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LECTURE SUPPORTS

All the files of this lecture are available on my webpage:

https://perso.math.univ-toulouse.fr/lagnoux/

enseignements/

You will find them at the bottom of the page.
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LECTURE OUTLINE

1 Introduction
2 Supervised classification

• Linear regression
• k-nearest neighbors
• Discriminant factor analysis
• Naive Bayesian
• Logistic regression

3 Unsupervised classification
• Hierarchical clustering analysis
• k-means
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Introduction to supervised learning

The objective of supervised classification is the algorithmic
categorization of objects. It consists in assigning a class or
category to each object (or individual) to be classified, based on
statistical data.
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Introduction to supervised learning
In this context, we are interested in a vector input:
X = (X1, · · · ,Xp) ∈Rp and an output Y (usually real).
We observe n individuals described by their values of X and Y .

We therefore have the following data.

Xn =



x11 x12 · · · x1p
}x21 x22 · · · x2p

...
xn1 xn2 · · · xnp


et Yn =


y1
y2
...
yn

 .

We want to predict the class y0 of a new input
x0 = (x01,x02, · · · ,x0p).
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Predictive performance - Confusion matrix

The confusion matrix counts the occurrences of predictions
according to the true values.

Predicted class
ℓ= 1 ℓ= 2 · · · ℓ=K

T
ru
e
cl
as
s k = 1 n11 n12 · · · n1K

k = 2 n21 n22 · · · n2K
...

...
...

. . .
...

k =K nK1 nK2 · · · nKK

where nkℓ is the number of observations of class k predicted in the
class ℓ :

nkℓ =
n∑
i=1

1{Yi=k ,Ŷi=ℓ}.
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Predictive performance - Empirical risk

The empirical risk (average cost of misclassification) of the g
classification rule is

R(g)= 1

n

n∑
i=1

K∑
k=1

K∑
kℓ=1

Ckℓ1{Yi=k ,Ŷi=ℓ} =
1

n

K∑
k=1

K∑
ℓ=1

Ckℓnkℓ.

In the case of a 0-1 cost, we find the empirical error rate

R(g)= 1

n

K∑
k=1

K∑
ℓ=1 ℓ̸=k

nkℓ.
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Predictive performances in binary classification

The variable to be explained has two modalities, for example {1,2}.

Vocabulary: “predict 1”=positive and“predict 2”=negative (e.g.).

The confusion matrix is then :

Prediction
Positive Negative

T
ru
th

True positive=TP False negative=FN
Positive Correct detection Non detection

P OK Underestimation
False positive=FP True negative=TN

Negative False alarm Correct rejection
N Overestimation OK
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Predictive performances in binary classification

True positives are the class 1 individuals that are correctly
classified as 1.

False negatives are the class 1 individuals that are incorrectly
classified as 2.

False positives are class 2 individuals that are incorrectly classified
as 1.

True negatives are the class 2 individuals that are correctly
classified as 2.

One can then calculate the percentages rows and columns.
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Predictive performances in binary classification

Prediction
Positive Negative

T
ru
e True positive False neg=FN True positive False negative

Correct detection Non detection rate TPR rate FNR

P TP Underestimation TP
P

FN
P

T
ru
e False pos=FP True negative False positive True negative

False alarm Correct rejection rate FPR rate TNR

N Overestimation TN FP
N

TN
N

Positive predictive False omission Positive Negative
value rate Likelihood R Likelihood R

PPV = TP
TP+FP FOR = FN

TN+FN LR+= TPR
FPR LR−= FNR

TNR
False discovery Negative predictive Markedness Diagnostic

rate value odds ratio

FDR = FP
TP+FP NPV = TN

TN+FN PPV +NPV −1 DOR = LR+
LR−
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Predictive performances - True positive rate

The true positive rate (TPR) is calculated using the following
equation:

TPR= true positives

true positives + false negatives
= TP

TP +FN
= TP

P
.

The true positive rate is equal to the number of true positives
divided by the number of true positives plus the number of false
negatives.

This is a percentage line.

True positive rate (TPR) is also called sensitivity, recall.
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Predictive performances - False positive rate

The false positive rate (FPR) is obtained using the following
equation:

FPR= false positives

false positives + true negatives
= FP

FP +TN
= FP

N
.

The false positive rate is equal to the number of false positives
divided by the number of false positives plus the number of true
negatives.

This is a percentage line.

The false positive rate (FPR) corresponds to 1 - specificity.
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Predictive performances - Predictive Value

The predictive value (PPV) is obtained by using the following
equation:

PPV= true positives

true positives + false positives
= TP

TP +FP
.

The predictive value is equal to the number of true positives
divided by the number of true positives plus false positives. This is
the proportion of predictions 1 that are actually class 1 entries.
This proportion compares to the prevalence which is the proportion
of class 1 in the data.

This is a percentage column.

The predictive value (PPV) is also called precision.
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Predictive performances: precision/recall/specificity

Source : https://en.wikipedia.org/wiki/F-score
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Predictive performances - F1-score

In binary classification, the F1-score depends on

the positive predictive value (PPV), also called precision,

the true positive rate (TPR), also called recall or sensitivity

as follows:

F1 = 2PPV ×TPR

PPV +TPR
= 2TP

2TP +FP +FN
.

In other words, it is the harmonic mean of precision and recall. To
obtain F1, we must therefore calculate the true positive (TP), false
positive (FP), and false negative (FN) rates of the model on a
dataset.
It measures the classification rule’s ability to correctly predict class
1 entries and not predict 1 of the class 2 entries.
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Predictive performances - F1-score

In the case where the predictions are no longer binary (multi-class),
the F-measure is calculated by making the average of F1 scores for
each class. This average can be done in different ways:

the“micro”approach where the TP, FP and FN rates of each
class are simply added to calculate the F-measure;

the“macro”approach where the F-measure is the arithmetic
mean of the F1-score for each class.
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Predictive performances - Kappa de Cohen

In statistics, the kappa method (kappa) measures agreement
between observers during qualitative coding into categories.
The calculation of kappa is done as follows:

κ= Pagreement −Prandom

1−Prandom
,

where Pagreement is the proportion of agreement between coders
and Prandom is the probability of a random agreement.

If the coders are in total agreement, κ= 1.

If they are totally in disagreement (or agree due to random),
κÉ0.
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Predictive performances - Kappa de Cohen
Marc and Simon are responsible for defining who will be accepted
or not at the final exam in a group of 50 students. Each of them
checks the copy of each student and notes received or not (YES or
NO):

Simon
Marc

YES NO

YES a=20 b=5

NO c=10 d=15

The agreement between evaluators is:

Pagreement = a+d

a+b+c +d
= 20+15

50
= 0.7.

To calculate the probability of agreement“at random”, we note:

Simon scored YES to 25 students, or 50% of the cases.

Marc scored YES in 60%, 30 out of 50 students.
20



Predictive performances - Kappa de Cohen
The probability that both teachers evaluate YES is

PYES = a+b

a+b+c +d
× a+c

a+b+c +d
= 0.5×0.6= 0.3

Analogously, the probability that both teachers evaluate NO is:

PNO = c +d

a+b+c +d
× b+d

a+b+c +d
= 0.5×0.4= 0.2

The global probability that the teachers agree is:

Prandom =PYES +PNO = 0.3+0.2= 0.5

Kappa’s formula then gives:

κ= Pagreement −Prandom

1−Prandom
= 0.7−0.5

1−0.5
= 0.4
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Predictive performances

Other criteria in binary classification:

Prevalence = P
P+N ,

Accuracy = TP+TN
P+N ,

Balanced-accuracy = TPR+TNR
2 ,

Fowlkes-Mallows index (FM) =p
PPV ×TPR,

Matthews correlation coefficient (MCC)
=p

TPR ×TNR ×PPV ×NPV −p
FNR ×FPR ×FOR ×FDR,

Threat score (TS), critical success index (CSI), Jaccard index
= TP

TP+FN+FP ,
Informedness (BM) = TPR + TNR - 1,

Prevalence threshold (PT) =
p
TPR×FPR−FPR
TPR−FPR .
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Predictive performances - ROC curve

What is the ROC curve?

The ROC curve, or receiver operating characteristic curve, is a
graphical representation used to evaluate the performance of a
binary classification model.

It illustrates the trade-off between sensitivity (TPR) and specificity
(1 - FPR) on different threshold parameters.

The ROC curve is particularly useful for determining the extent to
which a model distinguishes between two classes, making it an
essential tool in statistics, data analysis and data science.
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Predictive performances - ROC curve

Understanding the rate of true positives and the rate of false
positives

The ROC curve plots TPR versus FPR at different threshold levels,
providing a comprehensive view of model performance.

Interpreting the ROC curve

The shape of the ROC curve gives an overview of the efficiency of
a classification model.

A curve that slopes towards the upper left corner indicates a model
with high sensitivity and specificity, while a curve closer to the
diagonal line suggests a model with low discriminative power.
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Predictive performances - AUC

The area under the ROC curve (AUC) is an essential measure of
model performance. It is calculated by integrating the area under
the ROC curve, providing a single scalar value that summarizes the
model’s ability to distinguish between classes. An AUC

of 0.5 suggests absence of discriminating ability,

from 0.7 to 0.8 is considered as acceptable,

greater than 0.8 indicates good performance,

greater than 0.9 suggests excellent performance,

of 1 indicates perfect classification.
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Predictive performances - Take home message

A good model is both:

sensitive and specific. This is measured with the ROC curve
and the AUC.

sensitive and accurate. This is measured with the F1-measure.
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Database slicing: learning, validation, testing

Why slicing data?

Prevent overfitting.

Test the generalizing capacity of a model on new data.

A classic scheme

Training set (70%): to adjust the model.

Validation set (20%): to adjust the hyperparameters.

Test set (10%): to evaluate final performance.

Possible problems: small dataset ⇒ statistical bias.
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Cross-validation: principle

Cross-validation is a method of estimating model reliability based
on a sampling technique.

In K -fold cross-validation, the original sample is divided into K
samples (or blocks), then one of the K samples is selected as the
validation set, while the other K −1 samples constitute the training
set.

Leave-one-out cross-validation (LOOCV) is the special case of K
block cross-validation with K = n. That is, at each
learning-validation iteration, learning is performed on n−1
observations and validation on the single remaining observation.
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Cross-validation

More precisely, for leave-one-out cross-validation:

For i = 1, · · · ,n,
• estimate the rule on the data without the i-th data,
• predict this data i with this rule.

compute the performance criterion on these n predictions.
T a single vector of possible predictions.

for cross-validation K -folds:

Split the data into K sub-samples of the same size
(respecting, if possible the proportions of the classes).

For k = 1, · · · ,K ,
• estimate the rule on the private data of sample k,
• predict the data of sample k with this rule.

Compute the performance criterion on these K predictions.
T several vectors of possible predictions.
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Cross-validation

Evaluate generalized model performance

Cross-validation is used to assess whether the model trained
on a subset of data is capable of predicting correctly on other
data (generalization).

Identify biases linked to overlearning

Cross-validation helps detect whether performance on training
data is significantly better than that on validation data.

Compare with other models

When comparing supervised models (k-NN, LDA/QDA, SVM,
decision trees), it is essential to do so with a fair procedure.

Using cross-validation provides a robust and comparable
evaluation.
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Cross-validation

Manage class imbalances

If classes are not balanced, sub-samples in a dataset may not
reflect the full distribution.

Cross-validation ensures rotation of observations and alleviates
this problem.

Optimize variable selection (feature selection)

If you use a prior variable selection step before building your
model (e.g., choosing discriminant variables based on their
relevance), cross-validation ensures that this selection does
not bias the evaluation. Variables should only be selected
from the training data at each iteration of cross-validation.
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Importance of data preparation

Data cleaning: management of missing values, standardization
/ normalization of variables.

Exploratory visualization to understand relationships in the
data.
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Linear regression: how it works?

The aim of linear regression is to express an output variable Y as a
function of an input variable X in a linear fashion, i.e. Y = aX +b.

This model therefore has two parameters a and b, whose optimal
values must be found during the learning phase. Several techniques
exist for estimating these parameters, the most widely used being

the least square method,

the deviation method,

the maximum likelihood method.

Linear regression is a supervised learning algorithm, with N
input-output pairs making up the data set (xi ,yi )i=1,··· ,n. These
known data will be used to estimate the model parameters.
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Linear regression: how it works?

Here, we’ll take the example of the least-squares method, which is
more widespread than the others. The principle of linear regression
algorithms remains similar for the other methods.
In the case of the least-squares method, we look for the parameters
a and b that minimize a cost function

C =
n∑
i=1

(yi −axi −b)2.

This function corresponds to the sum of squared deviations
between predictions and expected values. These deviations to be
minimized are called residuals.

35



Linear regression: an example

Two linear regression models. The first model shows large
deviations between predicted and expected values, while the second
minimizes the squares of these deviations.
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Linear regression: the r coefficient

The linear regression coefficient can be calculated to estimate
whether two variables can be linearly related. This coefficient is
calculated from the standard deviations σX and σY of the variables
and from the covariance between the input and output variables:

r = Cov(X ,Y )

σXσY
.

If the coefficient is close in absolute value to 1, this means that the
variables can be linearly linked. It is therefore a way of checking
that linear regression is a coherent choice of model.
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Linear regression: applications

Linear regression has many applications. For example, you could
measure the current flowing through a resistor for different voltage
values applied across its terminals. The current measurement may
be noisy, making it impossible to directly determine the value of
the resistance passed through. Linear regression can be used to
estimate the value of this resistance by minimizing the difference
between the measured current and the value estimated by the
U =RI model. This same method can be used to estimate
parameters in many fields.

In practice, there are many software packages available for
performing linear regression. Most spreadsheets have this
functionality, and some programming languages offer libraries for
performing regression (scikit learn for Python, operator ’́for
Matlab...).
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Linear regression: limitations

(1) This method is limited to the estimation of linear models,
which severely restricts its possible applications. The principle of
linear regression can, however, be extended to polynomial
regressions. The latter are more complex to implement, as they
require more parameters (and more choice in the number of
parameters) and face the problems of over- and under-learning.

(2) The estimate obtained is sensitive to the measurement noise
introduced in the training data. Thus, outlier data (far removed
from the model to be estimated) will influence parameter
estimates. This influence depends on the linear regression method
used: the least squares method considers the square of the
residuals, and an outlier will therefore shift the model more than in
the case of the least deviations method (which uses the absolute
values of the residuals).
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Linear regression: limitations

Some methods allow you to incorporate a priori knowledge, further
limiting the effect of outliers.

To reduce the effect of noise on estimation, it is important to have
a sufficiently large number of data, which also constrains the
experimental protocol.
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The k-nearest neighbors: principle

The k-nearest neighbors algorithm or k-NN, like linear regression,
is a supervised learning algorithm, so we have the set of
(xi ,yi )i=1,··· ,n labeled data.

This is a non-parametric model (unlike regression), i.e. the
model has no parameters whose value must be optimized.
" k is not a parameter but a hyperparameter.

In the case of a classification algorithm, the outputs yi
correspond to the possible classes (and not continuous values,
as in regression). The input xi is a vector of dimension p,
containing the different variables associated with an input, an
individual.
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The k-nearest neighbors: principle

For each new input x0, we measure the distance between x0 and
the inputs xi for all i in {1, · · · ,n}.

We then select the k elements closest to the input.

The class predicted by the algorithm then corresponds to the
majority class, i.e. the most frequent class in the k-NNs selected.

Different distance measures (Euclidean, Manhattan...) can be used
for this algorithm, depending on the problem studied.
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The k-nearest neighbors: an example

A famous and commonly used example of k-NNs concerns Fisher’s
iris database. In 1936, botanist Edgar Anderson measured 150
irises specimens of three different varieties: Setosa iris, Versicolor
iris and Virginica iris. For each specimen, he measured the length
and width of the petals and sepals.
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The k-nearest neighbors: an example

For the purposes of this example, we’re only interested in the
length and width of the petals.

The input xi is therefore a vector of dimension 2 containing the
length and width of the petal of individual number i .

The output yi is an integer: 0, 1 or 2, corresponding to the
specimen class (setosa, versicolor or virginica) of the individual
number i .

The 150 specimens are divided into 3 varieties and positioned
according to petal length and width.
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The k-nearest neighbors: an example

Specimens are grouped according to variety. Indeed, specimens of
the same variety have similar characteristics. It therefore seems
coherent to predict whether a specimen belongs to a variety based
on other specimens in the vicinity (in the sense of Euclidean
distance).
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The k-nearest neighbors: an example

Let’s now consider two unknown specimens A and B and try to
predict the variety to which they belong.

The first specimen, called A, is represented by a ’+’ on the
graph. It is an iris with petals 1.9 cm long and 0.6 cm wide.
This iris has characteristics closer to those of setosa iris
specimens than to other specimens. Specimen A can therefore
be classified in the setosa variety.

The second specimen, called B, has petals 4.9 cm long and
1.6 cm wide and is represented by an ’x’ on the graph. We
can then look at the 5 known iris specimens closest to
specimen B. These include 1 iris virginica and 4 iris versicolor.
Specimen B is therefore classified in the versicolor variety.
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The k-nearest neighbors: an example

We were therefore able to classify two unknown specimens using
the k-NN method.

Note that we have used the algorithm here for classification
purposes, but it can be extended to regression. In this case, the
elements are not associated with a class but with a value. The
output of the algorithm then corresponds to the average value of
the k-NN.
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The k-nearest neighbors: applications

The k-NN algorithm is frequently used in both classification and
regression. It can also be used in shape recognition, with inputs
containing the circumference, area or contour signature of the
shape, and outputs corresponding to the various possible shapes.

This algorithm has the advantage of being relatively robust if
sufficient training examples are provided.

It can also be easily implemented in various programming
languages.
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The k-nearest neighbors: limitations

"The value of k has a strong influence on prediction!

k too small: elements out of the ordinary will more easily influence
the prediction. The generalization of the model for new elements
will therefore be less good. This is the overfitting problem.
For example, if k = 1, a versicolor iris with abnormally small petals
will be taken into account by the model, which runs the risk of
misclassifying a setosa iris with dimensions close to this outlier.

k too large: the model will take into account data that are too far
apart, and the majority class will be predicted too often. This is
called underfiting: the model uses not enough the training data.
For example, if k =N, all irises will be taken into account and the
predicted class will be the same regardless of petal size.
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The k-nearest neighbors: applications and limitations

Choosing the value of k isn’t easy: it’s not enough to take it large
or small. Different methods exist to get an idea of the possible
value of k.

It’s also important to test the algorithm on a set of known data to
check the quality of its predictions. We can then separate the
known data set into two sets, the training set and the test set. The
former will be used to make the prediction, while the latter will be
used to check the algorithm’s performance and avoid over- and
under-learning.
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The k-nearest neighbors: applications and limitations

One of the main problems encountered when implementing the
k-NN algorithm is the dimension curse. Indeed, for the algorithm
to work optimally, a sufficient number of training data is required
so that the points studied are always close to known examples.

When studying higher-dimensional problems, it is therefore
essential to have a large amount of training data. For this reason,
the k-NN algorithm quickly becomes unusable: beyond 4 or 5
dimensions, the number of data required becomes too large.
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Introduction to discriminant analysis

Discriminant factor analysis or simply discriminant analysis (DA) is
a statistical technique that aims to

describe,

explain,

predict

the membership to predefined groups (classes, modalities of the
variable to be predicted...) of a set of observations (individuals,
examples...) from a series of predictive variables (descriptors,
exogenous variables...).
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Introduction to discriminant analysis - Applications

• In medecine, to detect high-risk cardiac groups based on
characteristics such as diet, smoking or not, family history, ...

• In banking, to assess the reliability of credit applicants based on
their income, the number of people they support, the outstanding
credits they holds, ...

• In biology, to assign an object to its family based on its physical
characteristics. See Fisher’s irises.

• In computer science, for optical character recognition based on
simple information, such as the presence or absence of symmetry,
the number of extremities, ...
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Introduction to descriptive discriminant analysis

Discriminant analysis can be a descriptive technique. The objective
is to propose a new representation system, i.e. latent variables
formed from linear combinations of predictive variables, which
make it possible to discern groups of individuals as much as
possible.

In this sense, it is similar to factor analysis because it makes it
possible to propose a graphical representation in a reduced space
and more particularly to principal component analysis (PCA)
calculated on the conditional gravity centers of point clouds with a
particular metric. We also speak of canonical discriminant analysis,
particularly in Anglo-Saxon software.
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Introduction to predictive discriminant analysis

Discriminant analysis can be a predictive technique. In this case, it
involves building a classification function (assignment rule) that
predicts the group to which an individual belongs based on the
values taken by the predictive variables.

In this sense, this technique is similar to supervised techniques in
machine learning such as k-nn, decision trees, neural networks, ...

It is based on a probabilistic framework. The best known is
certainly the multinormal distribution hypothesis (normal law).
With the homoscedasticity hypothesis (the point clouds have the
same shape), we obtain linear discriminant analysis (LDA): very
attractive in practice because the classification function is
expressed as a linear combination of the predictive variables, easy
to analyze and interpret.
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Introduction to predictive discriminant analysis

This technique is, with logistic regression, widely used in ”scoring”,
when we want for example to characterize the appetite - the
propensity to buy - of a customer facing a new product.

" In this course, we are interested in predictive discriminant
analysis.
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Principle of discriminant analysis

We have a sample of n observations distributed in K groups of
sizes nk . The number of classes K is fixed in advance.

The inputs are always vectorial: X ∈Rp and the output defining
the groups is discrete: Y ∈ {1, · · · ,K }.

Let µk denote the centers of gravity of the conditional point clouds
and Σk their variance-covariance matrix. Let us assume that the
conditional distribution of X to class Y is parametric and
Gaussian: (X |Y = k)∼N (µk ,Σk). We therefore have

f[Y=k](x)=
1

(2π)p/2|Σk |1/2
exp

{
−1

2
(x −µk)⊤Σ−1

k (x −µk)
}

.

Unknown parameters: πk =P(Y = k), µk and Σk for k = 1, · · · ,K .
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Principle of discriminant analysis
Unknown parameters to estimate

θ = (π1, · · · ,πK ,µ1, · · · ,µK ,Σ1, · · · ,ΣK ).

Log-likelihood of sample (x1,y1), · · · ,(xn,yn):

ℓ(θ)= log
n∏
i=1

fX ,Y (xi ,yi )=
n∑
i=1

log(πyi f[Y=yi ](xi ))

=
K∑
k=1

nk log(πk)+
K∑
k=1

∑
i ;yi=k

log f[Y=k](xi ).

Maximum likelihood estimators

π̂k = nk
n

, µ̂k = 1

nk

∑
i ;yi=k

xi ,

Σ̂k = 1

nk

∑
i ;yi=k

(xi − µ̂k)⊤(xi − µ̂k).
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Principle of discriminant analysis

The Bayes classification rule writes as:

g(x)= argmax
k∈{1,··· ,K }

P(Y = k |X = x) (direct approach)

= argmax
k∈{1,··· ,K }

f[Y=k](x)P(Y = k) (indirect approach)

= argmax
k∈{1,··· ,K }

(log f[Y=k](x)+ logπk).

T Approaches based on a model then consists in learning the law
of Y given X to then deduce the classification rule g .
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Principle of discriminant analysis - remarks
The direct approach consists in directly learning the law of Y given
X . For example, in logistic regression:

P(Y = 1|X = x)= exp(x⊤β)
1+exp(x⊤β)

where β is estimated from the training data.

The indirect approach uses Bayes’ formula

P(Y = k |X = x)=
f[Y=k](x)P(Y = k)∑K
k=1 f[Y=k](x)P(Y = k)

=
f[Y=k](x)πk∑K
k=1 f[Y=k](x)πk

.

It is then sufficient to learn the distribution of X given Y and the
distribution of Y . For example, in DA, the distribution of X given
Y is Gaussian and the parameters are estimated from the training
data as we have just seen.
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Linear discriminant analysis - an example
First, we assume that Σk =Σ for k = 1, · · · ,K .
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Linear discriminant analysis
Under the assumption of equality of covariance matrices, we
obtain:

logP(Y = k |X = x)= log(f[Y=k](x)P(Y = k))=C (x)+Lk(x)

where C is a function that does not depend on the class k and

Lk(x)= x⊤Σ−1µk −
1

2
µ⊤
k Σ

−1µk + logπk .

So the Bayes classification rule becomes

g(x)= argmax
k∈{1,··· ,K }

Lk(x).

Lk is then called linear discriminant function and measures a class
membership score.
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Linear Discriminant Analysis

To conclude, LDA assigns the input x to the class that maximizes
L̂k(x), where we have replaced in the expression of Lk(x) the
unknown quantities µk and πk by their estimators.

The maximum likelihood estimator of Σ is the intra-group
variance-covariance matrix defined by:

Σ̂= 1

n

K∑
k=1

nk Σ̂k with Σ̂k = 1

nk

∑
i ;yi=k

(xi − µ̂k)⊤(xi − µ̂k).

The posterior probabilities of the classes are calculated as follows:

P(Y = k |X = x)= exp(Lk(x))∑K
ℓ=1 exp(Lℓ(x))

.

65



Linear discriminant analysis - an example
The decision boundary between two classes k and ℓ is described by
a linear equation in x : {x : Lk(x)= Lℓ(x)}.
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Quadratic discriminant analysis - an example
We no longer assume that Σk =Σ for all k = 1, · · · ,K .

67



Quadratic discriminant analysis
Without the assumption of equality of covariances, we get

g(x)= argmax
k∈{1,··· ,K }

Qk(x) with

Qk(x)=−1

2
log |Σk |−1−

1

2
(x −µk)⊤Σ−1

k (x −µk)+ logπk .

Qk is then called quadratic discriminant function and measures a
membership score for the classes.

The posterior probabilities of the classes are calculated as follows:

P(Y = k |X = x)= exp(Qk(x))∑K
ℓ=1 exp(Qℓ(x))

.

−2Qk is the generalized Mahalanobis distance between x and µk . 68



Quadratic Discriminant Analysis - An Example
The decision boundary between two classes k and ℓ is described by
a quadratic equation in x : {x :Qk(x)=Qℓ(x)}.
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Special case of binary classification where K = 2
We assume that Σk =Σ for k = 1.2.

The Fisher score is defined by

∆(x)= L1(x)−L2(x)

= x⊤Σ−1(µ1−µ2)− 1

2
(µ1+µ2)Σ−1(µ1−µ2)+ log

π1

π2
.

This score is a linear function in x .

We assign x to class 1 if ∆(x)Ê 0 and to class 2 otherwise.

The a posteriori probability of belonging to class 1 is a logistic
function of the Fisher score:

P(Y = 1|X = x)= exp∆(x)

1+exp∆(x)
.
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Special case of linear discriminant analysis with uniform
probabilities

We assume that Σk =Σ and πk =P(Y = k)= 1/K for k = 1, · · · ,K .

Under this additional assumption of equal prior probabilities, we
obtain:

g(x)= argmin
k∈{1,··· ,n}

Dk(x) with Dk(x)= (x −µk)⊤Σ−1(x −µk).

Dk(x) is the square of the Mahalanobis distance (metric Σ−1)
between x and the center µk of class k.

We then assign x to the closest class.

This is called a geometric classification rule.

71



Limitations of LDA and QDA

LDA and QDA rely on statistical assumptions (normality of
data and homogeneity of covariance matrices for LDA). These
assumptions can be partially or totally violated in real
datasets.

Even if LDA or QDA are considered relatively simple models,
they can overfit on complex or noisy datasets.
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Naive Bayesian
The input variables X = (X1, · · · ,Xp) are quantitative or qualitative
and Y ∈ {1, · · · ,K }.

Independence hypothesis of the variables X1, · · · ,Xp

conditionally on Y :

f (x |Y = k)=
p∏
j=1

fj(xj |Y = k),

where fj(xj |Y = k) is the notation used here to denote in a
unified way:

• the conditional density of Xj given Y = k if Xj is continuous,
• a conditional probability of Xj given Y = k if Xj is discrete.

The indirect approach gives:

g(x)= argmax
ℓ∈{1,...,K }

πℓf (x |Y = ℓ)= argmax
ℓ∈{1,...,K }

πℓ

p∏
j=a

fj(xj |Y = ℓ).
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Naive Bayesian

The K parameters p iℓ and the p×K conditional distributions
fj(xj |Y = k) are to be estimated on the training data i.e. on a
sample of pairs of i.i.d. random variables (X1,Y1), · · · , (Xn,Yn)
with the same distribution as (X ,Y ).

If the variable Xj is qualitative with values in Mj , we estimate the
conditional probabilities fj(xj |Y = k) by the frequencies in the class
k of the modalities xj ∈Mj :

f̂j(xj |Y = k)=
∑n

i :yi=k 1X j
i =xj

nk
.
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Naive Bayesian

If the variable Xj is quantitative with values in R :

We can assume a parametric form for fj(xj |Y = k) and
estimate the parameters by maximum likelihood. For example

f̂j(xj |Y = k)= 1√
2πσ̂2

jk

exp
(
− 1

2σ̂2
jk

(xj − µ̂jk)2
)

where µ̂jk is the empirical mean and σ̂2
jk is the corrected

empirical variance of the variable Xj in class k.

We can also estimate fj(xj |Y = k) nonparametrically using a
histogram or a kernel density estimator.
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Naive Bayesian

" The assumption of independence of the variables X1, · · · , Xp

conditionally to Y is generally false.

However, this approach is very common:

it is simple, fast and works for a non-binary output variable,
and input variables of any type.

it allows to process high-dimensional data.
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Logistic regression

Here we seek to predict the behavior of an output variable Y based
on the inputs X , as in linear or polynomial regression.

However, in the context of ordinary logistic regression, Y is not a
real number but takes the values 0 or 1 (it is a binary variable). It
allows us to evaluate the effect of different explanatory variables on
a variable of interest.

This machine learning method is widely used in the field of
marketing to evaluate the sale or not of products following a
decision or in the medical field to evaluate the cure or not of a
patient.
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Logistic regression

The input variables are quantitative or qualitative and Y ∈ {0,1}.

The qualitative variables are recoded by the category
indicators and X = (X1, · · · ,Xp) ∈Rp with Xj quantitative or
binary.

In logistic regression, we are interested in the distribution of Y
given X which is a Bernoulli distribution of parameter p with:

P(Y = 1|X = x)= p

P(Y = 0|X = x)= 1−p.
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Logistic regression
We assume that the probability p =P(Y = 1|X = x) is a logistic
function of a linear score

β0+β1x1+·· ·+βpxp ∈R
and the logistic function f :R→ [0,1] is defined by :

f (u)= exp(u)

1+exp(u)
.
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Logistic regression

We therefore model the posteriori probability p by:

p =P(Y = 1|X = x)= f
(
β0+

p∑
j=1

βjxj
)
=

exp(β0+∑p
j=1βjxj)

1+exp(β0+∑p
j=1βjxj)

The linear score is then:

β0+
p∑
j=1

βjxj = f −1(p)= log
( p

1−p

)
.

The function f −1 is called logit function with:

logit(p)= log
( p

1−p

)
.
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Logistic regression

The unknown parameters (β0, · · · ,βp) are estimated by maximum
likelihood.

Log-likelihood (conditional) of the sample (X1,Y1), · · · , (Xn,Yn) :

ℓ(β0, · · · ,βp)= log
p∏
i=1
P(Yi = yi |Xi = xi )

= log
p∏
i=1

pyii (1−pi )
1−yi

with

pi =P(Yi = 1|Xi = xi )=
exp(β0+∑p

j=1βjxij)

1+exp(β0+∑p
j=1βjxij)

.
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Logistic regression

" The maximum likelihood estimator of β does not have an
explicit form.

Software therefore uses optimization algorithms to estimate the
parameters β0, · · · ,βp on the training data.

The algorithm often used is that of Newton-Raphson which is an
iterative method based on the following relation:

β(t) =β(t−1)−
(∂2ℓ(β)
∂β∂β⊤

∣∣∣
β(t−1)

)−1 ∂ℓ(β)
∂β

∣∣∣
β(t−1)

where β= (β0, · · · ,βp).
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Logistic regression

The classification rule g then assigns a new observation x to class
1 if

p̂ =
exp(β̂0+∑p

j=1 β̂jxj)

1+exp(β̂0+∑p
j=1 β̂jxj)

)Ê 0.5

It is assigned to class 0 otherwise.
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Logistic regression
Logistic regression can be extended to the case of multiple classes.
We then speak of multinomial logistic regression.

We now have Y ∈ {1, · · · ,K } and we note X = (1,X1, · · · ,Xp).

The model takes the form

log
P(Y = 1|X = x)

P(Y =K |X = x)
= x⊤β1

log
P(Y = 2|X = x)

P(Y =K |X = x)
= x⊤β2

...

log
P(Y =K −1|X = x)

P(Y =K |X = x)
= x⊤βK−1

with β1, · · · , βK−1 vectors of Rp+1.
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Logistic regression
The K −1 vectors βk are estimated by maximum likelihood on the
training data.

The posteriori probabilities are then:

P(Y =K |X = x)= 1

1+∑K−1
ℓ=1 exp(x⊤βℓ)

P(Y = 1|X = x)= exp(x⊤β1)
1+∑K−1

ℓ=1 exp(x⊤βℓ)
...

P(Y =K −1|X = x)= exp(x⊤βK−1)
1+∑K−1

ℓ=1 exp(x⊤βℓ)
.

The classification rule g then assigns a new observation x to the
most probable class a posteriori.

85



Logistic Regression
Example: p = 2, K = 3 classes
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Logistic Regression

Comparison with Linear Discriminant Analysis.

Logistic regression (left) versus LDA (right).
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Classification trees

Classification trees (or decision trees) and regression are methods
for creating a decision model. This structure is made up of

of root nodes, constituting the tree’s inputs,

of internal nodes, performing intermediate operations

and of leaves (or terminal nodes), representing the value of
the output variables.

This hierarchical structure is based on a chain of decisions creating
the passage from one node to another, up to the leaves. The tree
is generally built recursively by searching for each node the decision
allowing the best sharing of the data set. After a decision, we then
have several subsets of data on which we apply the same process.
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Classification trees

Decision trees have the advantage of having a clear decision
process, guaranteeing good explainability of the solution. They
have long been used before the development of artificial neural
networks.

It is possible to break down more complex problems by using
several classification trees, this is called random forest.
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Artificial neural networks

Neural networks are complex models that can be used in
supervised learning for regression and classification.

They are increasingly used in many fields because they allow
complex phenomena to be modeled.

A neural network is generally composed of a succession of layers,
each of which takes its inputs from the outputs of the previous one:

y = fK ◦ · · · ◦ f1(x) with fj(zj)= gj(αj +βjzj).

They are found, for example, in image processing for pattern
recognition, in speech processing and for the approximation of
complex functions that take a long time to calculate.
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Artificial neural networks

Source: https://www.ibm.com/fr-fr/topics/neural-networks
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Support vector machines

Support vector machines are a generalization of linear classifiers
and estimators (such as linear regression models) for
higher-dimensional data.

The model then takes as input a parameter vector X and
associates it with an output value Y using a function h(X ).

In the case of classification, separating hyperplanes are introduced
as decision criteria. The space of the output value Y is separated
into different zones, each corresponding to predictions.

For example, a class will be predicted if the value of Y is positive
and another if it is negative.
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Major sources of the whole lecture
- Marie Chavent’s lectures
https://marie-chavent.perso.math.cnrs.fr/

- Juliette Chevallier’s lectures
https://juliette-chevallier.pages.math.cnrs.fr/
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