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We give one more elementary proof of the Craig–Sakamoto’s the-

orem: given A, B ∈ Sn(R) such that det(In − xA − yB) = det(In −
xA) det(In − yB), ∀ x, y ∈ R; then AB = 0.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Craig–Sakamoto theorem asserts that

Given A, B ∈ Sn(R) then det(In − xA − yB) = det(In − xA) det(In − yB), ∀ x, y ∈ R if and only if

AB = 0.

For an historical viewpoint of this result coming from statistical-probabilities, the interested reader

can look at [1,2,5,6]; since his first statement it has inspired many proofs (see [3,4,8–10], and the

references listed in the previous papers). The purpose of this note is to give one more new (let us

hope…) proof of this theorem using the “elementary” machinery of linear and bilinear algebra.
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2. The proof

The key of the proof is the following:

Property (�). Let A, B ∈ Sn(R) \ {OMn(R)} such that

det(In − xA − yB) = det(In − xA) det(In − yB), ∀x, y ∈ R.

Then B (or A, the same by symmetry) admits a nonzero eigenvalue λ such that

ker(A) ∩ ker
(
In − λ−1B

)
/= {0}.

First, we are going to show how this property implies the Craig–Sakamoto’s theorem.

2.1. Proof of the Craig–Sakamoto’s theorem

We do it by induction on the size n of the matrices. For n = 1, the Craig–Sakamoto’s theorem is

clear, so let n� 2 and suppose it true up to rank n − 1; let A, B ∈ Sn(R) \ {OMn(R)} (we exclude the

trivial case where one of the two matrices is zero) such that

det(In − xA − yB) = det(In − xA) det(In − yB), ∀x, y ∈ R.

We have to prove that AB = 0.

Because of property (�) there exists a nonzero eigenvalue of B, say λ, such that ker(A) ∩ ker(I −
λB) /= {0}; so choose eλ ∈ ker(A) ∩ ker(I − λB) \ {0} and consider an orthogonal basis B of Rn with

first term eλ. Because of the choice of eλ, the symmetrics matrices of A and B in the basis B have

the respective shapes

(
0 0

0 A′
)

and

(
λ 0

0 B′
)

where the matrices A′ and B′ belong to Sn−1(R). An

elementary computation gives

det(In − xA − yB) = (1 − λy) det
(
In−1 − xA′ − yB′) ,

det(In − xA) det(In − yB) = (1 − λy) det
(
In−1 − xA′) det (In−1 − yB′) ,

so

det
(
In−1 − xA′ − yB′) = det

(
In−1 − xA′) det (In−1 − yB′) , ∀ x, y ∈ R.

Then, by the induction hypothesis A′B′ = 0, and we have

AB = P−1

(
0 0

0 A′
)(

λ 0

0 B′
)
P = P−1

(
0 0

0 A′B′
)
P = 0

and we are done. �

2.2. Proof of property (�)

For it, we first need two lemmas.

Lemma 1. LetU = ((uij))a symmetric positive semi-definitematrix; if a diagonal coefficientuii (1� i � n)
is equal to zero, then uij = uji = 0 for all 1� j � n.

Proof of the lemma 1. This is classical and elementary (see [7, problem 20.1]) but for this demonstra-

tion to be self-contained we include the proof: let U such a matrix with uii = 0 and, by contradiction,

suppose that there exists a coefficient uji /= 0. Let Xt = (xk)
n
1 the vector where xj = 1, xi = tuji, t ∈ R

andwhere the other components are zero, then tXtUXt = ujj + 2tu2ji change sign when t runs through

R which is impossible. �
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Lemma 2. Let U, V ∈ Sn(R). Suppose U � 0 and

∀ t ∈ R : det(U − tV) = 0.

Then

ker(V) ∩ ker(U) /= {0}.
Remark. Note that this lemma is obviously false without some symmetry hypothesis; for example,

consider U =
(
In−1 0
0 0

)
, V =

(
0 1

On−1 0

)
.

Proof of the lemma 2. V is diagonalisable in an orthonormal basis:

∃P ∈ On(R) : PVtP = Diag(λ1, . . . , λr , 0, . . . , 0) =
(
Dr 0

0 0

)
, λi /= 0

(note that r < n because det(U) = 0) then we have:

PUtP − tPVtP =
(
U1 U2
tU2 U3

)
− t

(
Dr 0

0 0

)
=
(
U1 − tDr U2

tU2 U3

)
.

And in fact, it is possible to choose P (at the expense of changing the n − r lasts basis vectors) to have

also U3 diagonal: precisely, let Q ∈ On−r so that QU3
tQ is diagonal, then, in the new basis associated

to the orthogonal matrix
(
Ir 0
0 Q

)
our matrix PUtP − tPVtP is(

U1 − tDr U′
2

tU′
2 QU3

tQ

)

and is in the required shape.

So let us consider such a P, because of the hypothesis, the polynomial

R � t 	→ det(PUtP − tD) = 0

is nul; the coefficient of tr being (up to a sign)λ1 . . . λr det(U3), we have det(U3) = 0. Now, det(U3) =
0 and U3 diagonal implies that the positive symmetric matrix PUtP admits a diagonal element equal

to zero, say the i-th (i ∈ {r + 1, . . . , n}): then by lemma 1 the i-th column in PUtP is also null, e.g.

PUtPei = 0; but, because i ∈ {r + 1, . . . , n} we have also

PVtPei =
(
Dr 0

0 0

)
ei = 0.

Consequently UtPei = VtPei = 0, and finally tPei ∈ ker(U) ∩ ker(V). What we had to prove. �

Now the proof of the property (�) is easy:

Proof of property (�). Let λ be a non zero eigenvalue of B, we have

det
(
In − λ−1B − xA

)
= 0, ∀ x ∈ R

and we will be in the case of the lemma 2 with V = A and U = In − λ−1B who will be positive

semi-definite if we choose λ as the greatest nonzero eigenvalue of B. �
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