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You will find them at the bottom of the page.
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LECTURE OUTLINE

© Introduction
@ Supervised classification
* Linear regression
* k-nearest neighbors
* Discriminant factor analysis
* Naive Bayesian
* Logistic regression
© Unsupervised classification
* Hierarchical clustering analysis
* k-means
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Methodological Supplements and Class Interpretation
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Introduction to Unsupervised Classification

WIKIPEDIA
Data clustering is a method in data analysis.

It aims to divide a set of data into different “packets” each subset
sharing common characteristics, which most often correspond to
proximity criteria (computer similarity) that are defined by
introducing measures and classes of distance between objects.




Introduction to Unsupervised Classification

o Classification = partitioning of a collection of heterogeneous
individuals into a set of homogeneous classes.

@ unsupervised = no a priori partition of the n individuals;
number of classes K unknown.

= The objective is to determine the K classes Zx ={(3,---, Ck}
of the n individuals of X such that a class is a grouping of
individuals :

@ similar to each other (homogeneity in the class);

e different from individuals in other classes (well-separated
classes).



How to automatically define groups of individuals or variables that
are similar?

Example : quantitative data describing 8 mineral French waters out
of 13 variables (only 6 shown in the table).

saveur.amere

saveur.sucrée

saveur.acide

saveur.salée

saveur.alcaline

appréciation globale

St Yorre 3.4 3.1 2.9 6.4 4.8 2.9
Badoit 3.8 2.6 2.7 4.7 4.5 2.9
Vichy 2.9 2.9 2.1 6.0 5.0 2.8
Quézac 3.9 2.6 3.8 4.7 4.3 35
Arvie 3.1 3.2 3.0 5.2 5.0 2.9
Chateauneuf 3.7 2.8 3.0 5.2 4.6 33
Salvetat 4.0 2.8 3.0 4.1 4.5 3.4
Perrier 4.4 2.2 4.0 4.9 3.9 2.8

@ From the distances between individuals : what measure of
distance?

@ From the links between variables : what measure of link ?

Depends on the nature of the data : quantitative, categorial, or

mixed.



Introduction to unsupervised classification

From the Euclidean distances between the individuals ?

St Yorre Badoit Vichy Quézac Arvie Chateauneuf Salvetat Perrier
St Yorre 0.0 4.1 7.9 2.9 3.0 2.9 4.0 8.2
Badoit 41 0.0 4.8 5.3 1.8 1.8 1.2 10.6
Vichy 7.9 4.8 0.0 9.7 5.5 5.7 5.4 14.7
Quézac 29 5.3 9.7 0.0 4.7 4.3 4.9 6.2
Arvie 3.0 1.8 55 47 0.0 13 1.8 10.1
Chateauneuf 2.9 1.8 5.7 43 1.3 0.0 1.6 9.9
Salvetat 4.0 1.2 5.4 4.9 1.8 1.6 0.0 10.3
Perrier 8.2 10.6 14.7 6.2 10.1 9.9 10.3 0.0

From the correlations between the variables ?

saveur.amere saveur.sucrée saveur.acide saveur.salée saveur.alcaline
saveur.amére 1.00 -0.83 0.78 -0.67 -0.96
saveur.sucrée -0.83 1.00 -0.61 0.49 0.93
saveur.acide 0.78 -0.61 1.00 -0.44 -0.82
saveur.salée -0.67 0.49 -0.44 1.00 0.56
saveur.alcaline -0.96 0.93 -0.82 0.56 1.00




Introduction to unsupervised classification

From a principal component analysis (if the data are quantitative) ?

Distances entre les individus
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= from a automatic classification (clustering) method.




Partition in 4 classes of individuals.

he,
&

St Yorre

Badoit
Vichy
Quézac
Arvie
Chateauneuf
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Partition in 3 classes of variables.
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appréciation.globale
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Introduction to Unsupervised Clustering

There are many automatic clustering algorithms that are
distinguished by :

@ the nature of the objects to be clustered : individuals or
variables,

@ the nature of the data : quantitative, categorial, or mixed,

@ the nature of the classification structure : partition or
hierarchy,

@ the nature of the approach used : geometric approach
(distance, dissimilarity, similarity) or probabilistic approach
(mixture models).

Here, we are interested in the classification of individuals described
by quantitative data, using geometric approaches using distances.



Data

We consider a set Q={1,---,n} of n individuals described by p
quantitative variables. We therefore have the following data

X11 X12 ctt Xip

X1 X2 ot Xop
Xn = .

Xnl Xp2 0 Xnp

Individuals in rows, variables in columns.

A weight w; is associated with individual i. In general :
o w; :% for random observations,

o w; ;é% for adjusted, aggregated data...



The objectives

We therefore have a set of points of RP (data) for which we do not
know the labels, but that we want to group together in an
“intelligent” way.

Production of a classification structure allowing to highlight :
@ groups of individuals (classes - clusters) : partitioning methods

@ hierarchical links between individuals : hierarchical
classification methods.



Partition

A partition 22 into K classes of individuals is a set of non-empty
classes, two by two disjoint and whose union is the set of
individuals.

In other words,

CinCp =9, vk, k'ell,---,K}
Gu---uCk=Q

Example : if Q={1,---,7}, 23 =(C1 C,, (3) with
G ={1}, C2=1{5,1,6} and C3=1{4,2,3}

is a partition into three classes of Q.



Partition or hierarchy ?

Propose a "good"” and a "bad” partition &3 = {Cy, (o, C3} into 3

classes of the 6 individuals below.

x1 | Xxo

Brigitte | 140 | 6.0
Marie 85 | 5.9
Vincent | 135 | 6.1
Alex 145 | 5.8
Manue | 130 | 5.4
Fred 145 | 5.0

* Marie

« Vincent
« Brigitte

o Alex

o Manue

* Fred

T T T T T T
100 110 120 130 140 150

x1




Hierarchy

A hierarchy H of individuals is a set of non-empty classes that
satisfies :

@ Q€ H ie. H contains the class of all individuals,

e ViQ, {ite H i.e. H contains all singletons,

e VA BeHAnBe{®,A B} ie. two classes of H are either
disjoint or contained in each other.

Example . H = {{1}’ ) {7}) {4) 5}) {2) 3}’ {4) 5) 6}’ {]-r 2, 3}) {4’ 5’ 6) 7}’ Q}



Hierarchy

An indexed hierarchy is a pair (H, h) where H is a hierarchy and h
is a function from H to R* such that :

VAe H,h(A)=0<= A is a singleton
VA BeH,A#B,(Ac B)= (h(A) < h(B)) i.e. h increasing.

A dendrogram (or hierarchical tree) is the graphical representation
of an indexed hierarchy and the function h measures the height of
the classes in this dendrogram.



Hierarchy

What is the hierarchy H of the dendrogram below ?

87 « Vincent
2 « Brigitte

31 «Marie

24 «Alex

iq « Manue

Height

«Fred

S

}

Marie
Alex
Fred

Manue
Brigitte
Vincent

By defining a cut level, we will obtain a partition.

For example, give a hierarchy to 2 classes and another to 4 classes.



Hierarchy

Since the function h is increasing, there is no inversion : if
C=AuUB, the class C is higher than classes A and B in the
dendrogram.

]

ull




Hierarchy
We can note that an indexed hierarchy has several equivalent
representations. Indeed, the order of the representation of the n

individuals at the bottom of the hierarchy can be modified and the
number of possible representations is 2n—1.

Two equivalent representations of the same indexed hierarchy :




How to measure the distance between individuals?
Similarity, dissimilarity or distance ?

Clustering methods require the ability to quantify the dissimilarity
between the observations.

8= Dissimilarities and distances appropriate according to the type
of data.

A similarity index s: Qx Q — R" checks Vi, i'e Q :

s(i,i') =0,
s(i, i)y =s(i',i),

s(i,i)=s(i",i") = smax = s(i, ")




Example : for binary data (i.e. vectors composed of 0 and 1), we
construct the cross-table between two individuals 7 and /' :

|1 0 individual /
individual i 1 | a b
Ojlc d

@ a = number of attributes that are worth 1 for i and 1 for /’;
@ b = number of attributes that are worth 1 for i and 0 for /’;
@ ¢ = number of attributes that are 0 for / and 1 for /’;

@ d = number of attributes that are 0 for / and 0 for /’.

There are then several normalized similarity indices (Smax =1) :

a
Jaccard Thic Russel and Rao

a
oA 2a+b+c+d
Di r Czekanowski —=2— jail —2—
ce or Czekanows Y Ochiai b o



How to measure the distance between individuals?
Similarity, dissimilarity or distance ?

A dissimilarity index d: Q x Q — R* verifies
d(i,i"y=0, d(i,i"y=d(i",i), d(i,i)=0.

Note : it is easy to transform a similarity index s into a
dissimilarity index d by setting :

d(i,i") = smax — s(i, ).

A distance is a dissimilarity that also verifies the triangle
inequality :

d(i,j)<d(i,k)+d(k,j) Vij,keQ.



How to measure the distance between individuals ?
For quantitative data x and y of R” :
@ simple Euclidean distance :
P
=) (xi-y)"
j=1
e normalized Euclidean distance : (population =(x;)j=1,....n)
i 1
Jj=1 SJ2
where s =1 =X (X ~%)2 and ¥ = %ZI’.’:lx,-j.
° city—block or Manhattan distance : d(x,y) =¥;1x; - y;l.

@ Chebyshev or max distance : d(x,y) = max;|x; - y;l.



How to measure the distance between individuals?

@ In general, we use the simple Euclidean distance when all the
variables have the same measurement scale. Indeed, if a
variable has a much greater variance, the simple Euclidean
distance will give much more importance to the difference
between the two individuals on this variable than to the
difference between the two individuals on the other variables.

@ In the case of measurement scales that are too different, it is
preferable to use the normalized Euclidean distance in order to
give the same importance to all the variables. This is
equivalent to calculating the simple Euclidean distance on the
standardized data (centered-reduced).



How to measure the distance between individuals ?
For categorial data x and y with p characteristics :

@ simple dissimilarity :

P
d(X,)/) = Z ]lxj-;éyj»
j=1

@ Rogers and Tanimoto dissimilarity,

For mixed data x and y : Gower metric,...



How to measure the distance between classes 7

Clustering methods require being able to quantify the dissimilarity
between the classes. J

Measures of the similarity D between classes :
@ Minimal linkage - Single linkage : smallest distance.
@ Maximal linkage - Complete linkage : largest distance.
@ Average linkage : average distance.

@ Ward's linkage : weighted average distance.



Minimum linkage - Simple linkage
Minimum linkage - minimum Eucidian distance between class
points :

D(Ck,Ce)= min _ d(x,x).

x€Cy, x'eCp

. Single Linkage .
Minimum Distance .

Cluster 1 Cluster 2

4+ Minimal spanning tree,
- Classes with very different diameters,

- Chaining effect : tendency to aggregation rather than creating new
classes,

- Sensitivity to atypical individuals.



Maximal linkage - Complete linkage

Maximal linkage - maximum Eucidean distance between class
points :

D(Ck,Cx)= max _ d(x,x').

XECk, X’€Ckr

Complete Linkage

Maximum Distance

Barwry Cluster 2

+ Creates compact classes : this merger generates the smallest increase in
diameters,

- No separation control : arbitrarily close classes,

- Sensitivity to atypical individuals.



Average linkage
Average linkage - average Eucidean distance between class points :

1 .
CaliCel & & d0ox).

X€Ck X’ECkr

D(Cy, Cy) =

+ Trade-off between minimal and maximal links : good balance between
class separation and class diameter,

+ Tendency to produce classes of close variance.

- inversions can be observed in the HCA tree.

Average Linkage

Average Distance

7 321 4 5 6
s Cluster 2



Ward'’s linkage

Ward's linkage - weighted distance between class centers :

Gkl G >
D(Ck, Cr) = |Ck|+|Ck/|d(IJk,le’) :

Ward’s

Cluster 1 Cluster 2

Tendency to build classes of the same size for a given level of hierarchy.
Groups classes with close barycenters.

Favors spherical classes.

Breaks the chain effect of the minimum link.

No inversion in the HCA tree.

+ o+ + o+

Favors the aggregation of low-weight classes (small numbers).



K=2"

Single linkage | Complete linkage |

Oundgon g ikigs s sy ek [Rea—
I

[orap——

Average linkage

Oohogn s Bige Ot i ks

ouEaEE

Image

: Chevallier (2023).
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Exhaustive search ?

Stirling number of the second kind = number of ways to partition
a set of n elements into K non-empty subsets :

o]
=1

J

1
S(H,K)=m
"J

For example,
@ 5(10,3) =9330 partitions of n=10 individuals, K =3 classes,
@ 5(10,5) = 42525 partitions of n=10 individuals, K =5 classes.
e 5(100,3) = 10%7 partitions of n=100 individuals, K =3
classes,
e 5(100,5) =10 partitions of n= 100 individuals, K =5
classes.

= Exhaustive search impossible ! !



Plan

How to evaluate the quality of a partition ?



How to evaluate the quality of a partition ?

A good partition into K classes has classes
@ homogeneous : individuals in the same class are similar,

@ separate : individuals from two different classes are not similar.

To obtain a good partitioning, it is therefore appropriate to both :
@ minimize the intra-class inertia to obtain the most
homogeneous clusters possible ;

@ maximize the inter-class inertia to obtain well-differentiated
subsets.



How to evaluate the quality of a partition ?

The cohesion of the classes of a partition can be measured by the

largest diameter.

This criterion is minimized (approximately) by the maximum link
algorithm which will build coherent but not necessarily isolated
classes and which are sensitive to outliers.



How to evaluate the quality of a partition ?

The separation of the classes of a partition can be measured by the

smallest minimum link.

This criterion is maximized by the minimum link algorithm which
will build isolated but not necessarily coherent classes and which
can be unbalanced.



How to evaluate the quality of a partition ?

We consider a partition Py = {Cy,---,Ck} in K classes.

We assume here that the data are quantitative and that the weight
of the individuals is 1/n.

We note u the center of gravity of the point cloud
1 n
p==73 x
nim"
and for each class k, [ the center of gravity of the class k :

i = Y x; forall keK.

|Ck| ieCy



How to evaluate the quality of a partition ?
Total inertia = total variance

n

Ior =Y d(,x;)?
iz

The total inertia is independent of the partition.

Inter-class inertia = variance of the class centers

K

Iinter = |Ck|d(,uyllk)2
k=1

Intra-class inertia = variance of points in the same class

K
lintra = Z Z d(:u/ﬂxl')2

k=1ieCy




How to evaluate the quality of a partition ?

Clustering principle :

Minimize intra-inertia (heterogeneity of classes)
< Maximize inter-inertia (separation of classes).

A Forte inertie inter-classes
Faible inertie intra-classes

Images : Bisson 2001.

Faible inertie inter-classes
Forte inertie intra-classes




How to evaluate the quality of a score ?
By the Pythagorean theorem,

/Tot = Ilntra + /Inter-

A

Images : Bisson 2001.



How to evaluate the quality of a partition ?

The quality of a partition can, for example, be measured by :

Inter inertia
< e <
Total inertia

Interpretation of this criterion : it is the percentage explained
inertia by the partition.

Inter inertia  _
If Total inertia — 0

@ the variables have the same means in all classes (mean);

@ the partition does not allow classification.

Inter inertia  __
If Total inertia — L

@ the individuals in the same class are identical ;

@ the partition is ideal for classification.



How to evaluate the quality of a partition ?

This is an external metric, as we will see later.

/\  This criterion cannot be judged in absolute terms because it
depends on the number of individuals and the number of classes.

Indeed, it is equal to :
@ 1 for the partition into n classes (1 individual per class),

@ 0 for the partition into 1 class (containing all individuals).

It therefore increases with the number of classes and allows for the
comparison of partitions having the same number of classes.

This criterion is maximized (approximately) by Ward's
algorithm, which constructs isolated, coherent, and balanced
classes.



How to evaluate the quality of a score ?

+%
s 'J_:. " LI ';:,i;.
Truth Random

Internal metric : practical situation
- unknown truth :

@ silhouette coefficient,

@ R-Square (RSQ) and
semi-partial R-Square

(SPRSQ).

A - 2 g

C2 C20

External metric : specific method if
we know the truth :

@ purity,

@ normalized mutual
information.



How to evaluate the quality of a partition ?
An example of internal metric : coefficient silhouette

We assume that we have n points and K clusters. Let x; be a data
such that x; € Cy.

Cohesion : average distance between x; and the other points of Cj :

. 1
a(:)-le|_1

Z d(x;,x;).

jECk,j¢i

Separation : average distance between x; and the points of the
closest classes :

b(i) = min — d(xj,x;)
t#k |Cg|1§[ i




How to evaluate the quality of a score ?

An example of internal metric : silhouette coefficient

Silhouette coefficient for individual 7 :

L b()-a()
)= () () <0

Silhouette coefficient for all data :

()=18s0)=% % o % 50

eCy

| T R C 20
Silhouette | 0.83 -0.03 0.66 0.39




How to evaluate the quality of a partition ?

An example of internal metric : criteria based on inertia

Let 2k be a partition.

@ R-square :

RSQ(QZK) _ /Inter(@K) 1— /Intra(f@K).

ITot ITot

@ Semi-partial R-square :

hnter(Pk ) — hnter( Pk -
RSQ(x) = Inter( K)ITItte( K 1).
O




How to evaluate the quality of a partition ?
An example of an external metric : purity

Let 22, ={C],..., Cy.} be the true partition of the n points.
Consider a partition 2k ={(C,..., Ck}.

K

, 1 .
Purity (Pk)= - kZ ge{rlnaxK*}lC[ N Ckl.
= ¢e(l, -,

\ T R c2 C20
Silhouette | 0.83 -0.03 0.66 0.39
Purity 1 036 067 1
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How to compare two partitions ?

Suppose we have obtained two partitions from the same dataset :

Py ={C,...,Ck} and 2, =1{D4,...,D;}.

. BRI < PR

)

R

Truth Vs Random Vs G
K =3 classes K =2 classes

Question : how to compare these two partitions ?



How to compare two partitions ?

Question : how to compare these two partitions ?
@ contingency table,
Rand index (RI) and adjusted Rand index (ARI),

°
@ information variation
°



How to compare two partitions ? Rand Index

Py vs 2 ‘ Grouped in 2, ‘ Separated in Py
Grouped in Py a b
Separated in 2, c d

a+d = agreements between Pk and 2.
c+d = disagreements between Px and 2, .

Rand index = proportion of pairs of points that are grouped the
same way in both partitions :

a+d

RIPk20) = g




How to compare two partitions 7 Adjusted Rand Index
Let n =1Cxn Dy, ng. Zlel nyy and n.,Zszl ngj.

Adjusted Rand index :

_ RI-E[RI]
ARI(Pk,2.) = max(RIl) —E[RI]’ J
Or
e RI= Zk./ (nzk,)’

o max(RI)=4(Zu () +Xi(2))

The closer ARI is to 1, the more similar the partitions are.



How to compare two partitions ? Contingency table
The contingency table allows to observe if classes are divided,

grouped...
2
LY by Dy D, | Total
Py

G ni1 o N n | n.

G 1 N L | no.

Ck nK1  NKo2 nkL | nK.

Total neg n

VS

VS
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The k-means
Choice of hyper-parameters



k-means : the algorithm

Optimal partition

@ Choose from all the partitions into K classes the one with the
greatest inter inertia.

@ Problem : number of partitions into K classes of the n
individuals ~ 7. K1 .

= Complete enumeration impossible.

Locally optimal partition - Heuristic of the type :
@ We start from a feasible solution, i.e. a partition 9’2.
@ At step t+1, we look for a partition (@f(*l =g(2}) such that
inertia_inter(2L™1) > inertia_inter(2}, ).
@ Stop when no individual changes class between two iterations.
= Method for partitioning K-means.



k-means : the algorithm

Initialization - Choosing the number of classes K + random

drawing of K class centers (K individuals among n).

Iteration - Repeat until
convergence :

@ assignment step : each
individual is assigned to the
class whose center of gravity
is the closest.

@ representation step : the

centers of gravity of the
classes are calculated.

Calcul des centres de gravité

* * 2
* * @
) *
®
*

Calcul des centres de gravité

Affectation aux centres les
plus proches

O
(? N

Affectation nouvelle partition

@ oy
\/\/

Affectation et arrét de 1’algorithme



Initialization
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Allocation update

Initialization
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Allocation update
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Initialization

Allocation update

Centroids update
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Centroids update

o
?
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Centroids update

Allocation update

Centroids update

o
b

Centroids update

Centroids update

Centroids update

50

Images : Chevallier (2023).



HCA : another example
Example of temperature data
e 15 individuals : French cities,
@ 12 variables : average monthly temperatures (over 30 years).

Janv Févr Mars Avri Mai Juin juil Aoiit Sept Octo Nove Déce
Bordeaux 5.6 6.6 10.3 12.8 16 19 21 21 19 138 9.1 6.2
Brest 6.1 58 7.8 9.2 12 14 16 16 15 12.0 9.0 7.0
Clermont 2.6 37 75 103 14 17 19 19 16 1.2 6.6 36
Grenoble 15 32 7.7 10.6 14 18 20 20 17 11.4 6.5 23
Lille 2.4 29 6.0 8.9 12 15 17 17 15 10.4 6.1 35
Lyon 2.1 33 7.7 10.9 15 18 21 20 17 11.4 6.7 3.1
Marseille 55 6.6 10.0 13.0 17 21 23 23 20 15.0 10.2 6.9
Montpellier 5.6 6.7 9.9 12.8 16 20 23 22 19 14.6 10.0 6.5
Nantes 5.0 53 8.4 10.8 14 17 19 19 16 12.2 8.2 5.5
Nice 75 85 10.8 3.3 17 20 23 22 20 16.0 115 8.2
Paris 3.4 41 7.6 10.7 14 18 19 19 16 11.4 7.1 4.3
Rennes 438 53 79 10.1 13 16 18 18 16 11.6 7.8 5.4
Strasbourg 0.4 15 5.6 9.8 14 17 19 18 15 9.5 4.9 1.3
Toulouse 4.7 5.6 9.2 11.6 15 19 21 21 18 133 8.6 5.5
Vichy 2.4 34 7.1 9.9 14 17 19 19 16 11.0 6.6 34

Which cities have similar meteorological profiles ?



k-means : another example

Example of temperature data

© - © -
Brest, Brest,
<+ . <+
T w4 ; T oo
& : 5 Renness "'}
a Nagtés a Nagt
« Lilles ; Niee | S Lilles
E o emeeeeemee s R R +Bordeaux. - -~ - E o
a Payis . Toulduse «Montpellier e
“Marseille
Grenoble ! Grerjobie:
9 4 Strasbourg  Lyon® & 4 Strasbourg E)oﬁf
T T
T T t T T T T T t T T T
-4 -2 0 2 4 6 -4 -2 0 2 4 6
Dim 1 (79.85%) Dim 1 (79.85%)

Images : Chavent (2020).



k-means : another example

Example of temperature data

© - ©
Brest, Brest,
<o < —
T oo T o !
& Rennese . A & Rennese "1l
2 Nagtés 2 Nagts
K Lilles | Niee S Lilles : “Nice
E o 8 : o ordeaux - E o
8 Ay P Toulbuse aMontpelier e Vi TS nipelier
o : . e
Y “Clermont; A Marseille e Marseille
Greqoble | Grenoblg
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Dim 2 (18.97%)

k-means : another example

Example of temperature data
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k-means : another example

Example of temperature data
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Images : Chavent (2020).

Is this partition into 3 classes different from

Dim 1 (79.85%)

that resulting from Ward's HCA?




k-means : choice of the number of classes

Elbow method for intra-class inertia fnira :
@ For each value of K€1{2,---, Kmax}, we obtain a classification
Py
@ We choose the one where we observe a significant jump in
intra-class inertia.
R-square : elbow on the curve K — RSQ(K).
Semi-partial R-square : greater reduction of SPRSQ.
Silhouette criterion : closer to 1.



k-means : choice of initial centroids

Initialization 2

Initialization 1

@ A judicious choice can favor convergence towards a global
minimum !

@ Selection based on additional knowledge, or on a preliminary
study of the data : histograms, etc.

@ Repeat the method N times, then select the partition Pk
with the lowest intra-class inertia.



k-means : choosing initial centroids

Random assignement - K
random points in the
scatterplot.

k-means++ assignement

Choose 1 centroid randomly.

2nd centroid at a large distance from
the 1st with large prob. : sample a point
according to 1 prob. law propor. to the
distance to the 1st centroid...



k-means : strengths and weaknesses

The final partition depends on the initial partition : if we restart
the algorithm with other initial centers, the final partition can be
different.

In practice,

@ we run the algorithm N times with different random
initializations.

@ we retain among the N final partitions, the one with the
largest percentage of explained inertia.



k-means : strengths and weaknesses
Advantages

o Relatively efficient (fast).
@ Linear complexity in the number of individuals.
@ Tends to reduce intra-class inertia at each iteration.
@ Tends to increase inter-class inertia at each iteration.
@ Forms compact and well-separated classes.
Disadvantages
@ Choice of the number of classes.
Influence of the choice of initial centroids.
Convergence towards a local minimum of intra-class inertia.

°
°
@ Convergence towards a local maximum of the inter-class inertia.
@ Requires the notion of center of gravity.

°

Influence of outliers (due to the mean).



Plan

Hierarchical clustering analysis
Where to cut the dendogram ?
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Hierarchical clustering analysis(HCA)

Objective : Build a hierarchy.

@ @ @&
" ® |- ®

ABCDEF ABCDEF ABCDEF ABCDEF

Image : Janssen (2012).



Hierarchical clustering analysis (HCA)

First strategy Agglomerative
hierarchical clustering

- Start from the bottom of the
dendrogram (singletons),

- Add the closest parts two by two
until you get a single class.

/A How to choose the classes to

aggregate 7
(

Hierarchical Clustering

Images : Chevallier (2023).

Second strategy Divide the
hierarchical clustering

- Start from the top of the
dendrogram (one unique class),

- Successive divisions until you get
classes reduced to singlets.

A\ How to choose the classes to

divide ?

sive Hierarchical Clustering



HCA : the algorithm

Initialization - We consider an aggregation measure D and we start
from the initial partition of singletons .@,(,0) ={{x1},...,{xal}.

Iteration t - From the partition 9’,(;) ={(Cy,...,Ck} into K classes,

@ aggregate the two classes Cx and Cy that minimize D :
Cruk = C U C

o form the partition with K —1 classes :

@}(lel) ={C,..., Chukrr---, Ckl.

End - Repeat until you get the single-class partition.



HCA : the algorithm

Hiérarchie i
(indicée)
0] ﬁ
00 0
o O
e} o]
@]
o o

Image : Bisson (2001).

Missing building blocks for implementation
@ Choosing a dissimilarity/distance d between points.
To be done according to the type of data : categorial, quantitative, etc.
@ Choosing an aggregation measure D between classes.
@ Construction of a dendrogram (not unique!).

@ Criterion to cut the dendrogram to deduce a classification of the data.



HCA : an example with the minimum link

Example : 8 points of R? - calculation of Euclidean distances

A B C D E F G H
0
0.50 0
0.25 | 0.56 0
5.00 | 472 | 4.80 0
578 | 555 | 557 | 1.00 0
432 | 423 | 407 | 2.00 | 2.10 0
492 | 484 | 468 | 2.10 | 1.80 | 0.61 0
500 | 502 | 475 | 320 | 290 | 1.28 | 1.12 | O

I oM m o0 m >




7¢ regroupement

6° regroupement

5¢ regroupement

4¢ regroupement

3¢ regroupement

ABC DE FG
DE 4.72
FG 4.23 1.81

{ABCDEFGH}

{AC).{B}{D}{EL{FL.{G},(H}
{A}ABL{CLADLAR L (FEAGLAH}

2¢ regroupement

H 4.07 2.90(1.12
e DoEre | {aBC},{DEFGH}
D 4.72 :
FG 4.07 1.8T |
5 A5 A6 112 11803, {0E).FOHY
{ABC}{DE}{FGL{H}
ABC D E F G
D 4.72 1ABCY {06}, (FB). (M)
E 5.55 1.00 {ABC}.{D}, {E},{FLIGL{H}
F 4.07 2.01 2.06
6 2.68 2.06 1.81(0.61)
H 4.75 3.16 2.90 Q12
D E F G F G
B
1.72 c .56 1°" regroupement
5.55 1,00 D 5700 4.72 4.80
4.23 2.01 2.06 E 5.78 5.55 5.57 1.00
4.84 2.05 1.81 0.51 F 4.32 4.23 4.07 2.01
5.02 3.16 2.90 1.28 1.12 G 4.92 4.84 4.68 2.06 0.61
H 5.00 5.02 4.75 3.16 2.90 1.28 1.12

Data analysis MOOC of Francois Husson (in French).



HCA : an example with the minimum link

Some details After the first step :
e D(AC,B)=min(d(A,B),d(C,B))=min(0.5,0.56) =0.5;
e D(AC,D)=min(d(A,D),d(C,D))=min(5,4.8) =4.8;
° ...
After the second step :
e D(ABC,D)=min(D(AC,D),d(B,D)) =min(4.8,4.72) =4.8;
e D(ABC,E)=min(D(AC,E),d(B,E))=min(5.57,5.55) =5.57;

Here, index h (height of a class in the dendrogram) = minimum
link between the two subclasses.



HCA : where to cut the dendogram?

Height
2

o= ]

@ < o a w T e )

Here 22 ={{A,B,C},{D,E,F, G, H}},
2 ={A B,C},{D,E},{F,G,H}}, and
2 ={A B, C},{D}, {E} {F, G}, {H}.



HCA : another example
Example of temperature data
e 15 individuals : French cities,
@ 12 variables : average monthly temperatures (over 30 years).

Janv Févr Mars Avri Mai Juin juil Aoiit Sept Octo Nove Déce
Bordeaux 5.6 6.6 10.3 12.8 16 19 21 21 19 138 9.1 6.2
Brest 6.1 58 7.8 9.2 12 14 16 16 15 12.0 9.0 7.0
Clermont 2.6 37 75 103 14 17 19 19 16 1.2 6.6 36
Grenoble 15 32 7.7 10.6 14 18 20 20 17 11.4 6.5 23
Lille 2.4 29 6.0 8.9 12 15 17 17 15 10.4 6.1 35
Lyon 2.1 33 7.7 10.9 15 18 21 20 17 11.4 6.7 3.1
Marseille 55 6.6 10.0 13.0 17 21 23 23 20 15.0 10.2 6.9
Montpellier 5.6 6.7 9.9 12.8 16 20 23 22 19 14.6 10.0 6.5
Nantes 5.0 53 8.4 10.8 14 17 19 19 16 12.2 8.2 5.5
Nice 75 85 10.8 3.3 17 20 23 22 20 16.0 115 8.2
Paris 3.4 41 7.6 10.7 14 18 19 19 16 11.4 7.1 4.3
Rennes 438 53 79 10.1 13 16 18 18 16 11.6 7.8 5.4
Strasbourg 0.4 15 5.6 9.8 14 17 19 18 15 9.5 4.9 1.3
Toulouse 4.7 5.6 9.2 11.6 15 19 21 21 18 133 8.6 5.5
Vichy 2.4 34 7.1 9.9 14 17 19 19 16 11.0 6.6 34

Which cities have similar meteorological profiles ?



another example

HCA :

Algorithme de Ward appliqué aux températures standardisées
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HCA : another example

Height of a class in Ward's dendogram

The aggregation height of two classes Cy and Cy is :

|Cill G ,
KR ik ) = 1(Ce U Ca) = 1(Ci) = 1 Ce
1Ckl +1Cpl (o i)™ = 1(Cic U i) v( k)= 1(Ci)

Ward's measure

)

Loss of explained inertia

= |Chld (s, 1)° + 1 Cuoldl (o, ).

Inter inertia




HCA : another example

For the temperature data

Pertes d’inertie lors du passage de Hauteurs de I'arbre

15 classes a 14 classes : 0.01
14 classes a 13 classes : 0.02
13 classes a 12 classes : 0.03
12 classes a 11 classes : 0.05
11 classes a 10 classes : 0.06
10 classes a 9 classes : 0.09
9 classes a 8 classes : 0.17
8 classes a 7 classes : 0.19 o~
7 classes a 6 classes : 0.26 I
6 classes a 5 classes : 0.42
5 classes a 4 classes : 0.56 ° e
4 classes a 3 classes : 0.69 X

3 classes a 2 classes : 1.56 "
| 31dl .7.88 Grosse perte si on passe de
2classesa 1 classes : 7. 2 classes a 1 seule donc on

préfére en garder 2.

Sum of the intertia losses = 12 (total inertia).



HCA : another example

Cut the dendogram to get a partition

1 Clustering in 2 classes

Inter inertia 3 7.88
Total inertia 12

=66%

8=  66% of explained inertia
with the partition in 2 classes.

:
:

Bordeaux
Toulouse
Nice
Marseille
Montpellier
Brest
Nantes
Rennes
Grenoble
Lyon

Paris
Clermont
Vichy

Lille
Strasbourg



HCA : another example

Separate the cold cities into two groups.

o Clustering in 3 classes

Inertia loss _ 156

= =139
Total inertia 12 3%

Gain of 13% of inertia
~ considering 3 classes instead of 2

(going from 2 to 3).
P 8= 66% + 13% = 79 % of

explained inertia with the

partition in 3 classes.

|
1

.
r
.

Bordeaux
Toulouse
Nice
Marseille
Montpellier
Brest
Nantes
Rennes



HCA : another example

Separate the eastern cold cities into two groups.

B} Clustering in 4 classes

Inertia loss 3 0.69
Total inertia 12

=5.75%

Gain of 5.75% of inertia
1 considering 4 classes instead of 3

(going from 3 to 4).

L= 1l == ™ 79% + 5.7% = 84.7 % of
§5285555 explained inertia with the
8®f =3 =

partition in 4 classes.



HCA : another example

Separate the hot cities into two groups.

Clustering in 5 classes

Inertia loss _0.56

= =4.79
. Total inertia 12 %

Gain of 4.7% of inertia
considering 5 instead of 4 classes
(going from 4 to 5).

8= Gain close to the gain of the
passage from 3 to 4 classes.

%
I
H
?
i

Bordeaux
Toulouse
Marseille

Montpellier



HCA : another example

Determination of the number of clases

From the dendogram

Height

x 2 8 © 3 ¥ 8 § o £ @& F °
s 882 2% 882858 F 5§53
2 22 $ %o 55 2378 E s -

3 § £ o 5
2 ] z o

=] < x = 2
8 r° = 5 o 5]

=

From the interpretability of classes.

.;
;

Strasbourg

From the heights

Hﬂﬂﬁmﬁﬁ




HCA : another example

Proprerties of Ward's algorithm

@ The partition constructed at each step maximizes the
inter-inertia among the partitions resulting from the
aggregation of two classes from the previous partition.

@ The sum of the heights of the Ward dendrogram is the total
inertia.

@ The sum of the K —1 largest heights is the inter-inertia of the
partition into K classes of the tree.

@ The complexity of the algorithm : quadratic with respect to
the number of individuals.

= Problem for datasets with a very large number of
individuals.



HCA : where to cut the dendogram?

By defining a cut level, we build a partition. The cut level
determines the number of classes and the classes are then unique.

The cut must be made

o after the aggregations corresponding to low values of the
index ;

@ before the aggregations corresponding to high values of the
index.

In most cases, several thresholds and therefore several possible
choices of partitions.



HCA : where to cut the dendogram?

Rule of thumb - Selection of a cut when there is a significant jump
in the index by visual inspection of the tree. This jump reflects the

sudden passage from a certain homogeneity of classes to much less
homogeneous classes.

Dendrogram: ward linkage Clusters: ward linkage
125

Dendrogram: ward linkage Clusters: ward linkage
L w ST
100 o .
£ o R
= . '3%!. © o5 o & "f%
. - B ags s o
o
o EEE e )
mon—e— 5 05 10 e ————— 0 1 2
Dendrogram: ward linkage Clusters: ward linkage Dendrogram: ward linkage Clusters: ward linkage
25 125 10 s ntlisge,
_’{‘?M'é B2e
100 7
os gt %3
75 - ® e 0 o
1
50 'gg& o
s 1%
25 Ty s,
Ja -10 i
e rm———— - o '

Image : Chevallier (2023).



HCA : where to cut the dendrogram?

The cut of the dendrogram can be defined by determining a priori
the number of classes into which we want to divide the data set.

It is also possible to use the criteria seen previously :
@ R-square : elbow on the curve K — RSQ(K),
@ Semi-partial R-square : greater reduction of the SPRSQ,
@ Silhouette criterion,

o ...



HCA : strengths and weaknesses

Advantages

@ Simple considerations of distances between individuals and
dissimilarities between clusters.

@ No assumption on the number of classes.

@ Can correspond to significant taxonomies.
Disadvantages

@ Choice of the dendogram cutoff.

@ The partition obtained at a step depends on that of the
previous step.

@ Once a decision is made to combine classes, it cannot be
undone.

@ Too slow for large datasets.



Plan

Methodological Supplements and Class Interpretation



Methodological Supplements and Class Interpretation

The dataset shows the amount of protein consumed in 9 food
types in 25 (former) European countries : 25 individuals (the first
10 below) and 9 quantitative variables.

Red.Meat White.Meat Eggs Milk Fish Cereals Starchy.Foods Nuts Fruite.veg.
Alban 10.1 1.4 0.5 8.9 0.2 42 0.6 5.5 1.7
Aust 8.9 14.0 4.3 19.9 2.1 28 3.6 1.3 4.3
Belg 13.5 9.3 4.1 17.5 4.5 27 5.7 2.1 4.0
Bulg 7.8 6.0 1.6 8.3 1.2 57 1.1 3.7 4.2
Czech 9.7 11.4 2.8 12.5 2.0 34 5.0 1.1 4.0
Den 10.6 10.8 3.7 25.0 9.9 22 4.8 0.7 2.4
E_Ger 8.4 11.6 3.7 11.1 5.4 25 6.5 0.8 3.6
Finl 9.5 4.9 2.7 33.7 5.8 26 5.1 1.0 1.4
Fr 18.0 9.9 3.3 19.5 5.7 28 4.8 2.4 6.5
Greece 10.2 3.0 2.8 17.6 5.9 42 2.2 7.8 6.5

We apply k-means to these data to illustrate two methodological

aspects :

@ Why is it sometimes necessary to standardize data?

@ How to interpret classes using PCA?



Why is it sometimes necessary to standardize data ?

Raw data : partition of k-means into 4 classes after N=b5
initializations.

P4 écart-type L

Alban 4 Red.Meat 34

Aust 2 White Meat 37 . Finl,

Belg 2 Eggs 11 1
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Why is it sometimes necessary to standardize data?

Standardized data : partitioning the K-means into 4 classes after
N =5 initializations.
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Red.Meat 1 T © g
White. Meat 1 Parg, 4 ¢ -
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Milk 1 g Spgin | & g s
Fish 1 5~ ' 5 s
Cereals 1 = Greeces L N, = loF]
—gceeas | Pl N9
StarchyFoods 1 IET B iy PR e pen | ¢
Nuts 1 Q Yugo, Hung, ©% k"W, Ger Q o4
Fruite.veg 1 Bl Rom”  ~Neheplgiand
o "Alban ) D]
7

T T T T
-4 -2 0 2 4

Interpretation via PCA DimELEEE52%) Dy ($162%)
norméd.
n o
- R c1 -
o UK, -G«eec}( &
— i c3 et 1B
£ - Sz AME | er| E
9 Ireland) Belg (2
e Albare Bul SPanaust e g
; R e Netha' _Gﬁ"‘"‘ Z
£ Ron, Czectmi| E o
o [=] 5
- Swed” wsYugo T
o URERe B e
Fin ; o
L [ — o
—d -1 0 1 2 -10 -05 00 05 1.0

Nim 2 (12 6§23%) MNim 2 (19 6204}



Consolidation of a partition obtained by HCA

The partition obtained by HCA is not optimal and can be
improved, consolidated, by k-means.

Consolidation algorithm :

@ the partition obtained by HCA is used as initialization of the
partitioning algorithm,
o a few k-means steps are iterated.

= Improvement of the partition (often not decisive).
Advantage : Consolidation of the partition.

Disadvantage : Loss of hierarchy information.



Height

Example of standardized protein data.

3.0
L

The dendrogram suggests
splitting the tree into 3 or 5
q classes.

20 25
1

1.5

1.0

classes :

'J:l‘ Inter inertia

£8§  Total inertia
7

7]
%J
y

=0.485.

i t Let's look at the partition into 3
©
2

The partition into Ward's 3 classes explain 48.5% of the inertia.



Before consolidation

After consolidation

c1 c1
Port, c2 Port, c2
<« 4 c3 < c3
Spain Spain
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Dim 1 (44.52%) Dim 1 (44.52%)

50.9% of the inertia explained by the
the = partition slightly improved
(2 individuals changed class).

48.5% of the inertia explained by



HCA with many individuals
If there are many individuals, the HCA algorithm becomes too long.
e Partition (by k-means) into about a hundred classes.
e Construct the HCA from the classes (use the class size in the
calculation).
= Obtain the “top” of the HCA tree.

Tree on 1000 raw data Tree from 100 classes
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HCA or k-means with many variables

If there are many variables, reduce the dimension.

@ Perform a PCA and retain the first g principal components.
8= If we retain all the principal components of the
normalized (or unnormalized) PCA, we find the same
classification as with the standardized (or raw) data.

@ Perform a clustering of variables into g classes and retain the g
synthetic variables (first principal components of the classes).

= Difficulty in choosing q.



HCA or k-means on categorial or mixed variables variables

@ Refer to quantitative variables :

* make a MCA (or mixed PCA) and retain all major components
(or the first q);

* make a variable clustering (which manages categorial and
mixed data) and keep the g synthetic variables of the classes.

= Difficulty choosing q.

@ Use measures appropriate for categorial or mixed data :
similarity index, Jaccard index... then apply a HCA algorithm
to this similarity matrix (dissimilarity, distance).
= What does Ward mean if the distance is not Euclidean?



Interpreting Individual Classes

We can interpret the classes of a partition based on
@ active variables : variables used in the clustering process,
@ illustrative variables : used solely to describe the classes.

These variables can be quantitative or
pcategorial.
In practice, we will often characterize classes (or groups of
individuals) by :
@ the modalities of categorial variables : is one modality more

frequent in the class, does the class contain all the individuals
possessing this modality, ... 7

@ the quantitative variables : is the average in the class different
from the average across all individuals...?



Interpreting Individual Classes
Example of the partition into 3 classes after consolidation of
protein data.

| c1 -
Port, : c2

<« ! c3 Fruitavegj;.
@ | !
Spain °
E e : =
g i g g+
~ Greeces Npr ~ °
g Italye pf B€I£ el 5
O . USSR KDen
Hung, Czech, gink 3
g‘fﬁ; -Romg. SW|tz e ?fue Hd ‘
o “Alban o
T T ; T T T : T T
-4 -2 0 2 -10 -05 00 05 1.0
Dim 1 (44.52%) Dim 1 (44.52%)

Questions
@ Which variables best characterize the partition ?
@ How can we characterize the cities in a particular class?



Which variables best characterize the partition ?

For each quantitative variable :

e calculate the correlation ratio 72
between the partition (categorial
variable with k modalities) and the
quantitative variables.

o perform the Fisher test of the
effect of the partition on the
quantitative variable (analysis of
variance model),

@ sort the variables by increasing
critical probability (p-value).

n? p-value
Nuts 0.79 | 3.0e—-08
Cereals 0.75 | 2.1e-07
Eggs 0.58 | 8.1e—-05
Fruite.veg. 0.54 | 1.7e-04
Milk 0.53 | 2.3e-04
White.Meat | 0.43 | 1.9e-03
Fish 0.40 | 4.0e-03
Red.Meat 0.33 | 1.3e-02




Which variables best characterize the partition ?

For each categorial variable : the same with a test of y2 of
independence between the partition and the categorial variable.

zone zone

Alban east Nether | west

Aust west Nor north

Belg west Pol east

Bulg east Port south

Czech east Rom east

Den north || Spain | south ‘ p-value ‘ df
E_Ger east Swed north zone ‘ 1le-06 ‘ 6
Finl north Switz west

Fr west UK west

Greece | south USSR east

Hung east W_Ger | west

Ireland | west Yugo east

Italy south



Which quantitative variables characterize a class?

Output of the catdesc function from the R package FactoMineR
for C1.

#Countries in CI:

pays <- rownames(protein)

pays [which(P5=="C1")]

## [1] "Alban" "Bulg" "Rom" "Yugo"

res <- catdes(data.frame(P5,Z) ,num.var=1)

res$quanti$Cl

## v.test Mean in category Overall mean sd in category Overall sd p.value
## Cereals 3.8 1.8 2.4e-16 0.54 1 0.00017
## Nuts 2.2 1.0 -1.6e-17 0.41 1 0.02972
## Fish -2.3 =il il 6.3e-17 0.12 1 0.02342
## Milk -2.4 =il il -2.1e-16 0.15 1 0.01862
## Starchy.Foods -3.1 -1.5 1.4e-16 0.70 1 0.00190
## Eggs -3.4 -1.6 3.1e-17 0.39 1 0.00070



Which quantitative variables characterize a class?
Which quantitative variable X best characterizes class Cj ?

The test value of a quantitative variable X in class Cx measures
the difference between the mean of X in Cx and the mean of X
across all data :

Xe-X
s2 n—ng
ng n—1

test value =

where s? = 2 (1 Z&) s the variance of X in Cy.

If the test value of a variable in a class is large (in absolute
value), this variable characterizes the class.



Which quantitative variables characterize a class?
Which quantitative variable X best characterizes class Cj ?

Hypothesis tested A : the nj values of X are selected randomly
from n. Under #, the mean in the class is the same as in the
population and

X —-X

test-value= ———— ~ A(0,1)
s2 n—ny
ng n-1

for n tending to infinity.

If the p-value of this test is small (less than 0.05, for
example), this variable characterizes the class.



pays <- rownames(protein)
pays [which(P5=="C1")]

## [1] "Alban" "Bulg" "Rom" "Yugo"

res <- catdes(data.frame(P5,Z) ,num.var=1)

res$quanti$Cl

## v.test Mean in category Overall mean sd in category Overall sd p.value
## Cereals 3.8 1.8 2.4e-16 0.54 1 0.00017
## Nuts 2.2 1.0 -1.6e-17 0.41 1 0.02972
## Fish -2.3 -1.1 6.3e-17 0.12 1 0.02342
## Milk -2.4 -1.1 -2.1e-16 0.15 1 0.01862
## Starchy.Foods -3.1 -1.5 1.4e-16 0.70 1 0.00190
## Eggs -3.4 -1.6 3.1e-17 0.39 1 0.00070

The first column gives the v.test (test-values) quantitative
variables in the class.

The last column gives a p.value (p-value) and by default only
variables with a p.value greater than 0.05 are displayed.



res <- catdes(data.frame(P5,Z) ,num.var=1)

res$quanti[2:5]

#H
##
##
##
#H
##
##
##
#H
##
##
##
#H
##
##
##
#H
##
##
##
#H
##
##
##

v.test Mean in category Overall mean sd in category Overall sd p.value

0.94
0.52
0.70
0.28

[

0.00052
0.00125
0.01091
0.01832

o e

v.test Mean in category Overall mean sd in category Overall sd p.value

0.59 1 0.049

v.test Mean in category Overall mean sd in category Overall sd p.value

$C2
Red.Meat 3.5 1.03 1.7e-16
Eggs 3.2 0.96 3.1e-17
White.Meat 2.5 0.76 8.6e-18
Cereals -2.4 -0.70 2.4e-16
$C3
Starchy.Foods 2 0.8 1.4e-16
$C4
Milk 2.9 1.37 -2.1e-16
Fish 2.5 1.18 6.3e-17
Nuts =1l -0.98 -1.6e-17
Fruite.veg. -2.4 -1.14 —4.5e-17
$C6

v.test Mean in category Overall mean
Fruite.veg. 3.6 1.7 —4.5e-17
Nuts 2.9 1.3 -1.6e-17
Fish Zicdl 1.0 6.3e-17
White.Meat -2.4 =ilcal 8.6e-18

0.59
0.51
0.18
0.28

sd in category
0.31
0.70
1.20
0.22

1 0.0033
1 0.0115
1 0.0371
1 0.0150

Overall sd p.value
1 0.00038
1 0.00423
1 0.03214
1 0.01554
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Which modalities of categorical variables characterize a
class?

The catdesc function also describes the categorical variates.

zone <- c("east","west","west","east","east","north","east","north","west","south",
"east","west","south","west","north", "east","south","east","south","north",
"west","west","east","west", "east")

res <- catdes(data.frame(P5,zone) ,num.var=1)

res$category$Ci
## Cla/Mod Mod/Cla Global p.value v.test
## zone=east 44 100 36 0.01 2.6

Cla/Mod = proportion of modality m in class k = ':,—",;"
Mod/Cla = proportion of class k in modality m = "n—”:‘
n

Global = proportion of modality m in the data = =2



Which modalities of categorical variables characterize a
class?

Which modality m of X best characterizes class Cj ?

Cl C2 C3 C4 (C5| Total
east | N =4 0 5 0 0| nn=9
north 0 0 0 4 0 4
south 0 0 0 0 4 4
west 0 8 0 0 0 8
Total ne=4 8 5 4 4| n=25
Thus, for class 1,
Cla/Mod = § ~0.44 = 44%, Mod/Cla = % =1=100%,
Global = 5 =0.36 =36% J

= the “east” modality characterizes the class (over-represented).



res$category

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

$C1

Cla/Mod Mod/Cla Global p.value v.test
zone=east 44 100 36 0.01 2.6
$C2

Cla/Mod Mod/Cla Global p.value v.test
zone=west 100 100 32 9.2e-07 4.9
zone=east 0 0 36 1.2e-02 =20l
$C3

Cla/Mod Mod/Cla Global p.value v.test
zone=east 56 100 36 0.0024 3
$C4

Cla/Mod Mod/Cla Global p.value v.test
zone=north 100 100 16 7.9e-05 &loft)
$C5

Cla/Mod Mod/Cla Global p.value v.test
zone=south 100 100 16 7.9e-05 3.9
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Which modalities of categorical
class?

variables characterize a

Which modality m of X best characterizes the class Cj 7

. Dmk _ Nm
.Under H =
in the population
Nmik _ Nk
n n
test-value = ———
n—ny s2
n—-1 ng

i.e. the frequency in the class is the same as

~ 4 (0,1)

H 2 _ Nm Nm i P
with s% =22 (122, for n tending towards infinity.



Cam on sy chu y cua ban !
?

Major sources of the whole lecture
- Marie Chavent's lectures
https://marie-chavent.perso.math.cnrs.fr/
- Juliette Chevallier's lectures
https://juliette-chevallier.pages.math.cnrs.fr/


https://marie-chavent.perso.math.cnrs.fr/
https://juliette-chevallier.pages.math.cnrs.fr/
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