1

W 1
j −m

)
L→

N→∞
Np

(
0,Σ1) .

We then apply the so-called delta method to W 1 and g 1 so that

p
N

(
g 1

(
W

1
N

)
− g 1 (

E
[
W 1])) L→

N→∞
N

(
0, Jg 1

(
E
[
W 1])Σ1 Jg 1

(
E
[
W 1])T

)
with Jg 1

(
E
[
W 1

])
the Jacobian of g 1 at point E

[
W 1

]
. Notice that for i ∈ Ip and k ∈ Ip ,

∂g 1
l

∂xk

(
E
[
W 1])= (p−1

l−1

)(p
l

) ml−1 = l

p
E[Y ]l−1 =: al .

Thus Σ2 := Jg 1

(
E
[
W 1

])
Σ1 Jg 1

(
E
[
W 1

])T
is given by

Σ2
i j = pai a j

(
Σ1

11 + (p −1)Σ1
12

)
.

(2) Now consider W 2
j = (P v,1

j , . . .P v,p
j )T ( j = 1, . . . , N ) and g 2 the mapping from Rp to R defined by

g 2(y1, . . . , yp ) =
p∑

l=0

(
p

l

)
(−1)p−l y p−l

1 yl .

We apply once again the delta method to W 2 so that

p
N

(
g 2

(
W

2
N

)
− g 2 (

E
[
W 2])) L→

N→∞
N

(
0, Jg 2

(
E
[
W 2])Σ2 Jg 2

(
E
[
W 2])T

)
with Jg 2

(
E
[
W 2

])
the Jacobian of g 2 at point E

[
W 2

]
. Notice that for k ∈ Ip ,

∂g 2

∂y1

(
E
[
W 2])= (−1)p−1p(p −1)E[Y ]p−1

+
p−1∑
l=2

(
p

l

)
(−1)p−l (p − l )E[Y ]p−l−1E

[
l∏

i=1
Y v,i

]

and

∂g 2

∂yl

(
E
[
W 2])= (

p

l

)
(−1)p−lE[Y ]p−l .

Thus the limiting variance is

σ2 := Jg 2

(
E
[
W 2])Σ2 Jg 2

(
E
[
W 2])T = p

(
Σ1

11 + (p −1)Σ1
12

)( p∑
i=1

ai bi

)2

,

where bi is the i -th coordinate of ∇g 2
(
E
[
W 2

])
.

5.2 Distribution-based indices: Cramér-von Mises indices

In this section, we consider indices based on the whole distribution: the Cramér-von Mises indices that are based on
the conditional distribution of the output and requires only 3×N .

5.2.1 Definition and properties of the Cramér-von Mises indices

The code will be denoted by Z = f (X1, . . . , Xd ) ∈Rk . Let F be the distribution function of Z . For any t = (t1, . . . , tk ) ∈Rk ,

F (t ) =P (Z É t ) = E[
1{ZÉt }

]
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and F u(t ) the conditional distribution function of Z conditionally on Xu:

F u(t ) =P (Z É t |Xu, ) = E[
1{ZÉt }|Xu

]
.

Notice that {Z É t } means that {Z1 É t1, . . . , Zk É tk }. Obviously, E
[
F u(t )

] = F (t ). Now, we apply the previous frame-
work with Y (t ) = 1{ZÉt } and p = 2. Since for any fixed t ∈ Rk , Y (t ) is a real-valued random variable, we apply the
framework presented in Chapter 2. More precisely, for any v ∈ Ip let ∼ v be Ip \ {v} and we first perform the Hoeffding
decomposition of Y (t ):

Y (t ) =1{ZÉt } = E[Y (t )]+ (E[Y (t )|Xv ]−E[Y (t )])+ (E[Y (t )|X∼v ]−E[Y (t )])+R(t , v), (5.6)

where
R(t , v) = Y (t )−E[Y (t )]− (E[Y (t )|Xv ]−E[Y (t )])− (E[Y (t )|X∼v ]−E[Y (t )]) .

As usually done, we compute the variance of both sides of (5.6) which leads to

Var(Y (t )) = F (t )(1−F (t ))

= Var(E[Y (t )|Xv ]−E[Y (t )])+Var(E[Y (t )|X∼v ]−E[Y (t )])+Var(R(t , v))

= Var
(
F v (t )

)+Var
(
F∼v (t )

)+Var(R(t , v))

= E
[(

F v (t )−F (t )
)2

]
+E

[(
F∼v (t )−F (t )

)2
]
+Var(R(t , v)) (5.7)

by the decorrelation of the different terms involved in the Hoeffding decomposition.

Remark 5.4. A straightforward application of the results of Chapter 2 provides for any fixed t ∈ Rk a consistent and
asymptotically normal procedure for the estimation of

E
[(

F v (t )−F (t )
)2

]
= Var

(
F v (t )

)
and E

[(
F∼v (t )−F (t )

)2
]
= Var

(
F∼v (t )

)
.

Now we integrate the terms in (5.7) in t ∈Rk with respect to the distribution of Z :∫
Rk

F (t )(1−F (t ))dF (t )

=
∫
Rk
E
[(

F v (t )−F (t )
)2

]
dF (t )+

∫
Rk
E
[(

F∼v (t )−F (t )
)2

]
dF (t )+

∫
Rk

Var(R(t , v))dF (t ) (5.8)

This integration has to be understood in the Riemmann-Stieltjes sense (see, e.g., [119]). Notice that the first term in
the right hand side of (5.8) represents a Cramér-von Mises-type distance of order 2 between the distribution L (Z ) of
Z and the distribution L (Z |Xv ) of Z given Xv .

Following the classical way of defining Sobol indices, we normalize the previous equation by∫
Rk

F (t )(1−F (t ))dF (t )

leading to

1 =
∫
Rk E

[
(F v (t )−F (t ))2]dF (t )∫

Rk F (t )(1−F (t ))dF (t )
+

∫
Rk E

[
(F∼v (t )−F (t ))2]dF (t )∫

Rk F (t )(1−F (t ))dF (t )
+

∫
Rk Var(R(t , v))dF (t )∫
Rk F (t )(1−F (t ))dF (t )

. (5.9)

Then we define the Cramér-von Mises indices with respect to v and ∼ v by

Sv
2,CV M :=

∫
Rk E

[
(F (t )−F v (t ))2]dF (t )∫

Rk F (t )(1−F (t ))dF (t )
and S∼v

2,CV M :=
∫
Rk E

[
(F (t )−F∼v (t ))2]dF (t )∫

Rk F (t )(1−F (t ))dF (t )
. (5.10)

Properties 5.5. These new indices are naturally adapted to multivariate outputs and they share the same properties as
the classical Sobol index, namely,

1. as seen in (5.9), the different contributions sum to 1;

2. they are invariant by translation, by any isometry, and by any nondegenerated scaling of the components of Y .
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Remark 5.6.

1. We could have defined the following indices instead:∫
Rk

E
[
(F (t )−F v (t ))2]
F (t )(1−F (t ))

dF (t ) and
∫
Rk

E
[
(F (t )−F∼v (t ))2]
F (t )(1−F (t ))

dF (t ),

normalizing by F (t )(1−F (t )) (like in the Anderson-Darling statistic) before the integration phase. Nevertheless,
the previous integrals might not be defined. Moreover, even if the integrals are well-defined, one may encounter
numerical explosion during the estimation procedure that might be produced for small and large values of t since
the normalizing factor then cancels.

2. In this paper, we only consider first-order sensitivity indices as well for the classical Sobol indices and for the
Cramér-von Mises indices. Anyway, as well as for the Sobol indices, one may define higher order and total Cramér-
von Mises indices. The construction of the former is straightforward taking v no longer a singleton. For example, if
one is interested in the second order Cramér-von Mises index with respect to the first and second inputs, it suffices
to take v = {1,2}. Concerning the latter, the total Cramér-von Mises index STot ,v

2,CV M with repect to v is defined by

STot ,v
2,CV M := 1−S∼v

2,CV M = 1−
∫
Rk E

[
(F (t )−F∼v (t ))2]dF (t )∫

Rk F (t )(1−F (t ))dF (t )
.

3. To use the Hoeffding decomposition, the inputs are required to be independent. Howver, one can compute the
Cramér-von Mises index when the inputs are dependent. Nevertheless, these are then difficult to interpret.

5.2.2 Pick-Freeze estimation of the Cramér-von Mises indices and asymptotic properties

This section is dedicated to the estimation of Sv
2,CV M (and S∼v

2,CV M ). One has to estimate both the numerator and
the denominator of the indices. Nevertheless, when the output Z has independent coordinates that are absolutely
continuous with respect to the Lebesgue measure, we have∫

Rk
F (t )(1−F (t ))dF (t ) = E[F (Z )(1−F (Z )] = 1

2k
− 1

3k
.

Thus the normalizing factor reduces to 1
2k − 1

3k . As a consequence, we propose two versions of central limit theorems:
the first one deals with the numerator’s estimator and can be applied when the output Z has independent coordinates
that are absolutely continuous with respect to the Lebesgue measure whereas the second one concerns the general
estimator and may apply in many other cases.

We denote the numerator of Sv
2,CV M by N v

2,CV M defined as the Cramér-von Mises type distance of order 2 between
L (Z ) and L (Z |Xu). Notice that it can be rewritten as

N v
2,CV M = EZ̃

[
EXv

[(
F (Z̃ )−F v (Z̃ )

)2
]]

,

where Z̃ is an independent copy of Z .

Numerator estimation of the Cramér-von Mises indices
Then we proceed to a double Monte Carlo scheme for the estimation of N v

2,CV M and consider the following design of
experiment consisting in:

1. the classical pick and freeze sample, that is, two N -samples of Z : (Z v,1
j , Z v,2

j ), 1 É j É N ;

2. a third N -sample of Z independent of (Z v,1
j , Z v,2

j )1É jÉN : Wk , 1 É k É N .

The empirical estimator of N v
2,CV M is then given by

N̂ v
2,CV M = 1

N

N∑
k=1

{
1

N

N∑
j=1

1{Z v,1
j ÉWk }1{Z v,2

j ÉWk } −
[

1

2N

N∑
j=1

(
1{Z v,1

j ÉWk } +1{Z v,2
j ÉWk }

)]2}
. (5.11)

Now we established the consistency of N̂ v
2,CV M that follows directly from an auxiliary lemma (see Appendix B).

Corollary 5.7. N̂ v
2,CV M is strongly consistent as N goes to infinity.
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Now we turn to the asymptotic normality of N̂ v
2,CV M . We follow van der Vaart [122] to establish the following proposi-

tion (more precisely Theorems 20.8 and 20.9, Lemma 20.10, and Example 20.11).

Theorem 5.8. The sequence of estimators N̂ v
2,CV M is asymptotically Gaussian in estimating N v

2,CV M . That is,
p

N
(
N̂ v

2,CV M −N v
2,CV M

)
converges in distribution towards the centered Gaussian law with a limiting variance ξ2 whose

explicit expression can be found in the proof.

Remark 5.9. Thanks to Theorem 5.8, we are now able to provide asymptotic confidence intervals for the estimation of
N v

2,CV M . They are of the form (N̂ v
2,CV M ± zαξ/

p
N ), where zα is the 1−α/2 quantile of a standard normal distribution.

Unfortunately, the variance ξ2 is unknown but thanks to its explicit form it is easy to replace it by a consistent estimator
ξ̂ and use Slutsky’s lemma to have an asymptotic confidence interval.

Global estimation of the Cramér-von Mises indices
In order to estimate the Cramér-von Mises index Sv

2,CV M , it remains to estimate its denominator denoted by Dv
2,CV M .

Notice that it can be rewritten as

Dv
2,CV M = E [F (Z )(1−F (Z ))]

and estimated using the design of experiment already introduced for the estimation of the numerator by

D̂v
2,CV M = 1

N

N∑
k=1

{
1

2N

N∑
j=1

(
1{Z v,1

j ÉWk } +1{Z v,2
j ÉWk }

)
−

[
1

2N

N∑
j=1

(
1{Z v,1

j ÉWk } +1{Z v,2
j ÉWk }

)]2 }
. (5.12)

Proceeding as in Subsection 5.2.2, we have the following.

Corollary 5.10. Ŝv
2,CV M is strongly consistent as N goes to infinity.

The following central limit theorem comes from the functional Delta method.

Theorem 5.11. The sequence of estimators Ŝv
2,CV M is asymptotically Gaussian in estimating Sv

2,CV M . That is,
p

N
(
Ŝv

2,CV M −Sv
2,CV M

)
converges in distribution towards the centered Gaussian law with a limiting variance that can

be computed.

5.2.3 Practical advice and general comments on the Cramér-von Mises indices

Practical advice
In a general setting, for all the nice properties of the Cramér-von Mises indices and their easy to implement efficient
estimation, we recommend using the Cramér-von Mises indices. As a consequence, considering a sample with the
appropriate size, one can estimate one at a time the Cramér-von Mises indices and the Sobol indices. More precisely,
if one wants to estimate p Sobol indices a sample size of (p +1)N is required. With only N more output evaluations,
we get both the p Sobol indices and the Cramér-von Mises ones. Furthermore, the theoretical theorems provide
confidence intervals that controlled the accuracy of the estimations. Moreover, when the practitioner is interested in
a specific feature (e.g., mean behavior or quantile) of the output, he should use more suited indices (e.g., the classical
Sobol indices for the mean or the indices introduced in [43] for the quantile).

Cramér-von Mises indices versus Sobol indices
Cramér-von Mises and Sobol indices are both based on the Hoeffding decomposition and sum to 1. Nevertheless,
the former are based on the whole distribution of the output, in contrast with the latter that are only based on the
order two moments. Notice that two variables that have a different influence on the output may have the same Sobol
indices (just as two random variables with different distributions can have the same variance). This point represents
one limitation of Sobol indices and does not occur with the Cramér-von Mises indices as one can see in Exercise 12.
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In contrast, the indices based on the whole distribution partially get rid of such limitations and pathological patterns.
However, one can build an example based, e.g., on two input variables that leads to the same indices S1

2,CV M and

S2
2,CV M once the integration with respect to t has been done.

In addition, remark that a null value for a Sobol index does not imply that the input is unimportant whereas a null
value for a Cramér-von Mises index means that the input is unimportant. Moreover, by definition, a large Cramér-von
Mises index means that the input variable under concern has a great influence on the output in regions where the
output has a large distribution mass. That is why we advise the practitioner to use them in a general context. Never-
theless, when one is interested in the mean output behavior, the Sobol indices are more adapted. Indeed, as noted
in [43], the Sobol indices minimize the contrast associated with the mean. In the same spirit, if one is interested in
specific feature of the output (for example, anα-quantile), one should use the index based on the associated contrast.
See [43] for more details on the notion of contrast and the results therein.

Cramér-von Mises indices versus moment independent indices
There already exist several moment-independent indices: some of them have been introduced by Borgonovo et al.
(density-based indices [15], cumulative-distribution-function-based indices [17]). See also [13] for other indices and
references therein. More recently, Da Veiga [32] shows that those indices are special cases of a class of sensitivity
indices based on the Csizár f -divergence. A lot of classical “distances” between probability measures as, e.g., the
Kullback-Leibler divergence, the Hellinger distance and the total variation distance belong to this family of diver-
gences. Other dissimilarity measures exist to compare probability distributions; in particular, integral probability
metrics [87]. See Chapter 6 for more details on such indices.

In comparison with the indices defined by (17) in [16], we can notice that the integration is done with respect to the
distribution of the output in the former indices while the integration is done with respect to the Lebesgue measure
in the latter indices. Our method represents at least two advantages: (i) the index always exist whatever the output
distribution; (ii) such an integration weights the support of the output distribution.

Since the space of the probability measures on Rk is of infinite dimension, the different distances on this space are not
equivalent; hence, they are very difficult to compare. Each index is constructed on a specific distance and has its own
interest. Despite the fact that the Cramér-von Mises indices have no clear dual formulation, they present the following
remarkable advantages. As we will see in the next sections, one can easily estimate them with a low simulation cost
that does not depend on the dimension of the output. The sample required for their estimation also provide a Sobol
indices estimation. In addition, these estimators are asymptotically normal and converge at the rate

p
N which allows

the practitioner to build confidence intervals.

5.2.4 Application: The Giant Cell Arthritis Problem

Context and goal
In this subsection, we consider the realistic problem of management of suspected giant cell arthritis posed by Bunch-
binder and Detsky in [22]. More recently, this problem was also studied by Felli and Hazen [41] and Borgonovo et
al. [14]. As explained in [22], “giant cell arthritis (GCA) is a vasculitis of unknown etiology that affects large and medium
sized vessels and occurs almost exclusively in patients 50 years or older”. This disease may lead to severe side effects
(loss of visual accuity, fever, headache,...) whereas the risks of not treating it include the threat of blindness and ma-
jor vessels occlusion. A patient with suspected GCA can receive a therapy based on prednisone. Unfortunately, a
treatment with high prednisone doses may cause severe complications. Thus when confronted by a patient with sus-
pected GCA, the clinician must adopt a strategy. There is a considerable literature on sensitivity analysis for these sorts
of models, based on the utility of learning a model input before choosing a treatment strategy (see, e.g., [40] and [89]).
In [22], the authors considered four different strategies:

A : treat none of the patients;

B : proceed to the biopsy and treat all the positive patients;

C : proceed to the biopsy and treat all the patients whatever their result;

D : treat all the patients.

The clinician wants to adopt the strategy optimizing the patient outcomes measured in terms of utility. The reader
is referred to [88] for more details on the concept of utility. The basic idea is that a patient with perfect health is
assigned a utility of 1 and the expected utility of the other patients (not perfectly healthy) is calculated subtracting
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some “disutilities” from this perfect score of 1. These strategies are represented in Figures 5.1-5.4 with the different
inputs involved in the computation of the utilities.

Figure 5.1: The decision tree for the treat none alternative.

Figure 5.2: The decision tree for the biopsy and the treat positive alternative.

For example, in strategy A (see Figure 5.1), the utility of a patient having GCA and developing severe GCA complica-
tions is given by 1−ds −dug c −dud x . His entire subpath is then

g × g c × (1−ds −dug c −dud x ).

The input parameters and the modelisation of the random ones
As seen in Figures 5.1 to 5.4, the different strategies involve input parameters like, e.g., the proportion g of patients
having GCA or the probability g c for a patient to develop severe GCA complications (fixed at 0.8 as done in [22]) or
even the disutility associated having GCA symptoms. Table 5.1 summarizes the input parameters involved.
The values P[·] and D(·) refer, respectively, to the probability of an event and to the disutility associated with an event.
The minimum and maximum values m and M depict each parameter’s range for the sensitivity analysis. The base
values are provided by clinician expertise. The utilities of the different strategies when all the input parameters are set
to their base value are summarized in Table 5.2.
The base value of some input parameters are reliable while the others are really uncertain which leads us to consider
them as random. As a consequence, if YA , YB , YC , and YD represent the outcomes corresponding to the four different
strategies A to D , the clinician aims to determine

max{E[YA],E[YB ],E[YC ],E[YD ]} (5.13)
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Figure 5.3: The decision tree for the biopsy and the treat all alternative.

Figure 5.4: The decision tree for the treat all alternative.

with the uncertain model input presented in Table 5.1. A sensitivity analysis is then performed to determine the most
influential input variables on the outcome.

As done in [14, 41], all the random inputs will be independently based on beta distributions. The beta density pa-
rameters corresponding to each random input are determined by fitting the base value as their mean and capturing
95% of the probability mass in the range defined by the minimum and maximum. The remaining 5% will be equally
distributed to either side of this range if possible. Concretely, each random input will be distributed as

Z1mÉZ<M +U1m>Z +V 1ZÊM ,

where Z , U , and V are independent random variables. Z is beta distributed with parameters (α,β). U and V are
uniform random variables on [0,m] and [M ,1], respectively.
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Fixed parameters Symbols Fixed value
P[having GCA] g 0.8 – – – –
D(having symptoms of GCA) dus 0.12 – – – –
D(having a temporal artery biopsy) dub 0.005 – – – –
D(not knowing the true diagnosis) dud x 0.025 – – – –

beta(α,β)
Uncertain parameters Symbols Base Min. m Max. M α β

P[developing severe complications of GCA] g c 0.3 0.05 0.5 4.179 11.011
P[developing severe iatrogenic side effects] pc 0.2 0.05 0.5 2.647 10.589
Efficacy of high dose prednisone e 0.9 0.8 1 27.787 3.087
Sensitivity of temporal artery biopsy sens 0.83 0.6 1 7.554 1.547
D(major complication from GCA) dug c 0.8 0.3 0.9 27.454 6.864
D(prednisone therapy) dup 0.08 0.03 0.2 4.555 52.380
D(major iatrogenic side effect) dupc 0.3 0.2 0.9 15.291 35.680

Table 5.1: The data used by Buchbinder and Detsky [22] in their analysis.

Treatment alternative Utilility Expectation
A Treat none 0.6870 0.6991
B Biopsy and treat positive 0.7575 0.7570
C Biopsy and treat all 0.7398 0.7371
D Treat all 0.7198 0.7171

Table 5.2: The utilities of the different strategies when all the input parameters are set to their base value (second
column) and their expectation when they are random (third column).

Sensitivity analysis
As already mentioned, the clinician wants to determine the highest utility. In [13], the authors then consider the high-
est utility as output and lead a sensitivity analysis to determine the input having the largest influence on this output.
Since we are able to treat multivariate outputs, we consider a more general framework in this paper: the output is the
four-dimensional random variable Y = (YA ,YB ,YC ,YD ), where YS represents the outcome corresponding to strategy S.

We compare three different methodologies and indices. First, we consider the Sobol indices introduced in [47] (mul-
tivariate). Second, we consider the indices constructed in this paper, based on the Cramér-von Mises distance and
estimated by the ratios of the numerator estimator (5.11) and the denominator estimator (5.12). Third, we consider
the index presented in [13] and named β defined by

βi = E[sup
y∈Y

{|FY (y)−FY |Xi (y)|}].

Then we use the estimator given in [14, Table 1] adapted to the multivariate case that is based on the tedious and
costly estimation of conditional expectations.

Results
Table 5.3 summarizes the sensitivity measures of the seven random inputs on the multivariate output with the three
different methodologies while Table 5.4 presents the associated ranks. It is worth mentioning that the same total
sample size has been used to compare properly the three methodologies.

As a conclusion, in this example, unlike the indices defined by Borgonovo et al., the multivariate sensitivity indices
and the Cramér-von Mises indices provide the same ranking. The main advantage of the Cramér-von Mises sensitivity
methodology with respect to the one of Borgonovo et al. is that one can use the pick and freeze estimation scheme
which provides an accurate estimation (see (5.11)) simple to implement.

Notice that in [14], the authors study a slightly different model that explains the numerical differences between their
results and the ones of the present paper. Furthermore, they perform a sensitivity analysis on the best alternative with
the greater mean instead of considering the multivariate output.
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Sensitivity meas. 1 2 3 4 5 6 7 Cputime
Multivariate 0.3690 0.0193 0.0105 -0.0821 -0.0617 0.1150 -0.0751 0.0624

N = 102 Borgonovo et al. 0.1195 0.1047 0.1064 0.1022 0.1046 0.1063 0.1027 1.5132
Cramér-von Mises 0.3496 0.0745 0.0206 -0.0010 0.0084 0.1042 0.0105 0.9048

Multivariate 0.4024 0.1201 0.0516 -0.0190 -0.0043 0.2403 0.0093 0.0156
N = 103 Borgonovo et al. 0.1788 0.1192 0.1009 0.1007 0.1044 0.1195 0.1028 57.8452

Cramér-von Mises 0.3494 0.0750 0.0209 -0.0008 0.0086 0.1045 0.0109 10.1089

Multivariate 0.3828 0.1333 0.0618 -0.0016 0.0100 0.3182 0.0217 0.0312
N = 104 Borgonovo et al. 0.3842 0.1572 0.1033 0.0930 0.0986 0.1775 0.1061 5.1988 103

Cramér-von Mises 0.3494 0.0775 0.0232 0.0011 0.0108 0.1056 0.0124 436.8028

Table 5.3: Sensitivity measures. The estimation of the Cramér-von Mises indices is the ratio of (5.11) and (5.12).

Sensitivity meas. Ranking
Multivariate 1 6 2 3 5 7 4

N = 102 Borgonovo et al. 1 3 6 2 5 7 4
Cramér-von Mises 1 6 2 3 7 5 4

Multivariate 1 6 2 3 7 5 4
N = 103 Borgonovo et al. 1 6 2 5 7 3 4

Cramér-von Mises 1 6 2 3 7 5 4
Multivariate 1 6 2 3 7 5 4

N = 104 Borgonovo et al. 1 6 2 7 3 5 4
Cramér-von Mises 1 6 2 3 7 5 4

Table 5.4: Ranks. The estimation of the Cramér-von Mises indices is the ratio of (5.11) and (5.12).

5.3 Sensitivity indices for codes valued in general metric spaces

We consider a black-box code f defined on a product of measurable spaces E = E1 ×E2 × . . .×Ep (p ∈ N∗) taking its
values in a metric space X . The output denoted by Z is then given by

Z = f (X1, . . . , Xp ). (5.14)

We denote by P the distribution of the output code Z .

The aim of this work is to give answers to the following questions.

Question 1 How can we perform Global Sensitivity Analysis (GSA) when the output space is the space of probability distri-
bution functions (p.d.f.) on R or the space of cumulative distribution functions (c.d.f.)?

Question 2 How can we perform GSA for stochastic computer codes?

Question 3 How can we perform GSA with respect to the choice of the distributions of the input variables?

5.3.1 The general metric spaces sensitivity index

In this section, we recall the defintion and the properties of the general metric spaces sensitivity index introduced
in [51]. We also discuss several ways of estimation: the Pick-Freeze estimation as introduced in [62], the estimation
procedure based on U-statistics proposed in [51], and a rank-based procedure initiated in [45].
In [51], the authors performed GSA for codes f taking values in general metric spaces. To do so, they consider a family
of test functions parameterized by m ∈N∗ elements of X and defined by

X m ×X → R

(a, x) 7→ Ta(x).

Let u ⊂ {1, . . . , p} and Xu = (Xi , i ∈ u). Assuming that the test functions Ta are L2-functions with respect to the product
measure P⊗m ⊗P (where P⊗m is the product m-times of the distribution of the output code Z ) on X m ×X , they allow
to define the general metric space (GMS) sensitivity index with respect to Xu by

Su
2,GMS =

∫
X m E

[
(E[Ta(Z )]−E[Ta(Z )|Xu])2

]
dP⊗m(a)∫

X m Var(Ta(Z ))dP⊗m(a)
=

∫
X m Var(E[Ta(Z )|Xu])dP⊗m(a)∫

X m Var(Ta(Z ))dP⊗m(a)
. (5.15)
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Roughly speaking, the previous indices divided into two parts. First, for any value of a, we consider the numerator
E
[
(E[Ta(Z )]−E[Ta(Z )|Xu])2

]
and the denominator Var(Ta(Z )) of the classical Sobol index of Ta(Z ). This part is called

the Sobol part. Second, we integrate each part with respect to the measure P⊗m ; it is called the integration part.

As explained in [51], by construction, the indices Su
2,GMS lie in [0,1] and share the same properties as their Sobol coun-

terparts:

- the different contributions sum to 1; (5.16)

- they are invariant by translation, by any isometry and by any non-degenerated scaling of Z . (5.17)

Particular examples By convention, when the test functions Ta do not depend on a, we set m = 0.

1. For X = R, m = 0, and Ta given by Ta(x) = x, one recovers the classical Sobol indices (see [109, 110]). In this
case, it appears that the parameterized test functions do not depend on the parameter a. For X =Rk and m = 0,
one can recover the index defined for vectorial outputs in [47, 68] by extending (5.15).

2. For X = Rk , m = 1, and Ta given by Ta(x) = 1{xÉa}, one recovers the index based on the Cramér-von-Mises
distance defined in [49] and defined in (5.10).

3. Consider that X = M is a manifold, m = 2 and Ta is given by Ta(x) = 1{x∈B̃(a1,a2)}, where B̃(a1, a2) stands for
the ball whose center is the middle point between a1 and a2 with radius a1a2/2. Here, one recovers the index
defined in [44].

Estimation Three different estimation procedures are available in this context. The two first methods are based
on the Pick-Freeze scheme. More precisely, the Pick-Freeze scheme, considered in [62], is a well tailored design of
experiment. Namely, let X u be the random vector such that X u

i = Xi if i ∈ u and X u
i = X ′

i if i ∉ u where X ′
i is an

independent copy of Xi . We then set

Z u := f (X u). (5.18)

Further, the procedure consists in rewriting the variance of the conditional expectation in terms of covariances as
follows

Var(E[Z |Xu]) = Cov(Z , Z u). (5.19)

Alternatively, the third estimation procedure that can be seen as an ingenious and effective approximation of the
Pick-Freeze scheme is based on rank statistics [45]. Until now, it is unfortunately only available to estimate first-order
indices in the case of real-valued inputs.

• First method - Pick-Freeze. Introduced in [49], this procedure is based on a double Monte-Carlo scheme to
estimate the Cramér-von-Mises (CVM) indices Su

2,CVM. More precisely, to estimate Su
2,GMS in our context, we

consider the following design of experiment consisting in

1. a classical Pick-Freeze N -sample, that is two N -samples of Z : (Z j , Z u
j ), 1 É j É N ;

2. m other N -samples of Z independent of (Z j , Z u
j )1É jÉN : Wl ,k , 1 É l É m, 1 É k É N .

The empirical estimator of the numerator of Su
2,GMS is then given by

N̂ u
2,GMS,PF = 1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TW1,i1 ,··· ,Wm,im
(Z j )TW1,i1 ,··· ,Wm,im

(Z u
j )

]
− 1

N m

∑
1Éi1,...,imÉN

[ 1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Z j )+TW1,i1 ,··· ,Wm,im
(Z u

j )
)]2

while the one of the denominator is

D̂u
2,GMS,PF = 1

N m

∑
1Éi1,...,imÉN

[ 1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Z j )2 +TW1,i1 ,··· ,Wm,im
(Z u

j )2
)]

− 1

N m

∑
1Éi1,...,imÉN

[ 1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Z j )+TW1,i1 ,··· ,Wm,im
(Z u

j )
)]2

.
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For X =Rk , m = 1, and Ta given by Ta(x) =1xÉa , the index Su
2,GMS,PF is nothing more than the index Su

2,CVM de-
fined in [49] based on the Cramér-von-Mises distance and on the whole distribution of the output. Its estimator
Ŝu

2,CVM defined as the ratio of N̂ u
2,GMS,PF and D̂u

2,GMS,PF with Ta(x) = 1xÉa has been proved to be asymptotically
Gaussian [49, Theorem 3.8]. The proof relies on Donsker’s theorem and the functional delta method [122, The-
orem 20.8]. Analogously, in the general case of Su

2,GMS, the central limit theorem is still valid as soon as the
collection (Ta)a∈X m forms a Donsker’s class of functions.

• Second method - U-statistics. As done in [51], this method allows the practitioner to get rid of the additional
random variables (Wl ,k ) for l ∈ {1, . . . ,m} and k ∈ {1, . . . , N }. The estimator is now based on U-statistics and deals
simultaneously with the Sobol part and the integration part with respect to dP⊗m(a). It suffices to rewrite Su

2,GMS
as

Su
2,GMS =

I (Φ1)− I (Φ2)

I (Φ3)− I (Φ4)
, (5.20)

where,

Φ1(z1, . . . ,zm+1) = Tz1,...,zm (zm+1)Tz1,...,zm (zu
m+1),

Φ2(z1, . . . ,zm+2) = Tz1,...,zm (zm+1)Tz1,...,zm (zu
m+2), (5.21)

Φ3(z1, . . . ,zm+1) = Tz1,...,zm (zm+1)2,

Φ4(z1, . . . ,zm+2) = Tz1,...,zm (zm+1)Tz1,...,zm (zm+2),

denoting by zi the pair (zi , zu
i ) and, for l = 1, . . . ,4,

I (Φl ) =
∫
X m(l )

Φl (z1, . . . ,zm(l ))dPu,⊗m(l )
2 (z1 . . . ,zm(l )), (5.22)

with m(1) = m(3) = m + 1 and m(2) = m(4) = m + 2. Finally, one considers the empirical version of (5.20) as
estimator of Su

2,GMS

Ŝu
2,GMS,Ustat =

U1,N −U2,N

U3,N −U4,N
, (5.23)

where, for l = 1, . . . ,4,

Ul ,N =
(

N
m(l )

)−1 ∑
1Éi1<···<im(l )ÉN

Φs
l

(
Zi1 , . . . ,Zim(l )

)
(5.24)

and the function

Φs
l (z1, . . . ,zm(l )) =

1

(m(l ))!

∑
τ∈Sm(l )

Φl (zτ(1), . . . ,zτ(m(l )))

is the symmetrized version ofΦl . In [51, Theorem 2.4], the estimator Ŝu
2,GMS,U-stat has been proved to be consis-

tent and asymptotically Gaussian.

• Third method - Rank-based. In [28], Chatterjee proposes an efficient way based on ranks to estimate a new
coefficient of correlation. This estimation procedure can be seen as an approximation of the Pick-Freeze scheme
and then has been exploited in [45] to perform a more efficient estimation of Su

2,GMS. Nevertheless, this method
is only well tailored for estimating first-order indices i.e. in the case of u = {i } for some i ∈ {1, . . . , p} and when the
input Xi ∈R.

In our context, recall that u = {i } and let Y = Z . Let also πi ( j ) be the rank of Xi , j in the sample (Xi ,1, . . . , Xi ,N ) of
Xi and define

Ni ( j ) =
{
π−1

i (πi ( j )+1) if πi ( j )+1 É N ,

π−1
i (1) if πi ( j ) = N .

(5.25)

Then the empirical estimator Ŝi
2,GMS,Rank of Si

2,GMS only requires a N -sample (Z j )1É jÉN of Z and is given by the
ratio between

N̂ i
2,GMS,Rank =

1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TZi1 ,··· ,Zim
(Z j )TZi1 ,··· ,Zim

(ZNi ( j ))
]

− 1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TZi1 ,··· ,Zim
(Z j )

]2
(5.26)
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and D̂ i
2,GMS,Rank

1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TZi1 ,··· ,Zim
(Z j )2

]
− 1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TZi1 ,··· ,Zim
(Z j )

]2
. (5.27)

It is worth mentioning that ZNi ( j ) plays the same role as Z i
j (the Pick-Freeze version of Z j with respect to Xi ) in

the Pick-Freeze estimation procedure.

Comparison of the estimation procedures
First, the Pick-Freeze estimation procedure allows the estimation of several sensitivity indices: the classical Sobol in-
dices for real-valued outputs, as well as their generalization for vectorial-valued codes, but also the indices based on
higher moments [93] and the Cramér-von-Mises indices which take the whole distribution into account [44,49]. Prac-
tically, this methodology is quite general and easy to implement. Moreover, the Pick-Freeze estimators have desirable
statistical properties. More precisely, this estimation scheme has been proved to be consistent and asymptotically
normal (i.e. the rate of convergence is

p
N ) in [48, 51, 62]. The limiting variances can be computed explicitly, allow-

ing the practitioner to build confidence intervals. In addition, for a given sample size N , exponential inequalities
have been established. Last but not least, the sequence of estimators is asymptotically efficient from such a design of
experiment (see, [122] for the definition of the asymptotic efficiency and [48] for more details on the result).
However, the Pick-Freeze estimators have two major drawbacks. First, they rely on a particular experimental design
that may be unavailable in practice. Second, it can be unfortunately very time consuming in practice: the number of
model calls to estimate all first-order Sobol indices grows linearly with the number of input parameters. For example,
if we consider p = 99 input parameters and only N = 1000 calls are allowed, then only a sample of size N /(p +1) = 10
is available to estimate each single first-order Sobol index.

Secondly, the estimation procedure based on U-statistics has the same kind of asymptotic guarantees as the Pick-
Freeze estimators (namely, consistency and asymptotic normality). Furthermore, the estimation scheme is reduced
to 2N evaluations of the code. Last, using the results of Hoeffding [59] on U-statistics, the asymptotic normality is
proved straightforwardly.

Finally, embedding Chatterjee’s method in the GSA framework (called rank-based method in this framework) thereby
eliminates the two drawbacks of the classical Pick-Freeze estimation. Indeed, the strength of the rank-based estima-
tion procedure lies in the fact that only one N -sample of Z is required while (m+2) samples of size N are necessary in
the Pick-Freeze estimation of a single index (worse, (m+1+p) samples of size N are required when one wants to esti-
mate p indices). Using a single sample of size N , it is now possible to estimate at the same time all the first-order Sobol
indices, first-order Cramér-von-Mises indices, and other useful first-order sensitivity indices as soon as all inputs are
real valued. More generally, the rank-based method allows for the estimation of a large class of GSA indices which
includes the Sobol indices and the higher-order moment indices proposed by Owen [91–93]. In addition, the rank-
based estimator has nice theoretical properties. For instance, the estimator of the Sobol index Si has been proved to
be consistent and asymptotically Gaussian (see, e.g., Theorem 3.3 in [45]).

5.3.2 The universal sensitivity index

In this section, the aim is to generalize the already-known general metric space index Su
2,GMS presented in the previous

section. Here, we then define a new index that we call the “universal sensitivity index” and we denote by Su
2,Univ.

To do so, observe that Formula (5.15) can be generalized in the following ways.

1. The point a in the definition of the test functions can be allowed to belong to another measurable space than
X m .

2. The probability measure P⊗m in (5.15) can be replaced by any “admissible” probability measure.

Such generalizations lead to the definition of a universal sensitivity index and its procedures of estimation.

Definition 5.12. Let a belongs to some measurable space Ω endowed with some probability measure Q. For any u ⊂
{1, · · · , p}, we define the universal sensitivity index with respect to Xu by

Su
2,Univ(Ta ,Q) =

∫
ΩE

[
(E[Ta(Z )]−E[Ta(Z )|Xu])2

]
dQ(a)∫

ΩVar(Ta(Z ))dQ(a)
=

∫
ΩVar(E[Ta(Z )|Xu])dQ(a)∫

ΩVar(Ta(Z ))dQ(a)
. (5.28)
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Notice that the index Su
2,Univ(Ta ,Q) is obtained by the integration over a with respect toQ of the Hoeffding decomposi-

tion of Ta(Z ). Hence, by construction, this index lies in [0,1] and shares the same properties as its Sobol counterparts,
namely the two previously cited properties in (5.16) and (5.17).
The universality is twofold. First, it allows to consider more general relevant indices. Secondly, this definition encom-
passes, as particular cases, the classical sensitivity indices. Indeed,

• the so-called Sobol index Su with respect to Xu is Su
2,Univ(Id,P), with Id the identity test function;

• the Cramér-von-Mises index Su
2,CVM with respect to Xu is Su

2,Univ(1·Éa ,P⊗d ) where X =Rd andΩ=X ;

• the general metric space sensitivity index Su
2,GMS with respect to Xu is Su

2,Univ(1·Éa ,P⊗m) whereΩ=X m .

An example whereQ is different from Pwill be considered in Section 5.4.

Estimation Here, we assume that Q is different from P⊗m and we follow the same tracks as for the estimation of
Su

2,GMS in Section 5.3.1.

• First method - Pick-Freeze. We use the same design of experiment as in the first method of Section 5.3.1 but
instead of considering that the m additional N -samples (Wl ,k ) for l ∈ {1, . . . ,m} and k ∈ {1, . . . , N } are drawn with
respect to the distribution P of the output, they are now drawn with respect to Q. More precisely, we consider
the following design of experiment consisting in

1. a classical Pick-Freeze sample, that is two N -samples of Z : (Z j , Z u
j ), 1 É j É N ;

2. m Q-distributed N -samples Wl ,k , l ∈ {1, . . . ,m} and k ∈ {1, . . . , N } that are independent of (Z j , Z u
j ) for 1 É

j É N .

The empirical estimator of the numerator of Su
2,Univ is then given by

N̂ u
2,Univ,PF = 1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TW1,i1 ,··· ,Wm,im
(Z j )TW1,i1 ,··· ,Wm,im

(Z u
j )

]
− 1

N m

∑
1Éi1,...,imÉN

[ 1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Z j )+TW1,i1 ,··· ,Wm,im
(Z u

j )
)]2

while the one of the denominator is

D̂u
2,Univ,PF = 1

N m

∑
1Éi1,...,imÉN

[ 1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Z j )2 +TW1,i1 ,··· ,Wm,im
(Z u

j )2
)]

− 1

N m

∑
1Éi1,...,imÉN

[ 1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Z j )+TW1,i1 ,··· ,Wm,im
(Z u

j )
)]2

.

As previously, it is straightforward (as soon as the collection (Ta)a∈X m forms a Donsker’s class of functions) to
adapt the proof of Theorem [49, Theorem 3.8] to prove the asymptotic normality of the estimator.

• Second method - U-statistics. This method is not relevant in this case sinceQ 6=P⊗d .

• Third method - Rank-based. Here, the design of experiment reduces to

1. a N -sample of Z : Z j , 1 É j É N ;

2. a N -sample of W that isQ-distributed: Wk , 1 É k É N , independent of Z j , 1 É j É N .

Assume as previously u = {i } and Ni (·) be defined in (5.25). The empirical estimator Ŝi
2,Univ,Rank of Si

2,Univ is then
given by the ratio between

N̂ i
2,Univ,Rank =

1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TWi1 ,··· ,Wim
(Z j )TWi1 ,··· ,Wim

(ZNi ( j ))
]

− 1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TWi1 ,··· ,Wim
(Z j )

]2
(5.29)

and D̂ i
2,Univ,Rank

1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TWi1 ,··· ,Wim
(Z j )2

]
− 1

N m

∑
1Éi1,...,imÉN

[ 1

N

N∑
j=1

TWi1 ,··· ,Wim
(Z j )

]2
. (5.30)

We recall that this last method only applies for first-order sensitivity indices and real-valued input variables.
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5.4 Sensitivity analysis in general Wasserstein spaces

5.4.1 Definition

For any q Ê 1, we define the q-Wasserstein distance between two probability distributions that are Lq -integrable and
characterized by their c.d.f.’s F and G on Rp by

Wq (F,G) = min
X∼F,Y ∼G

(
E[‖X −Y ‖q ]1/q )

,

where X ∼ F and Y ∼G mean that X and Y are random variables with respective c.d.f.’s F and G . We define the Wasser-
stein space Wq (Rp ) as the space of all measures defined onRp endowed with the q-Wasserstein distance Wq with finite
q-moments. In the sequel, any measure is identified to its c.d.f. or in some cases to its p.d.f. In the unidimensional
case (p = 1), it is a well known fact that Wq (F,G) has an explicitly expression given by

Wq (F,G) =
(∫ 1

0
|F−(v)−G−(v)|q d v

)1/q

= E[|F−(U )−G−(U )|q ]1/q , (5.31)

where F− and G− are the generalized inverses of the increasing functions F and G and U is a random variable uni-
formly distributed on [0,1]. Of course, F−(U ) and G−(U ) have c.d.f.’s F and G . The representation (5.31) of the q-
Wasserstein distance when p = 1 can be generalized to a wider class of “contrast functions”. For more details on
Wasserstein spaces, one can refer to [123] and [11] and the references therein.

Definition 5.13. We call contrast function any application c from R2 to R satisfying the "measure property" P defined
by

P : ∀x É x ′ and ∀y É y ′,c(x ′, y ′)− c(x ′, y)− c(x, y ′)+ c(x, y) É 0,

meaning that c defines a negative measure on R2.

For instance, c(x, y) =−x y satisfies P . If c satisfies P , any function of the form a(x)+b(y)+c(x, y) also satisfies P . If
C is a convex real function, c(x, y) =C (x − y) satisfies P . In particular, c(x, y) = (x − y)2 = x2+ y2−2x y satisfies P and
actually so does c(x, y) = |x − y |q as soon as q Ê 1.

Definition 5.14. We define the Skorokhod space D := D ([0,1]) of all distribution functions as the space of all non-
decreasing functions from R to [0,1] that are right-continuous with left-hand limits with limit 0 (resp. 1) in −∞ (resp.
+∞) equipped with the supremum norm.

Definition 5.15. For any F ∈D, any G ∈D, and any positive contrast function c, we define the c-Wasserstein cost by

Wc (F,G) = min
X∼F,Y ∼G

E [c(X ,Y )] <+∞.

Obviously, W q
q = Wc with c(x, y) = |x − y |q . The following theorem has been established by Cambanis, Simon, and

Stout in [24].

Theorem 5.16. Let c be a contrast function. Then

Wc (F,G) =
∫ 1

0
c(F−(v),G−(v))d v = E[c(F−(U ),G−(U ))],

where U is a random variable uniformly distributed on [0,1].

5.4.2 Sensitivity analysis

In this section, we particularize the indices defined in Section 5.3.2 in the specific context of general Wasserstein
spaces.
More precisely, we consider here that our computer code is Wq (R)-valued; namely, the output of an experiment is
the c.d.f. or the p.d.f. of a measure µ ∈ Wq (R). For instance, in [21], [70] and [86], the authors deal with p.d.f.-valued
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computer codes (and stochastic computer codes). In other words, they define the following application

f : E →F (5.32)

x 7→ fx

where F is the set of p.d.f.’s

F =
{

g ∈ L1(R); g Ê 0,
∫
R

g (t )d t = 1

}
.

Here, we choose to identify any element of Wq (R) with its c.d.f. In this framework, the output of the computer code is
then a c.d.f. denoted by

F= f (X1, . . . , Xp ). (5.33)

Moreover,Pdenotes the law of the c.d.f. F and we set q = 2. The case of a general value of q can be handled analogously.
Consider F , F1, and F2 three elements of W2(R) and, for a = (F1,F2), the family of test functions

Ta(F ) = T(F1,F2)(F ) =1W2(F1,F )ÉW2(F1,F2). (5.34)

Then, for all u ⊂ {1, · · · , p}, the already known index Su
2,GMS of (5.15) becomes

Su
2,W2

= Su
2,Univ((F1,F2,F ) 7→ TF1,F2 (F ),P⊗2)

=
∫
W2(R)×W2(R)E

[(
E[1W2(F1,F)ÉW2(F1,F2)]−E[1W2(F1,F)ÉW2(F1,F2)|Xu]

)2
]

dP⊗2(F1,F2)∫
W2(R)×W2(R) Var(1W2(F1,F)ÉW2(F1,F2))dP⊗2(F1,F2)

=
∫
W2(R)×W2(R) Var

(
E[1W2(F1,F)ÉW2(F1,F2)|Xu]

)
dP⊗2(F1,F2)∫

W2(R)×W2(R) Var(1W2(F1,F)ÉW2(F1,F2))dP⊗2(F1,F2)
. (5.35)

As explained in Section 5.3.1, Su
2,W2

is obtained by integration over a with respect to P of the Hoeffding decomposition
of Ta(F). Hence, by construction, this index lies in [0,1] and shares the two properties previously cited in (5.16) and
(5.17).

5.4.3 Estimation procedure

As noticed in the previous section,
Su

2,W2
= Su

2,Univ(Ta ,P⊗2)

with Ta defined in (5.34) is a particular case of indices of the form (5.28). When a belongs to the same space as the
output and when Q is equal to P⊗m , we first use the Pick-Freeze estimations of the indices given in (5.35). To do so, it
is convenient once again to use (5.19) leading to

Su
2,W2

=
∫
W2(R)×W2(R) Cov

(
1W2(F1,F)ÉW2(F1,F2),1W2(F1,Fu)ÉW2(F1,F2)

)
dP⊗2(F1,F2)∫

W2(R)×W2(R) Var(1W2(F1,F)ÉW2(F1,F2))dP⊗2(F1,F2)
(5.36)

Secondly, one may resort to the estimations based on U-statistics together on the Pick-Freeze design of experiment.
Thirdly, it is also possible and easy to obtain rank-based estimations in the vein of (4.2).

5.4.4 Numerical application

Example 5.17 (Toy model). Let X1, X2, X3 be three independent and positive random variables. We consider the c.d.f.-
valued code f for which the output is given by

F(t ) = t

1+X1 +X2 +X1X3
10ÉtÉ1+X1+X2+X1 X3 +11+X1+X2+X1 X3<t , (5.37)

so that
F−1(v) = v

(
1+X1 +X2 +X1X3

)
. (5.38)

In (5.35), the distributions F1 and F2 can be either U ([0,1]), U ([0,2]), U ([0,3]), or U ([0,4]) with respective probabilities
q1 = (1−p1)(1−p2), q2 = (1−p1)p2+p1(1−p2)(1−p3), q3 = p1((1−p2)p3+p2(1−p3)), and q4 = p1p2p3. In the sequel,
we give, for all sixteen possibilities for the distribution of (F1,F2), the corresponding contributions for the numerator
and for the denominator of (5.35).
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With probability p1,1 = (1−p1)2(1−p2)2, F1 and F2 ∼U ([0,1]). Then W 2
2 (F1,F2) = 0, W 2

2 (F1,F) = 1
3 (X1+X2+X1X3)2, and

W 2
2 (F1,F) ÉW 2

2 (F1,F2) if and only if X1+X2+X1X3 = 0. Since P (X1 +X2 +X1X3 = 0) = (1−p1)(1−p2), the contribution
d1,1 to the denominator is thus

d1,1 = q1,1(1−q1,1) with q1,1 = (1−p1)(1−p2).

Moreover,

E[1X1+X2+X1 X3=0|X1] =P
(

X1 +X2 +X1X3 = 0|X1

)
=1X1=0P(X2 = 0) = (1−p2)1X1=0.

so that, the contribution to the numerator is given by

n1
1,1 = Var(E[1X1+X2+X1 X3=0|X1]) = p1(1−p1)(1−p2)2.

Similarly, one gets
n2

1,1 = Var(E[1X1+X2+X1 X3=0|X2]) = p2(1−p2)(1−p1)2 and n3
1,1 = 0.

Moreover, regarding the indices with respect to X1 and X3,

E[1X1+X2+X1 X3=0|X1, X3] =P
(

X1 +X2 +X1X3 = 0|X1, X3

)
=1X1=0P(X2 = 0) = (1−p2)1X1=0

and the contribution to the numerator is given by

n1,3
1,1 = Var(E[1X1+X2+X1 X3=0|X1, X3]) = p1(1−p1)(1−p2)2.

The remaining fifteen cases can be treated similarly and are gathered (with the first case developed above) in the follow-
ing table. Finally, one may compute the explicit expression of Su

2,W2

Su
2,W2

=
∫
W2(R)×W2(R) Cov

(
1W2(F1,F)ÉW2(F1,F2),1W2(F1,Fu)ÉW2(F1,F2)

)
dP⊗2(F1,F2)∫

W2(R)×W2(R) Var(1W2(F1,F)ÉW2(F1,F2))dP⊗2(F1,F2)
=

∑
k,l pk,l nu

k,l∑
k,l pk,l dk,l

.

Some numerical values have not been explicited in the table but given below

Case 2 Var(1X1=1(1− (1−p2)1X3=0)) = p1(1−p1)(1− (1−p2)(1−p3))2 +p1(1−p2)2p3(1−p3),

Case 6 Var(1X1=1(p2 − (1−p2)1X3=0)) = p1(1−p1)(p2 − (1−p2)(1−p3))2 +p1(1−p2)2p3(1−p3),

Case 11 Var(1X1=1(p2 + (1−2p2)1X3=1)) = p1(1−p1)(p2 + (1−2p2)p3)2 +p1(1−2p2)2p3(1−p3),

Case 15 Var(1X1=1(p2 + (1−p2)1X3=1)) = p1(1−p1)(p2 + (1−p2)p3)2 +p1(1−p2)2p3(1−p3).

Direct representations of the indices Su
2,W2

In Figure 5.5, we have represented the indices S1
2,W2

, S2
2,W2

, S3
2,W2

, and S1,3
2,W2

given by (5.35) is provided in Figure 5.5 with respect to the values of p1 and p2 varying from 0 to 1 for a fixed value of p3.
We have considered three different values of p3: p3 = 0.01 (first row), 0.5, (second row) and 0.99 (third row).

Regions of predominance of the indices Su
2,W2

In addition, the regions of predominance of each index S1
2,W2

, S2
2,W2

,

S3
2,W2

, and S1,3
2,W2

given by (5.35) is provided in Figure 5.5. The values of p1 and p2 still vary from 0 to 1 and the fixed
values of p3 considered are: p3 = 0.01 (first row), 0.5, (second row) and 0.99 (third row).

Comparison of the estimation procedures (rank-based and Pick-Freeze) In order to compare the accuracy of the
Pick-Freeze method and the accuracy of the rank-based method at a fixed size, we assume that only 450 calls of the
computer code are allowed to estimate the indices Su

2,W2
for u = {1}, {2}, and {3}. Hence, the sample size allowed in

the rank-based procedure is N = 450. In the Pick-Freeze methodology, the estimation of the Wasserstein indices Su
2,W2

requires one initial output sample, three extra output samples, and two extra samples to handle the integration to get
the Pick-Freeze versions (one for each index) leading to an allowed sample size N = b450/6c = 75. We only focus on the
first-order indices since, as explained previously, the rank-based procedure has not been developed yet for higher-order
indices. We repeat the estimation procedure nr = 200 times. The boxplots of the mean square errors for the estimation
of the Wasserstein indices Su

2,W2
have been plotted in Figure 5.7. We observe that, for a fixed total number of calls 450

to the code f (corresponding to a rank-based sample size N = 450 and to a Pick-Freeze sample size N = 74 for the
Wasserstein indices Su

2,W2
), the rank-based estimation procedure performs much better than the Pick-Freeze method

with significantly lower mean errors.
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Case 1 F1 ∼U ([0,1]), F2 ∼U ([0,1]) Case 2 F1 ∼U ([0,1]), F2 ∼U ([0,2])

Prob. q2
1 Prob. q1q2

Num. 1 p1(1−p1)(1−p2)2 Num. 1 p1(1−p1)(p2 +p3 −p2p3)2

Num. 2 (1−p1)2p2(1−p2) Num. 2 p2
1 p2(1−p2)(1−p3)2

Num. 3 0 Num. 3 p2
1(1−p2)2p3(1−p3)

Num. 1,3 p1(1−p1)(1−p2)2 Num. 1,3 Var(1X1=1(1− (1−p2)1X3=0)
q Den. (1−p1)(1−p2) q Den. (1−p1)+p1(1−p2)(1−p3)

Case 3 F1 ∼U ([0,1]), F2 ∼U ([0,3]) Case 4 F1 ∼U ([0,1]), F2 ∼U ([0,4])

Prob. q1q3 Prob. q1q4
Num. 1 p1(1−p1)p2

2 p2
3 Num. 1 0

Num. 2 p2
1 p2(1−p2)p2

3 Num. 2 0
Num. 3 p2

1 p2
2 p3(1−p3) Num. 3 0

Num. 1,3 p1p2
2 p3(1−p1p3) Num. 1,3 0

q Den. 1−p1p2p3 q Den. 0

Case 5 F1 ∼U ([0,2]), F2 ∼U ([0,1]) Case 6 F1 ∼U ([0,2]), F2 ∼U ([0,2])

Prob. q1q2 Prob. q2
2

Num. 1 p1(1−p1)p2
2 p2

3 Num. 1 p1(1−p1)(p2 − (1−p2)(1−p3))2

Num. 2 p2
1 p2(1−p2)p2

3 Num. 2 p2(1−p2)(p1(1−p3)− (1−p1))2

Num. 3 p2
1 p2

2 p3(1−p3) Num. 3 p2
1(1−p2)2p3(1−p3)

Num. 1,3 p1p2
2 p3(1−p1p3) Num. 1,3 Var(1X1=1(p2 − (1−p2)1X3=0))

q Den. 1−p1p2p3 q Den. (1−p1)p2 +p1(1−p2)(1−p3)

Case 7 F1 ∼U ([0,2]), F2 ∼U ([0,3]) Case 8 F1 ∼U ([0,2]), F2 ∼U ([0,4])

Prob. q2q3 Prob. q2q4
Num. 1 p1(1−p1)p2

2 p2
3 Num. 1 0

Num. 2 p2
1 p2(1−p2)p2

3 Num. 2 0
Num. 3 p2

1 p2
2 p3(1−p3) Num. 3 0

Num. 1,3 p1p2
2 p3(1−p1p3) Num. 1,3 0

q Den. 1−p1p2p3 q Den. 0

Case 9 F1 ∼U ([0,3]), F2 ∼U ([0,1]) Case 10 F1 ∼U ([0,3]), F2 ∼U ([0,2])

Prob. q1q3 Prob. q2q3
Num. 1 0 Num. 1 p1(1−p1)(1−p2)2

Num. 2 0 Num. 2 (1−p1)2p2(1−p2)
Num. 3 0 Num. 3 0
Num. 1,3 0 Num. 1,3 p1(1−p1)(1−p2)2

q Den. 0 q Den. (1−p1)p2 +p1

Case 11 F1 ∼U ([0,3]), F2 ∼U ([0,3]) Case 12 F1 ∼U ([0,3]), F2 ∼U ([0,4])

Prob. q2
3 Prob. q3q4

Num. 1 p1(1−p1)(p2(1−p3)+ (1−p2)p3)2 Num. 1 p1(1−p1)(1−p2)2

Num. 2 p2
1 p2(1−p2)(2p3 −1)2 Num. 2 (1−p1)2p2(1−p2)

Num. 3 p2
1(2p2 −1)2p3(1−p3) Num. 3 0

Num. 1,3 Var(1X1=1(p2 + (1−2p2)1X3=1) Num. 1,3 p1(1−p1)(1−p2)2

q Den. p1(p2(1−p3)+ (1−p2)p3) q Den. (1−p1)p2 +p1

Case 13 F1 ∼U ([0,4]), F2 ∼U ([0,1]) Case 14 F1 ∼U ([0,4]), F2 ∼U ([0,2])

Prob. q1q4 Prob. q2q4
Num. 1 0 Num. 1 p1(1−p1)(1−p2)2

Num. 2 0 Num. 2 (1−p1)2p2(1−p2)
Num. 3 0 Num. 3 0
Num. 1,3 0 Num. 1,3 p1(1−p1)(1−p2)2

q Den. 0 q Den. (1−p1)p2 +p1

Case 15 F1 ∼U ([0,4]), F2 ∼U ([0,3]) Case 16 F1 ∼U ([0,4]), F2 ∼U ([0,4])

Prob. q3q4 Prob. q2
4

Num. 1 p1(1−p1)(p2 + (1−p2)p3)2 Num. 1 p1(1−p1)p2
2 p2

3
Num. 2 p2

1 p2(1−p2)(1−p3)2 Num. 2 p2
1 p2(1−p2)p2

3
Num. 3 p2

1(1−p2)2p3(1−p3) Num. 3 p2
1 p2

2 p3(1−p3)
Num. 1,3 Var(1X1=1(p2 + (1−p2)1X3=1) Num. 1,3 p1p2

2 p3(1−p1p3)
q Den. p1(p2 + (1−p2)p3) q Den. p1p2p3
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Figure 5.5: Model (5.37). Values of the indices S1
2,W2

, S2
2,W2

, S3
2,W2

, and S1,3
2,W2

given by (5.35) (from left to right) with
respect to the values of p1 and p2 (varying from 0 to 1). In the first row (resp. second and third), p3 is fixed to p3 = 0.01
(resp. 0.5 and 0.99).

Figure 5.6: Model (5.37). In the first row of the figure, regions where S1
2,W2

Ê S2
2,W2

(black), S1
2,W2

É S2
2,W2

(white), and

S1
2,W2

= S2
2,W2

(gray) with respect to p1 and p2 varying from 0 to 1 and, from left to right, p3 = 0.01, 0.5, and 0.99.

Analogously, the second (resp. last) row considers the regions with S1
2,W2

and S3
2,W2

(resp. S2
2,W2

and S3
2,W2

) with respect
to p1 and p3 (resp. p2 and p3) varying from 0 to 1 and, from left to right, p2 = 0.01, 0.5, and 0.99 (resp. p1 = 0.01, 0.5,
and 0.99).
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Figure 5.7: Model (5.37) with p1 = 1/3, p2 = 2/3, and p3 = 3/4. Boxplots of the mean square errors of the estimation of
the Wasserstein indices Su

2,W2
with a fixed sample size N and nr = 200 replications. The indices with respect to u = {1},

{2}, and {3} are displayed from left to right. The results of the Pick-Freeze estimation procedure with N = 75 for the
Wasserstein indices Su

2,W2
are provided in the left side of each graphic. The results of the rank-based methodology with

N = 450 are provided in the right side of each graphic.

5.5 Sensitivity analysis for stochastic computer codes

This section deals with stochastic computer codes in the sense that two evaluations of the code for the same input lead
to different outputs. Before performing a SA in this context, let us briefly describe the state of the art in this setting.

5.5.1 State of the art

A first natural way to handle stochastic computer codes is definitely to consider the expectation of the output code.
Indeed, as mentioned in [21], previous works dealing with stochastic simulators together with robust design or opti-
mization and SA consist mainly in approximating the mean and the variance of the stochastic output [1,23,36,65] and
then performing a GSA on the expectation of the output code [78].
As pointed out by [60], another approach amounts to consider that the stochastic code is of the form f (X ,D) where
the random element X contains the classical input variables and the variable D is an extra unobserved random input.
Such an idea was exploited in [62] to compare the estimation of the Sobol indices in an “exact” model to the estimation
of the Sobol indices in an associated metamodel. In this framework, the metamodel is considered as a random per-
turbation of the "exact" model and the perturbation is a function of the inputs and of an extra independent random
variable. Analogously, the author of [81] assumes the existence of an extra random variable D which is not chosen
by the practitioner but rather generated at each computation of the output independently of X . In this setting, the
author builds two different indices. The first index is obtained by substituting f (X ,D) for f (X ) in the classical defini-
tion of the first-order Sobol index Si = Var(E[ f (X )|Xi ])/Var( f (X )). In this case, D is considered as another input, even
though it is not observable. The second index is obtained by substituting E[ f (X ,D)|X ] for f (X ) in the Sobol index. The
noise is then smoothed out. Similarly, the authors of [57] traduce the randomness of the computer code using such
an extra random variable. In practice, they approximate the statistical properties of the first-order Sobol indices by
using a sample of the extra random variable and the associated sample of estimates of the Sobol indices. In [126], the
expectation of these random Sobol indices is investigated in the case of stochastic simulator and generalized lambda
models. In the same vein, the authors of [6] propose to deal with the differential entropy of the output of a stochastic
simulator.

5.5.2 The space Wq as an ideal version of stochastic computer codes

When dealing with stochastic computer codes, the practitioner is generally interested in the distribution µx of the
output for a given input x. As previously seen, one can translate this type of codes in terms of a deterministic code
by considering an extra input which is not chosen by the practitioner himself but which is a latent variable gener-
ated randomly by the computer code and independently of the classical input. As usual in the framework of SA, one
considers the input as a random variable. All the random variables (the one chosen by the practitioner and the one
generated by the computer code) are built on the same probability space, leading to the function fs

fs : E ×D →R (5.39)

(x,D) 7→ fs (x,D),

where D is the extra random variable lying in some space D. We naturally denote the output random variable fs (x, ·)
by fs (x).
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Hence, one may define another (deterministic) computer code associated with fs for which the output associated to
x is the probability measure µx

f : E →Wq (E) (5.40)

x 7→µx .

The framework of (5.40) is exactly the one of Section 5.4.2 and has already been handled. Obviously, in practice, one
does not assess the output of the code f but one can only obtain an empirical approximation of the measure µx given
by n evaluations of fs at x, namely,

µx,n = 1

n

n∑
k=1

δ fs (x,Dk )

where δ· is the Dirac function. Further, (5.40) can be seen as an ideal version of (5.39). Concretely, for a single random

input
−→
X = (X1, . . . , Xp ) ∈ E = E1 ×·· ·×Ep , we will evaluate n times the code fs defined by (5.39) (so that the code will

generate independently n hidden variables D1, . . . , Dn) and one may observe

fs (
−→
X ,D1), . . . , fs (

−→
X ,Dn)

leading to the measure µ−→
X ,n

=∑n
k=1δ fs (

−→
X ,Dk )

/n that approximates the distribution µx of fs (
−→
X ). We emphasize on the

fact that the random variables D1, . . . ,Dn are not observed.

5.5.3 Sensitivity analysis

Let us now present the methodology we adopt in the sequel. In order to study the sensitivity of the distribution µx ,
one can use the framework introduced in Section 5.4.2 and the index Su

2,Wq
given by (5.35).

In an ideal scenario which corresponds to the framework of (5.40), one may assess the probability measure µx for any
x. Then following the estimation procedure of Section 5.4.3, one gets an estimation of the sensitivity index Su

2,Wq
with

good asymptotic properties [51, Theorem 2.4].
In the more realistic framework presented above in (5.39), we only have access to the approximation µx,n of µx ren-
dering more complex the estimation procedure and the study of the asymptotic properties. In this case, the general
design of experiments is the following

(
−→
X 1,D1,1, . . . ,D1,n) → fs (

−→
X 1,D1,1), . . . , fs (

−→
X 1,D1,n),

(
−→
X u

1 ,D ′
1,1, . . . ,D ′

1,n) → fs (
−→
X u

1 ,D ′
1,1), . . . , fs (

−→
X u

1 ,D ′
1,n),

...

(
−→
X N ,DN ,1, . . . ,DN ,n) → fs (

−→
X N ,DN ,1), . . . , fs (

−→
X N ,DN ,n),

(
−→
X u

N ,D ′
N ,1, . . . ,D ′

N ,n) → fs (
−→
X u

N ,D ′
N ,1), . . . , fs (

−→
X u

N ,D ′
N ,n),

where
−→
X j is the j -th realization of

−→
X with j = 1, · · · , N ,

−→
X u

j is the associated Pick-Freeze version, and 2×N ×n is the

total number of evaluations of the stochastic computer code (5.39). Then, we construct the approximations µ−→
X j ,n

of

µ−→
X j

for any j = 1, . . . , N given by

µ−→
X j ,n

= 1

n

n∑
k=1

δ
fs (

−→
X j ,D j ,k )

. (5.41)

From there, one may use one of the three estimation procedures presented in Section 5.3.1.

• First method - Pick-Freeze. It suffices to plug the empirical version µn of each measure µ under concern in
(5.36) to get Ŝu

2,Wq ,PF,n .

• Second method - U-statistics. For l = 1, . . . ,4, let

Ul ,N ,n =
(

N
m(l )

)−1 ∑
1Éi1<···<im(l )ÉN

Φs
l

(
µi1,n , . . . ,µim(l ),n

)
(5.42)

where as previously seenΦs· is the symmetrized version ofΦ· defined in (5.21) andµ= (µ,µu). Then, we estimate
Su

2,Wq
by

Ŝu
2,Wq ,Ustat,n = U1,N ,n −U2,N ,n

U3,N ,n −U4,N ,n
. (5.43)
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• Third method - Rank-based. The rank-based estimation procedure may also easily be extended to this context
by using the empirical version µn of each measure µ under concern instead of the true one µ, as explained into
more details in the numerical study developed in Section 5.5.5. This procedure leads to Ŝu

2,Wq ,Rank,n .

Actually, these estimators are easy to compute since, for two discrete measures supported on a same number of points
and given by

ν1 = 1

n

n∑
k=1

δxk , ν2 = 1

n

n∑
k=1

δyk ,

the Wasserstein distance between ν1 and ν2 simply writes

W q
q (ν1,ν2) = 1

n

n∑
k=1

(x(k) − y(k))
q , (5.44)

where z(k) is the k-th order statistics of z.

5.5.4 Central limit theorem for the estimator based on U-statistics

In this section, we focus on the computationnally less expensive estimator: the one based on U-statistics. For statisti-
cal purposes, we establish a central limit theorem for Ŝu

2,Wq ,Ustat,n inspired from [51]. In addition, we consider several

examples and study when the conditions of Proposition 5.18 hold.

Proposition 5.18. Consider three i.i.d. copies X1, X2 and X3 of a random variable X . Let δ(N ) be a sequence tending to
0 as N goes to infinity and such that

P
(∣∣Wq (µX1 ,µX3 )−Wq (µX1 ,µX2 )

∣∣É δ(N )
)= o

(
1p
N

)
.

Let n be such that E[Wq (µX ,µX ,n)] = o(δ(N )/
p

N ). Under the assumptions of Theorem 2.4 in [51], we get, for any u ⊂
{1, · · · , p},

p
N

(
Ŝu

2,Wq ,Ustat,n −Su
2,Wq

)
L−−−−−→

n→+∞ N (0,σ2) (5.45)

where the asymptotic variance σ2 is given by (13) in the proof of Theorem 2.4 in [51].

In some particular frameworks, one may derive easily a suitable value ofδ(N ). Two examples are given in the following.

Example 5.19. If the inverse of the random variable W = ∣∣Wq (µX1 ,µX3 )−Wq (µX1 ,µX2 )
∣∣ has a finite expectation, then,

by Markov inequality,

P (W É δ(N )) =P(
W −1 Ê δ(N )−1)É 1

δ(N )
E

[
1

W

]
and it suffices to choose δ(N ) so that δ(N )−1 = o

(
N−1/2

)
as N goes to infinity.

Example 5.20 (Uniform example). Assume that X is uniformly distributed on [0,1] and that µX is a Gaussian distri-
bution centered at X with unit variance. Then the Wasserstein distance W2(µX1 ,µX2 ) rewrites as (X1 − X2)2 so that the
random variable W = ∣∣W2(µX1 ,µX3 )−W2(µX1 ,µX2 )

∣∣ is given by∣∣(X1 −X3)2 − (X1 −X2)2∣∣= |(X3 −X2)(X2 +X3 −2X1)| .
Consequently,

P(W É δ(N )) ÉP(|X3 −X2| É
√
δ(N ))+P(|X2 +X3 −2X1| É

√
δ(N )).

Notice that |X3 −X2| is triangularly distributed with parameter a = 0, b = 1, and c = 0 leading to

P(|X3 −X2| Éα) =α(2−α), for all α ∈ [0,1].

In addition,

P(|X2 +X3 −2X1| É
√
δ(N )) ÉP(||X2 −X1|− |X3 −X1|| É

√
δ(N ))

=
∫ 1

0
P(||X2 −u|− |X3 −u|| É

√
δ(N ))du.
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Now, X2−u and X3−u are two independent random variables uniformly distributed on [−u,−u]. Then (see Figure 5.8),
one has

P(||X2 −u|− |X3 −u|| Éα) É 4α,

whence
P(|X2 +X3 −2X1| É

√
δ(N )) É 4

√
δ(N ).

Thus it turns out that P(W É δ(N )) =O(
p
δ(N )). Consequently, a suitable choice for δ(N ) is δ(N ) = o(1/N ).

u

u

u −1

u −1

α

α

−α

−α
0

•

•

•

•

Figure 5.8: Domain Γu,α = {(x1, x2) ∈ [0,1]; ||x1 −u|− |x2 −u|| Éα} (in grey).

Analogously, one may derive suitable choices for n in some particular cases. For instance, we refer the reader to [11]
to get upper bounds on E[Wq (µX ,µX ,n)] for several values of q Ê 1 and several assumptions on the distribution on µX :
general, uniform, Gaussian, beta, log concave, etc. Here are some results.

• In the general framework, the upper bound for q Ê 1 relies on the functional

Jq (µX ) =
∫
R

(
FµX (x)(1−FµX (x))

)q/2

fµX (x)q−1)
d x

where FµX is the c.d.f. associated to µX and fµX its p.d.f. See [11, Theorems 3.2, 5.1 and 5.3].

• Assume that µX is uniformly distributed on [0,1]. Then by [11, Theorems 4.7, 4.8 and 4.9], for any n Ê 1,

E[W2(µX ,µX ,n)2] É 1

6n
,

for any q Ê 1 and for any n Ê 1,

E[Wq (µX ,µX ,n)q ]1/q É (Const )

√
q

n
.

and for any n Ê 1,

E[W∞(µX ,µX ,n)] É (Const )

n
.

E.g. (Const ) =p
π/2.
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• Assume that µX is a log-concave distribution with standard deviation σ. Then by [11, Corollaries 6.10 and 6.12],
for any 1 É q < 2 and for any n Ê 1,

E[Wq (µX ,µX ,n)q ] É (Const )

2−q

(
σp
n

)q

,

for any n Ê 1,

E[W2(µX ,µX ,n)2] É (Const )σ2 logn

n
,

and for any q > 2 and for any n Ê 1,

E[Wq (µX ,µX ,n)q ] É Cqσ
q

n
,

where Cq depends on q , only. Furthermore, if µX supported on [a,b], then for any n Ê 1,

E[W2(µX ,µX ,n)2] É (Const )(b −a)2

n +1
.

E.g. (Const ) = 4/ln2. Cf. [11, Corollary 6.11].

Example 5.20 - continued. We consider that X is uniformly distributed on [0,1] and µX is a Gaussian distribution
centered at X with unit variance. Then, by [11, Corollary 6.14], we have, for any n Ê 3,

E[W2(µX ,µX ,n)2] É (Const ) loglogn

n
,

and for any q > 2 and for any n Ê 3,

E[Wq (µX ,µX ,n)q ] É Cq

n(logn)q/2
,

where Cq depends only on q . Since we have already chosen δ(N ) = o(N−1), it remains to take n so that loglogn/n =
o(N−2) to fulfill the condition E[W2(µX ,µX ,n)] = o(δ(N )/

p
N ).

5.5.5 Numerical study

Example 5.17 - continued. Here, we consider again the code given by (5.37) and we set
−→
X = (X1, X2, X3) and p = 3.

Having in mind the notation of Section 5.5.2, we consider the ideal code

f : E →Wq (E)

(X1, X2, X3) 7→µ(X1,X2,X3)

where µ(X1,X2,X3) is the uniform distribution on [0,1+ X1 + X2 + X1X3] for which the c.d.f. is F given by (5.37) and its
stochastic counterpart

fs : E ×D →R (5.46)

(X1, X2, X3,D) 7→ fs (X1, X2, X3,D)

where fs (X1, X2, X3,D) is a realization of µ(X1,X2,X3).
Hence, we no longer assume that one may observe N realizations of F associated to the N initial realizations of
(X1, X2, X3). Instead, for any of the N initial realizations of (X1, X2, X3), we assess n realizations of a uniform random
variable on [0,1+X1 +X2 +X1X3].
In order to compare the estimation accuracy of the Pick-Freeze method and the rank-based method at a fixed size, we
assume once again that only 450 calls of the computer code f are allowed to estimate the Fréchet indices Su(F) and
the Wasserstein indices Su

2,W2
for u = {1}, {2}, and {3}. As in Example 5.17 of Section 5.4.4, the sample size allowed in the

rank-based procedure is then N = 450 while, in the Pick-Freeze methodology, it is only N = 112 for the Fréchet indices
Su(F) and N = 75 for the Wasserstein indices Su

2,W2
. We only focus on the first-order indices since, as explained previ-

ously, the rank-based procedure has not been developed yet for higher-order indices. The empirical c.d.f. based on the
empirical measures µX j ,n for j = 1, . . . , N in (5.41) are constructed with n = 500 evaluations. We repeat the estimation
procedure nr = 200 times. The boxplots of the mean square errors for the estimation of the Wasserstein indices Su

2,W2
have been plotted in Figure 5.9. We observe that, for a fixed total number of calls 450 to the code f (corresponding
to a rank-based sample size N = 450 and to a Pick-Freeze sample size N = 74 for the Wasserstein indices Su

2,W2
), the

rank-based estimation procedure performs much better than the Pick-Freeze method with significantly lower mean
errors.

Another numerical study, in the particular setting of stochastic computer codes and inspired by [58], is considered in
Section 5.6.3.
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Figure 5.9: Model (5.46) with p1 = 1/3, p2 = 2/3, and p3 = 3/4. Boxplot of the mean square errors of the estimation
of the Wasserstein indices Su

2,W2
with a fixed sample size N , an approximation size n fixed at n = 500, and a number

nr = 200 of replications. The indices with respect to u = {1}, {2}, and {3} are displayed from left to right. The results
of the Pick-Freeze estimation procedure with N = 75 for the Wasserstein indices Su

2,W2
are provided in the left side of

each graphic. The results of the rank-based methodology with N = 450 are provided in the right side of each graphic.

5.6 Sensitivity analysis with respect to the law of the inputs

This section deals with what is called second-level analysis and that corresponds to the SA with respect to the input
distributions (rather than the inputs themselves). Before explaining our contributions in this framework, let us briefly
describe its state of the art.

5.6.1 State of the art

The paper [83] is devoted to second-level uncertainty which corresponds to the uncertainty on the input distributions
and/or on the parameters of the input distributions. As mentioned by the authors, such uncertainties can be handled
in two different manners: (1) aggregating them with no distinction [26, 27] or (2) separating them [83]. In [26], the
uncertainty concerns the parameters of the input distributions. The authors study the expectation with respect to
the distribution of the parameters of the conditional output. In [27], the second-level uncertainties are transformed
into first-level uncertainties considering the aggregated vector containing the input random variables vector together
with the vector of uncertain parameters. Alternatively, in [83], the uncertainty brought by the lack of knowledge of the
input distributions and the uncertainty of the random inputs are treated separately. A double Monte-Carlo algorithm
is first considered. In the outer loop, a Monte-Carlo sample of input distribution is generated, while the inner loop
proceeds to a GSA associated to each distribution. A more efficient algorithm is also proposed with a unique Monte-
Carlo loop. The SA is then performed using the so-called Hilbert-Schmidt dependence measures (HSIC indices) on
the input distributions rather than the input random variables themselves. See, e.g., [54] for the definition of the HSIC
indices and more details on the algorithms.
In [84], a different approach is adopted. A failure probability is studied while the uncertainty concerns the parameters
of the input distributions. An algorithm with low computational cost is proposed to handle such uncertainty together
with the rare event setting. A single initial sample allows to compute the failure probabilities associated to different
parameters of the input distributions. A similar idea is exploited in [72] in which the authors consider input perturba-
tions and Perturbed-Law based Indices that are used to quantify the impact of a perturbation of an input p.d.f. on a
failure probability. Analogously, the authors of [56, 58] are interested in (marginal) p.d.f. perturbations and the aim is
to study the “robustness of the Sobol indices to distributional uncertainty and to marginal distribution uncertainty”
which correspond to second-level uncertainty. For instance, the basic idea of the approach proposed in [56] is to view
the total Sobol index as an operator which inputs the p.d.f. and returns the Sobol index. Then the analysis of robust-
ness is done computing and studying the Fréchet derivative of this operator. The same principle is used in [58] to treat
the robustness with respect to the marginal distribution uncertainty. Recently, [117] proposes a very clever approach
of second-level SA when some moments of the distribution of the inputs are fixed. Its approach characterizes among
all compactly supported input distribution with fixed first moments the range of variability of the Sobol indices.

5.6.2 Link with stochastic computer codes

We propose a new procedure that stems from the methodology in the context of stochastic computer codes described
in Section 5.5. We denote by ηi (i = 1, . . . , p) the distribution of the input Xi (i = 1, . . . , p) in the model given by (5.14).
There are several ways to model the uncertainty with respect to the choice of each ηi . Here we adopt the following
framework. We assume that each ηi belongs to some family P i of probability measures endowed with the probability
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measure Pηi . In general, there might be measurability issues and the question of how to define a σ−field on some
general spaces P i can be tricky. We will restrict our study to the simple case where the existence of the probability
measure Pηi on P i is given by the construction of the set P i . More precisely, we proceed as follows.

• First, for 1 É i É p, let di be an integer and let Θi ⊂ Rdi . Then consider the probability space
(
Θi ,B(Θi ),νΘi

)
where B(Θi ) is the Borel σ−field and νΘi is a probability measure on (Θi ,B(Θi )).

• Second, for 1 É i É p, we consider an identifiable parametric set of probability measure P i on Ei : P i := {ηθ,θ ∈
Θi }. Let us denote by πi the one-to-one mapping from Θi to P i defined by πi (θ) := ηθ ∈ P i and define the
σ−field Fi on P i by

A ∈Fi ⇐⇒ ∃B ∈B(Θi ), A =πi (B).

Then we endow this measurable space with the probabilityΠi defined, for any A ∈Fi , by

Πi (A) = νΘi

(
π−1

i (A)
)

.

• Third, in order to perform a second-level SA on (5.14), we introduce the stochastic mapping fs from P1×. . .×Pp

to X defined by
fs

(
η1, . . . ,ηp

)= f (X1, . . . , Xp ) (5.47)

where (X1, . . . , Xp ) is a random vector distributed as µ1 ⊗ . . .⊗µp . Hence fs is a stochastic computer code from
P1 × . . .×Pp to X and once the probability measures Pηi on each P i are defined, we can perform SA using the
framework of Section 5.5.

5.6.3 Numerical study

As in [58], let us consider the synthetic example defined on [0,1]3 by

f (X1, X2, X3) = 2X2e−2X1 +X 2
3 . (5.48)

We are interested in the uncertainty in the support of the random variables X1, X2, and X3. To do so, we follow the
notation and framework of [58]. For i = 1, 2, and 3, we assume that Xi is uniformly distributed on the interval [Ai ,Bi ],
where Ai and Bi are themselves uniformly distributed on [0,0.1] and [0.9,1] respectively. As remarked in [58], it seems
natural that f will vary more in the X2-direction when X1 is close to 0 and less when X1 is close to 1.
As mentioned in Section 5.6.1, the authors of [58] view the total Sobol index as an operator which inputs the p.d.f.
and returns the total Sobol index. Then they study the Fréchet derivative of this operator and determine the most
influential p.d.f., which depends on a parameter denoted by δ. Finally, they make the parameter δ vary.
Here, we adopt the methodology explained in the previous section (Section 5.6.2). Namely, we consider the stochastic
computer code given by

fs (η1,η2,η3) = 2X2e−2X1 +X 2
3 , (5.49)

where the Xi ’s are independently drawn according to the uniform measure ηi on [Ai ,Bi ] with Ai and Bi themselves
uniformly distributed on [0,0.1] and [0.9,1] respectively. Then to estimate the indices Su

2,W2
, for u = {1}, {2}, {3}, {1,2},

{1,3}, and {2,3}, we proceed as follows.

1. For i = 1, 2, and 3,

(a) we produce a N -sample
(
[Ai , j ,Bi , j ]

)
j=1,...,N of intervals [Ai ,Bi ].

(b) for j = 1, . . . , N ,

i. we generate a n-sample
(
Xi , j ,k

)
k=1,...,n of Xi , where Xi , j ,k is uniformly distributed on [Ai , j ,Bi , j ].

ii. we compute the n-sample
(
Z j ,k

)
k=1,...,n of the output using

Z = f (X1, X2, X3) = 2X2e−2X1 +X 2
3 .

Thus we get a N -sample of the empirical measures of the distribution of the output Z given by

µZ j ,n := 1

n

n∑
k=1

δZ j ,k , for j = 1, . . . , N .

(c) We order the intervals
(
[Ai , j ,Bi , j ]

)
j=1,...,N and we get the Pick-Freeze versions of Z to treat the SA regarding

the input u.
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2. Finally, it remains to compute the indicators of the empirical version of (5.36) using (5.44) and their means to
get the Pick-Freeze estimators of Su

2,W2
.

Notice that we only consider the estimators based on the Pick-Freeze method since we allow for both bounds of the
interval to vary and, as explained previously, the rank-based procedure has not been developed yet, neither for higher-
order indices nor in higher dimensions.

Simulations First, we compute the estimators of Su
2,W2

following the previous procedure with a sample size N = 500
and an approximation size n = 500. The results are displayed in Table 5.5 (first row). We also perform another batch
of simulations allowing for higher variability on the bounds: for i = 1, 2, and 3, Ai is now uniformly distributed on
[0,0.45] while Bi is now uniformly distributed on [0.55,1]. The results are displayed in Table 5.5 (second row).

u {1} {2} {3} {1,2} {1,3} {2,3}
Ai ∈ [0,0.1]
Bi ∈ [0.9,1] Ŝu

2,W2
0.07022 0.08791 0.09236 0.14467 0.21839 0.19066

Ai ∈ [0,0.45]
Bi ∈ [0.55,1] Ŝu

2,W2
0.11587 0.06542 0.169529 0.22647 0.40848 0.34913

Table 5.5: Model (5.48). GSA on the parameters of the input distributions. Estimations of Su
2,W2

with a sample size
N = 500 and an approximation size n = 500. In the first row, for i = 1, 2, and 3, Ai is uniformly distributed on [0,0.1]
while Bi is uniformly distributed on [0.9,1]. In the second row, we allow for more variability: for i = 1, 2, and 3, Ai is
uniformly distributed on [0,0.45] while Bi is uniformly distributed on [0.55,1].

Second, we run another simulation allowing for more variability on the upper bound related to the third input X3

only: B3 is uniformly distributed on [0.5,1] (instead of [0.9,1]). For i = 1 and 2, Ai is still uniformly distributed on
[0,0.1] while Bi is still uniformly distributed on [0.9,1]. The results are displayed in Table 5.6. We still use a sample size
N = 500 and an approximation size n = 500.

u {1} {2} {3} {1,2} {1,3} {2,3}

Ŝu
2,W2

0.01196 0.06069 0.56176 -0.01723 0.63830 0.59434

Table 5.6: Model (5.48). GSA on the parameters of the input distributions. Estimations of Su
2,W2

with a sample size
N = 500 and an approximation size n = 500 and more variability on B3, now uniformly distributed on [0.5,1]. For i = 1
and 2, Ai is still uniformly distributed on [0,0.1] while Bi is still uniformly distributed on [0.9,1].

Third, the aim is to highlight the fact that performing a classical GSA differs from performing a second-level SA. In that
view, we perform a classical GSA on the inputs rather than on the parameters of their distributions (corresponding to a
second-level analysis). Namely, we consider the index Su

2,CVM and proceed to its estimation with a sample size N = 104.
The reader is referred to [49, Section 3] for the definition of this index Su

2,CVM and its Pick-Freeze estimator together
with their properties. The results are displayed in Table 5.7.

u {1} {2} {3} {1,2} {1,3} {2,3}

Ŝu
2,CVM 0.13717 0.15317 0.33889 0.33405 0.468163 0.53536

Table 5.7: Model (5.48). Direct GSA on the inputs. Estimations of Su
2,CVM with a sample size N = 104. The reader

is referred to [49, Section 3] for the definition of the index Su
2,CVM and its Pick-Freeze estimator together with their

properties.

Comments When one is interested in the choice of the input distributions of X1, X2, and X3, the first row in Table 5.5
shows that each choice is equally important. Now, if we give more freedom to the space where the distribution lives,
the relative importance may change as one can see in Table 5.5 (second row) and in Table 5.6. More precisely, in Table
5.6, the variability of the third input distribution (namely, the variability of its upper bound) is five times larger than
the other variabilities. Not surprisingly, it results that the importance of the choice of the third input distribution is
then much more important than the choices of the distributions of the two first inputs.
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As said in the previous paragraph, when one is interested in the choice of the input distributions of X1, X2, and X3,
the first row in Table 5.5 shows that each choice is equally important. Nevertheless, performing a classical GSA on the
inputs using the Cramér-von-Mises index for example, we see, in Table 5.7, that the index related to X3 is more than
twice as important as X1 and X2 (when considering only first-order effects). Hence, here, the classical GSA largely
differs numerically from a second-level SA as expected.

5.7 Exercices

Exercise 11. Consider X1 and X2 two independent standard Gaussian variable and

Z = f (X1, X2) = 2X1 +3X1X2 +X2.

Make a program that computes N̂ u
2,CV M defined in (5.11).

Exercise 12. Let us consider the quite simple linear model

Y =αX1 +X2, α> 0,

where X1 has a Bernoulli distribution with success probability 0 < p < 1 and X1, X2 are independent. Assume further
that X2 has a continuous distribution F2 on R such that E[X2] =αp and with finite variance Var(X2) =α2p(1−p).

1. Compute the first order Sobol indices of X1 and X2.

2. Determine the the distribution of Y given X1 = 0 and the distribution of Y given X1 = 1. Deduce the distribution
of Y .

3. Compute S1
2,CV M and S2

2,CV M . Comment.

4. Compute H q
1 and H q

2 .

5. Application in the following particular cases:

(i) X2 is a centered Gaussian random variable with variance Var(X2) =α2p(1−p);

(ii) X2 is uniformly distributed on [0,b] with b = 2α
√

3p(1−p);

(iii) X2 is exponentially distributed with mean 1/λ=α√
p(1−p).

6. Propose a numerical illustration with N = 100 and 500.

Exercise 13. Let us consider the following nonlinear model

Y = exp{X1 +2X2}, (5.50)

where X1 and X2 are independent standard Gaussian random variables. The distribution of Y is said to be log-normal.

1. Derive both its density and its distribution functions.

2. Compute the indices of order q (q Ê 2):

H q
1 = E[

(e X1+2 −e5/2)q]
and H q

2 = E[
(e2X1+1/2 −e5/2)q]

.

3. Prove that the Cramér-von Mises indices S1
2,CV M and S2

2,CV M are given by

S1
2,CV M = 6

π
arctan2−2 ≈ 0.1145 and S2

2,CV M = 6

π
arctan

p
19−2 ≈ 0.5693.
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Chapter 6

Beyond variance-based indices: other
extensions

As emphasized previously, Sobol’ indices are based on the second-order moment (i.e. the variance) of the output Y .
However, in some cases, variance poorly represents the variability of the distribution. In Chapter 5, we investigate
In Sections 6.1 and 6.2, we present different ways to consider other features on the output, providing generalization
frameworks for Sobol’ indices. It also happens that the quantity of interest is not related to the overall variability of
the model output. In such cases, sensitivity analysis techniques have then to be adapted: goal-oriented sensitivity
analysis tools are presented in Section 6.3.

6.1 Moment-independent importance measures

6.1.1 Introduction

As seen in Chapter 5, a first attempt to define a moment-independent importance measure has been addressed using
the Cramér-von Mises distance and leading to the Cramér-von Mises indices defined in (5.10).

Alternative definitions for measuring the strength of the statistical dependence of Y on one input Xi and relying on
distribuaitons rather than moments have been proposed by Borgonovo and his co-authors giving rise to the class of
distribution-based sensitivity measures. Assuming all considered random variables have an absolutely continuous
distribution with respect to the Lebesgue measure on R, they define the importance of Xi as the distance between the
unconditional distribution of Y and its conditional distribution (see [13] for a review). The first representative of this
class is the δ-importance measure, which is based on the L1-norm between densities [12]:

δi = E
[∫ ∣∣ fY (y)− fY |Xi (y)

∣∣d y
]
=

Ï ∣∣ fY (y) fXi (xi )− fY ,Xi (y, xi )
∣∣d yd xi , (6.1)

where fXi , fY , and fY ,Xi stand for the marginal densities of Xi and Y and the joint density of the pair (Y , Xi ). Clearly,
δi = 0 if and only if Xi and Y are independent.
Observe that the integrand

∣∣ fY (y)− fY |Xi (y)
∣∣ is the total variation distance between the distribution PY of Y and the

conditional distribution PY |Xi of Y by Xi .

The integral
∫ ∣∣ fY (y)− fY |Xi (y)

∣∣d y can be rewritten as∫
g
( fY (y)

fY |Xi (y)

)
fY |Xi (y)d y (6.2)

in terms of the convex function g defined by g (t ) = |t −1| and verifying g (1) = 0. Then one may consider another
convex functions g such that g (1) = 0. For instance, g (t ) = − ln t or g (t ) = t ln t that both leads to Kullback-Leibler
divergences. In the first case, one gets the following index:

θi = E
[∫ (

ln fY |Xi (y)− ln fY (y)
)

fY |Xi (y)d y
]
= E

[
DK L

(
PY |Xi ||PY

)]
. (6.3)

In the latter case, one gets

θ′i = E
[∫ (

ln fY (y)− ln fY |Xi (y)
)

fY (y)d y
]
= E

[
DK L

(
PY ||PY |Xi

)]
. (6.4)

81
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Another representative is the βi sensitivity measure, based on the Kolmogorov-Smirnov separation between cumula-
tive distribution functions:

βi = E
[

sup
y

∣∣FY (y)−FY |Xi (y)
∣∣]. (6.5)

The previous indices are defined in terms of the f -divergence between the distribution of Y and the conditional
distribution of Y by Xi .

6.1.2 New focus on Sobol’ indices: general indices built on a dissimilarity measure

Let us first come back to the unnormalized first-order Sobol’ sensitivity index for a given input variable Xi and rewrite
it as

VarE[Y |Xi ) = E
[
EY −E[Y |Xi )

]2
. (6.6)

This alternative formulation provides a genuine intuition of what first-order Sobol’ indices measure: they compare the
output distribution PY and the output distribution conditionally to Xi , PY |Xi , through their mean values and integrate
the squared difference to get the unnormalized index.
A straightforward extension then readily consists in replacing the comparison of the means by some general dissimi-
larity measure d(·, ·) between probability distributions to propose a new sensitivity index defined as

E
[

d
(
PY ,PY |Xi

)]
. (6.7)

Finally, the advantage of such a general formulation is that many choices for d are available: we see in what follows that
using natural dissimilarity measures yields sensitivity indices related to well known quantities, while others possess
theoretical properties that make it possible to build efficient estimators as well as enjoyable additional characteristics.

Taking the Cramér-von Mises distance in (6.7) leads to the Cramér-von Mises indices already studied in Chapter 5.

6.1.3 The F -divergence case

Coming back to the choice of the dissimilarity measure d(·, ·), a popular choice is the class of Csiszár f -divergences
d(·, ·) = d f (·||·) [29]. Assuming all considered random variables have an absolutely continuous distribution with re-
spect to the Lebesgue measure on R, the f -divergence between PY and PY |Xi is given by

d f (PY ||PY |Xi ) =
∫
R

f

(
pY (y)

pY |Xi (y)

)
fY |Xi (y)d y (6.8)

where f is any convex function such that f (1) = 0. Standard choices for function f include for example:

• the Kullback-Leibler divergence f (t ) =− ln(t ) or f (t ) = t ln(t ),

• the Hellinger distance: f (t ) = (p
t −1

)2
,
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• the total variation distance: f (t ) = |t −1|,
• the Pearson χ2 divergence: f (t ) = (t −1)2 or f (t ) = t 2 −1,

• the Neyman χ2 divergence: f (t ) = (t −1)2/t or f (t ) = (1− t 2)/t .

Plugging this dissimilarity measure in (6.7) and deconditioning with respect to Xi yields the following sensitivity index∫
R2

f

(
pY (y) fXi (x)

pXi ,Y (x, y)

)
pXi ,Y (x, y)d xd y (6.9)

Note that inequalities on Csiszár f -divergences imply that such sensitivity indices are positive and equal zero when Y

and Xi are independent. Also, it is important to note that, given the form of Sr
d f

i , it is invariant under any smooth and
uniquely invertible transformation of the variables Xi and Y (see the proof for mutual information in Kraskov [66]).
This is an enjoyable property over variance-based Sobol’ sensitivity indices, which are only invariant under linear
transformations for a scalar output.
It is easy to see that the total variation distance with f (t ) = |t−1| gives a sensitivity index equal to δi defined in (6.1). In
addition, the Kullback-Leibler divergence with f (t ) = − ln(t ) yields θ′i defined in (6.4) that is the mutual information
between Xi and Y , denoted I (Xi ;Y ). A normalized version of this sensitivity index was extensively studied [66,74,95].
Similarly, the Neyman χ2 divergence with f (t ) = (1− t 2)/t leads to∫

R2

(
pXi ,Y (x, y)

pY (y)pXi (x)
−1

)2

pY (y)pXi (x)d xd y,

which is the so-called squared-loss mutual information between Xi and Y (or mean square contingency). These re-
sults show that some previously proposed sensitivity indices are actually special cases of more general indices defined
through Csiszár f -divergences. An extensive study of their properties is given in Rahman [99]. Moreover, the specific
structure of (6.9) makes it possible to envision more efficient tools for the estimation of these sensitivity indices. In-
deed, it only involves approximating a density ratio rather than full densities. This point is investigated below. But
more importantly, we see that special choices for f define sensitivity indices that are actually well-known dependence
measures such as the mutual information. This paves the way for looking at new sensitivity indices relying on recent
kernel-based dependence measures (see Section 6.2).

Estimation

Coming back to (6.9), the goal is to estimate∫
R2

f

(
1

r (x, y)

)
pXi ,Y (x, y)d xd y = E(Xi ,Y ) f

[
1

r (Xi ,Y )

]
where r (x, y) = pXi ,Y (x, y)/(pY (y)pXi (x)) is the ratio between the joint density of (Xi ,Y ) and the marginals. Of course,
straightforward estimation is possible if one estimates the densities pXi ,Y (x, y), pXi (x) and pY (y) with, e.g., kernel

density estimators. Assuming that we have a sample Zn = (Xn
i ,Yn) =

(
X ( j )

i ,Y ( j )
)

j=1...n
, the kernel density estimate of

pXi ,Y (x, y) is given by

p̂Xi ,Y (x, y) = 1

n

n∑
j=1

KH (z −Z ( j ))

for z = (x, y) and KH (z) = |H |−1/2K (H−1/2z) where K is a multivariate kernel and H is the bandwidth matrix. We
similarly get p̂Xi (x) and p̂Y (y), the kernel density estimates of pXi (x) and pY (y), respectively. We can deduce the
following plug-in estimators for the ratio and the sensitivity index

r̂ (x, y) = p̂Xi ,Y (x, y)

p̂Y (y)p̂Xi (x)
, Ŝ

d f

Xi
= 1

n

n∑
j=1

f

 1

r̂
(

X ( j )
j ,Y ( j )

)
 .

If we only consider the case of a scalar output and each input factor separately, this plug-in estimator can easily be
computed. However kernel density estimation suffers from the curse of dimensionality and the estimator proposed
above cannot be used when dealing with multidimensional outputs or group of inputs. For such a general setting,
one can observe that only the ratio function r (x, y) is needed: we can then expect more robust estimates by focusing
only on it. Powerful estimation methods for such ratios include, e.g., maximum-likelihood estimation [118], uncon-
strained least-squares importance fitting [63]. A k-nearest neighbors strategy dedicated to mutual information is also
discussed in Kraskov [66].
Unfortunately, all proposed estimation procedures lead to sub-optimal estimators which exhibit a non-parametric
rate of convergence. A potential progress towards the design of efficient estimators may come from adaptation of the
work by Laurent [69] or Giné and Nickl [53].
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6.2 Kernel-based sensitivity analysis

The dissimilarity point of view introduced above, although appealing (especially with the Cramér-von Mises distance
properties), still only provides a complementary perspective to Sobol’ indices. In particular, none of the importance
measures introduced so far enjoys the highly desirable FANOVA decomposition property. Such a decomposition not
only provides a proper normalization constant for sensitivity indices, but also appropriately defines the concept of
higher-order effects.
In this section, starting from another general class of dissimilarities between probability distributions, we introduce
recent advances on distances based on kernel representations of probability distributions. This framework can be
seen as a straightforward generalization of Sobol’ indices with profitable characteristics: estimation is far less prone
to the curse of dimensionality and a FANOVA-like decomposition is readily available.

6.2.1 Integral probability metrics and MMD distance

Integral Probability Metrics (IPM) [87] are a popular family of distance measures on probabilities given by

γF (P,Q) = sup
f ∈F

∣∣∣∣∫
S

f dP−
∫

S
f dQ

∣∣∣∣ (6.10)

for two probability measures P and Q defined on a measurable space S and where F is a class of real-valued bounded
measurable functions on S. Just as the choice of function F in Csiszár F -divergences gives rise to different measures,
the choice of F generates different IPM, e.g., the Wasserstein distance, the Dudley metric or the total variation dis-
tance. It is interesting to note that Csiszár F -divergences and IPM are very distinct classes of dissimilarity measures,
since they only intersect at the total variation distance [115]. Notable examples of F and associated distances include:

• The space of bounded continuous functions for the Dudley metric;

• The space of functions with bounded variations for the Kolmogorov metric;

• The space of Lipschitz bounded functions for the Wasserstein distance;

• The space of characteristic functions on Borel sets for the total variation distance.

Except for the total variance case, plugging the general expression (6.10) of an IPM in (6.7) no longer yields a closed-
form expression for a sensitivity index as in (6.9).
Recently, in a rich sequence of papers, several authors focused on another function class F , namely the space of
functions in the unit ball of a characteristic Reproducing Kernel Hilbert Space (RKHS) which gives rise to the Maximum
Mean Discrepancy (MMD) distance [108].

6.2.2 Reproducing Kernel Hilbert Space

Let X be an arbitrary set and H a Hilbert space of real-valued functions f : X → R on X with inner product 〈·, ·〉H
(denoted 〈·, ·〉 in what follows). For every x ∈X , we define the evaluation functional Lx : H →R as f 7→ Lx ( f ) = f (x).

Definition 6.1. A Hilbert space H is a Reproducing Kernel Hilbert Space (RKHS) if the evaluation functionals are con-
tinuous.

More details on RKHS can be found in the monograph of Berlinet and Thomas-Agnan [9].

Definition 6.2. A function k : X ×X →R is a kernel if

1. k is symmetric, i.e. ∀x, x ′ ∈X , k(x, x ′) = k(x ′, x)

2. k is positive definite, i.e. for any n ∈N, x1, . . . , xn ∈X and α1, . . . ,αn ∈R
n∑

i , j=1
αiα j k(xi , x j ) Ê 0
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Definition 6.3. The reproducing kernel of a RKHS H is a function k : X ×X →R such that

1. ∀x ∈X , k(x, ·) ∈H

2. ∀ f ∈H and ∀x ∈X , 〈 f ,k(x, ·)〉 = f (x) (reproducing property).

In particular, the reproducing kernel is a kernel, i.e. it is symmetric and positive definite.

Theorem 6.4. Every symmetric positive definite kernel defines a unique RHKS, of which it is the reproducing kernel.

Theorem 6.5 (Mercer, see [3]). Suppose k is a symmetric positive definite kernel on a compact set X and consider the
integral operator Tk : L2(X ) → L2(X ) defined by

(
Tk f

)
(x) =

∫
X

k(x,u) f (u)du.

Then there is an orthonormal basis {ei } of L2(X ) consisting of eigenfunctions of Tk such that the corresponding sequence
of eigenvalues {λi } are non-negative. The eigenfunctions corresponding to non-zero eigenvalues are continuous on X

and k has the following representation

k(x, x ′) =
∞∑

i=1
λi ei (x)ei (x ′)

where the convergence is absolute and uniform.

Theorem 6.6 (Representer’s theorem, see [107]). Let H be a RKHS with kernel k and consider the minimization prob-
lem

min
f ∈H

n∑
i=1

l ( f (xi ), yi )+λ‖ f ‖2

where l (·, ·) is any loss function and λ> 0. Then, if l (·, ·) is convex with respect to its second argument, the solution of the
minimization problem is unique and writes

f ∗(x) =
n∑

i=1
ai k(xi , x)

Definition 6.7. Let ξ denote a random variable on X with probability distribution Pξ and H a RKHS with kernel k.
The kernel embedding of the distribution Pξ is the function in H given by the kernel mean

µPξ = Eξ[k(ξ, ·)]

Definition 6.8. A kernel is characteristic if the kernel embedding µ : M+
1 →H is injective.
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MMD distance via kernel embedding of distributions

When particularizing F as the unit ball of a RKHS H in (6.10), we can write

MMD2(P,Q;H ) := γF (P,Q)2 =
(

sup
f ∈H , ‖ f ‖É1

∫
S

f dP−
∫

S
f dQ

)2

=
(

sup
f ∈H , ‖ f ‖É1

Eξ∼P[ f (ξ)]−Eζ∼Q[ f (ζ)]

)2

=
(

sup
f ∈H , ‖ f ‖É1

Eξ∼P[〈 f ,k(ξ, ·)〉]−Eζ∼Q[〈 f ,k(ζ, ·)〉]
)2 (

reproducing
property

)

=
(

sup
f ∈H , ‖ f ‖É1

〈 f ,Eξ∼P[k(ξ, ·)]−Eζ∼Q[k(ζ, ·)]〉
)2 ( linearity of

inner product

)

=
(

sup
f ∈H , ‖ f ‖É1

〈 f ,µP −µQ〉
)2 (

kernel embedding
definition

)
= ‖µP −µQ‖2 (definition of the norm)

= Eξ,ξ′∼P[k(ξ,ξ′)]+Eζ,ζ′∼Q[k(ζ,ζ′)]−2Eξ∼P,ζ∼Q[k(ξ,ζ)]
(
reproducing

property

)
(6.11)

assuming Eξ,ξ′∼P[k(ξ,ξ′)] <∞ and Eζ,ζ′∼Q[k(ζ,ζ′)] <∞. Here, ‖·‖ is the Hilbertian norm (under H ) andµP = Eξ∼P[k(ξ, ·)]
is the kernel embeddings of P.

The MMD is a distance if, and only if, the kernel k is characteristic (i.e., the kernel embedding is injective) in order
to ensure that two different probability distributions are not mapped to the same function in the RKHS. Most kernels
used in the machine learning community such as the Gaussian kernel, the exponential kernel or the class of Matérn

kernels are characteristic. However, polynomial kernels k(y, y ′) = (
y y ′+α)d are not characteristic, since probability

distributions with the same moments up to order d but with different higher-order ones are mapped to the same
function. In particular, the vanilla linear kernel k(y, y ′) = y y ′ is worth mentioning, since in this case the MMD boils

down to a simple comparison of the means, i.e., MMD2(P,Q;H ) = (
Eξ∼P[ξ]−Eζ∼Q[ζ]

)2, which obviously does not
define a distance on probability distributions.

MMD estimation

The kernel formulation (6.11) is easily used to define an estimator for MMD2(P,Q;H ) given by

�MMD
2

(P,Q;H ) = 1

n(n −1)

n∑
i=1

n∑
j 6=i

[
k(ξi ,ξ j )−k(ξi ,ζ j )−k(ζi ,ξ j )+k(ζi ,ζ j )

]
where {ξi }i=1...n ∼ P and {ζi }i=1...n ∼ Q. This is an unbiased one-sample U-statistic estimate, but a biased V-statistic
has also been proposed.

Sensitivity index based on the MMD - distance between PY and PY |XB

Recall that the variance decomposition states that the variance of the output can be decomposed as VarY =∑
A⊂{1,...,d} VA

where each term is given by

VA = ∑
B⊂A

(−1)|A|−|B |Var(E[Y |XB ]).

The MMD-based equivalent decomposition is described in the following theorem [33].

Assumption 6.2.1. ∀A ⊂ {1, . . . ,d} and PXA -almost all xA ∈XA , Eξ∼PY |XA=xA
[kY (ξ,ξ)] <∞ with the convention PY |XA =

PY if A =;.
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Theorem 6.9. Assume the same assumptions as the one assumed in Theorem 1.3 (in particular, the random vectorX has
independent components). Assume further that Assumption 6.2.1 and Mercer’s theorem holds. Let denote MMD2

tot =
E[k(Y ,Y )]−E[k(Y ,Y ′)] where Y ′ is an independent copy of Y . Then, the total MMD can be decomposed as

MMD2
tot =

∑
A⊂{1,...,d}

MMD2
A

where each term is given by
MMD2

A = ∑
B⊂A

(−1)|A|−|B |EXB

[
MMD2(PY ,PY |XB ;H )

]
.

Theorem 6.9 is very similar to the FANOVA one (Corollary 1.8). One can note that the total variance of the output is
replaced by a generalized variance MMD2

tot defined by the kernel, and that each subset effect is obtained by remov-
ing lesser order ones in the MMD distance of the conditional distributions (instead of the variance of the conditional
expectations in the FANOVA). The following corollary states that these two decompositions coincide when using the
linear kernel (Sobol’ decomposition).

Corollary 6.10. When k(y, y ′) = y y ′ in Theorem 6.9, the decomposition is the same as the one provided in Corollary
1.8). In other words,

MMD2
tot =V and ∀B ⊂ {1, . . . ,d}, EXB

[
MMD2(PY ,PY |XB ;H )

]= Var(E[Y |XB ]).

It further implies ∀A ⊂ {1, . . . ,d}, MMD2
A =VA .

Thanks to Theorem 6.9 we can now define properly normalized MMD-based indices.

Definition 6.11. In the frame of Theorem 6.9, let A ⊂ {1, . . . ,d} and j ∈ {1, . . . ,d}.

• The normalized MMD-based sensitivity index associated to A is defined as

SMMD
A = MMD2

A

MMD2
tot

.

• SMMD
j = SMMD

{ j } is the MMD-based index associated to the singleton { j }. It is called the first-order MMD-based index

for the input variable X j . More generally, if l = |A|, SMMD
A is called the MMD-based index of order l associated to

X A .

• The total MMD-based index associated to X A is defined as ST,MMD
A = 1−SMMD

Ā
. In particular

ST,MMD
j = ST,MMD

{ j } = 1−
MMD2

{ j }

MMD2
tot

.

From Theorem 6.9, we have the fundamental normalization identity

∑
A⊂{1,...,d}

SMMD
A = 1.

6.2.3 HSIC dependence measure

Coming back to moment-independent sensitivity indices, we have seen in Section 6.1 that some special cases of f -
divergences lead to sensitivity indices which are dependence measures, such as the mutual information

SM I
j = I (X j ;Y ) =

∫
R2

pX j ,Y (x, y) ln

(
pX j ,Y (x, y)

pY (y)pX j (x)

)
d xd y
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or the squared-loss mutual information

SSM I
j = SM I (X j ;Y ) =

∫
R2

(
pX j ,Y (x, y)

pY (y)pX j (x)
−1

)2

pY (y)pX j (x)d xd y.

To measure the dependence between any two random variables (U ,V ) ∼ PUV with marginals U ∼ PU and V ∼ PV , it
is common practice to measure the dissimilarity between the joint distribution PUV and the product of the marginals
PU ×PV . In the examples above, the dissimilarity measures are the Kullback-Leibler divergence and the χ2 divergence,
respectively. However, the kernel-based dissimilarity measure MMD has been introduced in the previous section: it is
then possible to define a dependence measure equal to the MMD distance between PUV and PU ×PV . This measure
is the so-called Hilbert-Schmidt Independence Criterion or HSIC and is defined below.

Definition 6.12. Consider a RKHS HX of functions X →Rwith kernel kX and a second RKHS HY of functions Y →R

with kernel kY . The Hilbert-Schmidt Independence Criterion HSIC(U ,V ) between two random vectors (U ,V ) with joint
distribution PUV on X ×Y and marginal distributions PU on X and PV on Y is given by

HSIC(U ,V ) = ‖µPUV −µPU×PV ‖2
HX ×HY

where

µPUV =
∫
X×Y

kX (·,u)kY (·, v)dPUV (u, v)

is the kernel embedding of the joint distribution and µPU×PV = ∫
X×Y kX (·,u)kY (·, v)dPU (u)dPV (v) is the kernel em-

bedding of the product of the marginals. Furthermore, we have the following formulation with kernels

HSIC(U ,V ) = EU ,U ′,V ,V ′ [kX (U ,U ′)kY (V ,V ′)]+EU ,U ′ [kX (U ,U ′)]EV ,V ′ [kY (V ,V ′)]−2EU ,V
[
EU ′ [kX (U ,U ′)]EV ′ [kY (V ,V ′)]

]
where (U ,V ) and (U ′,V ′) are independent copies distributed as PUV , provided EU ,U ′ [kX (U ,U ′)] < ∞ and
EV ,V ′ [kY (V ,V ′)] <∞.

If both kernels kX and kY are characteristic, the HSIC dependence measure equals 0 if, and only if, the variables are
independent (just like for the mutual information). Concerning estimation, assume that (Ui ,Vi )i=1...n is a sample of
the random vector (U ,V ) and denote KX and KY the Gram matrices with entries KX (i , j ) = kX (Ui ,U j ) and KY (i , j ) =
kY (Vi ,V j ), and H the centering matrix such that H(i , j ) = δi j − 1

n . Gretton et al [54] propose the following consistent
estimator for HSIC(U ,V )

�HSIC(U ,V ) = 1

n2 Tr(KX HKY H) (6.12)

= 1

n2

n∑
i , j=1

kX (Ui ,U j )kY (Vi ,V j )

+ 1

n2

n∑
i , j=1

kX (Ui ,U j )
1

n2

n∑
i , j=1

kY (Vi ,V j )

− 2

n

n∑
i=1

[
1

n

n∑
j=1

kX (Ui ,U j )
1

n

n∑
j=1

kY (Vi ,V j )

]
.

Notice that an unbiased estimator is also introduced in [111]. HSIC has been widely used in a large panel of applica-
tions, such as feature selection [111] or independence testing [55].

Sensitivity index based on HSIC - distance between PXB ,Y and PXB ×PY

Now, HSIC-based indices also enjoy a FANOVA-like decomposition. Nevertheless, it requires assumptions on the
kernel structure assigned to the inputs.

Assumption 6.2.2. ∀A ⊂ {1, . . . ,d}, Eξ∼PXA
[kXA (ξ,ξ)] <∞ and Eξ∼PY [kY (ξ,ξ)] <∞.
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Assumption 6.2.3. The reproducing kernel kX is of the form

kX (x,x′) =
d∏

j=1

(
1+k j (x j , x ′

j )
)

(6.13)

where for each j = 1, . . . ,d, k j (·, ·) is the reproducing kernel of a RKHS H j of real functions depending only on variable
x j and such that 1 ∉H j .
Furthermore, for all j = 1, . . . ,d and ∀x j ∈X j , we have∫

X j

k j (x j , x ′
j )dPX j (x ′

j ) = 0. (6.14)

Observe that this assumption involves using univariate kernels associated to a RKHS which does not include constant
functions. This may seem to be an original setting, but this is actually what is usually done in standard support vector
machines where a bias is explicitly introduced when using RBF kernels. Indeed, it is a well-known fact that they define
a RKHS which does not contain constant functions [116]. With Assumption 6.2.3, we can now state a decomposition
for HSIC-based sensitivity indices.

Theorem 6.13. Under the same assumptions of Theorem 1.3 (in particular, the random vectorX has independent com-
ponents), with Assumptions 6.2.2, 6.2.3 and assuming Mercer’s theorem holds, the HSIC dependence measure between
X= (X1, . . . , Xd ) and Y can be decomposed as

HSIC(X,Y ) =
∑

A⊂{1,...,d}
HSICA

where each term is given by
HSICA = ∑

B⊂A
(−1)|A|−|B |HSIC(XB ,Y )

and HSIC(XB ,Y ) is defined with kernel kB (xB ,x′B ) =∏
j∈B

(
1+k j (x j , x ′

j )
)

on the inputs as in (6.13).

The proof relies on Theorem 4.1 from Kuo et al. [67] and is given in Da Veiga [33]. Normalized HSIC-based indices can
finally be defined.

Definition 6.14. In the frame of Theorem 6.13, let A ⊂ {1, . . . ,d}. The normalized HSIC-based sensitivity index associated
to a subset A of input variables is defined as

SHSIC
A = HSICA

HSIC(X,Y )
,

while the total HSIC-based index associated to A is

ST,HSIC
A = ∑

B⊂{1,...,d},B∩A 6=;
SHSIC

B = 1− HSIC(X−A ,Y )

HSIC(X,Y )
.

From Theorem 6.13, we have the fundamental normalizing identity providing the interpretation of HSIC-based indices
as percentage of the explained HSIC dependence measure between X= (X1, . . . , Xd ) and Y :∑

A⊂{1,...,d}
SHSIC

A = 1.

Notice that assumption 6.2.3 requires the use of kernels defining a so-called RKHS of zero-mean functions [124]. A
general procedure to build such kernels was introduced by [38]: a zero-mean kernel kD

0 (·, ·) is given by

kD
0 (x, x ′) = k(x, x ′)−

∫
k(x, t )dP(t )

∫
k(x ′, t )dP(t )Î

k(s, t )dP(s)dP(t )

from an arbitrary univariate k(·, ·), where kD
0 (·, ·) satisfies ∀x,

∫
kD

0 (x, t )dP(t ) = 0.
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6.3 Goal-oriented sensitivity analysis

The Sobol indices have been widely used in many contexts. Application studies generally show a common drawback
: they do not emphasized a capital point, namely that the efficiency of an index has to be ranked w.r.t . the statistical
parameter(s) or features that have to be estimated.
It seems very intuitive that to estimate a mean or a median (central parameter) could involve very different variables
than estimating extreme quantiles. Thus the same index should not be used for these two different tasks. So we need
to adapt the indices to each particular goal we track, that we may call a "goal oriented" sensitivity study. As a matter
of fact the Sobol indices are well suited to quantify the sensitivity of an estimator based on a variance criterion : a
mean. Shortly speaking, we propose to define an index for each statistical purpose. Of course it may happen that
several goals are to be reached, then one can adopt a mixed strategy i.e compute various indices related to each goal
and combine them to define some importance criteria of the input variables.

6.3.1 Target SA via Monte Carlo thresholding

Let us define R ⊂ Y a region of interest of the output domain Y . From a SA perspective, our objective here is to
measure the impact of each input on the fact that the output reaches R. By a simple change of variable

Z =1{Y ∈R} (6.15)

(for example Z = 1{Y >t } for a given threshold t ), this implies that we have to evaluate the impact of the inputs on
level sets of the output. Such an objective has been called target SA (TSA) by Raguet and Marrel [98] and Marrel and
Chabridon [77]. Note that other changes of variable than (6.15) are possible in order to smooth the discontinuity of
the indicator function.

Remark 6.15. Another objective (that is not discussed here), called “conditional SA”, aims at evaluating the influence of
inputs within the region of interest only, ignoring what happens outside [77, 98].

The first straightforward TSA approach just consists in recycling a first-order Sobol’ index with the new output Z

V j = VarE[Z |X j ]. (6.16)

where the unnormalized version of Sobol’ index is used (as in (6.6) of Section 6.1.2) in order to be consistent with
Sections 6.1 and 6.2 of this chapter. From (6.16), it is easy to see that [30, 73]

V j = E[(p j −p)2] (6.17)

where p = E[Z ] =P(Y ∈R) (resp. p j = E[Z |X j ] =P(Y ∈R|X j )) is called the probability of failure (resp. the conditional
probability of failure). Different estimation schemes of this quantity have been considered for instance in Wei et al
[125].
Interestingly, by developing (6.17) via the Bayes’ theorem, it can also be shown that we have [97]

V j = E
[(

p fX j |Y ∈R(X j )

fX j (X j )
−p

)2]
= p2E

[(
fX j |Y ∈R(X j )

fX j (X j )
−1

)2]

that is proportional (up to the factor p2) to the Pearson χ2 divergence between fX j |Y ∈R and fX j . This perspective
demonstrates that this simple sensitivity index on an indicator function operates as a measure comparing the initial
input distribution and its conditional counterpart when the output is forced to lie in the region of interest. In this
context, several research works (see, e.g, [105]) try to develop some given-data estimation procedures.
In a similar way but without this connection in mind, Spear and Hornberger [114] proposed to perform the same com-
parison between the probability distributions, via the Kolmogorov distance. More precisely, they define a sensitivity
index as

sup
x∈X

|FX j |Y ∈R(x)−FX j (x)|.

Saltelli et al [104] has called it the Monte Carlo filtering method.
Finally, we can also define the following HSIC-based sensitivity index [112]

SHSIC,unnorm
j = HSIC(X j ,1{Y ∈R}) = HSIC(X j , Z )

where Z =1{Y ∈R}. If we set k(z, z ′) = δzz′ and choose any kernel kX for the inputs, it can be shown that

SHSIC,unnorm
j =P(Y ∈R)2 MMD2

(
PX j ,PX j |Y ∈R ;H

)
,
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where H is the RKHS with kernel kX , see Spagnol et al [113] for a proof in a goal-oriented context related to opti-
mization. In other words, such a sensitivity index detects an influential variable if, when conditioned on the fact that
the output reaches the region of interest, its resulting conditional distribution varies from the original one. This is
the same idea as in the Monte Carlo filtering approach presented in Section 6.3.1, except that the distributions are
compared with the MMD instead of the Kolmogorov distance.

6.3.2 Reliability-oriented sensitivity analysis

In a general context, structural reliability aims at determining the failure probability (or a quantile) of the numeri-
cal model output Y = G(X), by considering the input variables as random. To solve this problem, several authors
from the structural reliability community have largely contributed to the development and promotion of Monte
Carlo techniques and geometrically-based approximation approaches, such as the first/second-order reliability meth-
ods (FORM/SORM). These techniques are now widely used in other physical domains, from hydraulics to aerospace
engineering. A large number of more sophisticated methods have also been developed to compute a failure probabil-
ity and, more generally, to infer rare events with a small number of runs of the model G(·). The two main classes
of advanced techniques are the variance-reduction Monte Carlo methods [71, 85] and the metamodel-based ap-
proaches [7, 8]. From a practical point of view, it appears that importance measures of the inputs are particular useful
for a post-hoc analysis of rare event algorithm results or even as an help for accelerating the rare event inference
algorithm (see, e.g., [61]).
The reliability-oriented SA aims at studying the dependence of a rare-event related QoI to the model input vari-
ables [27]. One major difficulty is that the QoI can be very restrictive on the output (due to the rareness of the event).
It is then necessary to find methods able to analyze correctly the influence of the input uncertainties on this critical
domain of the output. In the Section 6.3.1, several importance measures have been introduced. however, their com-
putations require the use of a Monte Carlo (i.i.d.) sample with a sufficient data number in the two classes of Z in order
to compute significant statistics. In the structural reliability community, sensitivity indices embedded within different
failure probability estimation methods have then been proposed (see Chabridon [25] for a complete overview). As an
example, one can mention:

• the local indices based on partial derivatives of the failure probability with respect to the parameters of the pdf
of the inputs [10], that can easily deduced from a sample via the so-called score-function [102],

• the FORM/SORM and reliability-index-based importance factors [64, 75, 76, 94],

• the global indices based on conditional failure probability (as in Section 6.3.1) and obtained by conditional
samples, which are by-products of rare event simulation techniques (e.g., importance sampling or subset sim-
ulation) [2, 127].

6.3.3 Contrast-function-based indices

In this section, a general methodology is introduced and discussed to build sensitivity indices. For the sake of clarity,
let us consider that the output of interest Y is scalar. Let us underline that, in the probabilistic framework of SA, the
output Y is random. Indeed, the uncertainty on the inputs is propagated to the output via the model. The output is
thus described by a probability distribution whose support is included in R. Let us now come back to the definition of
first-order Sobol’ indices

S j =
Var(E[Y |X j ])

Var(Y )
= 1− E[Var(Y |X j )]

Var(Y )
·

It is well known that

Var(Y ) = inf
θ∈R

E[(Y −θ)2],

Var(Y |X j ) = inf
θ∈R

E[(Y −θ)2|X j ].

Thus we can write

S j = 1− E[infθ∈RE[(Y −θ)2|X j ]]

infθ∈RE[(Y −θ)2]
= 1− E[infθ∈RE[l2(Y ;θ)|X j ]]

infθ∈RE[l2(Y ;θ)]
,

with l2(y ;θ) = (y −θ)2 the quadratic loss function. So that S j appears to compare the optimal value of the function
E(Y −θ)2 to the expected optimal value of the conditional function E[(Y −θ)2|X j ]. A function θ 7→ EΨ(Y ;θ) is a contrast
function if it admits a unique minimizer θ∗. The quadratic loss function is a contrast function as θ 7→ l2(Y ;θ) =
E (Y −θ)2 admits a unique minimizer, namely E[Y ].
As noticed in Fort et al [43], a contrast function is a very useful object in statistical learning theory (see, e.g., Mas-
sart [79]) where it defines estimation procedures of some feature θ∗ ∈Θ (scalar or functional) associated to a random
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variable Y . For instance, when observing a n-sample Y (1), . . . ,Y (n) of the random variable Y , an estimator of θ∗ is
given by the minimizer of θ 7→Ψn(θ), where Ψn is obtained by substituting the expectation w.r.t. the variable Y by
the expectation w.r.t. the empirical measure of the sample. For example, by considering the quadratic loss function
θ 7→ l2(Y ;θ) = E(Y −θ)2, one gets θ̂n = 1

n

∑n
i=1 Y ( j ), namely the empirical mean to estimate θ∗ = EY .

Thus it seems that first-order Sobol’ indices are well tailored when one is interested in the influence of input pa-
rameters for the estimation of the mean behavior of the output Y . If one is interested in estimating other QoI (i.e.,
characteristics of the probability distribution of Y ), such as quantiles, one has to consider different loss functions
leading to different contrast functions. It leads to new sensitivity indices called goal-oriented sensitivity indices in
Fort et al [43]. More precisely, let us state Definition 6.16 below.

Definition 6.16. Let θ 7→ EΨ(Y ;θ) be a contrast function such that EminθΨ(Y ;θ) is finite. The sensitivity indices asso-
ciated toΨ are then defined as

1− E[infθ∈RE[l (Y ,θ)|X j ]]

infθ∈RE[l (Y ,θ)]
, j = 1, . . . ,d .

Examples

1. If the QoI is the mean of Y , one considers

Ψ(y ;θ) = l2(y ;θ) = (y −θ)2.

2. If the QoI is the median of Y , one considers

Ψ(y ;θ) = l1(y ;θ) = |y −θ|.

3. If the QoI is the quantile of order α ∈ (0,1) of Y , one considers

Ψ(y ;θ) = lα(y,θ) =
{

(1−α)(θ− y), if y É θ
α(y −θ), if y > θ.

In this case, the literature refers to QOSA for quantile-oriented SA. We refer to Maume-Deschamps et al [80] and
Browne et al [20] for a complete study including the statistical estimation of the corresponding indices. Another
line of research explores the use of random forest given-data estimation procedures [39].
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Exercices

In the sequel, we present two examples for which the indices based on contrast can be analytically computed and we
show how they differ from the classical Sobol’ indices.

Exercise 14. Let Y = X1 +X2, with X1 ∼ E xp(1), X2 ∼−X1 and X1 and X2 independent.

1. Determine the distribution of Y .

2. Compute the Sobol’ indices.

3. Now we aim at defining sensitivity indices with respect to theα-quantile qY (α) of Y . To do so, we use the following
contrast

Ψ(θ) = E(Y −θ)(α−1Y ≤θ) ,

that characterizes the α-quantile.

(a) Check that E[minθψ(Y ;θ)] = 0.

(b) Compute the indices

Sk
ψ = E(Xk ,Y )

[
ψ(Y ;θ∗)−ψ(Y ;θk (Xk ))

]
E[ψ(Y ;θ∗)]

= E[ψ(Y ;θ∗)]−E(Xk ,Y )
[
ψ(Y ;θk (Xk ))

]
E[ψ(Y ;θ∗)]

,

for k = 1, 2, where θ∗ = qY (α), θ1(X1) = qY /X1 (α) and θ2(X2) = qY /X2 (α) .

(c) Comment the results.

(d) Compute the limits as α→ 0 of the sensitivity indices.

Exercise 15. Let Y = X1 +X2, with X1 ∼ E xp(1), X2 ∼ E xp(a), a > 0, two independent variables.

1. Determine the distribution of Y .

2. Compute the Sobol’ indices.

3. Now we aim at providing a sensitivity index with respect to the probability of Y to exceed t ≥ 0, i.e P(Y Ê t ). A
contrast which characterizes such quantity of interest can be the following

Ψ(θ) = E[|1Y ≥t −θ|2] (6.18)

which in fact turns to be a quadratic contrast.

(a) Check that E[minθψ(Y ;θ)] = 0.

(b) Compute the indices

Sk
ψ = E[ψ(Y ;θ∗)]−E(Xk ,Y )

[
ψ(Y ;θk (Xk ))

]
E[ψ(Y ;θ∗)]

,

for k = 1, 2, where θ∗ =P(Y Ê t ), θ1(X1) =P(X2 Ê t −X1/X1) and θ2(X2) =P(X1 Ê t −X2/X2) .

(c) Comment the results.
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Chapter 7

Practical

The model considered in this practical is the following:

Y = f (X1, X2) = exp{X1 +2X2}

where the Xi ’s are i.i.d. N (0,1).

t Code the function f .

7.1 Exponential model and Sobol’ indices

Recall that the (closed) Sobol index Si with respect to Xi is defined by:

Si = Var(E[Y |Xi ])

Var(Y )
.

t Compute the exact values of the Sobol’ indices.

7.1.1 Pick-Freeze estimation of the Sobol’ indices

To estimate by the Pick-Freeze procedure the Sobol indiex Si with respect to Xi , we rewrite the variance of the condi-
tional expectation in terms of a covariance between the output Y and its Pick-Freeze version YPF given by:

YPF,i = f (XPF,i )

where XPF,i from X by freezing the coordinate i and resampling the other coordinates independently. In other words,

Si = Cov
(
Y ,YPF,i

)
Var(Y )

,

Then it remains to compute the ration between the empirical covariance and the empirical variance to get the Pick-
Freeze estimation of S1 (for example i = 1):

S1
N ,PF =

1
N

∑
Y i Y i

PF,1 −
( 1

N

∑
Y i

)( 1
N

∑
Y i

PF,1

)
1
N

∑
(Y i )2 − ( 1

N

∑
Y i

)2

or the efficient estimation:

T 1
N ,PF =

1
N

∑
Y i Y i

PF,1 −
(

1
2N

∑(
Y i +Y i

PF,1

))2

1
N

∑
(Y i )2 − ( 1

N

∑
Y i

)2 .

t Construct the Pick-Freeze samples.

t Compute the Pick-Freeze estimations of the Sobol’ indices.

t Compute the quadratic error on n samples of size N .
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7.1.2 Rank estimation of the Sobol’ indices

To estimate by the rank procedure the Sobol index S1 with respect to X1, we rearrange the initial sample (X 1
1 ,Y 1), . . . , (X N

1 ,Y N )

with respect to the first coordinate: X (1)
1 < . . . < X (N )

1 .
We get

(X (1)
1 ,Y (1)), . . . , (X (N )

1 ,Y (N ))

The rank estimation is then given by

S1
N ,Rank =

1
N

∑N−1
i=1 Y (i )Y (i+1) − ( 1

N

∑N
i=1 Yi

)2

1
N

∑N
i=1 Y 2

i − ( 1
N

∑N
i=1 Yi

)2 .

t Construct the rearranged samples.

t Compute the rank estimations of the Sobol’ indices.

t Compute the quadratic error on n samples of size N .

7.1.3 Comparison of the estimation methods

7.2 Exponential model and Cramér-von Mises indices

Recall that the Cramér-von Mises Si
2,CV M with respect to Xi is given by:

Si
2,CV M =

∫
Rk E

[(
F (t )−F i (t )

)2
]

dF (t )∫
Rk F (t )(1−F (t ))dF (t )

.

t Compute the exact values of the Cramér-von Mises indices.

7.2.1 Pick-Freeze estimation of the Cramér-von Mises indices

To estimate by the Pick-Freeze procedure the Cramér-von Mises Si
2,CV M with respect to Xi , we rewrite the numerator

in terms of a covariance: ∫
Rk
E

[(
F (t )−F i (t )

)2
]

dF (t ) = E[
Cov

(
1Y ÉW ,1YPF,iÉW

)]
,

where W is a random variable independent of Y and distributed as Y .
Then it remains to proceed by a Monte-Carlo scheme to estimate both the expectation and the covariance. To do so,
we generate:

• two N -samples of Y : (Y i ,1
j ,Y i ,2

j ), 1 É j É N (Pick-Freeze) ;

• a third N -sample of Y : Wk , 1 É k É N

and we get the Pick-Freeze estimation of the numerator of the Cramér-von Mises index Si
2,CV M :

N i
2,CV M ,PF = 1

N

N∑
k=1

{
1

N

N∑
j=1

1{Z i ,1
j ÉWk }1{Z i ,2

j ÉWk } −
[

1

2N

N∑
j=1

(
1{Z i ,1

j ÉWk } +1{Z i ,2
j ÉWk }

)]2}
.

t Construct the Pick-Freeze samples.

t Compute the Pick-Freeze estimations of the Cram’r-von Mises indices.

t Compute the quadratic error on n samples of size N .

7.2.2 Rank estimation of the Cramér-von Mises indices

From a unique N -sample of Y , we estimate the numerator by:

1

N

N∑
i=1

{[ 1

N

N∑
j=1

1{Y( j )ÉYi }1{Y( j+1)ÉYi }

]
−

[ 1

N

N∑
j=1

1{Y j ÉYi }

]2
}

where Y( j ) is the output corresponding to the j -th input ordered input X1 and the denomiator by

1

N

N∑
i=1

{[ 1

N

N∑
j=1

1{Y j ÉYi }

]
−

[ 1

N

N∑
j=1

1{Y j ÉYi }

]2
}

.
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t Construct the rearranged samples.

t Compute the rank estimations of the Cramér-von Mises indices.

t Compute the quadratic error on n samples of size N .

7.2.3 Comparison of the estimation methods

7.3 Stochastic exponential model - Wasserstein indices

The model considered is still:
Y = f (X1, X2) = exp{X1 +2X2}

where the Xi ’s are i.i.d. distributed as N (0,1). Then we write

X2 = G1 +G2p
2

,

where G1 and G2 are independent standard Gaussian distributed random variables and also independent of X1.

B Here, we assume that the practitioner has only access to X1 and G1.

The Wasserstein indices Su
2,W2

are given by:∫
W2(R)2 E

[(
E[1W2(F1,F)ÉW2(F1,F2)]−E[1W2(F1,F)ÉW2(F1,F2)|X u]

)2
]

dP⊗2(F1,F2)∫
W2(R)2 Var(1W2(F1,F)ÉW2(F1,F2))dP⊗2(F1,F2)

.

7.3.1 Pick-Freeze estimation of the Wasserstein indices

We generate a N -sample of inputs: (X1,1, . . . , X1,N ) to get a N -sample of F1.
For each input X1,i (i = 1, . . . , N ), we compute n times the output and we approximate F1,i by

F1,i ,n = 1

n

n∑
k=1

δ fs (X1, j ,D1, j ,k ).

The same is done for F2, F and the Pick-Freeze version of F.
Then the numerator of the Wasserstein index is estimated by:

1

N 2

N∑
i , j

[ 1

N

N∑
k=1

1W2(F1,i ,n ,Fk,n )ÉW2(F1,i ,n ,F2, j ,n )1W2(F1,i ,n ,FPF,k,n )ÉW2(F1,i ,n ,F2, j ,n )

−
(

1

2N

N∑
k=1

(
1W2(F1,i ,n ,Fk,n )ÉW2(F1,i ,n ,F2, j ,n ) +1W2(F1,i ,n ,FPF,k,n )ÉW2(F1,i ,n ,F2, j ,n )

))2]
and its denominator by:

1

N 2

N∑
i , j

[
1

N

N∑
k=1

1W2(F1,i ,n ,Fk,n )ÉW2(F1,i ,n ,F2, j ,n ) −
(

1

N

N∑
k=1

1W2(F1,i ,n ,Fk,n )ÉW2(F1,i ,n ,F2, j ,n )

)2]
.

To compute explicitly our estimator, it remains to compute terms of the form:

W2(F1,i ,n ,F2, j ,n) = 1

n

n∑
l=1

(Y1,i ,(k) −Y2, j ,(k))
2,

where Y1,i ,k = fs (X1,i ,D1,i ,k ) and Y1,i ,(k) is the k-th order statistics and the same for Y2, j ,k and Y2, j ,(k).

t Construct the Pick-Freeze samples.

t Compute the Pick-Freeze estimation of the Wasserstein indices.

7.3.2 Rank estimation of the Wasserstein indices

t Compute the rank estimation of the Wasserstein indices.

7.3.3 Comparison of the estimation methods
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Chapter 8

Practical in French

Le modèle considéré dans ce TP est le suivant :

Y = f (X1, X2) = exp{X1 +2X2}

où les Xi sont i.i.d. N (0,1).

t Coder la fonction f .

8.1 Modèle exponentiel et indices de Sobol

Nous rappellons que l’indice de Sobol Si par rapport à l’entrée Xi est défini par :

Si = Var(E[Y |Xi ])

Var(Y )
.

t Calculer les valeurs des indices de Sobol.

8.1.1 Calcul de l’estimateur Pick-Freeze des indices de Sobol

Pour estimer par la méthode Pick-Freeze l’indice de Sobol Si par rapport à l’entrée Xi , nous utilisons le fait que la
variance de l’espérance conditionnelle peut s’écrire en termes de covariance entre la sortie Y et sa version Pick-Freeze
YPF donnée par

YPF,i = f (XPF,i )

où XPF,i s’obtient en gelant l’entrée i et en générant de manière indépendante les autres entrées.
En d’autres termes,

Si = Cov
(
Y ,YPF,i

)
Var(Y )

,

Il reste ensuite à utiliser la variance et la covariance empiriques et à en faire le ratio pour obtenir l’estimation Pick-
Freeze de S1 (par exemple i=1) :

S1
N ,PF =

1
N

∑
Y i Y i

PF,1 −
( 1

N

∑
Y i

)( 1
N

∑
Y i

PF,1

)
1
N

∑
(Y i )2 − ( 1

N

∑
Y i

)2

ou encore l’estimation efficace :

T 1
N ,PF =

1
N

∑
Y i Y i

PF,1 −
(

1
2N

∑(
Y i +Y i

PF,1

))2

1
N

∑
(Y i )2 − ( 1

N

∑
Y i

)2 .

t Construire les échantillons Pick-Freeze.

t Calculer les estimations Pick-Freeze des indices de Sobol.

t Calculer l’erreur quadratique sur n échantillons de taille N .

99



100 CHAPTER 8. PRACTICAL IN FRENCH

8.1.2 Calcul de l’estimateur des rangs des indices de Sobol

Pour estimer par la méthode des rangs l’indice de Sobol S1 par rapport à l’entrée X1, nous réordonnons l’échantillon
initial (X 1

1 ,Y 1), . . . , (X N
1 ,Y N ) selon la première coordonnée : X (1)

1 < . . . < X (N )
1 .

Nous obtenons ainsi l’échantillon

(X (1)
1 ,Y (1)), . . . , (X (N )

1 ,Y (N ))

L’estimateur des rangs est alors donné par

S1
N ,Rank =

1
N

∑N−1
i=1 Y (i )Y (i+1) − ( 1

N

∑N
i=1 Yi

)2

1
N

∑N
i=1 Y 2

i − ( 1
N

∑N
i=1 Yi

)2 .

t Construire les échantillons réordonnés.

t Calculer les estimations par la méthode des rangs des indices de Sobol.

t Calculer l’erreur quadratique sur n échantillons de taille N .

8.1.3 Comparaison des méthodes d’estimation

8.2 Modèle exponentiel et indices de Cramér-von Mises

Nous rappellons que l’indice de Cramér-von Mises Si
2,CV M par rapport à l’entrée Xi est défini par :

Si
2,CV M =

∫
Rk E

[(
F (t )−F i (t )

)2
]

dF (t )∫
Rk F (t )(1−F (t ))dF (t )

.

t Calculer les valeurs des indices de Cramér-von Mises.

8.2.1 Calcul de l’estimateur Pick-Freeze des indices de Cramér-von Mises

Pour estimer par la méthode Pick-Freeze l’indice de Cramér-von Mises Si
2,CV M par rapport à l’entrée Xi , nous écrivons

ensuite le numérateur en termes de covariance :∫
Rk
E

[(
F (t )−F i (t )

)2
]

dF (t ) = E[
Cov

(
1Y ÉW ,1YPF,iÉW

)]
,

où W est une variable indépendante de Y et de même loi que Y .

Il reste ensuite à faire un schéma de Monte Carlo double pour estimer l’espérance et la covariance.

Nous générons:

• deux N -échantillons de Y : (Y i ,1
j ,Y i ,2

j ), 1 É j É N (Pick-Freeze) ;

• un troisième N -échantillon de Y : Wk , 1 É k É N

et nous obtenons l’estimation suivante du numérateur de l’indice de Cramér-von Mises Si
2,CV M :

N i
2,CV M ,PF = 1

N

N∑
k=1

{
1

N

N∑
j=1

1{Z i ,1
j ÉWk }1{Z i ,2

j ÉWk } −
[

1

2N

N∑
j=1

(
1{Z i ,1

j ÉWk } +1{Z i ,2
j ÉWk }

)]2}
.

t Construire les échantillons Pick-Freeze.

t Calculer les estimations Pick-Freeze des indices de Cramér-von Mises.

t Calculer l’erreur quadratique sur n échantillons de taille N .
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8.2.2 Calcul de l’estimateur des rangs des indices de Cramér-von Mises

A partir d’un unique échantillon de Y , nous estimons le numérateur par

1

N

N∑
i=1

{[ 1

N

N∑
j=1

1{Y( j )ÉYi }1{Y( j+1)ÉYi }

]
−

[ 1

N

N∑
j=1

1{Y j ÉYi }

]2
}

où Y( j ) est la sortie correspondant à la j -ème entrée réordonnée de X1 et le dénominateur par

1

N

N∑
i=1

{[ 1

N

N∑
j=1

1{Y j ÉYi }

]
−

[ 1

N

N∑
j=1

1{Y j ÉYi }

]2
}

.

t Construire les échantillons réordonnés.

t Calculer les estimations par la méthode des rangs des indices de Cramér-von Mises.

t Calculer l’erreur quadratique sur n échantillons de taille N .

8.2.3 Comparaison des méthodes d’estimation

8.3 Modèle exponentiel stochastique - Indices de Wasserstein

Le modèle est toujours
Y = f (X1, X2) = exp{X1 +2X2}

où les Xi sont i.i.d. de loi N (0,1). Nous pouvons alors écrire

X2 = G1 +G2p
2

,

où G1 et G2 sont des gaussiennes standard indépendantes entre elles et indépendante de X1.

B Ici, nous supposons que le praticien a seulement accès à X1 et G1.

Les indices de sensibilités Su
2,W2

sont alors

∫
W2(R)2 E

[(
E[1W2(F1,F)ÉW2(F1,F2)]−E[1W2(F1,F)ÉW2(F1,F2)|X u]

)2
]

dP⊗2(F1,F2)∫
W2(R)2 Var(1W2(F1,F)ÉW2(F1,F2))dP⊗2(F1,F2)

.

8.3.1 Calcul de l’estimateur Pick-Freeze des indices de Wasserstein

Nous générons un échantillon de taille N d’entrées (X1,1, . . . , X1,N ) pour avoir un échantillon de taille N de F1.
Pour chaque entrée X1,i (i = 1, . . . , N ), on calcule n fois la sortie et on approche F1,i par

F1,i ,n = 1

n

n∑
k=1

δ fs (X1, j ,D1, j ,k ).

Nous faisons de même pour F2, F et la version Pick-Freeze de F.
Le numérateur de l’indice de Wasserstein est alors estimé par

1

N 2

N∑
i , j

[ 1

N

N∑
k=1

1W2(F1,i ,n ,Fk,n )ÉW2(F1,i ,n ,F2, j ,n )1W2(F1,i ,n ,FPF,k,n )ÉW2(F1,i ,n ,F2, j ,n )

−
(

1

2N

N∑
k=1

(
1W2(F1,i ,n ,Fk,n )ÉW2(F1,i ,n ,F2, j ,n ) +1W2(F1,i ,n ,FPF,k,n )ÉW2(F1,i ,n ,F2, j ,n )

))2]
et son dénominateur par

1

N 2

N∑
i , j

[
1

N

N∑
k=1

1W2(F1,i ,n ,Fk,n )ÉW2(F1,i ,n ,F2, j ,n ) −
(

1

N

N∑
k=1

1W2(F1,i ,n ,Fk,n )ÉW2(F1,i ,n ,F2, j ,n )

)2]
.
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Afin de caluler de manière explicite notres estimateur, il reste à calculer des termes de la forme :

W2(F1,i ,n ,F2, j ,n) = 1

n

n∑
l=1

(Y1,i ,(k) −Y2, j ,(k))
2,

où Y1,i ,k = fs (X1,i ,D1,i ,k ) et Y1,i ,(k) la k-ème statistique d’ordre et de même pour Y2, j ,k et Y2, j ,(k).

t Fonction de création des échantillons Pick-Freeze des entrées.

t Calcul des estimations Pick-Freeze des indices de Wasserstein.

8.3.2 Calcul de l’estimateur des rangs des indices de Wasserstein

t Calculer les estimations des indices de Wasserstein par la méthode des rangs.

8.3.3 Comparaison des méthodes d’estimation



Appendix A

Proof of the results of Chapter 4

A.1 Proof of the consistency

Proof of Lemma 4.1. Since τn has no fix point, and using the measurability of τn and the independence, we have

E
[
g (Y j )h(Yτn ( j ))|Fn

]= E[g (Y j )
n∑

l=1,
l 6= j

h(Yl )1{τn ( j )=l }|Fn

]
=

n∑
l=1,
l 6= j

1{τn ( j )=l }E
[

g (Y j )h(Yl )|Fn

]

=
n∑

l=1,
l 6= j

1{τn ( j )=l }E
[

g (Y j )|Fn

]
E
[

h(Yl )|Fn

]
= E[g (Y j )|V j

] n∑
l=1,
l 6= j

1{τn ( j )=l }E
[
h(Yl )|Vl

]

=ΨV j (g )
n∑

l=1,
l 6= j

1{τn ( j )=l }ΨVl (h) =ΨV j (g )ΨVτn ( j ) (h).

Proof of Proposition 4.2. We follow the steps of the proof of Corollary 7.12 in [28]. Our proof is significantly simpler
since τn is assumed to have no fix points and V is continuous so that there are no ties in the sample. To simplify the
notation, we denote χn(V ,Y ; g ,h) and χ(V ,Y ; g ,h) by χn and χ respectively.
We first prove that, for any measurable function ϕ,

ϕ(V1)−ϕ(Vτn (1)) → 0 (A.1)

in probability as n →∞. Let ε> 0. By the special case of Lusin’s theorem (see [28, Lemma 7.5]), there exists a compactly
supported continuous function ϕ̃ : R→ R such that P({x;ϕ(x) 6= ϕ̃(x)}) < ε, where P stands for the distribution of V .
Then for any δ> 0,

P
(∣∣ϕ(V1)−ϕ(Vτn (1))

∣∣> δ)
ÉP(∣∣ϕ̃(V1)− ϕ̃(Vτn (1))

∣∣> δ)
+P(

ϕ(V1) 6= ϕ̃(V1))+P(ϕ(Vτn (1)) 6= ϕ̃(Vτn (1))
)

. (A.2)

By continuity of ϕ̃ and since Vτn (1) → V1 as n →∞ with probability one, the first term in the right hand side of (A.2)
converges to 0 as n →∞. By construction of ϕ̃, the second term is lower than ε. Turning to the third one, we have thus

E[ϕ(Vτn (1))] = 1

n

n∑
j=1
E[ϕ(Vτn ( j ))] = 1

n

n∑
j=1

n∑
l=1
l 6= j

E[ϕ(Vl )1{τn ( j )=l }]

= 1

n

n∑
l=1

n∑
j=1
j 6=l

E[ϕ(Vl )1{τn ( j )=l }] =
1

n

n∑
l=1
E[ϕ(Vl )

n∑
j=1
j 6=l

1{τn ( j )=l }] =
1

n

n∑
l=1
E[ϕ(Vl )] = E[ϕ(V1)]

where we have used the fact that τn has no fix point, Vτn (i )
L= Vτn ( j ) for any i and j = 1, . . . ,n, and the Vi ’s have no ties.

This yields

P(ϕ(Vτn (1)) 6= ϕ̃(Vτn (1))) =P(ϕ(V1) 6= ϕ̃(V1)) < ε,

and, since ε and δ are arbitrary, (A.1) is therefore proved. Now, since x 7→Ψx is a measurable and bounded function
and applying (A.1), we have {

ΨV1 (g )−ΨVτn (1) (g ) → 0,
ΨV1 (h)−ΨVτn (1) (h) → 0,

in probability as n →∞. (A.3)
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Lemma 4.1 and the dominated convergence theorem lead to

E[χn ] = 1

n

n∑
j=1

E[g (Y j )h(Yτn ( j ))] = E[g (Y1)h(Yτn (1))] = E[ΨV1 (g )ΨVτn (1) (h)] → E[ΨV (g )ΨV (h)] =χ (A.4)

where we have taken into account the fact that ΨV (g ) and ΨV (h) are bounded (due to the boundedness of g and h)
and used (A.3).
The last step of the proof consists in comparing χn with E[χn] using Mc Diarmid’s concentration inequality [82].
Sharper constants can be obtained in Mc Diarmid’s inequality by using the inequalities from [18, 19]. As we are in-
terested in asymptotic results the accuracy of the constant has no impact on the result. Following the same lines as in
the proof of [28, Lemma 7.11], Mc Diarmid’s concentration inequality in [82] then implies

P(
∣∣χn −E[χn]

∣∣Ê t ) É 2exp{−2n2t 2/C 2}, (A.5)

where C is a universal constant and we conclude the proof by combining (A.4) and (A.5).

A.2 Proof of the asymtotic normality

Framework and goal We consider the model defined in (2.1) that can be rewritten as Y = f (X ,W ) where X = X1 and
W = (X2, . . . , Xp ) are two independent inputs of the numerical code f that is assumed to be bounded.
The random variables X and W are defined on a product space Ω = ΩX ×ΩW ; so that for any ω ∈ Ω, there exists
ωX ∈ΩX andωW ∈ΩW and we have (X ,W )(ω) = (X (ωX ),W (ωW )). Further, we consider πW the projection onΩW and
the product measure P = PX ⊗PW = LX ⊗LW , where LX is the distribution of X and LW is the distribution of W .
Naturally, PW =P◦π−1

W .

We aim to prove a CLT for the estimator ξSobol
n (X ,Y ) of the classical first-order Sobol’ index with respect to X given by

(2.2), the estimator of which defined in (4.8) is given by

ξSobol
n (X1,Y ) =

1
n

∑n
j=1 Y j YN ( j ) −

(
1
n

∑n
j=1 Y j

)2

1
n

∑n
j=1 Y 2

j −
(

1
n

∑n
j=1 Y j

)2

where N is defined in (4.7). Notice that the denominator is reduced to the empirical variance of Y . As explained in
Section 4.1.1 of Chapter 4, we denote by Y( j ) the output associated to X( j ) where X( j ) stands for the j -th order statistics
of (X1, . . . , Xn). Then observing that

n∑
j=1

Y j YN ( j ) =
n∑

j=1
Y( j )Y( j+1) =:

n∑
j=1

Yσn ( j )Yσn ( j+1)

where, to avoid any confusion, σn stands for the permutation that rearranges the sample (X1, . . . , Xn), the estimator
ξSobol

n (X1,Y ) can be written as

ξSobol
n (X1,Y ) =

1
n

∑n−1
j=1 Yσn ( j )Yσn ( j+1) −

(
1
n

∑n
j=1 Yσn ( j )

)2

1
n

∑n
j=1 Y 2

σn ( j ) −
(

1
n

∑n
j=1 Yσn ( j )

)2 . (A.6)

A.2.1 Proof of Theorem 4.3

The proof will proceed as follows. First, in view of (A.6), we prove a CLT for(
1

n

n−1∑
j=1

Yσn ( j )Yσn ( j+1),
1

n

n∑
j=1

Yσn ( j ),
1

n

n∑
j=1

Y 2
σn ( j )

)
.

that amounts to prove a CLT for (
1

n

n−1∑
j=1

Yσn ( j )Yσn ( j+1),
1

n

n−1∑
j=1

Yσn ( j ),
1

n

n−1∑
j=1

Y 2
σn ( j )

)
,

since f is bounded. Secondly, we use the so-called delta method [122, Theorem 3.1] to conclude to Theorem 4.3.
It is worth noticing that the permutation on the W ’s do not affect the result as seen in the sequel. For j = 1, . . .n −1,
introducing
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∆n, j := f
(
Xσn ( j ),W j

)− f

(
j

n +1
,W j

)
, Wn, j := ( j

n +1
,W j

)
(A.7)

leads to Yσn ( j ) = f
(
Xσn ( j ),Wσn ( j )

) L= f
(
Xσn ( j ),W j

)=∆n, j + f
(
Wn, j

)
and

Yσn ( j )Yσn ( j+1) = f
(
Xσn ( j ),Wσn ( j )

)
f
(
Xσn ( j+1),Wσn ( j+1)

)
L= f

(
Xσn ( j ),W j

)
f
(
Xσn ( j+1),W j+1

)
=

(
f
(
Wn, j

)+∆n, j

)(
f
(
Wn, j+1

)+∆n, j+1

)
= f

(
Wn, j

)
f
(
Wn, j+1

)+∆n, j f
(
Wn, j+1

)+∆n, j+1 f
(
Wn, j

)+∆n, j∆n, j+1.

Thus we are led to establish a CLT for

Zn = 1

n

n−1∑
j=1

 f (Wn, j ) f (Wn, j+1)+∆n, j f
(
Wn, j+1

)+∆n, j+1 f
(
Wn, j

)+∆n, j∆n, j+1

f (Wn, j )+∆n, j(
f (Wn, j )+∆n, j

)2

 . (A.8)

Let us discard the negligible terms in the CLT for Zn . In that view, noticing that

E
[

Xσn ( j )
]= j

n +1
and Var(Xσn ( j )) = j (n − j +1)

(n +1)2(n +2)
= E

[(
Xσn ( j ) − j

n +1

)2]
É 4

n +2
,

we first establish

Xσn ( j ) − j

n +1
=OP

(
1p
n

)
. (A.9)

As explained below, (A.9) will imply

1

n

n−1∑
j=1
∆2

n, j =OP

(
1

n

)
and

1

n

n−1∑
j=1
∆n, j∆n, j+1 =OP

(
1

n

)
. (A.10)

First of all, we expand ∆n, j (resp. ∆n, j+1) using the Taylor-Lagrange formula, for any j = 1, . . .n −1 and we obtain

∆n, j =
(

Xσn ( j ) − j

n +1

)
fx

(
Wn, j

)+ 1

2

(
Xσn ( j ) − j

n +1

)2

fxx
(
δn, j ,Wσn ( j )

)
, (A.11)

where δn, j (resp. δn, j+1) lies in the unordered segment (Xσn ( j ), j /(n+1)) (resp. (Xσn ( j+1), ( j +1)/(n+1))) and where fx

and fxx are the first and second derivatives of f with respect to the first coordinate. This leads to expansions for ∆2
n, j

and ∆n, j∆n, j+1:

∆2
n, j =

(
Xσn ( j ) − j

n +1

)2(
fx

(
Wn, j

)+ 1

2

(
Xσn ( j ) − j

n +1

)
fxx

(
δn, j ,Wσn ( j )

))2

∆n, j∆n, j+1 =
(

Xσn ( j ) − j

n +1

)(
Xσn ( j+1) − j +1

n +1

)
×

(
fx

(
Wn, j

)+ 1

2

(
Xσn ( j ) − j

n +1

)
fxx

(
δn, j ,Wσn ( j )

))
×

(
fx

(
Wn, j+1

)+ 1

2

(
Xσn ( j+1) − j +1

n +1

)
fxx

(
δn, j+1,Wσn ( j+1)

))
.

Finally, using the boundedness of f , fx , and fxx , together with (A.9), (A.10) follows.
Remark that the proof of (A.10) yields also

1

n

n−1∑
j=1
∆n, j =OP

(
1p
n

)
, (A.12)

from which it is clear that this term will contribute in the CLT on Zn . Then (A.10) entails that the asymptotic study
reduces to that of the empirical mean of Zn, j = Bn, j +Cn, j where

Bn, j :=
 f

(
Wn, j

)
f
(
Wn, j+1

)
f (Wn, j )

f (Wn, j )2

 and Cn, j :=
∆n, j f

(
Wn, j+1

)+∆n, j+1 f
(
Wn, j

)
∆n, j

2∆n, j f (Wn, j )

 . (A.13)
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First, we consider Bn, j in (A.13) and we establish the following result, the proof of which has been postponed to Ap-
pendix A.2.2.

Lemma A.1. As n →∞, the random vector Bn given by

1

n

n−1∑
j=1

Bn, j = 1

n

n−1∑
j=1

(
f
(
Wn, j

)
f
(
Wn, j+1

)
, f

(
Wn, j

)
, f

(
Wn, j

)2
)>

satisfies a CLT. More precisely,
p

n
(
Bn −mB

) L−→
n→∞ N3(0,ΣB ), where

mB := (
E[Y Y ′],E[Y ],E[Y 2]

)>
, (A.14)

Y ′ = f (X ,W ′), W ′ is an independent copy of W , and ΣB has an explicit expression given in Appendix A.2.2.

Remark that Y ′ is the so-called Pick-Freeze version of Y with respect to X . Secondly, we establish a conditional CLT
for the empirical mean of the Cn, j ’s defined in (A.13). The reader is referred to Appendix A.2.3 for the proof of this
result.

Lemma A.2. There exists a measurable setΠ ∈ΩW having PW -probability one such that, for any ωW ∈Π, we have

p
nCn(·,ωW )

LX−→
n→∞ N3(0,ΣC ).

Moreover, ΣC does not depend on ωW and has an explicit expression given Appendix A.2.3.

Considering the characteristic function of the vector
p

n(Bn −E[Bn],Cn), one may write

E
[

e i (
p

n〈s,(Bn−E[Bn ])〉+pn〈t ,Cn〉)
]
= E

[
e i

p
n〈s,(Bn−E[Bn ])〉E

[
e i

p
n〈t ,Cn〉∣∣FW

]]
for any s and t ∈R3. On the one hand, E

[
e i

p
n〈t ,Cn〉∣∣FW

]
converges a.s. to exp{−t>ΣC t/2} which is not random. On the

other hand,
p

n〈s, (Bn −E[Bn])〉 converges in distribution to a Gaussian random variable denoted by Bs . By Slutsky’s
lemma, (p

n〈s, (Bn −E[Bn])〉,E
[

e i
p

n〈t ,Cn〉∣∣FW

])
converges in distribution to (Bs ,exp{−t>ΣC t/2}). We consider the application h : (u, v) ∈R×D(0,1) 7→ e i u v ∈C where
D(0,1) is the unit disc in C. The continuity and the boundedness of h lead to the convergence in distribution of

e i
p

n〈s,(Bn−E[Bn ])〉
[

e i
p

n〈t ,Cn〉∣∣FW

]
and we conclude to the asymptotic normality of

p
n(Bn−E[Bn],Cn) to a six-dimensional

Gaussian random vector with zero mean and variance-covariance matrix

(
ΣB 0
0 ΣC

)
. It remains to apply the so-called

delta method [122, Theorem 3.1] and Slutsky’s lemma to get the required result. The details of the computation of the
asymptotic variance σ2 can be found in Appendix A.2.4.

A.2.2 Proof of Lemma A.1

One has

E[Bn] = 1

n

n−1∑
j=1

(
E
[

f
(
Wn, j

)
f
(
Wn, j+1

)]
,E

[
f
(
Wn, j

)]
,E

[
f
(
Wn, j

)2
])>

,

the first coordinate of which converges as n →∞ to∫
E
[

f (x,W ) f
(
x ′,W ′)]dL(X ,X )(x, x ′) =

∫ 1

0
E
[

f (x,W ) f
(
x,W ′)]dx

= E[
E
[

f (X ,W ) f
(
X ,W ′) |X ]]

= E[
f (X ,W ) f

(
X ,W ′)]= E[

Y Y ′] .

The two other coordinates can be handled similarly leading to

E[Bn] →
n→∞

(
E[Y Y ′],E[Y ],E[Y 2]

)> = mB .
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We apply the CLT for dependent variables proved in [90] to B̃ 1
n, j , the centered version of the random variables f

(
Wn, j

)
f
(
Wn, j+1

)
/
p

n

with m = 1, α= 0, and because f is bounded (so is B̃ 1
n, j ). Assumptions (1) and (2) in [90] obviously hold, the assump-

tion (3) is naturally fulfilled and assumption (4) is a mere consequence of Chebyshev’s inequality and the boundedness
of f . Now, it remains to check that assumption (5) holds. We have

n−1∑
i , j=1

Cov(B̃ 1
n,i , B̃ 1

n, j ) = 1

n

n−1∑
i , j=1

Cov
(

f
(
Wn,i

)
f
(
Wn,i+1

)
, f

(
Wn, j

)
f
(
Wn, j+1

))
= 1

n

n−1∑
j=1

Var
(

f
(
Wn, j

)
f
(
Wn, j+1

))+ 2

n

n−2∑
j=1

Cov
(

f
(
Wn, j

)
f
(
Wn, j+1

)
, f

(
Wn, j+1

)
f
(
Wn, j+2

))
.

On the one hand, by [46, Lemma 1.1],

1

n

n−1∑
j=1

Var
(

f
(
Wn, j

)
f
(
Wn, j+1

)) →
n→∞

∫
Var

(
f (x,W ) f

(
x ′,W ′))dL(X ,X )(x, x ′)

=
∫ 1

0
Var

(
f (x,W ) f

(
x,W ′))dx = E[

Var
(

f (X ,W ) f
(
X ,W ′) |X )]= E[

Var
(
Y Y ′|X )]

,

where W ′ is an independent copies of W , Y = f (X ,W ), and Y ′ = f (X ,W ′). On the other hand, by [46, Lemma 1.1],

1

n

n−2∑
j=1

Cov
(

f
(
Wn, j

)
f
(
Wn, j+1

)
, f

(
Wn, j+1

)
f
(
Wn, j+2

))
→

n→∞ E
[
Cov

(
f (X ,W ) f

(
X ,W ′) , f

(
X ,W ′) f

(
X ,W ′′) |X )]= E[

Cov
(
Y Y ′,Y Y ′′|X )]

,

where W ′ and W ′′ are two independent copies of W . Further, Y = f (X ,W ), Y ′ = f (X ,W ′), and Y ′′ = f (X ,W ′′). Actu-
ally, notice that all linear combination of the coordinates of(

f (Wn, j ) f (Wn, j+1), f (Wn, j ), f (Wn, j )2)> (A.15)

is a one-dependent random variable. In addition, following the same lines as above, one may check that any linear
combination still satisfies the assumptions of [90]. Hence, any linear combination of the coordinates of Bn satisfies
a CLT so that Lemma A.1 is proved, up to the computation of the asymptotic variance-covariance matrix ΣB done in
what follows.

Computation of the asymptotic covariance matrix ΣB

We consider a linear combination of the random vector in (A.15) given by

u f (Wn, j ) f (Wn, j+1)+ v f (Wn, j )+w f (Wn, j )2,

where (u, v, w) ∈ R3. This one-dimensional random vector is one-dependent and its centered version normalized byp
n, denoted by B̃n, j , satisfies the assumptions of [90]. To calculate the asymptotic variance-covariance matrix ΣB , we

compute explicitly the limit of
n−1∑

i , j=1
Cov(B̃n,i , B̃n, j ),

as n →∞ using [46, Lemma 1.1]. It remains to take (1,0,0), (0,1,0) and (0,0,1) to get the diagonal terms of the asymp-
totic variance-covariance matrix and to solve a three-dimensional system of equations to get the remaining terms.
Finally, as computed previously and using notation of [46, Lemma 1.1], the first diagonal term of ΣB is :

Σ1,1
B =

∫
Var

(
f (x,W ) f

(
x ′,W ′))dL(X ,X )(x, x ′)

+2
∫

Cov
(

f (x,W ) f
(
x ′,W ′) , f

(
x ′,W ′) f

(
x ′′,W ′′))dL(X ,X ,X )(x, x ′, x ′′)

=
∫ 1

0
Var

(
f (x,W ) f

(
x,W ′))dx +2

∫ 1

0
Cov

(
f (x,W ) f

(
x,W ′) , f

(
x,W ′) f

(
x,W ′′))dx

= E[
Var

(
f (X ,W ) f

(
X ,W ′) |X )]+2E

[
Cov

(
f (X ,W ) f

(
X ,W ′) , f

(
X ,W ′) f

(
X ,W ′′) |X )]

= E[
Var

(
Y Y ′|X )]+2E

[
Cov

(
Y Y ′,Y Y ′′|X )]

,
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where we remind that Y = f (X ,W ), Y ′ = f (X ,W ′), and Y ′′ = f (X ,W ′′) with W ′ and W ′′ independent copies of W . The
other terms are

Σ2,2
B =

∫ 1

0
Var

(
f (x,W )

)
dx = E[

Var
(

f (X ,W ) |X )]= E [Var(Y |X )] ,

Σ3,3
B =

∫ 1

0
Var

(
f (x,W )2)dx = E[

Var
(
Y 2|X )]

,

Σ1,2
B =Σ2,1

B = 2
∫ 1

0
Cov

(
f (x,W ) f

(
x,W ′) , f (x,W )

)
dx = 2E

[
Cov

(
Y Y ′,Y |X )]

,

Σ1,3
B =Σ3,1

B = 2
∫ 1

0
Cov

(
f (x,W ) f

(
x,W ′) , f (x,W )2)dx = 2E

[
Cov

(
Y Y ′,Y 2|X )]

,

Σ2,3
B =Σ3,2

B =
∫ 1

0
Cov

(
f (x,W ) , f (x,W )2)dx = E[

Cov(Y ,Y 2|X )
]

.

A.2.3 Proof of Lemma A.2

Let ωW ∈ Π as defined in [46, Lemma 1.1]. The aim is to establish a CLT for
p

nCn, j (·,ωW ). To ease the reading, we
omit the notation (·,ωW ) as classically done in probability. First, dealing with the first coordinate f

(
Wn, j+1

)
∆n, j +

f
(
Wn, j

)
∆n, j+1 of Cn, j defined in (A.13), one has

f
(
Wn, j+1

)
∆n, j =

(
Xσn ( j ) − j

n +1

)
f
(
Wn, j+1

)
fx

(
Wn, j

)
+ 1

2

(
Xσn ( j ) − j

n +1

)2

f
(
Wn, j+1

)
fxx

(
δn, j ,W j

)
using the expansion of ∆n, j given in (A.11). By (A.9) and using the boundedness of f and fxx , we get that

1

n

n−1∑
j=1

(
Xσn ( j ) − j

n +1

)2

f
(
Wn, j+1

)
fxx

(
δn, j ,W j

)
is OP (1/n). We follow the same lines to treat the term f

(
Wn, j

)
∆n, j+1 and thus

1

n

n−1∑
j=1

f
(
Wn, j+1

)
∆n, j + f

(
Wn, j

)
∆n, j+1 = 1

n

n−1∑
j=1

(
Xσn ( j ) − j

n +1

)
f
(
Wn, j+1

)
fx

(
Wn, j

)
+ 1

n

n−1∑
j=1

(
Xσn ( j+1) − j +1

n +1

)
f
(
Wn, j

)
fx

(
Wn, j+1

)+OP

(
1

n

)

= 1

n

n−1∑
j=1

(
Xσn ( j ) − j

n +1

)
fx

(
Wn, j

)(
f
(
Wn, j−1

)+ f
(
Wn, j+1

))+OP

(
1

n

)
.

So that, using again the expansion of∆n, j given in (A.11), (A.9), and the boundedness of f and fxx to handle the second
and third coordinate of Cn, j , the study of Cn reduces to that of the random vector

1

n

n−1∑
j=1

(
Xσn ( j ) − j

n +1

)
fx

(
Wn, j

) f
(
Wn, j−1

)+ f
(
Wn, j+1

)
1

2 f
(
Wn, j+1

)
 (A.16)

by the independence between σn and W1, . . . ,Wn . In that view, let us consider the following linear combination
u( f (Wn, j−1)+ f (Wn, j+1))+ v +2w f (Wn, j+1), where (u, v, w) ∈R3 and the empirical mean

1

n

n−1∑
j=1

(
Xσn ( j )− j

n +1

)
fx

(
Wn, j

)× (
u( f (Wn, j−1)+ f (Wn, j+1))+ v +2w f (Wn, j+1)

)
. (A.17)

Now it remains to apply [46, Lemma 1.4] 1 with χ j =
(
W j−1,W j ,W j+1

)
and ψ=ψuv w with

ψuv w

(
j −1

n +1
,

j

n +1
,

j +1

n +1
,χ j

)
= fx

(
Wn, j

)(
u( f (Wn, j−1)+ f (Wn, j+1))+ v +2w f (Wn, j+1)

)
, (A.18)

1A slightly generalization of this lemma is required to handle the pair ( j /(n + 1), ( j + 1)/(n + 1)) rather than the quantity j /n. Its proof comes
directly following the same lines as in the proof of this lemma
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noticing that, as n → ∞, (1/n)
∑n−1

j=1 δ( j−1)/(n+1), j /(n+1),( j+1)/(n+1),χ j converges in distribution to Q = L(X ,X ,X ) ⊗LW ⊗
LW ⊗LW by [46, Lemma 1.1]. Thus we deduce that the empirical mean in (A.17) converges in distribution for any 3-
uplet (u, v, w). Since any linear combination of the components of the random vector defined in (A.16) satisfies a CLT,
so does the random vector itself. The proof of Lemma A.2 is now complete, up to the computation of the asymptotic
variance-covariance matrix ΣC done in the paragraph that follows.

Computation of the asymptotic covariance matrix ΣC

We use the explicit expression (4) in the proof of [46, Lemma 1.4] of the asymptotic variance σ2
ψ (actually a slightly

generalized version of the lemma) with Q = L(X ,X ,X ) ⊗LW ⊗LW ⊗LW and with ψ given by (A.18). Then taking
the values (1,0,0), (0,1,0) and (0,0,1) leads to the diagonal terms of the asymptotic variance-covariance matrix ΣC

while solving a three-dimensional system of equations provides the remaining terms. For instance, reminding that
χ j = (W j−1,W j ,W j+1) and Wn, j = ( j /(n +1),W j ) and

ψ100

(
j −1

n +1
,

j

n +1
,

j +1

n +1
,χ j

)
= fx

(
Wn, j

)
( f (Wn, j−1)+ f (Wn, j+1))

(namely, ψuv w with (u, v, w) = (1,0,0)), we have

Σ1,1
C =

∫
ψ100(x1, x ′

1, x ′′
1 ,χ1)ψ100(x2, x ′

2, x ′′
2 ,χ2)x1 ∧x2 ∧x ′

1 ∧x ′
2 ∧x ′′

1 ∧x ′′
2

×dQ(x1, x ′
1, x ′′

1 ,χ1)dQ(x2, x ′
2, x ′′

2 ,χ2)−
(∫

ψ100(x, x ′, x ′′,χ)x ∧x ′∧x ′′dQ(x, x ′, x ′′,χ)

)2

=E[(Y1 +Y ′
1)(Y2 +Y ′

2) fx (X1,W1) fx (X2,W2)(X1 ∧X2)]−E[(Y +Y ′) fx (X ,W )X ]2,

where we remind that Y = f (X ,W ) and Y ′ = f (X ,W ′) with W ′ an independent copy of W (and analogously for Y1 and
Y2). Finally, the remaining terms of ΣC are:

Σ2,2
C = E[ fx (X1,W1) fx (X2,W2)(X1 ∧X2)]−E[ fx (X ,W )X ]2

Σ3,3
C = 4E[Y ′

1Y ′
2 fx (X1,W1) fx (X2,W2)(X1 ∧X2)]−4E[Y ′ fx (X ,W )X ]2

Σ1,2
C =Σ2,1

C = E[(Y1 +Y ′
1) fx (X1,W1) fx (X2,W2)(X1 ∧X2)]−E[(Y +Y ′) fx (X ,W )X ]E[ fx (X ,W )X ]

Σ1,3
C =Σ3,1

C = 2E[(Y1 +Y ′
1) fx (X1,W1)Y ′

2 fx (X2,W2)(X1 ∧X2)]−2E[(Y +Y ′) fx (X ,W )X ]E[Y ′ fx (X ,W )X ]

Σ2,3
C =Σ3,2

C = 2E[ fx (X1,W1)Y ′
2 fx (X2,W2)(X1 ∧X2)]−2E[ fx (X ,W )X ]E[Y ′ fx (X ,W )X ].

A.2.4 Asymptotic variance σ2 of Theorem 4.3

We have proved yet that
p

n

((
Bn

Cn

)
−

(
mB

0

))
L−→

n→∞ N6

(
0,

(
ΣB 0
0 ΣC

))
,

where the explicit expressions of mB , ΣB and ΣC are given in (A.14) of Lemma A.1, Appendices A.2.2 and A.2.3 re-
spectively. Applying the so-called delta method [122, Theorem 3.1] to the linear function f (x, y) = x + y , we conclude
that

p
n(Zn −mB )

L−→
n→∞ N3 (0,ΣB +ΣC ) (A.19)

Further, we notice that ξSobol
n (X ,Y )

L=Ψ(Zn) withΨ(x, y, z) = (x − y2)/(z − y2). The so-called delta method [122, Theo-
rem 3.1] then gives p

N
(
ξSobol

n (X ,Y )−SX
)

L−→
n→∞ N1(0,σ2)

where SX = Var(E[Y |X ])/Var(Y ) is the first-order Sobol’ index with respect to X and σ2 = g>(ΣB +ΣC )g with g =
∇Ψ(mB ). By assumption Var(Y ) 6= 0, Ψ is differentiable at mB and we will see in the sequel that g>(ΣB +ΣC )g 6= 0, so
that the application of the delta method is justified. By differentiation, we get that, for any x, y , and z so that z 6= y2:

∇Ψ(x, y, z) =
(

1

z − y2 ,−2y
z −x

(z − y2)2 ,− x − y2

(z − y2)2

)>
(A.20)

so that

g =∇Ψ(mB ) =
(

1

Var(Y )
,2E[Y ]

E[Y Y ′]−E[Y 2]

Var(Y )2 ,− SX

Var(Y )

)>
= 1

Var(Y )

(
1,2E[Y ](SX −1),−SX )>

.



110 APPENDIX A. PROOF OF THE RESULTS OF CHAPTER ??

Hence the asymptotic variance σ2 in Theorem 4.3 is finally given by σ2 = g> (ΣB +ΣC ) g where ΣB and ΣC have been
defined in Appendices A.2.2 and A.2.3 respectively. The matrix ΣB rewrites as

ΣB =
v01 +2c01,02 2c01,03 2c01,00

2c01,03 Var(Y )(1−SX ) 2c03,00

2c01,00 2c03,00 v00


where vi j = E[Var(Ai A j |X )], ci j ,kl = E[Cov(Ai A j , Ak Al |X )], A0 = Y , A1 = Y ′, A2 = Y ′′, and A3 = 1 (Y and Y ′′ have been
defined just before (A.15)). The matrix ΣC rewrites as

ΣC =
s2

ψ100
s2
ψ110

s2
ψ101

s2
ψ110

s2
ψ010

s2
ψ011

s2
ψ101

s2
ψ011

s2
ψ001


where s2

ψ and ψuv w have been defined in [46, Equation (4)] and (A.18) respectively.

A.3 Proof of the asymtotic efficiency of R1
n

Proof of Proposition 4.8. By [34, Theorems 3.4 and 3.5] and classical results on efficiency, observe that

Un =
(

T̂n ,
1

n

n∑
i=1

Yi ,
1

n

n∑
i=1

Y 2
i

)>

is asymptotically efficient, componentwise, for estimating U = (
E[E[Y |X ]2],E[Y ],E[Y 2]

)>
. The efficiency in product

space [122, Theorem 25.50] yields the joint efficiency from this componentwise efficiency. Now, we consider once
again the functionΨ introduced in the proof of Theorem 4.3. SinceΨ is differentiable on R3 \

{
(x, y, z)

∣∣z 6= y2
}
, the ef-

ficiency and delta method result [122, Theorem 25.47] implies that (Ψ (Un))n is asymptotically efficient for estimating
Ψ(U ). The conclusion follows asΨ(U ) = SX .
Let us compute the minimal variance. To do so, assume that the joint distribution P of (X ,Y ) is absolutely continuous
with respect to the Cartesian product PX ⊗PY , namely P (d x,d y) = f (x, y)PX (d x)PY (d y). Then

E[Y |X = x] =
∫

y fY |X=x (y)PY (d y) =
∫

y
f (x, y)∫

f (x, y)PY (d y)
PY (d y).

For any t ∈ (0,1), let us introduce ft (x, y) := (1+ th(x, y)) f (x, y) and

Pt (d x,d y) := (1+ th(x, y)) f (x, y)PX (d x)PY (d y)

where h(x, y) >−1 and
∫

h(x, y) f (x, y)Px (d x)PY (d y) = 0. Now we consider the function

F (t ) :=
Ï

x,y ′

(∫
y ft (x, y)PY (d y)∫
ft (x, y)PY (d y)

)2

Pt (d x,d y ′).

Denoting by G(x, t ) := ∫
y ft (x, y)PY (d y)/

∫
ft (x, y)PY (d y), one gets

F ′(t ) =
Ï

x,y ′

[
2G(x, t )

∂

∂t
G(x, t ) ft (x, y ′)+G(x, t )2h(x, y ′) f (x, y ′)

]
PX (d x)PY (d y ′)

so that F ′(0) = 〈E[Y |X = x](2y −E[Y |X = x]),h〉P . The interest function I := E[Y |X ](2Y −E[Y |X ]) has E[E[Y |X ]2] and
variance Var(E[Y |X ](2Y −E[Y |X ])). Hence it remains to apply the delta method to get the final (minimal) variance

g>
 Var(I ) Cov(I ,Y ) Cov(I ,Y 2)

Cov(I ,Y ) Var(Y ) Cov(Y ,Y 2)
Cov(I ,Y 2) Cov(Y ,Y 2) Var(Y 2)

g

where g :=∇Ψ(U ), and by (A.20),

g =
(

1

Var(Y )
,2E[Y ]

E[E[Y |X ]2]−E[Y 2]

Var(Y )2 ,− SX

Var(Y )

)>
= 1

Var(Y )

(
1,2E[Y ](SX −1),−SX )>

.

Finally, one gets the minimal variance mentioned in Proposition 4.8.
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Remark A.3. This result can be also obtained making a LAN perturbation of the functional derivative on the tangent
space. In this setting and following the notation of [122, Chapitre 25], let us consider the functionalΦ defined by

Φ(P ) := EP [EP [Y |X ]]−EP [Y ]2

EP [Y 2]−EP [Y ]2 .

Then, with the notation Pt for t ∈ (0,1) introduced in the above proof, one gets

d

d t
Φ(Pt )|t=0

= 1

Var(Y )
〈E[Y |X ](2Y −E[Y |X ])−2E[Y ]Y −SX (Y 2 −2E[Y ]Y ),h〉P

leading to Φ̃ := 1
Var(Y )

(
2E[Y ]Y (1−SX )+SX Y 2 −E[Y |X ](E[Y |X ]−2Y )

)
and the minimal variance is given by σ2

min =
Var(Φ̃) = 1

Var(Y )2 Var
(
2E[Y ](1−SX )Y +SX Y 2 +E[Y |X ](E[Y |X ]−2Y )

)
that coincides with the expression obtained via

the delta method in Proposition 4.8.

A.4 Technical results

A.4.1 Convergence of random measures

In the sequel, we will denote by LZ the law of a random vector Z .

Lemma A.4. Let k and ` ∈ �0,n�. There exists a measurable set Π ⊂ ΩW with PW -probability one such that for any
ωW ∈Π,

πn(ωW ) := 1

n

n−k∨`∑
j=1

δ(
j

n+1 ,..., j+k
n+1 ,W j (ωW ),...,W j+`(ωW )

) ⇒π :=L(X ,...,X ) ⊗LW ⊗·· ·⊗LW ,

as n →∞ where as before X is uniformly distributed on [0,1] and ⇒ stands for the weak convergence of measures. Here
L(X ,...,X ) stands for the joint distribution of the vector (X , . . . , X ) of length k and LW ⊗·· ·⊗LW stands for the tensorial
product of the distribution LW ` times.

Proof of Lemma A.4. Let ωW ∈ΩW . Let us consider the continuous and bounded functions defined on Rk+` by

gs,t (x, w) = exp{i 〈s, x〉Rk + i 〈t , w〉R` },

for any s ∈ Rk and t ∈ R`. To prove the weak convergence of the measures (πn(ωW ))n , we show that πn(ωW )(gs,t )
converges almost surely for any s ∈Qk and t ∈Q` as n →∞. Finally, we will conclude by density of rational numbers
in R.
Let (s, t ) = (s0, . . . , sk−1, t0, . . . , t`−1) ∈Qk+` be fixed. To ease the reading, we use the shorthand notation g for gs,t and
〈·, ·〉 for 〈·, ·〉Rm whatever the value of m and we omit the notation ωW as classically done in probability.

One has

πn(g ) =
∫

g dπn = 1

n

n−k∨`∑
j=1

e i 〈s,−→x j 〉+i 〈t ,
−→
W j 〉

where −→x j := ( j /(n +1), . . . , ( j +k −1)/(n +1)) and
−→
W j = (W j , . . . ,W j+`−1). Obviously, by the independence of the se-

quence (Wn)n and the convergence theorem of Riemann sums,

E
[
πn(g )

]= `−1∏
l=0

E
[

e i tl W
]
× 1

n

n−k∨`∑
j=1

e〈s,−→x j 〉 →
n→∞

`−1∏
l=0

E
[

e i tl W
]
×

∫ 1

0
e i x〈s,

−→
1 〉d x,

where the vector
−→
1 stands for (1, . . . ,1) ∈ Rk . Observe that the almost sure convergence of πn is equivalent to the

almost sure convergence of its real part and that of its imaginary part. Setting

Un, j = 〈s,−→x j 〉+〈t ,
−→
W j 〉,
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we have ℜ(πn(g )) = 1
n

∑n−2
j=1 cos

(
Un, j

)
. In order to apply the Borel-Cantelli lemma, we need to control the fourth mo-

ment

E
[(ℜ(πn(g ))−E[ℜ(πn(g ))]

)4
]
= 1

n4 E

[(
n−k∨`∑

j=1
cos

(
Un, j

)−E[cos
(
Un, j

)
]

)4]
.

The random variables cos
(
Un, j

)−E[
cos

(
Un, j

)]
are real-valued, centered, and bounded so that we can apply inequality

(2.14) page 37 in [100]. Then we obtain

E

[(
n−k∨`∑

j=1
cos

(
Un, j

)−E[
cos

(
Un, j

)])4]
É 224n2 (

Λ2(α−1)
)2

(A.21)

where

Λ2(α−1) = sup
0Ém<n

(m +1)(αm)
1
2 ,

where (αm)m is the sequence of the strong mixing coefficients of the sequence (Un, j ). Now since the random variable

Un, j only depends on
−→
W j , αm equal zero as soon as m Ê `. Hence, there exists a positive constant K such that

1

n4 E

[(
n−k∨`∑

j=1
cos

(
Un, j

)−E[
cos

(
Un, j

)])4]
É K

n2 .

It follows by Borel-Cantelli lemma that the real part of πn(g ) converges almost surely. Since the imaginary part can
be treated using the exact same steps, the proof of Lemma A.4 is almost complete. Hence, there exists a Borel set Ns,t

with P(Ns,t ) = 1 so that the previous convergence holds on ΩW \Ns,t . It remains to define Π := ΩW \∪(s,t )∈Qk+` Ns,t .

Obviously, one has P(Π) = 1 and the almost sure convergence holds onΠ for all functions gs,t with (s, t ) ∈Qk+`.

Finally, the result holding for any uplet (s, t ) ∈Qk+`, we conclude to the required result by density of rational numbers
in R.

A.4.2 Generalized L-Statistics

Lemma A.5. Let (Ei )iÊ1 be a sequence of i.i.d. random variables with standard exponential distribution and let ψ be a
bounded measurable function on [0,1]. We assume that the set of discontinuity points of ψ has null Lebesgue measure.
Then, the sequence (

n−1/2
n−1∑
j=1

ψ( j /n)(E j −1)

)
n∈N∗

converges in distribution to a centered Gaussian law with asymptotic variance: σ2
ψ := ∫

[0,1]ψ
2(x)d x.

Proof of Lemma A.5. For k ∈N∗, let cumk denotes the cumulant of order k of

1p
n

n−1∑
j=1

ψ( j /n)(E j −1).

Obviously, cum1 = 0 and, for k Ê 2, cumk = n−k/2 ∑n−1
j=1

(
ψ( j /n)

)k . So that, limn→∞ cum2 =
∫
ψ2(x)d x while, for k Ê 3,

limn→∞ cumk = 0.

Remark A.6. The previous lemma obviously extends to the case of a continuous function Ψ = (ψi ) valued in Rd (d Ê
1). In this case, the asymptotic covariance matrix ΣΨ is the Gram matrix

(∫
[0,1]ψi (x)ψ j (x)d x; 1 É i , j É d

)
. Indeed,

the previous lemma holds for any linear combination of such random vector sequence. A direct computation of the
asymptotic variance leads to the quadratic form built on ΣΨ.

The next lemma is a generalization of the CLT for a L-statistics (see, e.g., [122, Chapter 22]).
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Lemma A.7. Let (U ,B(U )) be a Polish space where B(U ) denotes the Borel σ algebra of U . We consider a sequence
(χ j )1É jÉn, n∈N∗ valued in U and Q a probability measure on U × [0,1]. We assume that the sequence of empirical mea-

sures
(

1
n

∑n−1
j=1 δ j /n,χ j

)
n∈N∗ converges in distribution to Q.

Let ψ be a bounded measurable real function on U × [0,1]. We assume that the set of discontinuity points of ψ has null
Q-probability. Then,

Dn := 1p
n

n−1∑
j=1

ψ
(

j /n,χ j
)(

Xσn ( j ) − j

n +1

)
L−→

n→∞ N
(
0, s2

ψ

)
,

where the asymptotic variance s2
ψ is given in (A.23).

Proof of Lemma A.7. Recall that the sequence (Ei ) has been defined in Lemma A.5. We have

Xσn ( j ) − j

n +1
L=

∑ j
i=1 Ei∑n+1
i=1 Ei

− j

n +1
= 1

1
n+1

∑n+1
i=1 Ei

(
1

n +1

j∑
i=1

Ei − j

(n +1)2

n+1∑
i=1

Ei

)

= 1
1

n+1

∑n+1
i=1 Ei

(
1

n +1

j∑
i=1

(Ei −1)− j

(n +1)2

n+1∑
i=1

(Ei −1)

)
,

so that,

Dn
L= 1p

n(n +1)

1
1

n+1

∑n+1
i=1 Ei

n−1∑
j=1

ψ
(

j /n,χ j
)( j∑

i=1
(Ei −1)− j

n +1

n+1∑
i=1

(Ei −1)

)
.

Using the assumption on the empirical measure, we get

1

n

n∑
j=1

ψ
(

j /n,χ j
) j

n +1
→ I :=

∫
U×[0,1]

xψ(x,χ)dQ(x,χ).

Further, by the weak law of large numbers, (1/(n+1))
∑n+1

i=1 Ei converges in probability to E[E1] = 1. Hence, by Slutsky’s
lemma, we are led to consider the random vector

Vn := 1p
n

(
1

n+1

∑n−1
j=1 ψ

(
j /n,χ j

)∑ j
i=1(Ei −1)∑n+1

i=1 (Ei −1)

)
.

Notice that the first coordinate of Vn can be rewritten as (up to the normalizing factor n−1/2)

n−1∑
i=1

(
1

n +1

n−1∑
j=1

ψ
(

j /n,χ j
)
1iÉ j

)
(Ei −1).

For t ∈ [0,1], let φ(t ) := ∫
U×[t ,1]ψ(x,χ)dQ(x,χ). We will show below that

lim
n

sup
t∈[0,1]

∣∣∣∣∣
(

1

n +1

n−1∑
j=1

ψ
(

j /n,χ j
)
1iÉ j

)
−φ(t )

∣∣∣∣∣= 0. (A.22)

Let assume for a while that this result holds. Then, in our study, we may replace Vn by

V̂n := 1p
n

( 1
n+1

∑n−1
i=1 φ(i /n)(Ei −1)∑n+1

i=1 (Ei −1)

)
since (A.22) implies that limn→∞E‖Vn − V̂n‖2 = 0. Using Remark A.6, we obtain that the sequence (V̂n)n∈N∗ converges
in distribution to a centered Gaussian vector with covariance matrix(∫ 1

0 φ
2(t )d t

∫ 1
0 φ(t )d t∫ 1

0 φ(t )d t 1

)
.

Finally, using the so-called delta method [122, Theorem 3.1], (Dn)n∈N∗ converges in distribution to a centered Gaus-
sian variable with variance

s2
ψ =

∫ 1

0
(φ(t )− I )2d t . (A.23)
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It remains to show that (A.22) holds. First let assume thatψÊ 0. Set, for j = 1, . . .n,φn( j /n) := (1/(n +1))
∑n−1

j=1 ψ
(

j /n,χ j
)

and consider the piece-wise linear extension φn defined on [0,1]. The second Dini’s theorem [103] allows to conclude
that the sequence of functions (φn)n∈N∗ converges uniformly to φ yielding the result. In the general case, we may
mimic this reasoning on ψ+ = sup(ψ,0) and ψ− = sup(−ψ,0) and so conclude.

Notice that, using the definitions of φ and I and applying Fubini’s theorem, s2
ψ can be explicited as follows:

s2
ψ =

∫ 1

0
(φ(t )− I )2d t =

∫ 1

0

(∫
U×[0,1]

ψ(x,χ)(1tÉx −x)dQ(x,χ)

)2

d t

=
∫ 1

0

Ï
(U×[0,1])2

ψ(x1,χ1)ψ(x2,χ2)(1tÉx1 −x1)(1tÉx2 −x2)dQ(x1,χ1)dQ(x2,χ2)d t

=
Ï

(U×[0,1])2
ψ(x1,χ1)ψ(x2,χ2)

∫ 1

0
(1tÉx1 −x1)(1tÉx2 −x2)d tdQ(x1,χ1)dQ(x2,χ2)

=
Ï

(U×[0,1])2
ψ(x1,χ1)ψ(x2,χ2)(x1 ∧x2 −x1x2)dQ(x1,χ1)dQ(x2,χ2). (A.24)



Appendix B

Proofs of the results of Chapter 5

B.1 Proof of Theorem 5.3

Proof of Theorem 5.3. The consistency follows from a straightforward application of the strong law of large numbers.
The asymptotic normality is derived by two successive applications of the delta method [122] .

(1) Let W 1
j := (Y v,1

j , . . . ,Y v,p
j )T ( j = 1, . . . , N ) and g 1 be the mapping from Rp to Rp whose l-th coordinate is given by

g 1
l (x1, . . . , xp ) =

(
p

l

)−1 ∑
k1 < . . . < kl

ki ∈ Ip , i = 1, . . . , l

(
l∏

i=1
xki

)
.

Then (W 1
j ) j=1,...,N is an i.i.d. sample distributed as W 1 := (Y v,1, . . . ,Y v,p )T .

Let Σ1 be the covariance matrix of W 1
j . Clearly, one has Σ1

i i = Var(Y ) for i ∈ Ip while for i 6= j , Σ1
i j = Cov(Y v,i ,Y v, j ) =

Cov(Y ,Y v,2). The multidimensional central limit theorem gives that

p
N

(
1

N

N∑
j=1

W 1
j −m

)
L→

N→∞
Np

(
0,Σ1) ,

where m := (E[Y ], . . . ,E[Y ])T . We then apply the so-called delta method to W 1 and g 1 so that

p
N

(
g 1

(
W

1
N

)
− g 1 (

E
[
W 1])) L→

N→∞
N

(
0, Jg 1

(
E
[
W 1])Σ1 Jg 1

(
E
[
W 1])T

)
,

where Jg 1

(
E
[
W 1

])
is the Jacobian of g 1 at point E

[
W 1

]
. Notice that for i ∈ Ip and k ∈ Ip ,

∂g 1
l

∂xk

(
E
[
W 1])= (p−1

l−1

)(p
l

) ml−1 = l

p
E[Y ]l−1 =: al .

Thus Σ2 := Jg 1

(
E
[
W 1

])
Σ1 Jg 1

(
E
[
W 1

])T
is given by

Σ2
i j = pai a j

(
Σ1

11 + (p −1)Σ1
12

)
.

(2) Now consider W 2
j := (P v,1

j , . . .P v,p
j )T ( j = 1, . . . , N ) and g 2 the mapping from Rp to R defined by

g 2(y1, . . . , yp ) =
p∑

l=0

(
p

l

)
(−1)p−l y p−l

1 yl .

Then (W 2
j ) j=1,...,N is an i.i.d. sample distributed as W 2 := (P v,1, . . .P v,p )T .

We apply once again the delta method to W 2 so that

p
N

(
g 2

(
W

2
N

)
− g 2 (

E
[
W 2])) L→

N→∞
N

(
0, Jg 2

(
E
[
W 2])Σ2 Jg 2

(
E
[
W 2])T

)
,
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where Jg 2

(
E
[
W 2

])
is the Jacobian of g 2 at point E

[
W 2

]
. Notice that for k ∈ Ip ,

∂g 2

∂y1

(
E
[
W 2])= (−1)p−1p(p −1)E[Y ]p−1

+
p−1∑
l=2

(
p

l

)
(−1)p−l (p − l )E[Y ]p−l−1E

[
l∏

i=1
Y v,i

]

and

∂g 2

∂yl

(
E
[
W 2])= (

p

l

)
(−1)p−lE[Y ]p−l .

Thus the limiting variance is

σ2 := Jg 2

(
E
[
W 2])Σ2 Jg 2

(
E
[
W 2])T = p

(
Σ1

11 + (p −1)Σ1
12

)( p∑
i=1

ai bi

)2

,

where bi is the i -th coordinate of ∇g 2
(
E
[
W 2

])
.

B.2 An auxiliary result and the proofs of the results of Section 5.2 of Chapter 5

Lemma B.1. Let G and H be two measurable functions. Let (U j ) j∈IN and (Vk )k∈IN be two independent samples of i.i.d.
random variables. Assume that G(U1,V1) and H(U1,U2,V1) are both integrable and centered. We define SN and TN by

SN = 1

N 2

N∑
j ,k=1

G(U j ,Vk ) and TN = 1

N 3

N∑
i , j ,k=1

H(Ui ,U j ,Vk ).

Then SN and TN converge almost surely to 0 as N goes to infinity.

Proof of Lemma B.1. Notice that if E[S4
N ] = O

(
1

N 2

)
then by the Borel - Cantelli lemma, SN converges almost surely to

0. Now,

E[S4
N ] = 1

N 8

∑
E[G(Ui1 ,V j1 )G(Ui2 ,V j2 )G(Ui3 ,V j3 )G(Ui4 ,V j4 )],

where the sum is taken over all the indices i1, i2, i3, i4, j1, j2, j3, j4 from 1 to N . The only cases leading to terms in
O

( 1
N

)
or even in O (1) appear when we sum over indices that are all different except two i ’s or two j ’s or over indices

that are all different. Nevertheless, in those cases, at least one term of the form E[G(Ui ,V j )] appears. Since the function
G is centered, those cases are then discarded.

The proof of the result concerning TN follows the same tracks.

Proof of Corollary 5.7. The proof is based on Lemma B.1. First, we define Z j =
(

Z v,1
j , Z v,2

j

)
,

G(Z j ,Wk ) =1{Z v,1
j ÉWk }1{Z v,2

j ÉWk },

F (Z j ,Wk ) = 1

2

(
1{Z v,1

j ÉWk } +1{Z v,2
j ÉWk }

)
,

H(Zi , Z j ,Wk ) = F (Zi ,Wk )F (Z j ,Wk ).
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Second, we proceed to the following decomposition:

N̂ v
2,CV M = 1

N

N∑
k=1

{
1

N

N∑
j=1

1{Z v,1
j ÉWk }1{Z v,2

j ÉWk } −
[

1

2N

N∑
j=1

(
1{Z v,1

j ÉWk } +1{Z v,2
j ÉWk

}

)]2}

= 1

N 2

N∑
j ,k=1

1{Z v,1
j ÉWk }1{Z v,2

j ÉWk } −
1

4N 3

N∑
i , j ,k=1

(
1{Z v,1

i ÉWk } +1{Z v,2
i ÉWk }

)(
1{Z v,1

j ÉWk } +1{Z v,2
j ÉWk }

)

= 1

N 2

N∑
j ,k=1

G(Z j ,Wk )− 1

N 3

N∑
i , j ,k=1

H(Zi , Z j ,Wk )

= 1

N 2

N∑
j ,k=1

{
G(Z j ,Wk )−E[G(Z j ,Wk )]

}− 1

N 3

N∑
i , j ,k=1

{
H(Zi , Z j ,Wk )−E[H(Zi , Z j ,Wk )]

}
+ 1

N 2

N∑
j ,k=1

E[G(Z j ,Wk )]− 1

N 3

N∑
i , j ,k=1

E[H(Zi , Z j ,Wk )]

= 1

N 2

N∑
j ,k=1

{
G(Z j ,Wk )−E[G(Z j ,Wk )]

}− 1

N 3

N∑
i , j ,k=1

{
H(Zi , Z j ,Wk )−E[H(Zi , Z j ,Wk )]

}
+E[G(Z1,W1)]−

(
1− 1

N

)
E[H(Z1, Z2,W1)]− 1

N
E[H(Z1, Z1,W1)].

The two first sums converge almost surely to 0 by Lemma B.1. The remaining term goes to E[G(Z1,W1)]−E[H(Z1, Z2,W1)]
as N goes to infinity.

It remains to show that N v
2,CV M = E[G(Z1,W1)]−E[H(Z1, Z2,W1)]. On the one hand,

N v
2,CV M =

∫
R
E[(F (t )−F v (t ))2]dF (t ) = E[H 2

v (W1)]

= E[Cov(1{Z v,1
1 ÉW1},1{Z v,2

1 ÉW1})]

= EW [EZ [1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]−EZ [1{Z v,1
1 ÉW1}]

2].

On the other hand,

E[G(Z1,W1)]−E[H(Z1, Z2,W1)]

= E[1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]−
1

4
E[(1{Z v,1

1 ÉW1} +1{Z v,2
1 ÉW1})(1{Z v,1

2 ÉW1} +1{Z v,2
2 ÉW1})]

= EW [EZ [1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]]−E[1{Z v,1
1 ÉW1}1{Z v,2

2 ÉW1}]

= EW [EZ [1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]]−E[E[1{Z v,1
1 ÉW1}1{Z v,2

2 ÉW1}|W1]]

= EW [EZ [1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]]−E[E[1{Z v,1
1 ÉW1}|W1]E[1{Z v,2

2 ÉW1}|W1]]

= EW [EZ [1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]]−E[E[1{Z v,1
1 ÉW1}|W1]]E[E[1{Z v,2

2 ÉW1}|W1]]

= EW [EZ [1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]]−E[1{Z v,1
1 ÉW1}]E[1{Z v,2

2 ÉW1}]

= EW [EZ [1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]]−E[1{Z v,1
1 ÉW1}]

2

= EW [EZ [1{Z v,1
1 ÉW1}1{Z v,2

1 ÉW1}]−EZ [1{Z v,1
1 ÉW1}]

2]

which completes the proof.

Proof of Theorem 5.8. We define for t ∈R,

G
1,2
N (t , t ) = 1

N

N∑
j=1

1{Z v,1
j Ét }1{Z v,2

j Ét },

Gi
N (t ) = 1

N

N∑
j=1

1{Z v,i
j Ét }, i = 1,2,

FN (t ) = 1

N

N∑
k=1

1{WkÉt }
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and we rewrite N̂ v
2,CV M as a regular function depending on the four empirical processes defined above:

N̂ v
2,CV M =

∫ [
G

1,2
N −

(
G1

N +G2
N

2

)2]
dFN .

By Donsker’s theorem, p
N

(
G

1,2
N −G̃ ,G1

N −F,G2
N −F,FN −F

)
L→

N→∞
G= (G1,G2,G3,G4),

where G(t , s) = P(
Z v,1 É t , Z v,2 É s

)
, G̃(t ) = G(t , t ), and G is a centered Gaussian process of dimension 4 with covari-

ance function defined by
Π(t , s) = E[

At AT
s

)−E [At )E [As )T for (t , s) ∈R2

and At := (
1{Z v,1Ét }1{Z v,2Ét },1{Z v,1Ét },1{Z v,2Ét },1{W Ét }

)T .

Since these processes are càd làg functions of bounded variation, we introduce the maps ψ1, ψ2 : BV1[−∞,+∞]2 7→R

andΨ : BV1[−∞,+∞]4 7→R defined by

ψi (F1,F2) =
∫

(F1)i dF2, i = 1,2, and Ψ(F1,F2,F3,F4) =ψ1(F1,F4)−ψ2

(
F2 +F3

2
,F4

)
,

where BVM [a,b] is the set of càd làg functions of variation bounded by M . Hence,

N̂ v
2,CV M =Ψ

(
G

1,2
N ,G1

N ,G2
N ,FN

)
.

Now using the chain rule 20.9 and Lemma 20.10 in [122], the map Ψ is Hadamard-differentiable from the domain
BV1[−∞,+∞]4 into Rwhose derivative is given by

(h1,h2,h3,h4) 7→ Dψ1(F1,F4)(h1,h4)−Dψ2

(
F2 +F3

2
,F4

)(
h2 +h3

2
,h4

)
,

where the derivatives of ψi are given by Lemma 20.10

(h1,h2) 7→ h2ϕi ◦F1|+∞−∞−
∫

h2−dϕi ◦F1 +
∫
ϕ′

i (F1)h1dF2

with ϕi (x) = xi and h− is the left-continuous version of a càd làg function h.

Applying the functional delta method 20.8 in [122] we get the weak convergence of
p

N
(
N̂ v

2,CV M −N v
2,CV M

)
to the

following limit distribution ∫
G4−d(F 2 −G̃)+

∫
G1dF −

∫
F (G2 +G3)dF.

Since the mapΨ is continuous on the whole space BV1[−∞,+∞]4, the delta method in its stronger form 20.8 in [122]
implies that the limit variable is the limit in distribution of the sequence

DΨ(G̃ ,F,F,F )
(p

N
(
G

1,2
N −G̃ ,G1

N −F,G2
N −F,FN −F

))
=
p

N

[∫
(FN −F )− d

(
F 2 −G̃)

)+∫ (
G

1,2
N −G̃ −F

(
G1

N +G2
N −2F

))
dF

]
.

We define

U :=
∫
1{W <t }d(F 2(t )−G̃(t ) = G̃(W )−F (W )2,

V :=
∫ [

1{Z v,1Ét }1{Z v,2Ét } −
(
1{Z v,1Ét } +1{Z v,2Ét }

)
F (t )

]
dF (t )

= 1

2

(
F (Z v,1)2 +F (Z v,2)2)−F (Z v,1 ∨Z v,2).

By independence, the limiting variance ξ2 is

ξ2 = VarU +VarV. (B.1)
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