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Chapter 1

Introduction

Summary
The aim of this course is to introduce the supervised learning techniques

most commonly used in data science for decision-making aid in many fields
of application: industrial applications, marketing, insurance, biology, medicine
... The main objective is to built a model for forecasting and therefore to
search for optimal models for different classical statistical algorithms (linear
or generalized linear models, discriminant analysis), less classical (penalized
regression, binary decision trees) or even so-called learning algorithms (ran-
dom forests, neural networks, support vector machines, aggregation models)
from machine learning.

1 Statistical learning/ Machine learning
Statistical learning and Machine learning play a key role in many fields of

sciences, medicine, industry, marketing, insurance ..

As soon as a phenomenon is too complex or even too noisy to access an

analytical description leading to a deterministic modeling, a set of approaches
have been developed in order to describe and model it from a series of observa-
tions. Let us see the historical steps of the development of statistical learning,
machine learning, data science and artificial intelligence.

1.1 From Statistic to Artificial Intelligence through
Data Science

1930-70 h-Octets Statistical inference

1950 Beginnings of Artificial Intelligence: Allan Turing

1970s kO Data analysis and exploratory data analysis

1980s MO Neural networks, functional data analysis

1990s GO Data mining: pre-acquired data

2000s TO Bioinformatics: p≫ n, Machine Learning

2008 Data Science
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2010s PO Big Data p and n very large

2012 Deep Learning

2016 Artificial Intelligence (AI): AlphaGo, Imagenet, Generative Adversarial
Networks ..

VVV... : Volume, Variety, Velocity...

The development of data storage and computing resources gives rise to the
production and the storage of a huge amount of data from which the data sci-
entist will try to learn crucial informations to better understand the underlying
phenomena or to provide predictions. Many fields are impacted, here are some
examples of learning problems:

• Medicine: identify the risk factors for a certain type of cancer, based on
clinical and demographic variables

• Meteorology: predict an air pollution rate based on weather conditions

• Energy: forecast an electricity consumption curve for a customer as a
function of climatic variables and specific characteristics of this customer,
build a model for energy optimization of buildings, or predict the energy
production of a wind farm.

• Consumers preferences data: Websites and supermarkets collect a
huge amount of data on the behavior of consumers. Machine learning
algorithms are used to valorize these data (gathered sometimes with per-
sonal data such as age, sex, job, address .. ) for recommandation systems,
fixing personalized prices ..

• Risk modeling: construct a substitution model for a complex numerical
code which allows to predict a map of the concentration of a pollutant in

a soil after an accidental release. The objective is to perform a sensitivity
analysis on the numerical code.

• Genomics: DNA microarrays allow to measure the expression of thou-
sands of genes simultaneously on a single individual. It is, for example,
a challenge to try to infer from those kind of data which genes are in-
volved in a certain type of cancer, by comparing expression levels be-
tween healthy and sick patients. This is generally a high dimensional
problem: number p of genes measured on a microarray is generally much
larger than the number n of individuals in the study.

• Aeronautical engineering: Aerospace industry produces a huge amont
of signal measurements obtained from thousand of on-board sensors. It
is particularly important to detect possible anomalies before launching
the satellite. Similarly, many sensors are involved in planes and it is
important to detect a abnormal behavior on a sensor. The main objectives
are curve clustering or classification and anomaly detections in a set of
curves for predictive maintenance purposes.

• Images: Convolutional neural networks and deep learning led to im-
pressive progresses for image classification. Many fields are concerned:
medical images (e.g. tumor detection), earth observation satellite images,
computer vision, autonomous vehicles, ...

• Geolocalisation data: Machine learning based on geolocalisation data
has also many potential applications: targeted advertising, road traffic
forecasting, monotoring the behavior of fishing vessels ...

The main reference for this course is the book " The elements of Statistical
Learning" by T. Hastie et al [19]. Studying a certain phenomenon (presence
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of a cancer or not/ abnormal behavior or not/ interest for a certain product ..),
it is a challenge to derive which explanatory variables (among a possibly large
number of available ones) are influent for the phenomenon of interest, as well
as to provide a prediction rule. The main objective is therefore a modeling
objective which can be specified into sub-objectives that have to be clearly
defined prior the study since this determines the methods that can be imple-
mented:

Explore, represent, describe, the variables, their correlations ..

Explain or test the influence of a variable or a factor in a specific model,
assumed to be a priori known

Predict & Select a (small) set of predictors, to obtain an interpretable model,
for example searching for biomarkers

Predict by a "black box" without the need for an explicit interpretation.

Important parameters of the problem are the dimensions: the number n of
observations or sample size and the number p of variables observed on this
sample. The high dimensional framework, where p is possibly greater than
n has received a great interest in the statistical literature these last 20 years
and specific methods have been developed for this non classical setting. We
will see the importance of parcimony: "it is necessary to determine a model
that provides an adequate representation of the data, with as few parameters as
possible".

Historically, statistical methods have been developed around this type of
problems and one has proposed models incorporating on the one hand explana-
tory or predictive variables and, on the other hand, a random component or
noise. It is then a matter of estimating the parameters of the model from the
observations, testing the significance of a parameter, selecting a model or a

small set of influent variables, using the vocabulary of statistical learning.
The main methods are implemented in the software R.

In the same time, the IT community talks more about machine learning,
where the approach is more centered on a pure prediction objective, most of
the time by a "black box" without the need for an explicit interpretation. With
the increase in the size of datasets (in the era of Big Data), algorithms have
been developed in Python, in particular in the scikit learn library.

A common objective of learning is to build a prediction algorithm, mini-
mizing a prediction error, with or without the constraint of interpretability of
the algorithm. Contexts are diverse, whether the aim is to publish a research
article in an academic journal or participating in a Kaggle-type competition
or developing an industrial solution for example for recommendation systems,
fraud detection, predictive maintenance algorithms ... The publication of a new
learning method or new options of existing methods requires showing that it
outperforms its competitors on a battery of examples, generally from the site
hosted at the University of California Irvine UCI Repository [24]. The biases
inherent in this approach are discussed in numerous articles (e.g. Hand; 2006)
[18] and conferences (e.g. Donoho (2015) [12]. It is notable that the academic
pressure of publication has caused an explosion in the number of methods and
their variants. The analysis of Kaggle type competitions and their winning
solutions is also very instructive. The pressure leads to combinations, even
architecture of models, of such complexity (see e.g. Figure 1.1) that these so-
lutions are concretely unusable for slight performance differences (3rd or 4th
decimal).

Especially if the data are voluminous, the operational and "industrialized"
solutions, necessarily robust and fast, are often satisfied with rather rudimen-
tary methodological tools (see Donoho (2015) [12]).

This course proposes to address the wide variety of criteria and methods,
their conditions of implementation, the choices to be made, in particular to op-

http://wikistat.fr
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Figure 1.1: Winning solution of a kaggle contest: Identify people who have
a high degree of Psychopathy based on Twitter usage. Weighted combination
of combinations (boosting, neural networks) of thirty three models (random
forest, boosting, k nearest neighbors ...) and 8 new variables (features)

timize the complexity of the models. It is also the opportunity to remind that
robust and linear methods as well as old strategies (descending, ascending,
step-by-step) or more recent (lasso) for the selection of linear or polynomial
models should not be too quickly evacuated from academic or industrial prac-
tices.

2 Tutorials and datasets
Tutorials and practical works are important to illustrate the behavior and

the performances of the studied methods or algorithms and to become more
familiar with them. In addition to pedagogical examples simply illustrating
the different methods, other full-scale examples allow to really assess the effi-
ciency of the machine learning algorithms but also all the complexity of their
implementation.

The analysis of these different usecases is presented in tutorials contained
in jupyter notebooks in R or Python. They are available in the repository
github.com/wikistat

We present here some of the datasets that will be considered.

Ozone dataset

This example, studied by Besse et al. (2007) [4] is a real situation whose
objective is to predict, for the next day, the risk of exceeding the legal ozone
concentration threshold in urban areas. The problem can be considered as a
regression problem: the variable to explain is an ozone concentration, but also
as a binary classification problem: exceeding or not the legal threshold. There
are only 8 explanatory variables, one of them is already a prediction of ozone
concentration but obtained by a deterministic fluid mechanics model (Navier
and Stockes equations). This is an example of statistical adaptation. The de-
terministic forecast on the basis of a global grid (30 km) is improved locally, at

http://wikistat.fr
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the scale of a city, by a statistical model including this deterministic prediction
but also other variables such as concentration of nitrogen oxide and dioxide,
temperature, wind speed and wind direction. The more complete description
is given in the following tabular:

Ozone data set: 1041 observations of the following components:
JOUR type of the day: public holiday (1) or not (0)
O3obs Ozone concentration observed the next day at 17h.

generally the maximum of the day
MOCAGE Prediction of this pollution obtained by a deterministic model

of fluid mechanics
TEMPE Temperature forecast by Météo France for the next day 17h
RMH2O Moisture ratio
NO2 Nitrogen dioxide concentration
NO Concentration of nitric oxide
STATION Location of the observation: Aix-en-Provence, Rambouillet, Munchhausen,

Cadarache and Plan de Cuques
VentMOD Wind force
VentANG Orientation of the wind

This example, of both regression and binary classification, has pedagogical
virtues which allows it to be used as a red thread to compare most methods.

Human Activity Recognition (HAR) dataset

The HAR dataset are Public data, which were acquired and described by
Anguita et al. (2013) [3]. They are available on the UCI repository and they
represent usecases of Human Activity Recognition from signal recordings (gy-
roscope, accelerometer) obtained with a smartphone. The dataset contains 9
signals per individual: the accelerations in x, y, and z, those by subtracting the
natural gravity and the angular accelerations in x, y, and z obtained from the
gyroscope. Each signal contains p = 128 measures sampled at 64 htz during
2s. 7352 samples for learning and 2947 for testing. The objectives: Activity
recognition (6 classes) standing, sitting, lying, walking, walking upstairs or
walking downstairs: this is a supervised classification problem.

The first step is to build machine learning algorithms from the "features",

Figure 1.2: Human activity recognition acceleration in y by class

which are variables obtained by transformation of the raw data with signal
processing techniques: p = 561 new variables (features) obtained in the time
domain: min, max, means, variances, correlations... and in the frequency do-
main: largest, mean, energy per frequency band... The next step is to try to
obtain the same performances directly on the raw data by algorithms for func-
tional data such as 1D or 2D convolutional neural networks (High Dimensional
and Deep Learning course).

MNIST dataset

This famous data set is available on Yann le Cun website. It is composed of
a learning set with 60.000 handwritten digits, 28× 28 = 784 pixels and a test
set with 10.000 images. The images are labelled, this is therefore a supervised
classification problem with 10 classes: 0, 1, . . . , 9. Buy transforming these
images into vectors, we can apply classical methods such as k-NN, Random

http://wikistat.fr


10

Forests, neural networks... More appropriate algorithms, acting directly on
images such as convolutional neural networks will be studied next year.

Figure 1.3: MNIST some examples of handwritten digits

3 Introduction to supervised learning
In the framework of Supervised learning, we have a Learning sample

composed with observation data of the type input/output:

dn1 = {(x1, y1), . . . , (xn, yn)}

where, for i = 1 . . . n, xi = (x1i , . . . , x
p
i ) ∈ X is a set of p explanatory

variables and yi ∈ Y is a response variable.
In this course, we consider supervised learning for real regression (Y ⊂ R)
or for classification (Y finite). The explanatory variables x1, . . . xp can be
qualitatives or quantitatives.

Objectives: From the learning sample, we want to

• Estimate the link between the input vector x (explanary variables) and
the output y (variable to explain):

y = f(x1, . . . ,xp).

• Predict the output y associated to a new entry x0.

• Select the important explanatory variables among x1, . . . , xp.

We consider supervised regression or classification problems. We have a
training data set with n observation points (or objects) Xi and their associated
output Yi (real value in regression, class or label in classification).
dn corresponds to the observation of a random n-sample Dn =
{(X1, Y1), . . . , (Xn, Yn)} with joint unknown distribution P on X × Y .

A prediction rule is a measurable function f̂ : X → Y that associates
the output f̂(x) to the input x ∈ X .
In order to quantify the quality of the prevision, we introduce a loss function.

DEFINITION 1. — A measurable function ℓ : Y × Y → R+ is a loss function
if ℓ(y, y) = 0 and ℓ(y, y′) > 0 for y ̸= y′.

In real regression, it is natural to consider Lp (p ≥ 1) losses

ℓ(y, y′) = |y − y′|p.

If p = 2, the L2 loss is called "quadratic loss".
In classification, one can consider the 0-1 loss defined, for all y, y′ ∈ Y by

ℓ(y, y′) = 1y ̸=y′ .

Since the 0-1 loss is not smooth, it may be useful to consider other losses that
we will see in the classification courses.

The goal is to minimize the expectation of this loss function, leading to the
notion of risk:

DEFINITION 2. — Let f be a prediction rule defined from the learning sample
Dn. Given a loss function ℓ, the risk - or generalization error - of the

http://wikistat.fr
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prediction rule f is defined by

RP (f) = E(X,Y )∼P [ℓ(Y, f(X))],

where, in the above expression, (X, Y ) is independent from the learning sam-
ple Dn.

An accurate evaluation of the generalization error has two objectives:

• Model selection: selecting, among a collection of models (or predic-
tion rules), the one with the smallest risk, realizing the best bias/variance
trade-off.

• Model assessment: once the final model has been chosen, evaluating its
generalization error on a new data set.

In practice, we have a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)}
with unknown joint distribution P , from which we construct a regression or
classification rule. The aim is to find a "good" classification rule, in the sense
that its risk is as small as possible. In order to evaluate a prediction rule, we
have to estimate its risk.
A first natural idea to estimate the risk RP (f) = E(X,Y )∼P [ℓ(Y, f(X))] is to
consider its empirical estimator, called empirical risk, or training error:

Rn(f) =
1

n

n∑
i=1

ℓ(Yi, f(Xi)).

This is not a good idea: this estimator is optimistic and will under estimate the
risk (or generalisation error) as illustrated in the following binary classification
example, where three classification rules are compared.

The generalization performance of a learning procedure is related to its
prediction capacity on a new data set, independent of the learning sample that
was used to build the learning algorithm.

Figure 1.4: Supervised binary classification: Complexity of the models.

If we have enough data, the recommended approach is to divide randomly
the dataset in two parts: the train sample and the test sample, the train sample
being itself divided into a learning sample and a validation sample.

• The learning sample is used to train the models (generally by minimizing
the training error).

• The validation sample is used for model selection: we estimate the gen-
eralization error of each model with the validation sample and we select
the model with the smallest generalization error.

• The test sample is used for model assessment, to evaluate the risk of the
final selected model.

It is generally recommended to take 50% of the data for the learning sample,
25% of the data for the validation sample and 25% of the data for the test

http://wikistat.fr
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sample.

Splitting the data set is not always a good solution, especially if its size is
quite small. We will see in Chapter 2 several ways to estimate the generaliza-
tion error.

4 Strategy for statistical learning

4.1 The steps of a statistical analysis

In a real situation, the initial preparation of the data (data munging: extrac-
tion, cleaning, verification, possible allocation of missing data, transformation
...) is the most thankless phase, the one that requires the most time, human
resources and various skills: informatics, statistics and knowledge of the field
of the data. This stage does not require major theoretical developments but
rather a lot of common sense, experience and a good knowledge of the data.
Once successfully completed, the modeling or learning phase can begin.

Systematically and also very schematically, the analysis, also called the
Data science follows the steps described below for most fields of application.

1. Data extraction with or without sampling applied to structured databases
(SQL) or not (NoSQL)

2. Visualization, exploration of the data for the detection of atypical values,
errors or anomalies; study of distributions and correlation structures and
search for transformations of variables, construction of new variables and
/ or representation in adapted bases (Fourier, spline, wavelets ...).

3. Taking into account missing data, by simple deletion or by imputation.

4. Random partition of the sample into a train set and a test set according

to its size and choice of a loss function that will be used to estimate the
prediction error.

5. The train set is separated into a learning sample and a validation sam-
ple. For each method considered: generalized linear model (Gaussian, bi-
nomial or Poisson), parametric (linear or quadratic) or nonparametric (k
nearest neighbors), discrimination, neural network (perceptron), binary
decision tree, support vectors machine, aggregation (bagging, boosting,
random forest. . . )

• Estimate the model with the learning set for given values of a pa-
rameter of complexity: number of variables, neighbors, leaves, neu-
rons, penalization or regularization . . .

• optimization of this parameter (or these parameters) by minimizing
the empirical loss on the validation set, or by cross-validation on
the train set or the training error plus a penalty term.

6. Comparison of the previous optimal models (one per method) by estimat-
ing the prediction error on the test set.

7. Possible iteration of the previous approach or Monte Carlo cross-
validation: if the test sample at step 4 is too small, the prediction error
obtained at step 6 can be very dependent on this test sample. The Monte
Carlo cross-validation approach consists in successive random partitions
of the sample (train and test) to study the distribution of the test error
for each model or at least take the mean of the prediction errors obtained
from several Monte-Carlo iterations to ensure the robustness of the final
selected model.

8. Choice of the "best" method according to its prediction error, its robust-
ness but also its interpretability if necessary.

9. Re-estimation of the selected model on all the data.

http://wikistat.fr
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10. Industrialization: implementation of the model on the complete data base.

The end of this process can be modified by building a combination of the
different methods rather than selecting the best one. This is often the case
with winning "gas factory" solutions in Kaggle competitions. This has also
been theorized in two approaches leading to a collaboration between models:
COBRA from Biau et al. (2016) [5] and SuperLearner from van der Laan et
al. (2007) [35].

4.2 The methods or algorithms

We will see during this course the most widespread learning methods.

• In chapter 2, we will see how to estimate the prediction error of an algo-
rithm. This is a crucial step to choose the "best" prediction rule, among a
collection, and to evaluate the performances of the selected procedure.

• In chapter 3, make some reminders on linear models and logistic regres-
sion. In chapter 4, we introduce model selection for linear models via
penalized criterion: Mallows CP, BIC, Ridge, Lasso. . .

• Linear methods for classification will be the subject of Chapter 5, where
we will study the linear (and quadratic) discriminant analysis and the
Linear Support Vector Machine (SVM). This chapter will be followed in
Chapter 6, by the introduction of classification and regression algorithms
based on kernel methods: Support Vector Machine (SVM) and Support
Vector Regression, particularly adapted to analyse various kinds of data.

• We will then study Classification And Regression Trees (CART algo-
rithm) in Chapter 7, and the aggregating methods and the Random Forests
in Chapter 8.

• Neural networks will be introduced in Chapter 10. We will focus on mul-
tilayer perceptron, backpropagation algorithms, optimization algorithms,

and provide an introduction to deep learning to will be completed next
year by the study of the Convolutional Neural Networks.

• Finally, we will approach ethical aspects of statistical decisions and legal
and societal impacts of AI.

http://wikistat.fr
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Chapter 2

Risk estimation and Model selection

1 Introduction

1.1 Objectives

The performance of a model or algorithm is evaluated by a risk or general-
ization error. The measurement of this performance is very important since,
on the one hand, it allows to operate an optimization of the tuning parameters
in a family of models associated with a specific learning algorithm and, on the
other hand, it guides the choice of the best method by comparing each of the
optimized models at the previous step. Finally, it provides a measure of the
quality or even of the confidence that we can give to the prediction with the
selected model.

Once the notion of statistical model or prediction rule is specified, the risk
is defined from an associated loss function. In practice, this risk needs to be
estimated and different strategies are proposed.

The main issue is to construct an unbiased estimator of this risk. The empir-
ical risk (based on the training sample), also called the training error is biased

by optimism, it underestimates the risk. If we compute an empirical estimator
of the risk on a test sample (independent of the training sample), measuring the
generalization capacity of the algorithm, we generally obtain higher values. If
these new data are representative of the whole distribution of the data, we ob-
tain an unbiased estimator of the risk. Three strategies are described to obtain
unbiased estimates of risk:

1. a penalisation of the empirical risk

2. cross validation methods which consist in estimating the generalization
error with data that where not used during the training phase

3. bootstrap methods.

The choice depends on several factors including the desired objective, the size
of the initial sample, the complexity of the models, the computational com-
plexity of the algorithms.

2 Risk and model selection

15
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2.1 Loss function and risk

We consider supervised regression or classification problems. We have a
training data set with n observation points (or objects) Xi and their associated
output Yi (real value in regression, class or label in classification).
dn corresponds to the observation of the random n-sample Dn =
{(X1, Y1), . . . , (Xn, Yn)} with unknown joint distribution P on X × Y .

A prediction rule is a measurable function f̂ : X → Y that associates
the output f̂(x) to the input x ∈ X . It depends on Dn and is thus random.
In order to quantify the quality of the prevision, we introduce a loss function.

DEFINITION 3. — A measurable function ℓ : Y × Y → R+ is a loss function
if ℓ(y, y) = 0 and ℓ(y, y′) > 0 for y ̸= y′.

In real regression it is natural to consider Lp (p ≥ 1) losses

ℓ(y, y′) = |y − y′|p.

If p = 2, the L2 loss is called "quadratic loss".
In classification, one can consider the 0-1 loss defined, for all y, y′ ∈ Y by

ℓ(y, y′) = 1y ̸=y′ .

Since the 0-1 loss is not smooth, it may be useful to consider other losses.

Assuming that Y ∈ {1, 2, . . . ,K}, rather than providing a class, many clas-
sification algorithms provide estimation of the probability that the output Y
belongs to each class, given the input X = x, that is

f̂k(x) = P̂ (Y = k/X = x),∀k = 1, . . . ,K.

Then, the prediction rule generally assigns to the input x the class that maxi-
mizes the estimated probability that is

f̂(x) = argmaxk∈{1,2,...,K}f̂k(x).

In this setting, a loss function often used is the so-called cross-entropy (or
negative log-likelihood). Minimizing this loss function is equivalent to maxi-
mizing the log-likelihood. It is defined as:

ℓ(Y, f̂(X)) = −
K∑

k=1

1Y=k log(f̂k(X)).

In all cases, the goal is to minimize the expectation of the loss function,
leading to the notion of risk.

DEFINITION 4. — Let f be a prediction rule build on the learning sample Dn.
Given a loss function ℓ, the risk - or generalisation error - of f is defined by

RP (f) = E(X,Y )∼P [ℓ(Y, f(X))],

where, in the above expression (X, Y ) is independent from the learning sam-
ple Dn.

Let F be the set of possible prediction rules. f∗ is called an optimal rule if

RP (f
∗) = inf

f∈F
RP (f).

A natural question then arises: is it possible to build optimal rules ?

Case of real regression with L2 loss:

Y = R, ℓ(y, y′) = (y − y′)2.

DEFINITION 5. — We call regression function the function η∗ : X → Y
defined by

η∗(x) = E[Y |X = x].

http://wikistat.fr
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THEOREM 1. — The regression function η∗ : x 7→ E[Y |X = x] satisfies:

RP (η
∗) = inf

f∈F
RP (f).

Case of real regression with L1 loss :

Y = R, ℓ(y, y′) = |y − y′|.

THEOREM 2. — The regression rule defined by µ∗(x) = median[Y |X = x]
verifies:

RP (µ
∗) = inf

f∈F
RP (f).

Case of classification with 0− 1 loss :

ℓ(y, y′) = 1y ̸=y′ .

DEFINITION 6. — We call Bayes rule any function f∗ of F such that for all
x ∈ X ,

P(Y = f∗(x)|X = x) = max
y∈Y

P(Y = y|X = x).

THEOREM 3. — If f∗ is a Bayes rule, then RP (f
∗) = inff∈F RP (f).

The definition of the optimal rules described above depends on the knowl-
edge of the distribution P of (X, Y ). In practice, we have a training sample
Dn = {(X1, Y1), . . . , (Xn, Yn)} with joint unknown distribution P , from
which we construct a regression or classification rule. The aim is to find a
"good" classification rule, in the sense that its risk is as small as possible.

2.2 Minimisation of the empirical risk

In order to evaluate a prediction rule, we have to estimate its risk.
A first natural idea to estimate the risk RP (f) = E(X,Y )∼P [ℓ(Y, f(X))] is to
consider its empirical estimator, called empirical risk, or training error:

Rn(f) =
1

n

n∑
i=1

ℓ(Yi, f(Xi)).

Nevertheless, this is not a good idea: this estimator is optimistic and will un-
der estimate the risk (or generalisation error) as illustrated in the polynomial
regression example presented in Figure 2.1.

The empirical risk (also called training error) is not a good estimate of the
generalization error: it decreases as the complexity of the model increases.
Hence minimizing the training error leads to select the most complex model,
this leads to overfitting. Figure 2.2 illustrates the optimism of the training
error, that underestimates the generalization error, which is estimated here on
a test sample.

A first way to have a good criterion for model selection is to minimize the
empirical risk plus a penalty term, the penalty term will penalize too complex
model to prevent overfitting.

2.3 Minimisation of the penalized empirical risk

Approximation/estimation (or bias/variance) decomposition for model
selection

Let (Fm,m ∈M) be a collection of models with increasing complexity. We
consider the associated collection of estimators (or prediction rules) (f̂m,m ∈

http://wikistat.fr
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Figure 2.1: Polynomial regression: adjusted model are polynomials with re-
spective degrees 1: R2 = 0.03, 2: R2 = 0.73, 5: R2 = 0.874 and 10: R2 = 1.
The empirical risk is equal to 0 for the polynomial of degree n− 1 (which has
n coefficients) and passes through all the training points. Selecting a model
which minimizes the empirical risk leads to overfitting.

M) obtained by minimisation of the empirical risk :

f̂m = argminf∈Fm

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

Figure 2.2: Behavior of training error (in blue) and test error (in red) as the
complexity of the model increases. Source: "The elements of Statistical Learn-
ing", T. Hastie, R. Tibshirani, J. Friedman.

Let f∗ an optimal rule, such that RP (f
∗) = inff∈F RP (f), , also called an

"oracle".
Ideally, we want to select a model m ∈ M for which the risk RP (f̂m) of the
estimator f̂m built on this model is as close as possible to RP (f

∗).

f̂m = argminf∈Fm
Rn(f), f∗ = argminf∈FRP (f)
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RP (f̂m)−RP (f
∗) ={

RP (f̂m)− inf
f∈Fm

RP (f)︸ ︷︷ ︸
}
+
{

inf
f∈Fm

RP (f)−RP (f
∗)︸ ︷︷ ︸
}

Estimation error Approximation error
(Variance) (Bias)
↗ (complexity of Fm) ↘ (complexity of Fm)

These two terms are of different natures. To evaluate them, researchers
use tools respectively from statistics and probability and from approximation
theory.
The best model is the one that realizes the best compromise between the bias
term and the variance term.

• The more complex a model, the more flexible it is and can adjust to the
observed data and therefore the smaller the bias.

• On the other hand, the variance increases with the number of parameters
to be estimated and therefore with this complexity.

• The objective is to minimize the risk, which is a sum of a variance and a
bias term.

• Hence, we are looking for the best compromise between the bias and the
variance term.

Since the empirical risk underestimates the risk, especially as the com-
plexity increases, a first way to have a good criterion for model selection is
to minimize the empirical risk plus a penalty term, the penalty term will
penalize too complex models to prevent overfitting.

The selection of a model m̂ in a collection of models (m ∈ M) for which
the risk of the estimator f̂m̂ is close to the one of f∗ will be obtained by the
minimization of a penalized criterion of the type:

m̂ = argminm∈M{Rn(f̂m) + pen(m)}.

In the above formula, a penalty is added to the empirical risk. The role of
the penalty is to penalize models with "large" dimension, in order to avoid
overfitting. The optimal choice of the penalty (according to the statistical
models considered) is a very active research topic in statistics.

Let us now introduce the most widely used penalized criterion.

Penalized criterion: Mallow’s CP

The Mallow’s Cp (1973)[26] was historically the first penalized criterion,
introduced for Gaussian linear model. It is based on the penalization of the
least square criterion by a penalty which is proportional to the dimension of
the model. It is based on the decomposition

RP (f̂) = Rn(f̂) + Optim

which corresponds to the empirical risk plus a estimation of the bias corre-
sponding to the optimism of the empirical risk. This optimism has to be esti-
mated to obtain a better estimation of the risk. This criterion is expressed as
follows : for a model m,

Cp(m) =

n∑
i=1

(Yi − Ŷi(m))2 + 2pσ̂2

where p is the number of parameters of the model m, Ŷi(m) the predictions
obtained with the model m and σ̂2 is an estimation of the variance of the error
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obtained by a model with large dimension (small bias). This last point is crucial
for the quality of the criterion: it amounts to assume that the full model (with
all the variables) is the "true" model, or at least a model with a small bias to
allow a good estimation of σ2.

In framework of a the linear model Y = Xβ + ε, for which this criterion
was historically introduced, the expression becomes

Cp(m) =

n∑
i=1

(Yi − (Xβ̂(m))i)
2 + 2pσ̂2,

where β ∈ Rp and β̂(m) is the least square estimator of β obtained with model
m.

Figure 2.3 shows the behavior of the Mallow’s Cp in the pedagogical exam-
ple of polynomial regression. This criterions selects a polynomial with degree
3.

AIC, AICc, BIC

While Mallow’s CP is associated to the quadratic loss, Aikaike’s Informa-
tion Criterion (1974)[2] (AIC) is, more generally, related to the log-likelihood.
It corresponds to the opposite of twice the log of the likelihood L(., β), for β
equal to the maximum likelihood estimator β̂(m), plus a penalty term propor-
tional to the dimension of the model:

AIC(m) = −2
n∑

i=1

log(L(Xi, β̂(m)) + 2p.

The quantity −2 log(L(., β)) is also called deviance. One easily verifies that,
in the Gaussian model with variance assumed to be known, the deviance and
least square criterion coïncide. In this case, AIC is equivalent to CP . A refined
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Figure 2.3: Polynomial regression: Mallow’s CP against the degree of the
polynomial: a polynomial with degree 3 is selected

version of the AIC criterion, called corrected AIC is defined as

AICc(m) = −2
n∑

i=1

log(L(Xi, β̂(m)) +
n+ p

n− p− 2
.

It is recommended for small sample sizes and asymptotically equivalent to AIC
for large values of n.

Another criterion called BIC (Bayesian Information Criterion) (Schwartz;
1978) [31] derives from Bayesian arguments. It is also based on the penaliza-
tion of the negative log likelihood, but with a higher penalty than AIC:

BIC(m) = −2
n∑

i=1

log(L(Xi, β̂(m)) + log(n)p.

Since the factor 2 in the AIC criterion is here replaced by log(n), as soon as
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n > e2 ≈ 7.4, BIC penalizes more heavily complex models. The consequence
is that BIC will generally select simpler model than AIC.

Whatever the chosen criterion, the strategy is to select a model minimizing
this criterion, among a collection of possible models.

3 Estimation of the generalization error
Instead of minimizing a penalized criterion, other strategies for model selec-

tion consists in estimating the generalization error, either with data that where
not used during the training phase, or by Bootstrap’s methods.

The generalization performance of a learning procedure is related to its
prediction capacity on a new data set, independent of the learning sample
that was used to build the learning algorithm. Evaluating this performance is
crucial to choose a learning method or model among several possible ones. It
is also important to measure the quality of the ultimately chosen procedure. It
is therefore crucial to estimate the generalization error of a learning algorithm
f̂ : when the model becomes more and more complex, it is able to capture more
complex underlying structures in the "true " model: the bias decreases, but at
the same time, the estimation error increases, due to the increase of the vari-
ance. The "optimal" model is the one realizing the best compromise between
the bias term and the variance term to give the smallest generalization error.

An accurate evaluation of the generalization error has two objectives:

• Model selection: selecting, among a collection of models (or predic-
tion rules), the one with the smallest risk, realizing the best bias/variance
trade-off.

• Model assessment: Once the final model has been chosen, evaluating its
generalization error on a new data set.

We concentrate here on the first objective, assuming that we have a test set for

model assessment.

3.1 Estimation by cross-validation

As seen previously, it is crucial to evaluate the performances of an algorithm
on data that were not used during the learning step. For this purpose, cross-
validation methods are widely used. The main variations of this method are
presented here.

Holdout cross-validation

If we have enough data in the training set, the recommended approach is to
divide randomly the training set into a learning sample and a validation sample.

• The learning sample denoted Dn1
1 is used to train the models (generally

by minimizing the training error).

• The validation sample denoted Dn2
2 is used to estimate the generaliza-

tion error of each model by the quantity

1

n2

∑
(Xi,Yi)∈D

n2
2

ℓ(Yi, f(Xi)).

It is generally recommended to take 75% of the training data for the learning
sample, 25% of the data for the validation sample.

Often, taking only 75% of the data set to train the models may lead to bad
performances, especially if we do not have too much data. Moreover, if the
size of the validation set is small, the estimation of the generalization error
will have a high variance and be highly dependent on this validation set. To
prevent this problem, K fold cross-validation is widely used.
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K-fold cross-validation

K-fold cross-validation is a widely used method to estimate the general-
ization error without splitting the training set as done in the previous section.
Its different steps are the following:

• We split randomly the training data into K subsamples, with (almost) the
same size (K = 10 generally).

• Each of the K folds will be successively used as a validation sample.

• When the fold k is the validation sample, we train a model with the K −
1 other folds, and we evaluate the loss function of this model on each
element the fold k.

• This is done for k = 1, . . . ,K, and we compute a global estimation of
the generalization error.

More precisely, assume that we have a n-sample (Xi, Yi)1≤i≤n and a collec-
tion of models (f̂m,m ∈M). We split the data into K folds.

• For k = 1, . . . ,K, let f̂ (−k)
m denote the model m trained with all the data,

except the fold k.

• The cross-validation estimate of the generalization error of the model m
is

CV (m) =
1

n

K∑
k=1

∑
i∈k

ℓ(Yi, f̂
(−k)
m (Xi)).

• CV (m) estimates the generalization error of the model m and we select
the model which minimizes CV (m).

Note that, if K is small (for example K = 2), each estimator f̂ (−k)
m is trained

with around n/2 observations. Hence, these estimators are less accurate than
an estimator built with n observations, leading to a greater variance in the
estimation of the generalization error by cross-validation. When the number
of folds K = n, the method is called leave-one-out cross-validation. This
method has a low bias to estimate the generalization error, but a high variance
since all the estimators f̂ (−i)

m are highly correlated. The computation time is
also high for the leave-one-out method. This is why, in practice an intermediate
choice such as K = 10 is often recommended. This is generally the default
value in softwares.

Monte Carlo Cross-Validation

This method consists in iterating several times the random subdivision of
the initial sample into a learning set and a validation set. The most simple way
to apply Monte Carlo Cross-Validation is to iterate the holdout procedure. The
advantage of this method is to provide an estimation of the whole distribution
of the risk, for all considered methods. The disadvantage is the computational
time.

The proportion between samples: learning and test, depends on the initial
sample size in order to preserve a significant part to the learning sample. The
number B of iterations depends on the computation ressources. The smaller
the initial sample size is, the less “independent” are the error evaluations and
therefore the reduction in variance obtained at the end by the mean.

This strategy can also be coupled with K-fold cross-validation as described
in the Algorithm 2. An example is presented in Figure 2.4.
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Algorithm 1 Monte Carlo Cross-Validation
for k=1 to B do

Split randomly the sample into two parts: training set and test set with a
prescribed proportion

for models in list of models do
Estimate the parameters of the current model with the training set.
Compute the test error by the empirical risk on the test set.

end for
end for
For each model, compute the mean of theB test errors and draw the boxplots
of the distributions of these errors.

Algorithm 2 Monte Carlo K-fold Cross-Validation
for k=1 to B do

Split randomly the sample into two parts: training set and test set with a
prescribed proportion.

for method in list of methods do
Optimise the complexity (or tuning parameters) of the method by

K-fold cross-validation.
Estimate the parameters of the optimized model for this method with

the training set.
Compute the test error by the empirical risk on the test set for the

optimized model of the current method.
end for

end for
For each method, compute the mean of the B test errors and draw the box-
plots of the distributions of these errors.

Figure 2.4: Boxplot of the test errors for various methods optimized by Monte
Carlo K-fold Cross-Validation on Ozone data set

3.2 Estimation by Bootstrap

Let us first describe the Bootstrap, before showing how it can be used to
estimate the extra-sample prediction error. Suppose we have a training data set
Z = {Z1, . . . Zn}, with Zi = (Xi, Yi) and a model to be fitted on these data.
We denote by f̂ the model fitted with the sample Z. The principle of the boot-
strap is to randomly draw datasets of size n with replacement from the original
sample Z. Conditionally on Z, all these draws are independent. Figures 2.6
and 2.7 show two bootstrap samples from the original dataset presented in Fig-
ure 2.5.

We draw B bootstrap samples (for example B = 500) that we denote
(Z∗b, b = 1, . . . , B). We fit the model with each of these bootstrap sam-
ples. We denote f̂∗b the model fitted with the sample Z∗b. How can we use all
these predictors to estimate the prediction error of f̂ ? A first idea would be to
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Figure 2.5: Original data

consider the following estimator:

Êrrboot =
1

B

1

n

B∑
b=1

n∑
i=1

ℓ(yi, f̂
∗b(xi)),

measuring the mean, over the B bootstrap predictors, of the error on the train-
ing sample Z. However, we easily see that this is not a good estimate of the
generalization error since the bootstrap samples and the original sample have
many observations in common. Hence, this estimator will be too optimistic: it
will underestimate the generalization error. A better idea is to exploit the fact
that each bootstrap sample does not contain all the observations of the original
sample. Namely, we have

P (Observation zi /∈ bootstrap sample b) =
(
1− 1

n

)n

≈ 1

e
= 0.368.
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Figure 2.6: Bootstrap sample no1 (in blue), and corresp. prediction with tree.
The point size is proportional to the number of replicates.
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Figure 2.7: Bootstrap sample no2 (in violet), and corresp. prediction with tree.
The point size is proportional to the number of replicates.
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Mimicking the idea of cross-validation, we denote by C−i the set of indices b
in {1, . . . B} such that Z∗b does not contain the observation zi, and we intro-
duce the estimator

Êrroob =
1

n

n∑
i=1

1

|C−i|
∑

b∈C−i

ℓ(yi, f̂
∗b(xi)).

This estimator is called the out-of-bag estimator. If B is large enough, then for
all i , |C−i| ≠ 0. Otherwise, the observation i for which |C−i| = 0 can be
removed from the above formula. This estimator uses extra sample observation
to estimate the error of each predictor f̂∗b, avoiding the overfitting problem
encountered by Êrrboot. Nevertheless, in expectation, each bootstrap sample
contains 0.632n observations, which is less that 2n/3 and we would like to
estimate the generalization error of a predictor f̂ built with the n observations
of the original sample Z. Each bootstrap predictor f̂∗b will be less accurate
than f̂ since it is built with a smaller sample size. This induces a bias in the
estimation of the generalization error of f̂ by Êrroob. To correct this bias, the
".632 bootstrap estimator " has been introduced by Efron and Tibshirani (1997)
[13]. It is defined by

Êrr
(.632)

= .368 ¯err + .632Êrroob,

where ¯err is the training error of f̂ . This estimator is problematic in overfitting
situation, and a correction has been proposed in this case. It is called the
.632+bootstrap (see Hastie et al. [19] p. 220 for more details).

Remarks.

1. All the estimators proposed to estimate the generalization error are
asymptotically equivalent, and it is not possible to know which method
will be more precise for a fixed sample size n.

2. The boostrap is time consuming and more complicated. It is less used
in practice. Nevertheless, it plays a central role in recent methods of
aggregation, involving the bagging (for bootstrap aggregating) such as
random forests as we will see in Chapter 8 .

3. In conclusion, the estimation of a generalization error is delicate, and it is
recommended to consider the same estimator to compare two prediction
methods and to be very careful, without theoretical justification, to use
one of these estimation to certify an algorithm. For this last purpose, the
use of a test sample, with sufficiently large size, would be recommended.

We will end this chapter by presenting the ROC curves, that are used to com-
pare the relative performances of several binary classification methods.

4 Discrimination and ROC curves
For a two class classification problem: Y = {0, 1}, prediction methods

often provide an estimator of P(Y = 1|X = x). Then, a natural prediction is
to affect the observation x to the class 1 if

P̂(Y = 1|X = x) >
1

2
.

This gives a symmetric role to classes 0 and 1, which is sometimes not desir-
able (health context, for instance). The idea is to parameterize the decision by
a new threshold parameter s:

P̂(Y = 1|X = x) > s ⇔ x belongs to class 1

s should be chosen according to policy decision, typically a tradeoff between
the rate of true positive and false positive.
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Confusion matrix

Given a threshold s, we use the prediction rule: if P̂(Yi = 1|X = xi) > s,
then Ŷi = 1, else Ŷi = 0.

The confusion matrix crosses the modalities of the predicted variable for a
threshold value s with those of the observed variable in a contingency table:

Prediction Observation Total
Yi = 1 Yi = 0

ŷi = 1 n11(s) n10(s) n1+(s)
ŷi = 0 n01(s) n00(s) n0+(s)
Total n+1 n+0 n

In classic situations of medical diagnosis, marketing, pattern recognition,
signal detection ... the following main quantities are considered:

• Number of positive conditions P = n+1

• Number of negative conditions N = n+0

• True positives TP = n11(s) (Ŷi = 1 and Yi = 1)

• True negatives TN = n00(s) (Ŷi = 0 and Yi = 0)

• False negatives FN = n01(s) (Ŷi = 0 and Yi = 1)

• False positives FP = n10(s) (Ŷi = 1 and Yi = 0)

• Accuracy and error rate: ACC = TN+TP
N+P = 1− FN+FP

N+P

• True positive rate or sensitivity, recall TPR = TP
P = 1− FNR

• True negative rate or specificity, selectivity TNR = TN
N = 1− FPR

• Precision or positive predictive value PPV = TP
TP+FP = 1− FDR

• False positive rate FPR = FP
N = 1− TNR

• False negative rate FNR = FN
P = 1− TPR

• False discovery rate FDR = FP
FN+TN ,

• F1 score or harmonic mean of precision and sensitivity

F1 = 2× PPV × TPR
PPV + TPR

=
2× TP

2× TP + FP + FN
.

• Fβ(β ∈ R+) score,

Fβ = (1 + β2)
PPV × TPR
β2PPV + TPR

.

The notions of specificity and sensitivity come from signal theory; their val-
ues depend directly on the threshold s. By increasing s, the sensitivity de-
creases while the specificity increases. A good model combines high sensitiv-
ity and high specificity for signal detection.

The last criterion Fβ makes it possible to weight between specificity and
sensitivity by taking into account the importance or the cost of false positives.
The smaller β, the more expensive false positives are compared to false
negatives.

By analogy with the first and second kind errors for testing procedures, we
consider the two following quantities that will be used to draw the ROC curve.

• The False Positive Rate:

FPR(s) =
♯{i, Ŷi = 1, Yi = 0}

♯{i, Yi = 0}
.
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• The True Positive Rate:

TPR(s) =
♯{i, Ŷi = 1, Yi = 1}

♯{i, Yi = 1}
.

The ROC curve plots TPR(s) versus FPR(s) for all values of s ∈ [0, 1].
We illustrate the construction of a ROC curve for a naïf example of logistic
regression in dimension 1 in Figure 2.8.

By making the threshold s vary in [0, 1], we obtain the complete ROC curve
presented in Figure 2.9

How to use ROC curve to select classifiers ? The "ideal" ROC curve corre-
sponds to FPR=0 and TPR =1 (no error of classification).
We would like to use ROC curve to compare several classification rules, but
generally, the curves will intersect as shown in Figure 2.9 The AUC: Area
Under the Curve is a criterion which is often used to compare several classi-
fication rules.
In order to compare several methods with various complexity, the ROC curves
should be estimated on a test sample, they are indeed optimistic on the learning
sample.
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Figure 2.8: Points in the ROC curve obtained for s = 0.5 and s = 0.2

http://wikistat.fr


28

● ●● ●

4 5 6 7 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
ro

b
a

b
ili

ty

●

●

●

●

False positive rate

Tr
u

e
 p

o
si

tiv
e

 r
a

te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

●

● ● ●

● ● ●

Figure 2.9: ROC curve

Figure 2.10: ROC curves for several classification rules on bank data
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Chapter 3

Linear models

1 Introduction
The linear regression model is the simplest model to study multidimensional

data. It assumes that the regression function E(Y|X) is linear in the input
(or explanatory) variables X1, . . . ,Xp. Although very simple, these models
are still widely used, because they are very interpretable and often provide
an adequate description on the influence of the input variables to the output.
For small sample sizes n (with respect to the number of variables p), or when
the signal to noise ratio is high, they often outperform more complex models.
Furthermore, it is possible to use linear models with nonlinear transformations
of the variables, which considerably enlarges the scope of these models. In
high dimensional framework, when p is possibly larger than n, model selection
for linear models has been this past twenty years and is still a very active field
of research in statistics. This will be the topic of Chapter 4. The aim of this
chapter is to make some reminders on linear model for regression and logistic
regression for classification.

2 The Linear model

2.1 The model

We have a quantitative variable Y to explain (or response variable) which is
related with p variables X1, . . . ,Xp called explanatory variables (or regres-
sors, or input variables).

The data are obtained from the observation of a n sample of R(p+1) vectors :

(x1i , . . . , x
j
i , . . . , x

p
i , yi) i = 1, . . . , n.

We assume in a first time that n > p + 1. In the linear model, the re-
gression function E(Y|X) is linear in the input (or explanatory) variables
X1, . . . ,Xp. We assume for the sake of simplicity that the regressors are
deterministic. In this case, this means that E(Y) is linear in the explanatory
variables {1,X1, . . . ,Xp} where 1 denotes the Rn-vector with all compo-
nents equal to 1. The linear model is defined by:

Yi = β0 + β1X
1
i + β2X

2
i + · · ·+ βpX

p
i + εi i = 1, 2, . . . , n
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with the following assumptions :

1. The random variables εi are independent and identically distributed
(i.i.d.) ; E(εi) = 0, V ar(εi) = σ2.

2. The regressors Xj are assumed to be deterministic or the errors ε are
independent of (X1, . . . ,Xp). In this case, we have :

E(Y|X1, . . . ,Xp) = β0+β1X
1+β2X

2+· · ·+βpX
p and V ar(Y|X1, . . . ,Xp) = σ2.

3. The unknown parameters β0, . . . , βp are supposed to be constant.

4. It is sometimes assumed that the errors are Gaussian: ε = [ε1 · · · εn]′ ∼
Nn(0, σ

2In). The variables εi are then i.i.d. N (0, σ2).

The explanatory variables are given in the matrix X(n×(p+1)) with general
term Xj

i , the first column contains the vector 1 (Xi
0 = 1). The regressors Xj

can be quantitative variables, nonlinear transformation of quantitative variables
(such as log, exp, square ..), interaction between variables Xj = Xk.X l, they
can also correspond to qualitative variables: in this case the variables Xj are
indicator variables coding the different levels of a factor (we remind that we
need identifiability conditions in this case).
The response variable is given in the vector Y with general term Yi. We
set β = [β0β1 · · ·βp]′, which leads to the matricial formulation of the linear
model:

Y = Xβ + ε.

As a practical example, we consider the Ozone data set.
The data frame has 1041 observations of the following components:

JOUR type of the day ; public holiday(1) or not (0)
O3obs Ozone concentration observed the next day at 17h.,

generally the maximum of the day
MOCAGE Prediction of this pollution obtained by a deterministic model

of fluid mechanics
TEMPE Temperature forecast by MétéoFrance for the next day 17h
RMH2O Moisture ratio
NO2 Nitrogen dioxide concentration
NO Concentration of nitric oxide
STATION Location of the observation: Aix-en-Provence, Rambouillet, Munchhausen,

Cadarache and Plan de Cuques
VentMOD Wind force
VentANG Orientation of the wind.

We denote by Y the variable (O3obs) to explain. We set X1, . . .Xp for the
explanatory variables (MOCAGE , TEMPE, JOUR ..). The variables are
quantitative (MOCAGE , TEMPE , ...), or qualitative (JOUR, STATION).
We consider the linear model:

Yi = β0 + β1X
1
i + β2X

2
i + . . .+ βpX

p
i + εi, 1 ≤ i ≤ n,

For the qualitative variables, we consider indicator functions of the different
levels of the factor, and introduce some constraints for identifiability. By
default, in R, the smallest value of the factor are set in the reference.
This is an analysis of covariance model (mixing quantitative and qualitative
variables).

2.2 Estimation of the parameters

Least square estimators

The regressors Xj are observed, the unknown parameters of the model are
the vector β and σ2. β is estimated by minimizing the residuals sum of square
or equivalently, assuming that the errors are Gaussian, by maximisation of the
likelihood.

http://wikistat.fr


31

We minimise with respect to the parameter β ∈ Rp+1 the criterion :

n∑
i=1

(Yi − β0 − β1X1
i − · · · − βpX

p
i )

2 = ∥Y −Xβ∥2

= (Y −Xβ)′(Y −Xβ)

= Y′Y − 2β′X′Y + β′X′Xβ.

Derivating the last equation, we obtain the “ normal equations” :

2(X′Y −X′Xβ) = 0

The solution is indeed a minimiser of the criterion since the Hessian 2X′X is
positive semi definite (the criterion is convex) .

We make the additional assumption that the matrix X′X is invertible, which
is equivalent to the fact that the matrix X has full rank (p + 1) and so that
there is no collinearity between the columns of X (the variables). Under this
assumption, the estimation of β is give by :

β̂ = (X′X)−1X′Y

and the predicted values of Y are :

Ŷ = Xβ̂ = X(X′X)
−1

X′Y = HY

where H = X(X′X)
−1

X′ is called the “hat matrix” ; which puts a "hat" on
Y. Geometrically, it corresponds to the matrix of orthogonal projection in Rn

onto the subspace Vect(X) generated by the columns of X.
Remark. — We have assumed that X′X is invertible, which means that the
columns of X are linearly independent. If it is not the case, this means that the
application β 7→ Xβ is not injective, hence the model is not identifiable and β
is not uniquely defined. Nevertheless, even in this case, the predicted values Ŷ

are still defined as the projection of Y onto the space generated by the columns
of X, even if there is not a unique β̂ such that Ŷ = Xβ̂. In practice, if X′X
is not invertible (which is necessarily the case in high dimension when the
number of variables p is larger than the number of observations n - since p
vectors of Rn are necessarily linearly dependent), we have to remove variables
from the model or to consider other approches to reduce the dimension ( Ridge,
Lasso, PLS ...) that we will developed in the next chapters.

We define the vector of residuals as:

e = Y − Ŷ = Y −Xβ̂ = (I−H)Y

This is the orthogonal projection of Y onto the subspace Vect(X)⊥ in Rn.
The variance σ2 is estimated by

σ̂2 =
∥e∥2

n− p− 1
=

∥∥∥Y −Xβ̂
∥∥∥2

n− p− 1
.

Properties of the least square estimator

THEOREM 4. — Assuming that

Y = Xβ + ε

with ε ∼ Nn(0, σ
2In), we obtain that β̂ is a Gaussian vector:

β̂ ∼ Np+1(β, σ
2(X ′X)−1).

In particular, the components of β̂ are Gaussian variables:

β̂j ∼ N (βj , σ
2(X ′X)−1

j,j ).

σ̂2 ∼ σ2

n− (p+ 1)
χ2
(n−(p+1))
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and is independent of β̂.

Exercise. — Prove Theorem 4

β̂ is a linear estimator of β (it is a linear transformation of the observation
Y) and it is unbiased. One can wonder if it has some optimality property. This
is indeed the case: the next theorem, called the Gauss-Markov theorem, is very
famous in statistics. It asserts that the least square estimator β̂ has the smallest
variance among all linear unbiased estimator of β.

THEOREM 5. — Let A and B two matrices. We say that A ⪯ B if B −A is
positive semi-definite. Let β̃ a linear unbiased estimator of β, with variance-
covariance matrix Ṽ. Then, σ2(X′X)

−1 ⪯ Ṽ.

Exercise. — Prove the Gauss-Markov theorem.

Theorem 5 shows that the estimator β̂ is the best among all linear unbiased
estimator of β, nevertheless, in the next section, we will see that it can be
preferable to consider biased estimator, if they have a smaller variance than β̂,
to reduce the quadratic risk. This will be the case for the Ridge, Lasso, PCR,
or PLS regression.

Confidence intervals

One can easily deduce from Theorem 4 that

β̂j − βj√
σ̂2(X ′X)−1

i,i

∼ T(n−(p+1))

follows a Student distribution with n−(p+1) degrees of freedom. This allows
to build confidence intervals and tests for the parameters βj . The following
interval is a 0.95 confidence interval for βj :

[β̂j − tn−(p+1),0.975

√
σ̂2(X ′X)−1

j,j , β̂j + tn−(p+1),0.975

√
σ̂2(X ′X)−1

j,j ].

In order to test that the variable associated to the parameter βj has no influence
in the model, hence H0: βj = 0 contre H1: βj ̸= 0, we reject the null
hypothesis at the level 5% if 0 does not belong to the previous confidence
interval.

Exercise. — Recover the construction of the confidence intervals.

Test of significance of a variable

We recall the linear model

Yi = β0 + β1X
1
i + β2X

2
i + · · ·+ βpX

p
i + εi i = 1, 2, . . . , n

We want to test if the variable Xj is significant in the model or not, which is
equivalent to test the nullity of the parameter βj .
We test H0: βj = 0 against H1: βj ̸= 0.
Under the hypothesis H0,

Tj =
β̂j√

σ̂2(X ′X)−1
j,j

∼ T(n−(p+1)).

The p-value of the test is defined as

PH0(|Tj | > |Tj |obs) = P(|T(n−(p+1))| > |Tj |obs),

where |Tj |obs is the observed value for the variable |Tj | with our data. If the
p-value is very small, then it is unlikely that |Tj |obs is obtained from a Student
distribution with n − (p + 1) degrees of freedom, hence we will reject the
hypothesis H0, and conclude that the variable Xj is significant. We fix some
level α (generally 5%) for the test . If p-value < α, we reject the nullity of
βj and conclude that the variable Xj is significant in the model. One easily
prove that the probability to reject H0 when it is true (i.e. to conclude that the
variable Xj is significant when it is not) is less than the level α of the test.
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On the example of the Ozone data set, the software R gives the following
output, with the default constraints of R:

Coefficients Estimate Std. Error t value Pr(>|t|)
(Intercept) -33.43948 6.98313 -4.789 1.93e-06 ****
JOUR1 0.46159 1.88646 0.245 0.806747
MOCAGE 0.37509 0.03694 10.153 < 2e-16 ***
TEMPE 3.96507 0.22135 17.913 < 2e-16 ***
... ... ... ... ...

Residual standard error: 27.83 on 1028 degrees of freedom

2.3 Prediction

As mentioned above, the vector of predicted values is

Ŷ = Xβ̂ = X(X′X)
−1

X′Y = HY.

This corresponds to the predicted values at the observation points. Based on
the n previous observations, we may be interested with the prediction of the
response of the model for a new point: X0

′ = (1, X0
1, . . . , X0

p):

Y0 = β0 + β1X
1
0 + β2X

2
0 + . . .+ βpX

p
0 + ε0,

where ε0 ∼ N (0, σ2). The predicted value is

Ŷ0 = β̂0 + β̂1X0
1 + . . . β̂pX0

p = X0
′β̂.

We derive from Theorem 4 that

E(Ŷ0) = X0
′β = β0 + β1X

1
0 + β2X

2
0 + . . .+ βpX

p
0

and that Ŷ0 ∼ N (X0
′β, σ2X

′

0(X
′X)−1X0). We can deduce a confidence

interval for the mean response X0
′β at the new observation point X0:[

X0
′β̂ − tn−(p+1),0.975σ̂

√
X

′
0(X

′X)−1X0,

X0
′β̂ + tn−(p+1),0.975σ̂

√
X

′
0(X

′X)−1X0

]
.

A prediction interval for the response Y0 at the new observation point X0 is:[
X0

′β̂ − tn−(p+1),0.975σ̂
√
1 +X

′
0(X

′X)−1X0,

X0
′β̂ + tn−(p+1),0.975σ̂

√
1 +X

′
0(X

′X)−1X0

]
.

Exercise. — Recover the construction of the prediction intervals. Hint: what
is the distribution of Ŷ0 − Y0 ?

On the example of the Ozone data, with the - simple linear regression model
with the single variable X= MOCAGE

Yi = β0 + β1Xi + εi, i = 1, . . . , n,

we obtain the following confidence and prediction intervals.

2.4 Fisher test of a submodel

Suppose that our data obey to a polynomial regression model of degree p
and we want to test the null hypothesis that our data obey to a polynomial
regression model of degree k < p , hence we want to test that the p − k last
coefficients of β are equal to 0. More generally, assume that our data obey to
the model, called Model (1):

Y = Xβ + ε.
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Figure 3.1: Simple linear regression model: confidence intervals for the mean
response (in grey) and prediction intervals (red dotted lines)

where β ∈ Rp and consider another model, called Model (0):

Y = X̃θ + ε.

where θ ∈ Rl with l < p.

DEFINITION 7. — We define

V = {Xβ,β ∈ Rp}

and
W = {X̃θ,θ ∈ Rl}.

We say that Model (0) is a submodel of Model (1) if W is a linear subspace of
V .

We want to test the hypothesis:
H0: "the vector Y of observations obeys to Model (0)” against the alternative
H1: “the vector Y of observations obeys to Model (1)”.
In the Model (0), the least square estimator of θ is:

θ̂ =


θ̂0

θ̂1

.

.

θ̂l

 = (X̃′X̃)−1X̃′Y.

The F -statistics is defined by:

F =
∥Xβ̂ − X̃θ̂∥2/(p− l)
∥Y −Xβ̂∥2/(n− p)

.
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An alternative way to write the F -statistics is:

F =
(SSR0 − SSR1)/(p− l)

SSR1/(n− p)
,

where SSR0 and SSR1 respectively denote the residuals sum of square under
Model (0) and Model (1).

Exercise. — Prove that, under the null hypothesis H0, the F -statistics is a
Fisher distribution with parameters (p− l, n− p).

The numerator of the F -statistics corresponds to
∥∥∥Ŷ0 − Ŷ1

∥∥∥2, where Ŷ0

and Ŷ1 correspond respectively to the predicted values under the sub-model
and under the full model. This quantity is small under the null hypothesis,
when the sub-model is valid, and becomes larger under the alternative. Hence,
the null hypothesis is rejected for large values of F , namely, for a level-α test,
when

F > fp−l,n−p,1−α,

where fp,q,1−α is the (1−α) quantile of the Fisher distribution with parameters
(p, q). The statistical softwares provide the p− value of the test:

PH0
(F > Fobs)

where Fobs is the observed value for the F -statistics. The null hypothesis is
rejected at level α if the p− value is smaller than α.

2.5 Diagnosis on the residuals

As illustrated for Ozone data on Figure 3.2, the analysis and visualisation of
the residuals allow to verify some hypotheses:

• Homoscedasticity: the variance σ2 is assumed to be constant,
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Figure 3.2: Diagnosis on the residuals for Ozone data

• The linear model is valid: there is no tendancy in the residuals,

• Detection of possible outliers with the Cook’s distance

• Normality of the residuals (if this assumption was used to provide confi-
dence/prediction intervals or tests).

This is rather classical for linear regression, and we focus here on the detec-
tion of possible high collinearities between the regressors, since it has an im-
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pact on the variance of our estimators. Indeed, we have seen that the variance-
covariance matrix of β̂ is σ2(X′X)−1.

When the matrix X is ill-conditioned, which means that the determinant of
X′X is close to 0, we will have high variances for some components of β̂. It
is therefore important to detect and remedy these situations by removing some
variables of the model or introducing some constraints on the parameters to
reduce the variance of the estimators.

VIF

Most statistical softwares propose collinearity diagnosis. The most classical
is the Variance Influence Factor (VIF)

Vj =
1

1−R2
j

where R2
j corresponds to the determination coefficient of the regression of

the variable Xj on the other explanatory variables ; Rj represents also the
cosine of the angle in Rn between Xj and the linear subspace generated by
the variables {X1, . . . ,Xj−1,Xj+1, . . . ,Xp}. The more Xj is “linearly”
linked with the other variables, the more Rj is close to 1 ; we show that the
variance of the estimator of βj is large in this case. This variance is minimal
when Xj is orthogonal to the subspace generated by the other variables.

Condition number

We consider the covariance matrix R between the regressors. We denote
λ1 ≥ . . . ≥ λp the ordered eigenvalues of R. If the smallest eigenvalues
are close to 0, the inversion of the matrix R will be difficult and numerical
problems arise. In this case, some components of the least square estimator β̂
will have high variances. The condition number of the matrix R is defined as
the ratio

κ = λ1/λp

between the largest and the smallest eigenvalues of R. If this ratio is large,
then the problem is ill-conditioned.
This condition number is a global indicator of collinearities, while the VIF
allows to identify the variables that are problematic.

3 Determination coefficient and Model se-
lection

3.1 R2 and adjusted R2

We define respectively the total, explicated and residual sums of squares by

SST =

n∑
i=1

(Yi − Ȳ )2 =
∥∥Y −Y1

∥∥2 ,
SSE =

n∑
i=1

(Ŷi − Ȳ )2 =
∥∥∥Ŷ −Y1

∥∥∥2 ,
SSR =

n∑
i=1

(Ŷi − Yi)2 =
∥∥∥Y − Ŷ

∥∥∥2 = ∥e∥2 .

Since we consider a model with intercept, by Pythagora’s theorem,∥∥Y −Y1
∥∥2 =

∥∥∥Y − Ŷ
∥∥∥2 + ∥∥∥Ŷ −Y1

∥∥∥2 ,
we have the following identity:

SST = SSR + SSE.

We define the determination coefficient R2 by:

R2 =
SSE
SST

= 1− SSR
SST

.
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Figure 3.3: Polynomial regression: adjusted model, on the left: y = β0 +
β1x+ ϵ, R2 = 0.03, on the right: y = β0 + β1x+ β2x

2 + ϵ, R2 = 0.73.

Note that 0 ≤ R2 ≤ 1. The model is well adjusted to the n training data if the
residuals sum of square SSR is close to 0, or equivalently, if the determination
coefficient R2 is close to 1. Hence, the first hint is that a "good" model is a
model for which R2 is close to 1. This is in fact not true, as shown by the
following pedagogical example of polynomial regression. Suppose that we
have a training sample (Xi, Yi)1≤i≤n where Xi ∈ [0, 1] and Yi ∈ R and we
adjust polynomials on these data:

Yi = β0 + β1Xi + β2X
2
i + . . .+ βkX

k
i + εi.

When k increases, the model is more and more complex, hence
∥∥∥Y − Ŷ

∥∥∥2
decreases, and R2 increases as shown in Figures 3.3 and 3.4.

The determination coefficient is equal to 1 for the polynomial of degree
n − 1 (which has n coefficients) and passes through all the training points.
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Figure 3.4: Polynomial regression: adjusted model, on the left: y = β0+β1x+
. . .+ β5x

5 + ϵ, R2 = 0.874, on the right: y = β0 + β1x+ . . .+ β10x
10 + ϵ,

R2 = 1.

Of course this model is not the best one: it has a very high variance since
we estimate as much coefficients as the number of observations. This is a
typical case of overfitting. When the degree of the polynomial increases, the
bias of our estimators decreases, but the variance increases. The best model is
the one that realizes the best trade-off between the bias term and the variance
term. Hence, we have seen that maximizing the determination coefficient is
not a good criterion to compare models with various complexity. It is more
interesting to consider the adjusted determination coefficient defined by:

R′2 = 1− SSR/(n− k − 1)

SST/(n− 1)
.

The definition of R′2 takes into account the complexity of the model, repre-
sented here by its number of coefficients: k + 1 for a polynomial of degree k,
and penalizes more complex models. One can choose, between several mod-
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els, the one which maximizes the adjusted R2. In the previous example, we
would choose a polynomial of degree 3 with this criterion.
More generally, we have to define model selection procedures that realize a
good compromise between a good adjustment to the data (small bias) and a
small variance; and an unbiased estimator is not necessarily the best one in
this sense. We will prefer a biased model if this allows to reduce drastically
the variance. There are several ways to do that:

• Reducing the number of explanatory variables and by the same way sim-
plifying the model (variable selection or Lasso penalization)

• Putting some constraints on the parameters of the model by shrinking
them (Ridge or Lasso penalization)

This penalized criterion will be the topic of the Chapter 4.

4 Logistic regression
We assume that X = Rp. One of the most popular model for binary

classification when Y = {−1, 1} is the logistic regression model. The idea
for logistic regression is to use a linear model for probabilities, thanks to a
one-to-one mapping ("link" function) from [0, 1] to R.
The most used is the logit function and its inverse, the sigmoid function:

[0, 1] R
logit: π → ln

(
π

1−π

)
exp(x)

1+exp(x)
← x : sigmoid
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Other link functions can be considered such as :

• The probit function g(π) = F−1(π) where F is the distribution function
of the standard normal distribution.

• The log-log function g(π) = ln(− ln(1− π)).

4.1 The model

This leads to the following formulation for the logistic regression model:

πβ(x) = Pβ(Y = 1|X = x) =
exp(⟨β,x⟩)

1 + exp(⟨β,x⟩)
for all x ∈ X ,

with β ∈ Rp.
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Exercise. — Compute the Bayes classifier f∗ for this model and determine the
border between f∗ = 1 and f∗ = −1.

4.2 Estimation of the parameters

Given a n-sample Dn = {(X1, Y1), . . . , (Xn, Yn)}, we can estimate the
parameter β by maximizing the conditional likelihood of Y = (Y1, . . . , Yn)
given (X1, . . . ,Xn). Since the distribution of Y given X = x is a Bernoulli
distribution with parameter πβ(x), the conditional likelihood is

L(Y1, . . . , Yn,β) =

n∏
i=1

πβ(Xi)
Yi(1− πβ(Xi))

1−Yi .

L(Y ,β) =
∏

i,Yi=1

exp(⟨β,Xi⟩)
1 + exp(⟨β,Xi⟩)

∏
i,Yi=0

1

1 + exp(⟨β,Xi⟩)
.

• Unlike the linear model, there is no explicit expression for the maximum
likelihood estimator β̂.

• It can be shown that computing β̂ is a convex optimization problem.

• We compute the gradient of the log-likelihood, also called the score func-
tion S(Y, β) and use a Newton-Raphson algorithm to approximate β̂

satisfying S(Y, β̂) = 0.

We then compute the logistic regression classifier:

∀x ∈ X , f̂(x) = sign(⟨β̂,x⟩).

An illustration of the logistic regression for one-dimensional predictors in pre-
sented in Figure 3.5.
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Figure 3.5: Logistic regression for a dataset composed of 2 groups of size 15,
sampled from Normal distributions, centered at 5 and 7, with variance 1.

Like for linear models, in a high dimensional setting (p is large), it will be
necessary to use variable selection and model selection procedures by intro-
ducing penalized likelihood criterions (AIC, BIC, LASSO ..). This is the topic
of Chapter 4.
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Chapter 4

Model selection for linear models

1 Introduction
We have made some reminders on linear models in Chapter 3. We have seen

that, in a high dimensional framework, when p is possibly large, even larger
than n, a complete model obtained by least square estimation is overfitted and
it is necessary to regularize the least square estimation by introducing some
penalty on the complexity of the models in order to reduce the variance of
the estimators. The adjusted R2, presented in Chapter 3 is a first step in this
direction. Model selection and variable selection for linear models has been
intensively studied this past twenty years and is still a very active field of re-
search in statistics. Some of these methods such as Ridge or Lasso methods,
will be at the core of this course.

2 Variable selection
As we have seen, the least square estimator is not satisfactory since it has low

bias but generally high variance. In most examples, several variables are not
significant, and we may have better results by removing those variables from

the model. Moreover, a model with a small number of variables is more inter-
esting for the interpretation, keeping only the variables that have the strongest
effects on the variable to explain. There are several ways to do that.

Assume we want to select a subset of variables among all possible subsets
taken from the input variables. Each subset defines a model, and we want to
select the "best model". We have seen that maximizing the R2 is not a good
criterion since this will always lead to select the full model. It is more inter-
esting to select the model maximizing the adjusted determination coefficient
R′2. Many other penalized criterion have been introduce for variable selection
such as the Mallow’s CP criterion or the BIC criterion. In both cases, it corre-
sponds to the minimization of the least square criterion plus some penalty term,
depending on the number k of parameters in the model m that is considered.

Crit(m) =

n∑
i=1

(Yi − Ŷi)2 + pen(k).
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The Mallow’s CP criterion is

CritCP
(m) =

n∑
i=1

(Yi − Ŷi)2 + 2kσ2,

and the BIC criterion penalizes more the dimension of the model with an ad-
ditional logarithmic term.

CritBIC(m) =

n∑
i=1

(Yi − Ŷi)2 + log(n)kσ2.

The aim is to select the model (among all possible subsets) that minimizes one
of those criterion. On the example of the polynomial models, we obtain the
results summarized in Figure 4.1.

Nevertheless, the number of subsets of a set of p variables is 2p, and it is
impossible (as soon as p > 30) to explore all the models to minimize the cri-
terion. Fast algorithms have been developed to find a clever way to explore a
subsample of the models. This are the backward, forward and stepwise algo-
rithms.
Backward/Forward Algorithms:

• Forward selection: We start from the constant model (only the intercept,
no explanatory variable), and we add sequentially the variable that allows
to reduce the more the criterion.

• Backward selection: This is the same principle, but starting from the
full model and removing one variable at each step in order to reduce the
criterion.

• Stepwise selection: This is a mixed algorithm, adding or removing one
variable at each step in order to reduce the criterion in the best way.
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Figure 4.1: Mallows’CP in function of the degree of the polynomial. Selected
model: polynomial with degree 3.

All those algorithms stop when the criterion can no more be reduced. Let us
see some applications of those algorithms on the Ozone data.
Stepwise Algorithm
We apply the StepAIC algorithm, with the option both of the software R in
order to select a subset of variables, and we present here an intermediate result:

Start: AIC=6953.05
O3obs ∼ MOCAGE + TEMPE + RMH2O + NO2 + NO + VentMOD +

VentANG
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Df Sum of Sq RSS AIC
- VentMOD 1 1484 817158 6952.9
<none> 815674 6953.0
- RMH2O 1 4562 8202354 6956.9
- VentANG 1 12115 827788 6966.4
- NO2 1 21348 837022 6977.9
- NO 1 21504 837178 6978.1
- MOCAGE 1 225453 1041127 7205.1
- TEMPE 1 268977 1084651 7247.7

Step: AIC= 6952.94

O3obs ∼ MOCAGE + TEMPE + RMH2O + NO2 + NO + VentANG

3 Ridge regression
The principle of the Ridge regression is to consider all the explanatory vari-

ables, but to introduce constraints on the parameters in order to avoid overfit-
ting, and by the same way in order to reduce the variance of the estimators. In
the case of the Ridge regression, we introduce an l2 constraint on the parameter
β.

3.1 Model and estimation

If we have an ill-conditionned problem, but we want to keep all the variables,
it is possible to improve the numerical properties and to reduce the variance of
the estimator by considering a slightly biased estimator of the parameter β.

We consider the linear model

Y = X̃β̃ + ϵ,

where

X̃ =


1 X1

1 X2
1 . Xp

1

1 X1
2 X2

2 . Xp
2

. . . . .
1 X1

n X2
n . Xp

n

 ,

β̃ =


β0
β1
.
.
βp

 , β =


β1
β2
.
.
βp

 .

We set X0 = (1, 1, . . . , 1)′, and X the matrix X̃ where we have removed the
first column. The ridge estimator is defined by a least square criterion plus a
penalty term, with an l2 type penalty.

DEFINITION 8. — The ridge estimator of β̃ in the model

Y = X̃β̃ + ϵ,

is defined by

β̂ = argminβ∈Rp+1

 n∑
i=1

(Yi −
p∑

j=0

X
(j)
i βj)

2 + λ

p∑
j=1

β2
j

 ,

where λ is a non negative parameter, that we have to calibrate.

Note that the parameter β0 is not penalized.

PROPOSITION 1. — Assume that X is centered. We obtain the following ex-
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plicit solution for the Ridge estimator:

β̂0 = Ȳ , β̂R =


β̂1
.
.

β̂p

 = (X′X+ λIp)
−1X′(Y − Ȳ 1).

Exercise. — Prove the Proposition 1.

Remarks:

1. X′X is a nonnegative symmetric matrix (for all vector u in Rp,
u′(X′X)u = ∥Xu∥2 ≥ 0. Hence, for any λ > 0, X′X + λIp is in-
vertible.

2. The constant β0 is not penalized, otherwise, the estimator would depend
on the choice of the origin for Y. We obtain β̂0 = Y, adding a constant
to Y does not modify the values of β̂j for j ≥ 1.

3. The ridge estimator is not invariant by normalization of the vectors X(j),
it is therefore important to normalize the vectors before minimizing the
criterion.

4. The ridge regression is equivalent to the least square estimation under the
constraint that the l2-norm of the vector β is not too large:

β̂R = argmin
β

{
∥Y −Xβ∥2 ; ∥β∥2 < c

}
.

The ridge regression keeps all the parameters, but, introducing constraints
on the values of the βj’s avoids too large values for the estimated param-
eters, which reduces the variance.

Choice of the penalty term

In the Figure 4.2, we see results obtained by the ridge method for several
values of the tuning parameter λ = l on the polynomial regression example.
Increasing the penalty leads to more regular solutions, the bias increases, and
the variance decreases. We have overfitting when the penalty is equal to 0 and
under-fitting when the penalty is too large.

For each regularization method, the choice of the parameter λ is crucial and
determinant for the model selection. We see in Figure 4.3 the Regularisation
path, showing the profiles of the estimated parameters when the tuning param-
eter λ increases.

Choice of the regularization parameter

Most softwares use the cross-validation to select the tuning parameter
penalty. The principe is the following:
• We split the training set into K sub-samples. For all k from 1 to K :

– We compute the Ridge estimator associated to a regularization pa-
rameter λ from the data of all the subsamples, except the k-th (that
will be a "test" sample).

– We denote by β̂
(−k)

λ the obtained estimator.
– We test the performances of this estimator on the data that have not

been used to build it, that is the one of the k-th sub-sample.

• We compute the criterion :

CV (λ) =
1

n

K∑
k=1

∑
i∈k

(Y i −Xiβ̂
(−k)

λ )2,

• We choose the value of λ which minimizes CV (λ) and we re estimate the
model with all the data of the training set.
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Figure 4.2: Ridge penalisation for the polynomial model
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Figure 4.4: Selection of the regularization parameter by CV

Application to the Ozoner data: The value of λ selected by cross-validation
is 5.4. We show the obtained value in Figure 4.4.

Singular Value Decomposition and Ridge regression

The Singular Value Decomposition (SVD) of the centered matrix X allows
to interpret the ridge regression as a shrinkage method. The SVD of the matrix
X has the following form:

X = UDV′,

where X is a n× p matrix, U is n× n, D is a n× p "diagonal" matrix whose
all elements are ≥ 0 and ordered by decreasing values, V is a p × p matrix.
The elements of D are the singular values of the matrix X . U and V are
orthogonal: UU′ = U′U = In, VV′ = V′V = Ip.
We have

Xβ̂R = UD(D′D+ λIp)
−1D′U′Y.

Suppose that n ≤ p. We denote by u(1), . . . ,u(n) the columns of the matrix
U. Setting d1 ≥ . . . ≥ dp ≥ 0 the diagonal elements of D, UD is a n × p
matrix whose j-th column is dju(j). We therefore have

Xβ̂R =

p∑
j=1

uj

(
d2j

d2j + λ

)
(uj)′Y.

Let us compare this estimator with the least square estimator (which corre-
sponds to λ = 0):

Xβ̂ =

p∑
j=1

uj(uj)′Y.

(uj)′Y corresponds to the j-th component of Y in the basis (u1, . . . ,un).
In the case of the ridge regression, this component is multiplied by the factor
d2j/

(
d2j + λ

)
∈]0, 1[, we can say that this component has been thresholded.

Remarks:
1) When the tuning parameter λ increases, the coefficients are more and more
thresholded.
2) x 7→ x/(x + λ) is a non decreasing function of x for x > 0. The largest
coefficients are slightly thresholded: if d2j >> λ, d2j/

(
d2j + λ

)
is close to 1.

The threshold decreases when j increases since dj decreases.

We can give an interpretation in relation with the Principal Components
Analysis . X being centered, X′X/n is the empirical variance-covariance
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matrix of the column vectors of the matrix X .

X′X = VD′DV′,

where D′D is the diagonal matrix composed by the elements d2i . We denote
by v1, . . . ,vp the column vectors in Rp of the matrix V.
Let v be an Rp vector with norm 1.

ˆV ar(Xv) =
1

n
(Xv)′(Xv) =

1

n
v′(X′X)v,

which is maximal for v = v1 and is equal to d21.
z1 = Xv1 is the first principal component of the matrix X.
The orthonormal eigenvectors v1, . . . ,vp are the principal directions (or
Karhunen Loeve directions) of X. The variables zj = Xvj are the princi-
pal components. We remark that

zj = Xvj = UDV′vj = dju
(j).

We see that the ridge regression shrinks slightly the first principal components
(for which dj is large), and more the last principal components.
We can associate to the ridge procedure the quantity df(λ) which is called the
effective number of degrees of freedom in the ridge regression and is defined
by

df(λ) =

p∑
j=1

d2j
d2j + λ

.

If λ = 0, df(λ) = p (no shrinkage), if λ→∞, df(λ)→ 0, at the limit, all the
coefficients are equal to 0.

4 The LASSO regression
The ridge regression allows to get around the collinearity problems even if

the numbers of predictors p is large with possibly p > n. The main weak-
ness of this method is related to interpretation difficulties because, without
selection, all variables are included in the model. Other regularization ap-
proaches also allow selection, as the LASSO regression, which leads to more
interpretable solutions.

4.1 Model and estimation

LASSO is the abbreviation of Least Absolute Shrinkage and Selection Op-
erator. The Lasso estimator is introduced in the paper by Tibshirani, R.
(1996)[34]: Regression shrinkage and selection via the lasso. J. Royal. Statist.
Soc B., Vol. 58, No. 1, pages 267-288. The Lasso corresponds to the mini-
mization of a least square criterion plus an l1 penalty term (and no more an l2
penalization like in the ridge regression). We denote ∥β∥1 =

∑p
j=1 |βj |.

DEFINITION 9. — The Lasso estimator of β in the model

Y = Xβ + ϵ,

is defined by:

β̂Lasso = argminβ∈Rp+1

 n∑
i=1

(Yi −
p∑

j=0

X
(j)
i βj)

2 + λ

p∑
j=1

|βj |

 ,

where λ is a nonnegative tuning parameter.

We can show that this is equivalent to the minimization problem:

β̂L = argminβ∈Rp,∥β∥1≤t(∥Y −Xβ∥2),
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where t is suitably chosen, and β̂0Lasso = Ȳ . Like for the Ridge regression,
the parameter λ is a regularization parameter:

• If λ = 0, we recover the least square estimator.

• If λ tends to infinity, all the coefficients β̂j are equal to 0 for j = 1, . . . , p.

The solution to the Lasso is parsimonious (or sparse), since it has many null
coefficients.

If the matrix X is orthogonal: (X′X = Id), the solution is explicit.

PROPOSITION 2. — If X′X = Ip, the solution β of the minimization of the
Lasso criterion

∥Y −Xβ∥2 + 2λ∥β∥1
is defined as follows: for all j = 1, . . . , p,

βj = sign(β̂j)(|β̂j | − λ)1|β̂j |≥λ,

where β̂ is the least square estimator: β̂ = X′Y.

The obtained estimator corresponds to a soft thresholding of the least square
estimator. The coefficients β̂j are replaced by ϕλ(β̂j) where

ϕλ : x 7→ sign(x)(|x| − λ)+.

Exercise. — Prove the proposition 2.

Another formulation

The LASSO is equivalent to the minimization of the criterion

Crit(β) =
n∑

i=1

(Yi − β0 − β1X(1)
i − β2X(2)

i − . . .− βpX(p)
i )2

under the constraint
∑p

j=1 |βj | ≤ t, for some t > 0 (depending on λ).

The statistical software R introduces a constraint expressed by a relative
bound for

∑p
j=1 |βj |: the constraint is expressed by

p∑
j=1

|βj | ≤ κ
p∑

j=1

|β̂(0)
j |,

where β̂(0) is the least square estimator and κ ∈ [0, 1].

For κ = 1 we recover the least square estimator (there is no constraint) and
for κ = 0, all the β̂j , j ≥ 1, vanish (maximal constraint).

4.2 Applications

We represent in Figure 4.5 the values of the coefficients in function of κ
for the Ozone data: this are the regularization paths of the LASSO. As for
the Ridge regression, the tuning parameter is generally calibrated by cross-
validation.

Comparison LASSO/ RIDGE

The Figure 4.6 gives a geometric interpretation of the minimization prob-
lems for both the Ridge and Lasso estimators. This explains why the Lasso
solution is sparse.

4.3 Optimization algorithms for the LASSO

Convex functions and subgradients

DEFINITION 10. — A function F : Rn → R is convex if ∀x, y ∈ Rn,∀λ ∈
[0, 1],

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y).

LEMMA 3. — When F is differentiable, we have F (y) ≥ F (x)+⟨∇F (x), y−
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Figure 4.5: Regularization paths of the LASSO when the penalty decreases

Figure 4.6: Geometric interpretation of Ridge and Lasso estimators
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x⟩ ∀y ∈ Rn,∀x ∈ Rn.

When F is non differentiable, we introduce the subdifferential ∂F of F
defined by:

DEFINITION 11. — The subdifferential ∂F of F is:

∂F (x) = {ω ∈ Rn, F (y) ≥ F (x) + ⟨ω, y − x⟩,∀y ∈ Rn} .

A vector ω ∈ ∂F (x) is called a subgradient of F in x.

LEMMA 4. — F is convex⇔ ∂F (x) ̸= ∅ ∀x ∈ Rn.

Example: subdifferential of the l1 norm

∂|x|1 = {ω ∈ Rn, ωj = 1 for xj > 0, ωj = −1 for xj < 0,

ωj ∈ [−1, 1] for xj = 0} .

Remark: The subdifferential of a convex function is monotone in the follow-
ing sense:

⟨ωx − ωy, x− y⟩ ≥ 0 ∀ωx ∈ ∂F (x),∀ωy ∈ ∂F (y).

Indeed

F (y) ≥ F (x) + ⟨ωx, y − x⟩
F (x) ≥ F (y) + ⟨ωy, x− y⟩.

By summing, ⟨ωx − ωy, x− y⟩ ≥ 0.

First optimality condition

PROPOSITION 5. — Let F : Rn → R be a convex function.

x∗ ∈ argminx∈RnF (x)⇔ 0 ∈ ∂F (x∗).

Proof: In both cases,

F (y) ≥ F (x∗) + ⟨0, y − x∗⟩.

The Lasso estimator

We consider the linear model:

Y = Xβ∗ + ε.

We assume that the columns of X have norm 1. Let

L(β) = ∥Y −Xβ∥2 + λ|β|1.

By definition, the Lasso estimator

β̂λ ∈ argminβ∈Rp(L(β)).

We deduce from the first order optimality condition that 0 ∈ ∂L(β̂λ).
We have that

L(β) = ∥Y ∥2 − β′X ′Xβ − 2β′XY + λ|β|1.

LEMMA 6. — Let h : β 7→ β′Aβ where A is a symmetric matrix. Then
▽h(β) = 2Aβ.

Let g : β 7→ β′z = z′β = ⟨z, β⟩ where z ∈ Rp. Then▽g(β) = z.
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Hence we have

∂L(β) = 2X ′Xβ − 2X ′Y + λ∂|β|1.

0 ∈ ∂L(β̂λ)⇔ ∃ẑ ∈ ∂|β̂λ|1 such that :

2X ′Xβ̂λ − 2X ′Y + λẑ = 0.

This last equality is equivalent to

X ′Xβ̂λ = X ′Y − λ

2
ẑ (E).

We have seen that

ẑj = sign((β̂λ)j if (β̂λ)j ̸= 0

ẑj can be any real in [−1, 1] if (β̂λ)j = 0.

Orthogonal setting

When X ′X = Ip, (E) gives (β̂λ)j = X ′
jY − λ

2 ẑj .
Moreover, ẑj = sign(β̂λ)j if (β̂λ)j ̸= 0. Hence,{

(β̂λ)j > 0⇒ X ′
jY > λ

2

(β̂λ)j < 0⇒ X ′
jY < −λ

2 .
.

(β̂λ)j ̸= 0⇒
{
|X ′

jY | > λ
2

sign((β̂λ)j) = sign(X ′
jY )

.

This leads to the explicit solution of the Lasso in the orthogonal setting

(β̂λ)j = sign(X ′
jY )

(
|X ′

jY | −
λ

2

)
1|X′

jY |>λ
2
.

It corresponds to a soft thresholding of the Ordinary Least Square estimator
β̂j = X ′

jY .

Non orthogonal setting

In this case, there is no analytic formula for the Lasso estimator β̂λ.
Let m̂λ =

{
j, (β̂λ)j ̸= 0

}
be the support of β̂λ.

We can derive from Equation (E) that

• If λ ≥ 2 supj |X ′
jY |, then β̂λ = 0.

• If λ < 2 supj |X ′
jY |, then denoting Xm̂λ

the submatrix obtained from
X by keeping only the columns belonging to m̂λ, we have the following
equation:

X ′
m̂λ
Xm̂λ

(β̂λ)m̂λ
= X ′

m̂λ
Y − λ

2
sign((β̂λ)m̂λ

).

Computing the Lasso estimator

β 7→ L(β) = ∥Y −Xβ∥2 + λ|β|1 is convex.
Hence a simple and efficient approach to minimize this function is to alternate
minimization over each coordinate of β.
This algorithm converges to the Lasso estimator thanks to the convexity of L.
If we assume that the columns of X have norm 1, then we have

∂R

∂βj
(β) = −2X ′

j(Y −Xβ) + λ
βj
|βj |

, ∀βj ̸= 0.

Hence, we can see (after some easy computations) that βj 7→
R(β1, . . . , βj−1, βj , . . . , βp) is minimum in

βj = Rj

(
1− λ

2|Rj |

)
+

with Rj = X ′
j(Y −

∑
k ̸=j βkXk).

The coordinate descent algorithm is summarized as follows:
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• Initialise βinit arbitrarily

• Iterate until convergence:

∀j = 1, . . . , p, βj = Rj

(
1− λ

2|Rj |

)
+

with Rj = X ′
j(Y −

∑
k ̸=j βkXk).

• Output β.

This algorithm is implemented in the R package glmnet.

Due to its parsimonious solution, this method is widely used to select vari-
ables in high dimension settings (when p > n).

5 Elastic Net
Elastic Net is a method that combines Ridge and Lasso regression, by in-

troducing simultaneously the l1 and l2 penalties. The criterion to minimize
is

n∑
i=1

(Yi − β0 − β1X(1)
i − β2X(2)

i − . . .− βpX(p)
i )2

+λ

α p∑
j=1

|βj |+ (1− α)
p∑

j=1

β2
j


• For α = 1, we recover the LASSO.

• For α = 0, we recover the Ridge regression.

In this case, we have two tuning parameters to calibrate by cross-validation.

6 Principal Components Regression and
Partial Least Square regression

6.1 Principal Component Regression (PCR)

We denote by Z(1), . . .Z(p) the principal components associated to the vari-
ables X(1), . . .X(p):

• Z(1) is the linear combination of X(1), . . . , X(p) of the form∑p
i=1 αjX

(j) with
∑
α2
j = 1 with maximal variance.

• Z(m) is the linear combination of X(1), . . . , X(p) of the form∑p
i=1 αj,mX

(j) with
∑
α2
j,m = 1 with maximal variance and orthog-

onal to Z(1), . . . , Z(m−1).

The Principal Component Regression (PCR) consists in considering a predictor
of the form:

Ŷ PCR =

M∑
m=1

θ̂mZ
(m)

with

θ̂m =
⟨Z(m), Y ⟩
∥Z(m)∥2

.

Comments:

• If M = p, we keep all the variables and we recover the ordinary least
square (OLS) estimator.

• If one can obtain a good prediction with M < p, then we have reduced
the number of variables, hence the dimension.
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• Nevertheless, interpretation is not always easy: if the variables are inter-
pretable, the principal components (that correspond to linear combination
of the variables) are generally difficult to interpret.

• This method is quite similar to the Ridge regression, which shrinks the
coefficients of the principal components. Here, we set to 0 the coefficients
of the principal components of order greater than M .

• The first principal components are not necessarily well correlated with
the variable to explain Y , this is the reason why the PLS regression has
been introduced.

6.2 Partial Least Square (PLS) regression

The principle of this method is to make a regression on linear combinations
of the variables Xi’s, that are highly correlated with Y .

• We assume that Y has been centered, and that the variables X(j) are also
centered and normalized (with norm 1).

• The first PLS component is defined by:

W (1) =

p∑
j=1

⟨Y,X(j)⟩X(j).

• The prediction associated to this first component is:

Ŷ 1 =
⟨Y,W (1)⟩
∥W (1)∥2

W (1).

Note that if the matrix X is orthogonal, this estimator corresponds to the ordi-
nary least square (OLS) estimator, and in this case, the following steps of the
PLS regression are useless.

• In order to obtain the following directions, we orthogonalize the variables
X(j) with respect to the first PLS component W (1):

• We substract to each variables X(j) (1 ≤ j ≤ p) its orthogonal projec-
tion in the direction given by W (1) and we normalize the variables thus
obtained.

• We compute the second PLS componentW (2) in the same way as the first
component by replacing the variables X(j)’s by the new variables.

• We iterate this process by orthogonalizing at each step the variables with
respect to the PLS components.

The algorithm is the following:

• Ŷ 0 = Ȳ and X(j),0 = X(j). For m = 1, . . . , p

• W (m) =
∑p

j=1⟨Y,X(j,m−1)⟩X(j,m−1).

• Ŷ m = Ŷ m−1 + ⟨Y,W (m)⟩
∥W (m)∥2 W

(m).

• ∀j = 1, . . . , p, X(j),m =
X(j),m−1−Π

W (m) (X
(j),m−1)

∥X(j),m−1−Π
W (m) (X(j),m−1)∥ .

• The predictor Ŷ p obtained at step p corresponds to ordinary least square
estimator.

• This method is useless if the variables X(j) are orthogonal.

• When the variables X(j) are correlated, PCR and PLS methods present
the advantage to deal with new variables, that are orthogonal.

• The choice of the number of PCR or PLS components can be done by
cross-validation.
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• In general, the PLS method leads to more parcimoneous representations
than the PCR method.

• The PLS regression leads to a reduction of the dimension.

• If p is large, this is particularly interesting, but can lead to problems of
interpretation since the PLS components are linear combinations of the
variables.

• There exists a sparse version: sparse PLS (inspired from the Lasso
method), for which we consider linear combinations of the initial vari-
ables X(j) with only a few non zero coefficients, hence keeping only a
few variables, which makes the interpretation more easy.
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Chapter 5

Linear methods for classification, Linear Support Vector
Machine

1 Introduction
In this chapter, we consider supervised classification problems. We have a

data set with n observation points (or objects) Xi and their class (or label) Yi.
For example, the MNIST data set is a database of handwritten digits, where
the objects Xi are images and Yi ∈ {0, 1, . . . , 9}. Many other examples can
be considered, such as the recognition of an object in an image, the detection
of spams for emails, the presence of some illness for patients (the observation
points may be gene expression data) ... We have already seen in Chapter 2
the notion of best classifier, which is also called the Bayes classifier. A first
generalized linear model, namely the logistic regression has been presented in
Chapter 3. We propose here to study new linear methods for classification, first
the linear discriminant analysis and the core of the chapter will be devoted
to the linear Support Vector Machine (SVM), which will be generalized to
nonlinear SVM in Chapter 6.

2 Linear discriminant analysis
Let (X, Y ) with unknown distribution P on X × Y , where we assume that

X = Rp and Y = {1, 2, . . . ,K}. We define

fk(x) = P(Y = k|X = x).

A Bayes rule is defined by

f∗(x) = argmax
k∈{1,2,...,K}

fk(x).

We assume that the distribution of X has a density fX and the distribution of
X given Y = k has a density gk with respect to the Lebesgue measure on Rp,
and we set πk = P(Y = k).
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Exercise. — Prove that

fX(x) =

K∑
l=1

πlgl(x)

and that

fk(x) =
πkgk(x)∑K
l=1 πlgl(x)

.

If we assume that the distribution of X given Y = k is a multivariate normal
distribution, with mean vector µk and covariance matrix Σk, we have

gk(x) =
1

(2π)p/2|Σk|1/2
exp

(
−1

2
(x− µk)

′Σ−1
k (x− µk)

)
.

For the linear discriminant analysis, we furthermore assume that Σk = Σ
for all k. In this case we have

log[P(Y = k|X = x)] = C(x) + δk(x)

where C(x) does not depend on the class k, and

δk(x) = x′Σ−1µk −
1

2
µ′
kΣ

−1µk + log(πk).

The Bayes rule will assign x to the class f∗(x) which maximises δk(x).

log

(
P(Y = k|X = x)

P(Y = l|X = x)

)
= log

(
πk
πl

)
+ x′Σ−1(µk − µl)

− 1

2
(µk + µl)

′Σ−1(µk − µl).

Hence the decision boundary between the class k and the class l,
{x,P(Y = k|X = x) = P(Y = l|X = x)} is linear.

We want now to build a decision rule from a training sample Dn =
{(X1, Y1), . . . , (Xn, Yn)} which is close to the Bayes rule. For this purpose,
we have to estimate for all k, πk, µk and the matrix Σ. We consider the fol-
lowing estimatorsbroder

π̂k =
Nk

n
, µ̂k =

∑n
i=1 Xi1Yi=k

Nk

where Nk =
∑n

i=1 1Yi=k. We estimate Σ by

Σ̂ =

K∑
k=1

n∑
i=1

(Xi − µ̂k)(Xi − µ̂k)
′1Yi=k

n−K
.

To conclude, the Linear Discriminant Analysis assigns the input x to the class
f̂(x) which maximises δ̂k(x), where we have replaced in the expression of
δk(x) the unknown quantities by their estimators.
Remark: If we no more assume that the matrix Σ does not depend on the class
k, we obtain quadratic discriminant functions

δk(x) = −
1

2
log |Σk| −

1

2
(x− µk)

′Σ−1
k (x− µk) + log(πk).

This leads to the quadratic discriminant analysis.

3 Linear Support Vector Machine

3.1 Linearly separable training set

We assume that X = Rp, endowed with the usual scalar product ⟨., .⟩, and
that Y = {−1, 1}.
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DEFINITION 12. — The training set dn1 = (x1, y1), . . . , (xn, yn) is called
linearly separable if there exists (w, b) such that for all i,
yi = 1 if ⟨w, xi⟩+ b > 0,
yi = −1 if ⟨w, xi⟩+ b < 0,
which means that

∀i yi (⟨w, xi⟩+ b) > 0.

The equation ⟨w, x⟩+b = 0 defines a separating hyperplane with orthogonal
vector w.

The function fw,b(x) = 1⟨w,x⟩+b≥0 − 1⟨w,x⟩+b<0 defines a possible linear
classification rule.

The problem is that there exists an infinity of separating hyperplanes, and
therefore an infinity of classification rules.

Which one should we choose ? The response is given by Vapnik [36]. The
classification rule with the best generalization properties corresponds to the
separating hyperplane maximizing the margin γ between the two classes on
the training set.

If we consider two entries of the training set, that are on the border defining
the margin, and that we call x1 and x−1 with respective outputs 1 and −1,
the separating hyperplane is located at the half-distance between x1 and x−1.

The margin is therefore equal to the half of the distance between x1 and x−1

projected onto the normal vector of the separating hyperplane:

γ =
1

2

|⟨w, x1 − x−1⟩|
∥w∥

.

Let us notice that for all κ ̸= 0, the couples (κw, κb) and (w, b) define the
same hyperplane.

DEFINITION 13. — The hyperplane ⟨w, x⟩+ b = 0 is canonical with respect
to the set of vectors x1, . . . , xk if

mini=1...k |⟨w, xi⟩+ b| = 1.

The separating hyperplane has the canonical form relatively to the vectors
{x1, x−1} if it is defined by (w, b) where ⟨w, x1⟩+ b = 1 and ⟨w, x−1⟩+ b =
−1. In this case, we have ⟨w, x1 − x−1⟩ = 2, hence

γ =
1

∥w∥
.
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3.2 A convex optimisation problem

Finding the separating hyperplane with maximal margin consists in finding
(w, b) such that

∥w∥2 or 1
2∥w∥

2 is minimal
under the constraint

yi (⟨w, xi⟩+ b) ≥ 1 for all i.

This leads to a convex optimization problem with linear constraints, hence
there exists a unique global minimizer.
The primal problem to solve is:

Minimizing 1
2∥w∥

2 s. t. yi (⟨w, xi⟩+ b) ≥ 1 ∀ i.

The corresponding Lagrangian is

L(w, b, α) =
1

2
∥w∥2 −

n∑
i=1

αi (yi (⟨w, xi⟩+ b)− 1) .

∂L

∂w
(w, b, α) = w −

n∑
i=1

αiyixi = 0 ⇔ w =

n∑
i=1

αiyixi

∂L

∂b
(w, b, α) = −

n∑
i=1

αiyi = 0 ⇔
n∑

i=1

αiyi = 0

This leads to the dual function

θ(α) =
1

2

n∑
i,j=1

αiαjyiyj⟨xi, xj⟩+
n∑

i=1

αi −
n∑

i,j=1

αiαjyiyj⟨xi, xj⟩

=

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj⟨xi, xj⟩.

The corresponding dual problem corresponds to the maximization of

θ(α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj⟨xi, xj⟩

under the constraint
∑n

i=1 αiyi = 0 and αi ≥ 0 ∀i.
The Karush-Kuhn-Tucker conditions are

• α∗
i ≥ 0 ∀i = 1 . . . n.

• yi (⟨w∗, xi⟩+ b∗) ≥ 1 ∀i = 1 . . . n.

• α∗
i (yi (⟨w∗, xi⟩+ b∗)− 1) = 0 ∀ i = 1 . . . n.

(complementary condition)

The solution α∗ of the dual problem can be obtained with classical opti-
mization softwares.
Remarks : The only pertinent information from the observations (xi)1≤i≤n to
solve the problem is the Gram matrix G = (⟨xi, xj⟩)1≤i,j≤n.
The solution does not depend on the dimension d, but depends on the sample
size n, hence it is interesting to notice that when X is high dimensional, linear
SVM do not suffer from the curse of dimensionality.

3.3 Supports Vectors

Only the α∗
i > 0 are involved in the definition of w∗ =

∑n
i=1 αiyixi. If the

number of values α∗
i > 0 is small, the solution of the dual problem is called

"sparse".

DEFINITION 14. — The xi such that α∗
i > 0 are called the support vec-

tors. They are located on the border defining the maximal margin namely
yi (⟨w∗, xi⟩+ b∗) = 1 (c.f. complementary KKT condition).
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We finally obtain the following classification rule:

f̂(x) = 1⟨w∗,x⟩+b∗≥0 − 1⟨w∗,x⟩+b∗<0,

with

• w∗ =
∑n

i=1 α
∗
i xiyi,

• b∗ = − 1
2 {minyi=1⟨w∗, xi⟩+ minyi=−1⟨w∗, xi⟩}.

The maximal margin equals γ∗ = 1
∥w∗∥ =

(∑n
i=1(α

∗
i )

2
)−1/2

(provided the
xi’s are normalized).

The α∗
i that do not correspond to support vectors (sv) are equal to 0, and

therefore

f̂(x) = 1∑
xisv

yiα∗
i ⟨xi,x⟩+b∗≥0 − 1∑

xisv
yiα∗

i ⟨xi,x⟩+b∗<0.

The previous formulation has two main drawbacks : it assumes that the classes
are linearly separable and it is also very sensitive to outliers as illustrated in
Figure 5.1.

Figure 5.1: Lack of robustness of SVM’s in the separable case

3.4 Flexible margin

In the general case, we allow some points to be in the margin and even on
the wrong side of the margin. We introduce the slack variable ξ = (ξ1, . . . , ξn)
and the constraint yi(⟨w, xi⟩+ b) ≥ 1 becomes yi(⟨w, xi⟩+ b) ≥ 1− ξi, with
ξi ≥ 0.

• If ξi ∈ [0, 1] the point is well classified but in the region defined by the
margin.

• If ξi > 1 the point is misclassified.

The margin is called flexible margin.
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3.5 Optimization problem with relaxed constraints

In order to avoid too large margins, we penalize large values for the slack
variable ξi.

The primal optimization problem is formalized as follows :

Minimize with respect to (w, b, ξ) 1
2∥w∥

2 + C
∑n

i=1 ξi such that

yi (⟨w, xi⟩+ b) ≥ 1− ξi ∀ i
ξi ≥ 0

Remarks :

• C > 0 is a tuning parameter of the SVM algorithm. It will determine
the tolerance to misclassifications. If C increases, the number of misclas-
sified points decreases, and if C decreases, the number of misclassified
points increases. C is generally calibrated by cross-validation.

Exercise. — Write the Lagrangian, the dual problem, and the KKT conditions.

Karush-Kuhn-Tucker conditions :

• 0 ≤ α∗
i ≤ C ∀i = 1 . . . n.

• yi (⟨w∗, xi⟩+ b∗) ≥ 1− ξ∗i ∀i = 1 . . . n.

• α∗
i (yi (⟨w∗, xi⟩+ b∗) + ξ∗i − 1) = 0 ∀ i = 1 . . . n.

• ξ∗i (α
∗
i − C) = 0.

As previously, we obtain the following classification rule:

f̂(x) = 1⟨w∗,x⟩+b∗≥0 − 1⟨w∗,x⟩+b∗<0,

with

• w∗ =
∑n

i=1 α
∗
i xiyi,

• b∗ = − 1
2 {minyi=1⟨w∗, xi⟩+ minyi=−1⟨w∗, xi⟩}.

We have here two types of support vectors (xi such that α∗
i > 0) :

• The support vectors for which the slack variables are equal to 0. They are
located on the border of the region defining the margin.

• The support vectors for which the slack variables are not equal to 0: ξ∗i >
0 and in this case α∗

i = C.

For the vectors that are not support vectors, we have α∗
i = 0 and ξ∗i = 0.

Figure 5.2: Support Vectors in the non separable case

We have assumed in this chapter that the classes are (nearly) linearly sep-
arable. This assumption is often unrealistic, and we will see in the Chapter 6
how to extend the SVM classifiers to a more general setting. Moreover, we fo-
cused here on classification problems but procedures based on support vector
for regression have also been proposed and will be presented in Chapter 6.
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Chapter 6

Kernel methods: Support Vector Machines and Support
Vector Regression

1 Introduction
In Chapter 5, we have studied linear SVM. The assumption was that the

training set is nearly linearly separable. In most cases, this assumption is not
realistic.

In this case, a linear SVM leads to bad performances and a high number of
support vectors. We can make the classification procedure more flexible by
enlarging the feature space and sending the entries {xi, i = 1 . . . n} in an
Hilbert space H, with high or possibly infinite dimension, via a function ϕ,
and we apply a linear SVM procedure on the new training set {(ϕ(xi), yi), i =
1 . . . n}. The space H is called the feature space. This idea is due to Boser,
Guyon, Vapnik (1992).
In Figure 6.1, setting ϕ(x) = (x21, x

2
2, x1, x2), the training set becomes linearly

separable in R4, and a linear SVM is appropriate.

Figure 6.1: Non linearly separable training set
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2 The kernel trick
A natural question arises: how can we choose H and ϕ ? In fact, we do not

chooseH and ϕ but a kernel .
The classification rule is

f̂(x) = 1∑
yiα∗

i (⟨ϕ(xi),ϕ(x)⟩+b∗)≥0 − 1∑
yiα∗

i (⟨ϕ(xi),ϕ(x)⟩+b∗)<0,

where the α∗
i ’s are the solutions of the dual problem in the feature spaceH:

Maximizing θ(α) =
∑n

i=1 αi − 1
2

∑n
i,j=1 αiαjyiyj⟨ϕ(xi), ϕ(xj)⟩

s. t.
∑n

i=1 αiyi = 0 and 0 ≤ αi ≤ C ∀i.

It is important to notice that the final classification rule in the feature
space depends on ϕ only through scalar products of the form ⟨ϕ(xi), ϕ(x)⟩ or
⟨ϕ(xi), ϕ(xj)⟩.
The only knowledge of the function k defined by k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩
allows to define the SVM in the feature space H and to derive a classification
rule in the space X . The explicite computation of ϕ is not required.

DEFINITION 15. — A function k : X × X → R such that k(x, x′) =
⟨ϕ(x), ϕ(x′)⟩ for a given function ϕ : X → H is called a kernel.

A kernel is generally more easy to compute than the function ϕ that returns
values in a high dimensional space. For example, for x = (x1, x2) ∈ R2,
ϕ(x) = (x21,

√
2x1x2, x

2
2), and k(x, x′) = ⟨x, x′⟩2.

Let us now give a property to ensure that a function k : X ×X → R defines a
kernel.

PROPOSITION 7. — Mercer condition If the function k : X × X → R is
continuous, symmetric, and if for all finite subset {x1, . . . , xk} inX , the matrix

(k(xi, xj))1≤i,j≤k is positive definite:

∀c1, . . . , ck ∈ R,
k∑

i,j=1

cicjk(xi, xj) ≥ 0,

then, there exists an Hilbert space H and a function ϕ : X → H such that
k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. The space H is called the Reproducing Kernel
Hilbert Space (RKHS) associated to k.
We have:

1. For all x ∈ X , k(x, .) ∈ H where k(x, .) : y 7→ k(x, y).

2. Reproducing property:

h(x) = ⟨h, k(x, .)⟩H for all x ∈ X and h ∈ H.

Let us give some examples. The Mercer condition is often hard to verify but
we know some classical examples of kernels that can be used. We assume that
X = Rp.

• Linear kernel : k(x, x′) = ⟨x, x′⟩.

• p degree polynomial kernel : k(x, x′) = (1 + ⟨x, x′⟩)p.

• Gaussian kernel (RBF): k(x, x′) = e−
∥x−x′∥2

2σ2 . ϕ returns values in a
infinite dimensional space.

• Laplacian kernel : k(x, x′) = e−
∥x−x′∥

σ .

• Sigmoid kernel : k(x, x′) = tanh(κ⟨x, x′⟩ + θ) (this kernel is not
positive definite).
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By way of example, let us precise the RKHS associated with the Gaussian
kernel.

PROPOSITION 8. — For any function f ∈ L1(Rp) ∩ L2(Rp) and ω ∈ Rp, we
define the Fourier transform

F [f ](ω) =
1

(2π)d/2

∫
Rp

f(t)e−i⟨ω,t⟩dt.

For any σ > 0, the functional space

Hσ = {f ∈ C0(Rp) ∩ L1(Rp) such that
∫
Rp

|F [f ](ω)|2eσ
2|ω|2/2dω < +∞}

endowed with the scalar product

⟨f, g⟩Hσ
= (2πσ2)−d/2

∫
Rp

F [f ](ω)F [g](ω)eσ
2|ω|2/2dω,

is the RKHS associated with the Gaussian kernel k(x, x′) = e−
∥x−x′∥2

2σ2 .

Indeed, for all x ∈ Rp, the function k(x, .) belongs toHσ and we have

⟨h, k(x, .)⟩Hσ = F−1[F [h]](x) = h(x).

The RKHS Hσ contains very regular functions, and the norm ∥h∥Hσ controls
the smoothness of the function h. When σ increases, the functions of the
RKHS become smoother. See A. Smola and B. Scholkopf [30] for more
details on RKHS.

We have seen some examples of kernels. One can construct new ker-
nels by aggregating several kernels. For example let k1 and k2 be two kernels

and f a function Rp → R, ϕ : Rp → Rd′
, B a positive definite matrix, P a

polynomial with positive coefficients and λ > 0.

The functions defined by k(x, x′) = k1(x, x
′) + k2(x, x

′), λk1(x, x′),
k1(x, x

′)k2(x, x
′), f(x)f(x′), k1(ϕ(x), ϕ(x

′)), xTBx′, P (k1(x, x
′)), or

ek1(x,x
′) are still kernels.

We have presented examples of kernels for the case where X = Rp but a
very interesting property is that kernels can be defined for very general input
spaces, such as sets, trees, graphs, texts, DNA sequences ...

3 Minimization of the convexified empirical
risk

The ideal classification rule is the one which minimizes the risk L(f) =
P(Y ̸= f(X)), we have seen that the solution is the Bayes rule f∗. A classical
way in nonparametric estimation or classification problems is to replace the
risk by the empirical risk and to minimize the empirical risk:

Ln(f) =
1

n

n∑
i=1

1Yi ̸=f(Xi).

In order to avoid overfitting, the minimization is restricted to a set F :

f̂ = argminf∈FLn(f).

The risk of f̂ can be decomposed in two terms:

0 ≤ L(f̂)− L(f∗) = min
f∈F

L(f)− L(f∗) + L(f̂)−min
f∈F

L(f).

The first term minf∈F L(f)− L(f∗) is the approximation error, or bias term,
the second term L(f̂) − minf∈F L(f) is the stochastic error or variance
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term. Enlarging the class F reduces the approximation error but increases
the stochastic error.
The empirical risk minimization classifier cannot be used in practice because
of its computational cost, indeed Ln is not convex. This is the reason why we
generally replace the empirical misclassification probability Ln by some con-
vex surrogate, and we consider convex classes F . We consider a loss function
ℓ, and we require the condition ℓ(z) ≥ 1z<0, which will allow to give an upper
bound for the misclassification probability; indeed

E(ℓ(Y f(X))) ≥ E(1Y f(X)<0) = P(Y ̸= f(X)).

Classical convex losses ℓ are the hinge loss ℓ(z) = (1 − z)+, the exponential
loss ℓ(z) = exp(−z), the logit loss ℓ(z) = log2(1 + exp(−z)).

Let us show that SVM are solutions of the minimization of the convexified
(with the hinge loss) and penalized empirical risk. For the sake of simplicity,
we consider the linear case.

We first notice that the following optimization problem:

Minimizing 1
2∥w∥

2 + C
∑n

i=1 ξis. t.
{
yi (⟨w, xi⟩+ b) ≥ 1− ξi ∀ i
ξi ≥ 0

is equivalent to minimize

1

2
∥w∥2 + C

n∑
i=1

(1− yi (⟨w, xi⟩+ b))+ ,

or equivalently

1

n

n∑
i

(1− yi (⟨w, xi⟩+ b))+ +
1

2Cn
∥w∥2.

γ(w, b, xi, yi) = (1− yi (⟨w, xi⟩+ b))+ is a convex upper bound of the

empirical risk 1yi(⟨w,xi⟩+b)<0 with the hinge loss.

Hence, SVM are solutions of the minimization of the convexified empirical
risk with the hinge loss ℓ plus a penalty term. Indeed, SVM are solutions of

argminf∈F
1

n

n∑
i=1

ℓ(yif(xi)) + pen(f),

where
F = {⟨w, x⟩+ b, w ∈ Rp, b ∈ R}

and

∀f ∈ F , pen(f) =
1

2Cn
∥w∥2.
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4 Support Vector Regression
Although the framework of the chapter is classification, let us mention that

kernel methods can also be used for regression function estimation.

Suppose we have a training sample {(x1, y1), . . . , (xn, yn)} ∈ (X × R)n,
where X denotes the space of the inputs (for example X = Rp). The ε support
vector regression, introduced by Vapnik (1995) aims to find a function f such
that for all i, the deviation between f(xi) and yi is at most ε, and such that, at
the same time, f is as flat as possible. Let us first consider the case of linear
predictors :

f(x) = ⟨w, x⟩+ b, with x ∈ X , b ∈ R.

Flatness means here that ∥w∥ is small. This leads to the convex optimization
problem :

Minimize 1
2∥w∥

2

under the constraints, for all i{
yi − (⟨w, xi⟩+ b) ≤ ε
−yi + (⟨w, xi⟩+ b) ≤ ε

Note that here, we do not care of errors less than ε, but we do not accept
errors greater than ε. The tacit assumption is that the above problem admits
a solution. To be more general, we want to allow some errors. Like for
the classification problem, we introduce slack variables ξi, ξ′i to overcome
possible unfeasible constraints in the previous optimization problem. This
leads to the following formulation :

Minimize
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ′i) (6.1)

under the constraints, for all i yi − (⟨w, xi⟩+ b) ≤ ε+ ξi
−yi + (⟨w, xi⟩+ b) ≤ ε+ ξ′i

ξi, ξ
′
i ≥ 0

Exercise. — Prove that this optimization problem is equivalent to the mini-
mization of

1

2
∥w∥2 + C

n∑
i=1

ℓε(yi, f(xi)),

where ℓε is the so-called ε-insensitive loss function defined by

ℓε(y, y
′) = 0 if |y − y′| ≤ ε

= |y − y′| − ε otherwise .

Draw a picture to represent the support vector regression problem in the linear
case.

In most cases, the optimization problem 6.1 can be solved more easily in its
dual formulation. Moreover, like for classification problems, the dual formu-
lation allows to extend easily the support vector regression to nonlinear func-
tions. The Lagrangian is

L(w, b, ξ, ξ′, η, η′, α, α′) =
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ′i)−
n∑

i=1

(ηiξi + η′iξ
′
i)

−
n∑

i=1

αi(ε+ ξi − yi + ⟨w, xi⟩+ b)−
n∑

i=1

α′
i(ε+ ξ′i + yi − ⟨w, xi⟩ − b),

with η, η′, α, α′ the Lagrange multipliers, ηi, η′i, αi, α
′
i ≥ 0.

The cancellation of the partial derivatives with respect to the pri-
mal variables ∂L

∂w (w, b, ξ, ξ′, η, η′, α, α′), ∂L
∂b (w, b, ξ, ξ

′, η, η′, α, α′) and
∂L

∂ξ
(′)
i

(w, b, ξ, ξ′, η, η′, α, α′) leads to the following dual problem.
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Dual problem. Show that the dual problem can be formulated as follows :

Maximize −1

2

n∑
i,j=1

(αi − α′
i)(αj − α′

j)⟨xi, xj⟩

−ε
n∑

i=1

(αi + α′
i) +

n∑
i=1

yi(αi − α′
i)

subject to
n∑

i=1

(αi − α′
i) = 0 and 0 ≤ αi, α

′
i ≤ C ∀i.

Karush-Kuhn-Tucker conditions :

• α∗
i (ε+ ξ∗i − yi + ⟨w∗, xi⟩+ b∗) = 0

• (α′
i)

∗(ε+ (ξ′i)
∗ + yi − ⟨w∗, xi⟩ − b∗) = 0

• ξ∗i (C − α∗
i ) = 0, (ξ′i)

∗(C − (α′
i)

∗) = 0

Exercise. — Draw a picture similar to Figure 5.2 to show the support vectors
for the regression problem.

As previously, only the scalar product ⟨xi, xj⟩ are involved in the solution,
allowing easily to extend to nonlinear regression functions.

5 Kernel Regression Least Square
We present here another regression method based on kernels : the Kernel

Regression Least Square procedure. It is based on a penalized least square
criterion. Let (Xi, Yi)1≤i≤n the observations, with Xi ∈ Rp, Yi ∈ R. We
consider a positive definite kernel k defined on Rp:

k(x,y) = k(y,x);

n∑
i,j=1

cicjk(Xi,Xj) ≥ 0.

We are looking for a predictor of the form

f(x) =

n∑
i=1

cjk(Xj ,x), c ∈ Rn.

Let us denote by K the matrix defined by Ki,j = k(Xi,Xj). The KRLS
method consists in minimizing for f on the form defined above the penalized
least square criterion

n∑
i=1

(Yi − f(Xi))
2 + λ∥f∥2K ,

where

∥f∥2K =

n∑
i,j=1

cicjk(Xi,Xj).

Equivalently, we minimize for c ∈ Rn the criterion

∥Y −Kc∥2 + λc′Kc.

If K is invertible, there exists an explicit solution

ĉ = (K + λIn)
−1Y,

which leads to the predictor

f̂(x) =

n∑
j=1

ĉjk(Xj ,x).

Ŷ = Kĉ.
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Let us denote by X the (n, p) matrix with ith line the vector Xi ∈ Rp. The
matrix K = XX′ corresponds to the scalar product kernel: k(Xi,Xj) =
⟨Xi,Xj⟩. In this case, we recover a linear predictor

ĉ = (XX′ + λIn)
−1Y,

f̂(x) =

n∑
j=1

ĉj⟨Xj ,x⟩.

For polynomial or Gaussian kernels for example, we obtain non linear predic-
tors. As for SVM, an important interest of this method is the possibility to be
generalized to complex predictors such as text, graphs, DNA sequences .. as
soon as one can define a kernel function on such objects.

6 Conclusion
• Using kernels allows to delinearize classification algorithms by mapping
X in the RKHS H with the map x 7→ k(x, .). It provides nonlinear
algorithms with almost the same computational properties as linear ones.

• SVM have nice theoretical properties, cf. Vapnik’s theory for empirical
risk minimization [36].

• The use of RKHS allows to apply to any setX (such as set of graphs, texts,
DNA sequences ..) algorithms that are defined for vectors as soon as we
can define a kernel k(x, y) corresponding to some measure of similarity
between two objects of X .

• Important issues concern the choice of the kernel, and of the tuning pa-
rameters to define the SVM procedure.

• Note that SVM can also be used for multi-class classification problems
for example, one can built a SVM classifier for each class against the
others and predict the class for a new point by a majority vote.

• Kernels methods are also used for non supervised classification (kernel
PCA), and for anomaly detection (One-class SVM).
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Chapter 7

Classification and Regression Trees

1 Introduction
The recursive partitioning or segmentation methods were first introduced in

the 1960’s. The method studied in this course was presented in a paper by
Breiman et al [8] in 1984 under the acronym of CART for Classification and
Regression Trees. As indicated by its name, this method can be used either
for regression or for classification. The CART algorithm is a non parametric
method to build estimators in a multidimensional framework. The method,
based on trees, relies on a partition of the space of input variables. We then
infer a simple model (constant piecewise functions in regression and a single
class in classification) on each element of the partition. The obtained solutions
can be represented in a graphic with a tree that is very easy to interpret. The
trees are based on a recursive sequence of division rules or splits, each of them
based on a single explanatory variable.

Figure 1 shows an illustrative example of a classification tree. The variables
Age, Income and Sex are used to partition the observations according to the
tree structure. All the observations are gathered at the root of the tree then each
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Figure 7.1: Elementary example of classification tree.
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division or cut separates each node into two child nodes more homogeneous
than the parent node in the sense of a criterion to be specified and depending
on the type of the variable Y that we have: quantitative or qualitative.

A first very simple and natural non parametric procedure in supervised re-
gression or classification is the k-Nearest Neighbors (k-NN) method. Given a
leaning sample {(X1, Y1), . . . , (Xn, Yn)} in X × Y , we want to predict the
output Y associated to a new entry x. For this, it seems natural to build the
predictor from the observations in the training sample that are "close" to x. We
consider a distance d on X . We fix an integer k and we retain the k nearest to
x observations {X(1), . . . ,X(k)} and the associated outputs {Y(1), . . . , Y(k)}.
In a regression context, the prediction at point x is obtained from the mean of
the observations {Y(1), . . . , Y(k)}while in classification we consider a majority
vote. The choice of k is of course crucial. A too small value leads to overfitting
(small bias but high variance) while a large value of k may lead to underfitting
(small variance but probably high bias).

CART will use the same idea of local mean or majority vote, but the cell in
X that is used to predict at point x is obtained from a more sophisticated way
than simply considering the k-Nearest Neighbors of x in the learning sample.
It will also take into account the values of the Yi’s. When partitioning ends,
each terminal node of the complete tree becomes a leaf to which is assigned a
value if Y is quantitative and a class if Y is qualitative.

The last step consists in pruning the complete tree, which corresponds to a
model selection procedure in order to reduce the complexity and avoid over-
fitting. Since Breiman et al. (1984) [8] have introduced this algorithm, CART
have been very successful with the major advantage of an easy interpretation
of the trees. The drawback is that these models are particularly unstable (not
robust), very sensitive to fluctuations in the training sample. Furthermore,
for quantitative explanatory variables, the construction of a tree constitutes
a dyadic partitioning of space (see Figure 7.2). The model thus defined is, by
construction, discontinuous which may be a problem if the phenomenon to be

Figure 7.2: Source: Hastie, Tibshirani, Friedman (2019), “The elements of
statistical learning”

modeled is regular.

These two aspects or weaknesses of CART: instability and irregularities are
at the origin of the success of the methods of aggregation leading to Random
Forests proposed by Breiman (2001) [7], that will be the topic of next chapter.

2 Construction of a maximal binary tree
We observe p quantitative or qualitative explanatory variables Xj and a

variable to predict Y which is either qualitative with m modalities {Tℓ; ℓ =
1 . . . ,m} or real quantitative, on a sample of n individuals.

The construction of a binary discrimination tree (cf. Figure 1) consists in
determining a sequence of nodes.

• A node is defined by the choice of a variable among the p explanatory
variables and of a division which induces a partition into two classes.
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Implicitly, to each node corresponds a subset of the initial sample to which
a dichotomy is applied.

• A division is defined by a threshold value if the selected variable is quan-
titative or a split into two groups of modalities if the variable is qualitative.

• At the root, the initial node corresponds to the whole sample; the proce-
dure is then iterated over each of the subsets.

The algorithm requires:

1. the definition of a criterion allowing to select the best division among all
admissible ones for the different variables;

2. a rule allowing to decide that a node is terminal: it thus becomes a leaf;

3. the predicted value (class or real value) associated to a leaf.

2.1 Division criteria

A division is said to be admissible if the two corresponding son nodes are
not empty. If the explanatory variable is a quantitative variable with m possi-
ble values (or qualitative but ordinal with m modalities), it provides (m − 1)
possible binary divisions. If it is qualitative but not ordinal, the number of
divisions becomes 2(m−1) − 1.

Warning : the algorithm tends to favor the selection of explanatory variables
with many modalities because they offer more flexibility in the construction of
two subgroups. These variables should be used carefully (e.g. the postal code)
because they are likely to favor overfitting; it is often preferable to drastically
reduce the number of modalities (e.g. geographic region or urban zone vs. rural
zone) by merging modalities, which is classical in multiple correspondence
analysis for example.

The division criterion is based on the definition of an heterogeneity func-
tion presented in the next section. The objective is to divide the observations
which compose a node into two more homogeneous groups with respect to the
variable to explain Y .

Dividing the node κ creates two son nodes. For simplicity, they are denoted
κL (left node) and κR (right node).

Among all the admissible divisions of the node κ, the algorithm retains the
one which minimizes the sum of the heterogeneities of the son nodes DκL

+
DκR

. This amounts to solving at each node κ:

max
{divisions of Xj ;j=1,p}

Dκ − (DκL
+DκR

)

Graphically, the length of each branch can be represented proportionally to the
reduction in heterogeneity induced by the division.

2.2 Stopping rule

The growth of the tree stops at a given node, which therefore becomes a
terminal node also called a leaf, when it is homogeneous (all the individuals
have the same value for Y ) or when there is no longer an admissible partition
or ( to avoid unnecessarily fine splittings) when the number of observations it
contains is less than some prescribed value (generally chosen between 1 and
5).

2.3 Assignment

When Y is quantitative, the predicted value associated to a leaf is the average
of the values of the Yi’s among the observations belonging to this terminal
node. In the qualitative case, each leaf or terminal node is assigned to a class
Tℓ of Y by a majority vote.
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3 Homogeneity criterion

3.1 Constructing regression trees

For a given region (node) κ with cardinality |κ|, we define the empirical
variance at node |κ| by

Vκ =
1

|κ|
∑
i∈κ

(Yi − Y κ)
2,

where Y κ = 1
|κ|
∑

i∈κ Yi.
The heterogeneity at the node κ is then defined by

Dκ =
∑
i∈κ

(Yi − Y κ)
2 = |κ|Vκ

Splitting procedure: For a variable xj , and a split candidate t, define left
and right subregions

κL(t, j) = {Xj ≤ t}, κR(t, j) = {Xj > t}.

Find (t, j) in order to minimize

J(t, j) = DκL(t,j) +DκR(t,j),

or equivalently to maximize the decrease in heterogeneity

Dκ − J(t, j)

Figure 7.3 provides an illustration in dimension 1.
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Figure 7.3: A regression tree in dimension 1
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3.2 Constructing classification trees

We use the same procedure, with specific notions of heterogeneity mea-
sures in classification. Two main measures are considered to define the het-
erogeneity of node κ.
For ℓ = 1, . . . ,m, let pℓκ denote proportion of the class Tℓ of Y in the node κ.

• The Cross-Entropy or deviance is defined by

Eκ = −
m∑
ℓ=1

pℓκ log(p
ℓ
κ).

The heterogeneity at the node κ is then defined by

Dκ = −|κ|
m∑
ℓ=1

pℓκ log(p
ℓ
κ).

The cross-entropy is maximal in ( 1
m , . . . ,

1
m ), minimal in

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)
(by continuity, we assume that 0 log(0) = 0).

• The Gini concentration is defined by

Gκ =

m∑
ℓ=1

pℓκ(1− pℓκ),

which leads to the heterogeneity at the node κ

Dκ = |κ|
m∑
ℓ=1

pℓκ(1− pℓκ).

An illustration of these two heterogeneity measures in presented in Figure
7.4 in the simple case where we have two classes (m = 2).
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Figure 7.4: Heterogeneity criteria for classification. Both are minimal for p =
0 or p = 1, and maximal for p = 1/2.

4 Pruning the maximal tree
The previous construction leads to a maximal tree Amax (depending on the

stopping rule) with K leaves, that is generally very unstable and heavily de-
pends on the training sample: it is overfitted. We have to build a more parsi-
monious, and hence more robust, prediction model. This will be achieved by
pruning the maximal tree. We have to find a compromise between the trivial
tree reduced to the root (which is underfitted) and the maximal tree Amax. The
prediction performances of various trees could be compared on a validation
set. All subtrees of the maximal tree are admissible, but they are generally
too many to be all considered. To get around this problem, Breiman et al.
(1984)[8] have proposed an algorithm, based on a penalized criterion, to build
a nested sequence of subtrees of the maximal tree. One then chooses, among
this sequence, the optimal tree minimizing a generalization error.
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4.1 Construction of Breiman’s subsequence

For a given tree A, we denote by |A| its number of leaves or terminal nodes
κ. The value of |A| is a measure of the complexity of the tree A. We define the
fit quality of a tree A by

D(A) =

|A|∑
κ=1

Dκ

where Dκ is the heterogeneity of the terminal node κ of the tree A. The con-
struction of Breiman’s subsequence relies on the penalized criterion

Critγ(A) = D(A) + γ × |A|.

For γ = 0, Amax minimizes Critγ(A) = D(A). When γ increases, a
pruned tree will be preferable to the maximal tree. More precisely, Breiman’s
subsequence is obtained as follows:

• Let A1 be the subtree of Amax (maximal tree) obtained by pruning the
nodes κ such that D(κ) = D(κL) +D(κR).

• For each node in A1, D(κ) > D(κL) + D(κR) and D(κ) > D(Aκ
1 )

where Aκ
1 is the subtree of A1 from node κ.

• For γ small enough, for all nodes κ of A1, D(κ) + γ > D(Aκ
1 ) + γ|Aκ

1 |.
This holds while, for all nodes κ of A1,

γ < (D(κ)−D(Aκ
1 ))/(|Aκ

1 | − 1) = s(κ,Aκ
1 ).

We then define

γ1 = inf
κ node of A1

s(κ,Aκ
1 ) = s(κ∗, Aκ∗

1 ).

• Critγ1(κ
∗) = Critγ1(A

κ∗

1 ) and, for γ = γ1, the node κ∗ becomes
preferable to the subtree Aκ∗

1 .

• A2 is the subtree obtained by pruning the branches from the nodes κ∗

minimizing s(κ,Aκ
1 ): this gives the second tree in the sub sequence.

• This process is iterated.

We obtain a nested sequence of sub trees

Amax ⊃ A1 ⊃ A2 ⊃ · · ·AK

where AK is the trivial tree, reduced to the root, gathering all the training
sample.

4.2 Determination of the optimal tree

Once the nested sequence of trees is obtained, we have to determine an op-
timal one, minimizing the generalization error. As explained in Chapter 2, this
error can be estimated on a validation set. More often, V -fold cross-validation
is used. In this case, the implementation of the V -fold cross-validation is par-
ticular since for each of the V subsamples composed of V −1 folds, we obtain a
different sequence of trees. In fact, the aim of cross-validation is to determine
the optimal value of the penalization parameter γ resulting from Breiman’s
subsequence produced with the whole training set. We then choose the tree
associated with this optimal value of γ. In the cross-validation procedure, for
each value of γ produced by Breiman’s subsequence, the mean error is com-
puted for the V subtrees . This leads to an optimal value of γ, minimizing the
prediction error estimated by cross-validation. We then retain the tree corre-
sponding to this value of γ in Breiman’s subsequence.

Algorithm 3 describes the selection of an optimal tree :
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Algorithm 3 Selection of an optimal tree by cross-validation
Construction of the maximal tree Amax
Construction of Breiman’s sequence A1 . . . AK of nested trees associated
with the sequence of penalization parameters (γ1, . . . , γK)
for v = 1, . . . , V do

For each sample (composed of V − 1 folds), estimation of the se-
quence of trees associated with the sequence of penalization parameters
(γ1, . . . , γK).

Estimation of the error on the validation fold.
end for
For each value (γ1, . . . , γK), computation of the means of these errors.
Determination of the optimal value γOpt, corresponding to the minimal error
mean.
Retain the tree corresponding to γOpt in Breiman’s subsequence
A1, . . . , AK .

4.3 Practical remarks

Misclassification cost

For some classification problems, the consequences of misclassification may
be more serious from some classes than for others. For example, if tap water
is infected by some pollutant dangerous for health, it is worse to predict that
the water is drinkable if it is not than vice versa. To account this problem, we
define a m × m loss matrix L (m being the number of classes), where Lℓℓ′

denotes the loss incurred for classifying an observation from class ℓ into the
class ℓ′. Lℓℓ = 0 for all ℓ. For binary classification problems, the loss can be
incorporated in the Gini index of cross-entropy by weighting the observations
in class ℓ by Lℓℓ′ . This can also be used for multi-class classification if Lℓℓ′

does not depend on ℓ′. In a terminal node κ, we classify to the class minimizing
the loss:

k̂(κ) = argmink

m∑
ℓ=1

Lℓkp
ℓ
κ.

Missing predictor values

CART is tolerant to missing data. For the prediction phase, assume that the
dataset has some missing predictor values for some (or all) of the variables. In-
stead of discarding observations with missing values, or imputing the missing
values, CART proposes two better strategies. First, for categorical variables,
we can add a category for "missing". The second approach is to construct sur-
rogate variables that will be considered if the value of a variable is missing. We
choose as usual the best predictor and split at one node, the first surrogate is
the second best, and so on.. When an observation is sent down the tree (during
the training or prediction phase), if the value of a predictor is missing at one
node, we use the first surrogate; if this one is missing, we use the second and
so on.. CART is also tolerant to missing data in the learning phase : the data
with missing value for Y or for all the explanatory variables are eliminated,
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the decrease in heterogeneity for each variable and split is computed by using
the associated available observations and the best split is chosen as usual.

Instability of trees

A major drawback of trees is their high variance. They are not robust, in the
sense that a small change in the data can lead to very different sequences of
splits. This is why we have to be careful with the interpretation. This is due
to the hierarchical procedure : an error in the choice of a split in the top of
the tree cannot be corrected below. This instability is the price to pay to have
a simple and interpretable model. We will see in Chapter 8 how to aggregate
trees to reduce the variance of the prediction rule.

Lack of smoothness

In a regression framework, the trees are constant piecewise functions, they
are hence not smooth (not even continuous). This may be a problem if the
phenomenon to model is regular. More regular algorithms, such as the MARS
procedure have been developed (see Hastie and al [19]).

5 Application to Ozone data

5.1 Regression tree

A regression tree is estimated to predict ozone concentration. The package
rpart of the software R uses a pruning procedure by cross-validation to op-
timize the penalty parameter. The tree (see Figure 7.5) recovers the important
variables involved in the prediction, but due to the tree structure, this list is not
quite similar to the one obtained in a linear model. We see in particular here the
complexity of the interaction between the deterministic prediction MOCAGE
and the important effect of the temperature in various situations. The residuals
on the test sample of the regression tree have a particular structure since the

Figure 7.5: Ozone: regression tree pruned by cross-validation (R).
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Figure 7.6: Ozone: classification tree pruned by cross-validation (R).

same prediction value is obtained for observation falling in the same terminal
node. This is why we observe a column per leaf.

5.2 Classification tree

A classification tree is estimated (see Figure 7.6) in order to predict a thresh-
old overflow. It is of comparable complexity with the regression tree, but the
variables do not play the same role. The temperature appears here as the "most
important" instead of MOCAGE in the regression tree. Confusion matrices
exhibit the same biases as regression models by omitting a large number of
exceedances.

6 Conclusion
Trees have nice properties : they are easy to interpret, efficient algorithms

exist to prune them, they are tolerant to missing data. All these properties
made the success of CART for practical applications. Nevertheless, CART
algorithm has also important drawbacks : it is highly instable, being not robust
to the learning sample and it also suffers from the curse of dimensionality. The
selected tree only depends on few explanatory variables, which is nice for the
interpretation but trees are often (wrongly) interpreted as a variable selection
procedure, due to their high instability. Moreover, prediction accuracy of a
tree is often poor compared to other procedures. This is why more robust
procedures, based on the aggregation of trees leading to Random Forests have
been proposed . They also have better prediction accuracy. This is the topic of
Chapter 8.
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Chapter 8

Aggregation and Random Forests

1 Introduction
We present in this chapter algorithms based on a random construction of a

family of models: bagging for bootstrap aggregating (Breiman 1996) [6] and
the random forests of Breiman (2001) [7] which proposes an improvement of
bagging specific to models defined by binary trees (CART).

The principle of bagging applies to any modeling method (linear regression,
CART, neural networks..) but are mostly interesting, and significantly reduces
the prediction error, only in the case of unstable models. Thus, the use of this
algorithm makes little sense with linear regression or discriminant analysis. It
is mainly implemented in association with binary trees as a basic models. In
fact, the already underlined instability of trees appears as a property favoring
the reduction of variance by aggregation of these models.

2 Bagging

2.1 Principle and algorithm

Let Y be a quantitative or qualitative variable, X1, . . . , Xp the explanatory
variables and f̂(x) a predictor, with x = (x1, . . . , xp) ∈ Rp. We denote by n
the number of observations and

Z = {(X1, Y1), . . . , (Xn, Yn)}

a sample with distribution F .

Considering B independent samples denoted {Zb}b=1...B , a predictor by
model aggregation is defined below in the case where the variable to explain
Y is:

• quantitative : f̂B(.) = 1
B

∑B
b=1 f̂Zb

(.) ,

• qualitative : f̂B(.) = argmaxj card
{
b | f̂Zb

(.) = j
}

.

In the first case, it is a simple mean of the results obtained for the models
associated with each sample, in the second case, a majority vote. In the latter
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case, if the model returns probabilities associated with each modality as in the
logistic regression model, it is simple to calculate these probabilities.

The principle is elementary, averaging the predictions of several indepen-
dent models allows to reduce the variance and therefore to reduce the predic-
tion error.

However, it is unrealistic to consider B independent samples. This would
require too much data. These samples are therefore replaced by B bootstrap
samples each obtained by n draws with replacement according to the empirical
measure F̂n. This leads to the following algorithm.

Algorithm 4 Bagging
Let x0 and
Z = {(X1, Y1), . . . , (Xn, Yn)} be a learning sample.
for b = 1 to B do

Draw a bootstrap sample zb of size n with replacement .
Estimate f̂zb

(x0) with the bootstrap sample.
end for
Compute the mean f̂B(x0) = 1

B

∑B
b=1 f̂zb

(x0) or the result of a majority
vote.

Figure 8.1 presents two bootstrap samples and the corresponding models
built with CART algorithm.

However, the B boostrap samples are built on the same learning sam-
ple Z = {(X1, Y1), . . . , (Xn, Yn)} and therefore the estimators f̂zb

(x0) are
not independent. Let us assume that, for all b, E(f̂zb

(x0)) = f(x0),
Var(f̂zb

(x0)) = V (x0) and for all b ̸= b′, Corr(f̂zb
(x0), f̂zb′ (x0)) = ρ(x0).
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Figure 8.1: Two Bootstrap samples and the two corresponding models built
with CART. The point size is proportional to the number of replicates.
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Then, in the regression case, we obtain

E(f̂B(x0)) = f(x0)

Var(f̂B(x0)) = ρ(x0)V (x0) +
(1− ρ(x0))

B
V (x0)

→ ρ(x0)V (x0) as B → +∞

Hence, if the correlation term ρ(x0) is small, the variance of the aggregated
predictor f̂B(x0) is much smaller than the one of a single predictor. This un-
derlines the importance of finding low correlated predictors (f̂zb

(x0))1≤b≤B ,
which is at the core of the Random forests algorithm.

3 Random Forests

3.1 Motivation

In the specific case of binary decision tree models (CART), Breiman (2001)
[7] proposes an improvement of the bagging by adding a random component.
The objective is to make the aggregated trees more independent by adding
randomness in the choice of the variables which are involved in the prediction.
Since the initial publication of the algorithm, this method has been widely
tested and compared with other procedures see Fernandez-Delgado et al. 2014
[14], Caruana et al. 2008 [9]. It becomes in many machine learning articles
the method to beat in terms of prediction accuracy. Theoretical convergence
properties, difficult to study, have been published quite recently (Scornet et
al. 2015) [32]. However, it can also lead to bad results, especially when the
underlying problem is linear.

3.2 Algorithm

The bagging is applied to binary decision trees by adding a random selection
of m explanatory variables among the p variables.

Algorithm 5 Random Forests
Let x0 and
Z = {(X1, Y1), . . . , (Xn, Yn)} a learning sample
for b = 1 to B do

Take a bootstrap sample zb.
Estimate a tree on this sample with randomization of the variables :

the search for each optimal division is preceded by a random selection of a
subset of m predictors.
end for
Calculate the mean estimate f̂B(x0) = 1

B

∑B
b=1 f̂zb

(x0) or the result of a
majority vote.

Parameters of the algorithm

The pruning strategy can, in the case of random forests, be quite elementary.
Indeed, pruned trees may be strongly correlated because they may involve the
same variables appearing to be the most explanatory. In the default strategy of
the algorithm, it is simply the minimum number of observations per leaf which
limits the size of the tree, it is set to 5 by default. We therefore aggregate rather
complete trees, which are considered of low bias but of high variance.

The random selection of a reduced number of m potential predictors at each
stage of the construction of the trees significantly increases the variability by
highlighting other variables. Each tree is obviously less efficient, sub-optimal,
but, united being strength, aggregation ultimately leads to good results. The
number m of variables drawn randomly can, according to the examples, be a
sensitive parameter with default choices are not always optimal :

• m =
√
p in a classification problem,

• m = p/3 in a regression problem.

http://wikistat.fr
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Figure 8.2: 500 bootstrap samples (grey), corresp. predictions with tree, and
their average (bold line). The function to be estimated in dotted blue line.

The iterative evaluation of the out-of-bag error makes it possible to control the
number B of trees in the forest as well as to optimize the choice of m. It is
nevertheless a cross-validation procedure which is preferably used to optimize
m. The Figure 8.2 presents an example of Random Forest regression predictor,
built with B = 500 bootstrap samples.

3.3 Variables importance

Random forests generally have a good accuracy, they are easily imple-
mentable, parallelisable but not easy to interpret like any model built by ag-
gregation, leading to a black-box model. To favor interpretation, indexes of
importance for each explanatory variable have been introduced. This is obvi-

ously all the more useful as the variables are very numerous. Two criteria have
been proposed to evaluate the importance of the variable Xj .

• The first one Mean Decrease Accuracy (MDA) is based on a random per-
mutation of the values of this variable. The more the quality of the pre-
diction, estimated by an out-of-bag error, is degraded by the permutation
of this variable, the more the variable is important. Once the bth tree has
been constructed, the out-of-bag sample is predicted for this tree and the
estimated error is recorded. The values of the jth variable are then ran-
domly permuted in the out-of-bag data sample and the error is computed
again. The decrease in prediction accuracy is averaged over all the trees
and used to assess the importance of the variable Xj in the forest. It is
therefore a global but indirect measure of the influence of a variable on
the quality of forecasts. More formally,

– Consider a variable Xj and denote by Db,n the out-of-bag data set
of the b-th tree and Dj

b,n the same data set where the values of Xj

have been randomly permuted.

– Denote by f̂zb
the b-th tree estimate and

Rn[f̂zb
,D] = 1

|D|
∑

i,(Xi,Yi)∈D

(Yi − f̂zb
(Xi))

2.

– The MDA is defined by

MDA(Xj) =
1

B

B∑
b=1

{Rn[f̂zb
,Dj

b,n]−Rn[f̂zb
,Db,n]}.

• The second variable importance criterion is the Mean Decrease Impurity
(MDI). It is a local criterion, based on the average of the decrease of

http://wikistat.fr
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heterogeneity each time the variable Xj is chosen as a split at some node.
More formally, with previous notations, the MDI of the variable Xj is
defined by

MDI(Xj) =
1

Bn

B∑
b=1

∑
κ∈Tb,j⋆κ=j

[Dκ − (DκL
(t⋆κ, j

⋆
κ) +DκR

(t⋆κ, j
⋆
κ))],

– {Tb, 1 ≤ b ≤ B} is the collection of trees in the forest,
– (t⋆κ, j

⋆
κ) the split retained at node κ :

* j⋆κ corresponds to the optimal variable selected for the split

* t⋆κ corresponds to the optimal threshold along the j⋆κ variable.

Example on ozone data :

Details (from R help file of function importance)
“The first measure [%IncMSE] is computed from permuting OOB data : For

each tree, the prediction error on the out-of-bag portion of the data is recorded
(error rate for classification, MSE for regression). Then the same is done
after permuting each predictor variable. The difference between the two are
then averaged over all trees, and normalized by the standard deviation of the
differences.
The second measure [IncNodePurity] is the total decrease in node impurities

from splitting on the variable, averaged over all trees. For classification, the
node impurity is measured by the Gini index. For regression, it is measured
by residual sum of squares.”

3.4 Implementation

• The randomForest library of R interfaces the original program devel-
oped in Fortran77 by Leo Breiman and Adele Cutler which maintains the
site dedicated to this algorithm.
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Figure 8.3: Variable importance plot, returned by the R function
importance. MDA on the left and MDI on the right.
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• An alternative in R, more efficient in computing time especially with a
large volume of data, consists in using the ranger library.

• The software site Weka developed at Waikato University in New Zealand
offers a version in Java.

• A very efficient and close version of the original algorithm is available in
the Scikit-learn library of Python.

• Another version suitable for big data is available in the MLlib li-
brary of Spark, a technology developed to interface different hardware/-
software architectures with distributed data file management systems
(Hadoop). In addition to the usual parameters : number of trees, max-
imum depth of trees, and number of variables drawn at random to build
a subdivision at each node, this implementation adds two parameters :
subsamplingRate and maxBins, which have a default value. These
parameters play an important role, certainly in drastically reducing the
computation time, but, on the other hand, in restricting the precision of
the estimate. They regulate the balance between computation time and
precision of the estimate as a subsampling in the data would do.

– subsamplingRate =1.0 subsamples as its name suggests before
building each tree. With the default value, it is the classic version of
random forests with B Bootstrap samples of size n but if this rate is
less than 1, smaller samples are drawn. The sample are then more
distinct (or independent) for each tree. The variance is therefore re-
duced (more independent trees) but the bias increases because each
tree is built with a smaller data set.

– maxBins = 32 is the maximum number of categories that are con-
sidered for a qualitative variable or the number of possible values for
a quantitative variable. Only the most frequent modalities of a qual-
itative variable are taken into account, the others are automatically

grouped into a other modality. As previously, the time to deter-
mine a better division is obviously largely influenced by the number
of modalities or even the number of possible values of a quantitative
variable. Reducing the number of possible values is finally another
way of reducing the computation time but it would be appropriate
to guide the groupings of the modalities to avoid misinterpretations.

4 Conclusion
Having become the Swiss Army Knife of learning, Random Forests are used

for different purposes (see the dedicated site) :

• Similarity or proximity between observations : after building each tree,
increment by 1 the similarity or proximity of two observations that are in
the same leaf. Sum on the trees of the forest, normalize by the number of
trees. A multidimensional positioning can represent these similarities or
the matrix of dissimilarities that results from them.

• Detection of multidimensional atypical observations : outliers or novel-
ties that correspond to observations which do not belong to known classes.
A criterion of "abnormality" with respect to a class is based on the pre-
vious notion of proximities of an observation to the other observations of
its class.

• Another algorithm, inspired by Random Forests has been developed for
anomaly detection, it is called isolation forest.

• Random forests are used for the Imputation of missing data.

• Adaptations to take into account censored data to model survival times
correspond to the survival forest algorithm.

http://wikistat.fr
http://www.cs.waikato.ac.nz/ml/weka/
https://spark.apache.org/mllib/
https://math.usu.edu/~adele/forests/
http://wikistat.fr/pdf/st-m-explo-mds.pdf
http://wikistat.fr/pdf/st-m-app-idm.pdf


Chapter 9

Aggregation by boosting algorithms

1 Introduction
Boosting was originally introduced for binary classification problems but it

has been also extended to k class classification and to regression problems.
The main idea is to combine weak classifiers (or regressors) in a way to get a
powerful aggregated procedure. The aggregation allows to reduce the variance
of the single predictors but also their bias (which is a fundamental difference
with the bagging which does not modify the bias). The final prediction rule is
obtained as a linear combination of a recursive sequence of predictors, where
each predictor is an adaptive version of the previous one, given more weight,
in the next estimator, to the observations that are badly adjusted at the previ-
ous step. We first present the most popular boosting algorithm, introduced by
Freund and Schapire [15], called AdaBoost for binary classification.

2 AdaBoost algorithm
Adaboost (or adaptive boosting) is a boosting method introduced by Fre-

und and Schapire [15] to combine several classifiers f1, . . . , fp. It is devoted
to binary classification where the output Y ∈ {−1, 1}. The principle of the
algorithm is to minimize the empirical risk for the exponential loss function
over the linear space F generated by the classifiers f1, . . . , fp. The aim is to
compute

f̂ = argmin
f∈span(f1,...,fp)

{
1

n

n∑
i=1

exp(−Yif(Xi))

}
. (9.1)

Let us recall that it is convenient to consider a convex loss function ℓ satisfy-
ing the condition ℓ(z) ≥ 1z<0, which allows to give an upper bound for the
misclassification probability for the prediction rule given by the sign of f(X).
Indeed

E[ℓ(Y f(X))] ≥ E[1Y f(X)<0] = P(Y ̸= sign(f(X)).
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Classical convex losses ℓ are the hinge loss ℓ(z) = (1− z)+, (used for SVM’s
for example), the exponential loss ℓ(z) = exp(−z), the logit loss ℓ(z) =
log2(1 + exp(−z)).
Since this optimization problem (9.1) is complex, in order to approximate the
solution, Adaboost computes a recursive sequence of predictors f̂m for m =
0, . . .M with

f̂0 = 0

f̂m = f̂m−1 + βmfjm

where (βm, jm) minimizes the empirical risk associated to the exponential loss
function:

(βm, jm) = argmin
β∈R,j=1,...,p

{ 1
n

n∑
i=1

exp(−Yi(f̂m−1(Xi) + βfj(Xi)))}. (9.2)

Hence, at each step, the algorithm looks for the best classifier fjm in the avail-
able collection f1, . . . , fp and the best coefficient βm such that adding βmfjm
to the previous predictor f̂m−1 minimizes the empirical exponential loss.
The final classification rule is given by

f̂ = sign(f̂M ).

M is a parameter of the procedure.
The aim of the following exercise is to compute the solution of (9.2).

Exercise. — We denote

w
(m)
i =

1

n
exp(−Yif̂m−1(Xi))

and we assume that for all j = 1, . . . , p,

errm(fj) =

∑n
i=1 w

(m)
i 1fj(Xi )̸=Yi∑n
i=1 w

(m)
i

∈]0, 1
2
],

(otherwise we change fj into −fj).
Prove that

jm = argmin
j∈{1,...,p}

(errm(fj)) ,

and

βm =
1

2
log

(
1− errm(fjm)

errm(fjm)

)
.

Note that the initial weights are equal for all the observations : w(1)
i = 1/n

for i = 1, . . . , n and that the AdaBoost algorithm then attributes more weights
in the computation of the predictor at step m to the observations for which the
exponential loss exp(−Yif̂m−1(Xi)) of the previous estimator is high.

This leads to the AdaBoost algorithm :

Algorithm 6 AdaBoost
Choose a parameter M .
w

(1)
i = 1/n for i = 1, . . . , n.

for m = 1, . . . ,M do
jm = argmin

j=1,...,p
(errm(fj))

βm = 1
2 log

(
1−errm(fjm )
errm(fjm )

)
w

(m+1)
i = w

(m)
i exp(−Yiβmfjm(Xi)) for i = 1, . . . , n.

end for
f̂M (x) =

∑M
m=1 βmfjm(x).

f̂ = sign(f̂M ).

The introduction of the exponential loss is motivated by computational rea-
sons in the context of a sequentially additive modeling approach: it leads to

http://wikistat.fr
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the simple reweighting AdaBoost algorithm. One can wonder about the rele-
vance of this exponential loss function. The aim of the following exercise is to
show that minimizing the exponential loss (at the population level) leads to the
Bayes classifier. Although this is not true for the empirical loss, this justifies
the use of the exponential loss.

Exercise. — Let

f∗(x) = argmin
f

E
(
e−Y f(X)|X = x

)
.

Prove that

f∗(x) =
1

2
log

(
P(Y = 1|X = x)

P(Y = −1|X = x)

)
.

Deduce that sign(f∗(x)) corresponds to the Bayes classifier.

3 Boosting as stagewise additive modelling
The boosting relies on an additive model based on a set of elementary basis

functions of the form

f̂M (x) =

M∑
m=1

βmb(x, γm),

where (βm)1≤m≤M are real coefficients and x 7→ b(x, γ) is a function of the
multivariate input variable x, depending on a set of parameters γ. This can be
a weak classifier for classification problem, a quite simple tree for regression
or classification purposes, a perceptron with a single hidden layer ... Given a
loss function ℓ, the goal is to solve the following optimization problem:

min
{βm,γm}M

m=1

n∑
i=1

ℓ(Yi,

M∑
m=1

βmb(Xi, γm)). (9.3)

For classification purposes, the loss function ℓ can be the exponential loss, the
cross-entropy (or deviance), or the logit loss. In the regression case, we may
consider the L2 loss, leading to the L2 boosting. Sometimes the L1 loss is
prefered since it is more robust (less sensitive to outliers). The Huber loss
combines the advantages of the L2 loss (it is differentiable) and the L1 loss
(robustness). It is defined by

ℓ(y, y′) = (y − y′)21|y−y′|≤δ + (2δ|y − y′| − δ2)1|y−y′|>δ,

where δ is a positive parameter.

The optimization problem (9.3) being generally complex to solve, a step by
step additive procedure allows to approximate the solution. This leads to the
stagewise additive model, where we solve at each step

f̂0 = 0

f̂m = f̂m−1 + βmb(x, γm)

with

(βm, γm) = argmin
(β,γ)

{
1

n

n∑
i=1

ℓ(Yi, f̂m−1(Xi) + βb(Xi, γ))

}
. (9.4)

The predictor f̂m(.) is an improvement of the one obtained at the previous
step. AdaBoost is a particular case of stagewise adaptive modeling with the
exponential loss. Let us now consider the particular case of trees.

A tree with J leaves can be expressed as

b(x, γ) =

J∑
j=1

λj1x∈Rj
,

http://wikistat.fr
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with γ = ({Rj , λj}, j = 1 . . . J).
A boosting tree model is a sum of such trees

f̂M (x) =

M∑
m=1

b(x, γm)

where f̂0 = 0, and we solve at step m :

γm = argmin
γ

{
1

n

n∑
i=1

ℓ(Yi, f̂m−1(Xi) + b(Xi, γ))

}
, (9.5)

γm = ({Rj,m, λj,m}, j = 1 . . . J) are the region sets and constants corre-
sponding to the next tree. This problem is generally hard to solve but in some
cases, it simplifies. In particular, if we consider a regression problem with the
L2 loss, then one can notice that this problem is equivalent to finding a single
tree to predict the residuals Yi − f̂m−1(Xi) .

4 Gradient Boosting Models (GBM)
In the same spirit of stagewise additive modeling, Friedman [16] proposed

an algorithm called MART for Multiple Additive Regression Trees, general-
ized as Gradient Boosting Models. This algorithm is based on a differentiable
loss function ℓ. The principle is still to construct a stagewise additive model.
Each model, added to the linear combination, is a step to a better solution. The
main innovation is that this step is done in the direction of the gradient of the
loss function (assumed to be differentiable) , this gradient being itself approxi-
mated by a regression tree. The algorithm is described below in the regression
case. It can also be adapted for classification.

Note that, in the case of the L2 loss, setting ℓ(y, y′) = 1
2 (y − y

′)2, we have

−rim = Yi − f̂m−1(Xi),

Algorithm 7 Gradient Tree Boosting for regression

Initialize f̂0(x) = argminγ
∑n

i=1 ℓ(Yi, γ) for all x.
for m = 1 toM do

Compute rim = −
[
∂ℓ(Yi,f(Xi))

∂f(Xi)

]
f=f̂m−1

; i = 1, . . . , n

Adjust a regression tree δm to the data (Xi, rim)i=1,...,n. The terminal
regions are denoted (Rjm, j = 1, . . . Jm).

Compute γjm = argmin
γ

∑
Xi∈Rjm

ℓ(Yi, f̂m−1(Xi) + γ).

Update f̂m(x) = f̂m−1(x) +
∑Jm

j=1 γjm1x∈Rjm
.

end for
Output f̂(x) = f̂M (x).

which means that the negative gradient is simply equal to the residuals. In this
case, the Gradient tree boosting is equivalent to the L2 boosting trees presented
in the previous section. For other losses, such that the Huber loss, this leads
to new procedures. In a classification problem, we can consider for the loss
function ℓ the deviance or the exponential loss.
Generally, the size Jm of the tree at step m is taken to be constant for all m.
This constant size J is a parameter of the procedure.

5 Regularization
For boosting procedures, the number of iterations M has to be calibrated.

Each iteration reduces the training error, hence, large values of M lead to
overfitting. A convenient manner to calibrate this parameter is to estimate the
generalization error on a validation sample, as a function of M and to choose
the value of M minimizing this validation error (this procedure is called early
stopping.

http://wikistat.fr
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Another way to avoid overfitting is to use a shrinkage method. In the case of
boosting procedures, this corresponds to scaling the contribution of each tree
by a factor 0 < ν < 1, which leads to the formula

f̂m(x) = f̂m−1(x) + ν

Jm∑
j=1

γjm1x∈Rjm

in Algorithm 7. This parameter ν corresponds to the learning rate of the
gradient descent procedure. Reducing the value of ν increases the training
error, and increases the number of iterations M . It seems that the best strategy
is to choose a small value for ν (ν < 0.1) and to calibrateM by early stopping,
even if this has a computational cost. Generally, small trees (small value of J)
with no pruning are used at each step of the boosting algorithm, which limits
the computational cost.

It is also common to use subsampling, leading to a Stochastic Gradient
Boosting procedure. At each iteration, a fraction η of the training sample is
drawn without replacement, and only this subsample is used to estimate the
next tree. This allows to reduce the computing time but also produces more
accurate models, since, like for the bagging, the successive trees are less depen-
dent, which allows to reduce the variance of the final estimator. Note that this
procedure has also common points with batch learning for neural networks.

6 Conclusion
To summarize, the boosting allows to reduce the variance compared with

single procedures but also the bias by aggregation, which generally leads to
very performant procedures.
Trees are easily interpretable. Of course, the interpretation is lost by aggre-
gating. Nevertheless, like for Random Forest, indices of importance can be
computed : one can average over the M trees of the boosting algorithm the

indices of importance computed for each tree. This is crucial to have an idea
of the relative importance of each predictor in the model.
The Gradient Boosting is implemented in the R package gbm. It is also imple-
mented in the Scikit Learn library of Python (GradientBoostingClassifier and
GradientBoostingRegressor).
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Chapter 10

Neural Networks and Introduction to Deep Learning

1 Introduction
Deep learning is a set of learning methods attempting to model data with

complex architectures combining different non-linear transformations. The el-
ementary bricks of deep learning are the neural networks, that are combined to
form the deep neural networks.

These techniques have enabled significant progress in the fields of sound
and image processing, including facial recognition, speech recognition, com-
puter vision, automated language processing, text classification (for example
spam recognition). Potential applications are very numerous. A spectacularly
example is the AlphaGo program, which learned to play the go game by the
deep learning method, and beated the world champion in 2016.

There exist several types of architectures for neural networks:

• The multilayer perceptrons, that are the oldest and simplest ones

• The Convolutional Neural Networks (CNN), particularly adapted for im-
age processing

• The recurrent neural networks, used for sequential data such as text or
times series.

They are based on deep cascade of layers. They need clever stochastic op-
timization algorithms, and initialization, and also a clever choice of the struc-
ture. They lead to very impressive results, although very few theoretical fon-
dations are available till now.

2 Neural networks
An artificial neural network is an application, non linear with respect to its

parameters θ that associates to an entry x an output y = f(x, θ). For the
sake of simplicity, we assume that y is unidimensional, but it could also be
multidimensional. This application f has a particular form that we will precise.
The neural networks can be use for regression or classification. As usual in
statistical learning, the parameters θ are estimated from a learning sample. The
function to minimize is not convex, leading to local minimizers. The success
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of the method came from a universal approximation theorem due to Cybenko
(1989) and Hornik (1991). Moreover, Le Cun (1986) proposed an efficient
way to compute the gradient of a neural network, called backpropagation of
the gradient, that allows to obtain a local minimizer of the quadratic criterion
easily.

2.1 Artificial Neuron

An artificial neuron is a function fj of the input x = (x1, . . . , xd) weighted
by a vector of connection weights wj = (wj,1, . . . , wj,d), completed by a
neuron bias bj , and associated to an activation function ϕ, namely

yj = fj(x) = ϕ(⟨wj , x⟩+ bj).

Several activation functions can be considered.

• The identity function
ϕ(x) = x.

• The sigmoid function (or logistic)

ϕ(x) =
1

1 + exp(−x)
.

• The hyperbolic tangent function ("tanh")

ϕ(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

=
exp(2x)− 1

exp(2x) + 1
.

• The hard threshold function

ϕβ(x) = 1x≥β .

• The Rectified Linear Unit (ReLU) activation function

ϕ(x) = max(0, x).

Here is a schematic representation of an artificial neuron where Σ = ⟨wj , x⟩+
bj . The Figure 10.2 represents the activation function described above. His-

Figure 10.1: source: andrewjames turner.co.uk

torically, the sigmoid was the mostly used activation function since it is dif-
ferentiable and allows to keep values in the interval [0, 1]. Nevertheless, it is
problematic since its gradient is very close to 0 when |x| is not close to 0. The
Figure 10.3 represents the Sigmoid function and its derivative. With neural
networks with a high number of layers (which is the case for deep learning),
this causes troubles for the backpropagation algorithm to estimate the param-
eter (backpropagation is explained in the following). This is why the sigmoid
function was supplanted by the rectified linear function. This function is not
differentiable in 0 but in practice this is not really a problem since the proba-
bility to have an entry equal to 0 is generally null. The ReLU function also has
a sparsification effect. The ReLU function and its derivative are equal to 0 for
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Figure 10.2: Activation functions

negative values, and no information can be obtain in this case for such a unit,
this is why it is advised to add a small positive bias to ensure that each unit is
active. Several variations of the ReLU function are considered to make sure
that all units have a non vanishing gradient and that for x < 0 the derivative is
not equal to 0. Namely

ϕ(x) = max(x, 0) + αmin(x, 0)

where α is either a fixed parameter set to a small positive value, or a parameter
to estimate.

Figure 10.3: Sigmoid function (in black) and its derivatives (in red)

2.2 Multilayer perceptron

A multilayer perceptron (or neural network) is a structure composed by sev-
eral hidden layers of neurons where the output of a neuron of a layer becomes
the input of a neuron of the next layer. Moreover, the output of a neuron can
also be the input of a neuron of the same layer or of neuron of previous layers
(this is the case for recurrent neural networks). On last layer, called output
layer, we may apply a different activation function as for the hidden layers de-
pending on the type of problems we have at hand: regression or classification.
The Figure 10.4 represents a neural network with three input variables, one
output variable, and two hidden layers. Multilayers perceptrons have a basic
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Figure 10.4: A basic neural network. Source: http://blog.christianperone.com

architecture since each unit (or neuron) of a layer is linked to all the units of
the next layer but has no link with the neurons of the same layer. The pa-
rameters of the architecture are the number of hidden layers and of neurons in
each layer. The activation functions need also to be chosen by the user. For
the output layer, as mentioned previously, the activation function is generally
different from the one used on the hidden layers. In the case of regression,
we apply no activation function on the output layer. For binary classification,
the output gives a prediction of P(Y = 1/X) since this value is in [0, 1], the
sigmoid activation function is generally considered. For multi-class classifi-
cation, the output layer contains one neuron per class i, giving a prediction of
P(Y = i/X). The sum of all these values has to be equal to 1. The multidi-
mensional function softmax is generally used

softmax(z)i =
exp(zi)∑
j exp(zj)

.

Let us summarize the mathematical formulation of a multilayer perceptron
with L hidden layers.
We set h(0)(x) = x.

For k = 1, . . . , L (hidden layers),

a(k)(x) = b(k) +W (k)h(k−1)(x)

h(k)(x) = ϕ(a(k)(x))

For k = L+ 1 (output layer),

a(L+1)(x) = b(L+1) +W (L+1)h(L)(x)

h(L+1)(x) = ψ(a(L+1)(x)) := f(x, θ).

where ϕ is the activation function and ψ is the output layer activation function
(for example softmax for multiclass classification). At each step, W (k) is a
matrix with number of rows the number of neurons in the layer k and number
of columns the number of neurons in the layer k − 1.

2.3 Universal approximation theorem

Hornik (1991) showed that any bounded and regular function Rp → R can
be approximated at any given precision by a neural network with one hidden
layer containing a finite number of neurons, having the same activation func-
tion, and one linear output neuron. This result was earlier proved by Cybenko
(1989) in the particular case of the sigmoid activation function. More precisely,
Hornik’s theorem can be stated as follows.

THEOREM 6. — Let ϕ be a bounded, continuous and non decreasing (ac-
tivation) function. Let Kd be some compact set in Rp and C(Kd) the set of
continuous functions on Kd. Let f ∈ C(Kd). Then for all ε > 0, there exists
N ∈ N, real numbers vi, bi and Rp-vectors wi such that, if we define

F (x) =

N∑
i=1

viϕ(⟨wi, x⟩+ bi)

then we have
∀x ∈ Kd, |F (x)− f(x)| ≤ ε.
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This theorem is interesting from a theoretical point of view. From a practical
point of view, this is not really useful since the number of neurons in the hidden
layer may be very large. The strength of deep learning lies in the deep (number
of hidden layers) of the networks.

3 Estimation of the parameters
Once the architecture of the network has been chosen, the parameters (the

weights wj and biases bj) have to be estimated from a learning sample. As
usual, the estimation is obtained by minimizing a loss function with a gradient
descent algorithm. We first have to choose the loss function.

Loss functions

It is classical to estimate the parameters by maximizing the likelihood (or
equivalently the logarithm of the likelihood). This corresponds to the mini-
mization of the loss function which is the opposite of the log likelihood. De-
noting θ the vector of parameters to estimate, we consider the expected loss
function

L(θ) = −E(X,Y )∼P (log(pθ(Y/X)).

If the model is Gaussian, namely if pθ(Y/X = x) ∼ N (f(x, θ), I), maximiz-
ing the likelihood is equivalent to minimize the quadratic loss, hence

L(θ) = E(X,Y )∼P (∥Y − f(X, θ)∥2).

For binary classification, with Y ∈ {0, 1}, maximizing the log-likelihood cor-
responds to the minimization of the cross-entropy.
Setting f(X, θ) = Pθ(Y = 1/X), the cross-entropy loss is

ℓ(f(x, θ), y) = −[y log(f(x, θ)) + (1− y) log(1− f(x, θ))]

and the corresponding expected loss is

L(θ) = −E(X,Y )∼P [Y log(f(X, θ)) + (1− Y ) log(1− f(X, θ))].

This loss function is well adapted with the sigmoid activation function since
the use of the logarithm avoids to have too small values for the gradient.
Finally, for a multi-class classification problem, we consider a generalization
of the previous loss function to k classes

L(θ) = −E(X,Y )∼P [

k∑
j=1

1Y=j log pθ(Y = j/X)].

Ideally we would like to minimize the classification error, but it is not smooth,
this is why we consider the cross-entropy (or eventually a convex surrogate).

3.1 Penalized empirical risk

The expected loss can be written as L(θ) = E(X,Y )∼P [ℓ(Y, f(X, θ))] and it
is associated to a loss function ℓ.
In order to estimate the parameters θ, we use a training sample (Xi, Yi)1≤i≤n

and we minimize the empirical loss

L̃n(θ) =
1

n

n∑
i=1

ℓ(Yi, f(Xi, θ))

eventually we add a regularization term. This leads to minimize the penalized
empirical risk

Ln(θ) =
1

n

n∑
i=1

ℓ(Yi, f(Xi, θ)) + λΩ(θ).

We can consider L2 regularization. Using the same notations as in Section 2.2,

Ω(θ) =
∑
k

∑
i

∑
j

(W
(k)
i,j )2

=
∑
k

∥W (k)∥2F
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where ∥W∥F denotes the Frobenius norm of the matrix W . Note that only the
weights are penalized, the biases are not penalized. It is easy to compute the
gradient of Ω(θ):

▽W (k)Ω(θ) = 2W (k).

One can also consider L1 regularization, leading to parcimonious solutions:

Ω(θ) =
∑
k

∑
i

∑
j

|W (k)
i,j |.

In order to minimize the criterion Ln(θ), a stochastic gradient descent al-
gorithm is used. In order to compute the gradient, a clever method, called
Backpropagation algorithm is considered. It has been introduced by Rumel-
hart et al. (1988), it is still crucial for deep learning.
The stochastic gradient descent algorithm performs at follows:

• Initialization of θ0 = (W (1), b(1), . . . ,W (L+1), b(L+1)).

• At each iteration, we compute :

θj = θj−1 − ε
1

m

∑
i∈B

[▽θℓ(f(Xi, θj−1), Yi) + λ▽θ Ω(θj−1)].

Note that, in the previous algorithm, we do not compute the gradient for the
loss function at each step of the algorithm but only on a subset B of cardinal-
ity m (called a batch). This is what is classically done for big data sets (and
for deep learning) or for sequential data. B is taken at random without re-
placement. An iteration over all the training examples is called an epoch. The
numbers of epochs to consider is a parameter of the deep learning algorithms.
The total number of iterations equals the number of epochs times the sample
size n divided by m, the size of a batch. This procedure is called batch learn-
ing, sometimes, one also takes batches of size 1, reduced to a single training
example B = {(Xi, Yi)}.

4 Backpropagation algorithm for classifica-
tion

We consider here a K class classification problem. The output of the MLP

is f(x) =


P(Y = 1/x)

.

.
P(Y = K/x)

. We assume that the output activation function is

the softmax function.

softmax(x1, . . . , xK) =
1∑K

k=1 e
xk

(ex1 , . . . , exK ).

Let us make some useful computations to compute the gradient.

∂softmax(x)i
∂xj

= softmax(x)i(1− softmax(x)i) if i = j

= −softmax(x)isoftmax(x)j if i ̸= j

We introduce the notation

(f(x))y =

K∑
k=1

1y=k(f(x))k,

where (f(x))k is the kth component of f(x): (f(x))k = P(Y = k/x). Then
we have

− log(f(x))y = −
K∑

k=1

1y=k log(f(x))k = ℓ(f(x), y),
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for the loss function ℓ associated to the cross-entropy.
Using the notations of Section 2.2, we want to compute the gradients

Output weights
∂ℓ(f(x), y)

∂W
(L+1)
i,j

Output biases∂ℓ(f(x),y)

∂b
(L+1)
i

Hidden weights
∂ℓ(f(x), y)

∂W
(h)
i,j

Hidden biases∂ℓ(f(x),y)

∂b
(h)
i

for 1 ≤ h ≤ L. We use the chain-rule: if z(x) = ϕ(a1(x), . . . , aJ(x)), then

∂z

∂xi
=
∑
j

∂z

∂aj

∂aj
∂xi

= ⟨▽ϕ, ∂a
∂xi
⟩.

Hence we have

∂ℓ(f(x), y)

∂(a(L+1)(x))i
=
∑
j

∂ℓ(f(x), y)

∂f(x)j

∂f(x)j
∂(a(L+1)(x))i

.

∂ℓ(f(x), y)

∂f(x)j
=
−1y=j

(f(x))y
.

∂ℓ(f(x), y)

∂(a(L+1)(x))i
= −

∑
j

1y=j

(f(x))y

∂softmax(a(L+1)(x))j
∂(a(L+1)(x))i

= − 1

(f(x))y

∂softmax(a(L+1)(x))y
∂(a(L+1)(x))i

= − 1

(f(x))y
softmax(a(L+1)(x))y(1− softmax(a(L+1)(x))y)1y=i

+
1

(f(x))y
softmax(a(L+1)(x))isoftmax(a(L+1)(x))y1y ̸=i

∂ℓ(f(x), y)

∂(a(L+1)(x))i
= (−1 + f(x)y)1y=i + f(x)i1y ̸=i.

Hence we obtain

▽a(L+1)(x)ℓ(f(x), y) = f(x)− e(y),

where, for y ∈ {1, 2, . . . ,K}, e(y) is the RK vector with i th component 1i=y .
We now obtain easily the partial derivative of the loss function with respect to
the output bias. Since

∂((a(L+1)(x)))j
∂(b(L+1))i

= 1i=j ,

▽b(L+1)ℓ(f(x), y) = f(x)− e(y), (10.1)

Let us now compute the partial derivative of the loss function with respect to
the output weights.

∂ℓ(f(x), y)

∂W
(L+1)
i,j

=
∑
k

∂ℓ(f(x), y)

∂(a(L+1)(x))k

∂(a(L+1)(x))k

∂W
(L+1)
i,j

and
∂(a(L+1)(x))k

∂W
(L+1)
i,j

= (h(L)(x))j1i=k.

Hence
▽W (L+1)ℓ(f(x), y) = (f(x)− e(y))(h(L)(x))′. (10.2)

Let us now compute the gradient of the loss function at hidden layers. We use
the chain rule

∂ℓ(f(x), y)

∂(h(k)(x))j
=
∑
i

∂ℓ(f(x), y)

∂(a(k+1)(x))i

∂(a(k+1)(x))i
∂(h(k)(x))j
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We recall that

(a(k+1)(x))i = b
(k+1)
i +

∑
j

W
(k+1)
i,j (h(k)(x))j .

Hence
∂ℓ(f(x), y)

∂h(k)(x)j
=
∑
i

∂ℓ(f(x), y)

∂a(k+1)(x)i
W

(k+1)
i,j

▽h(k)(x)ℓ(f(x), y) = (W (k+1))′ ▽a(k+1)(x) ℓ(f(x), y).

Recalling that h(k)(x)j = ϕ(a(k)(x)j),

∂ℓ(f(x), y)

∂a(k)(x)j
=
∂ℓ(f(x), y)

∂h(k)(x)j
ϕ′(a(k)(x)j).

Hence,

▽a(k)(x)ℓ(f(x), y) = ▽h(k)(x)ℓ(f(x), y)⊙ (ϕ′(a(k)(x)1), . . . , ϕ
′(a(k)(x)j), . . .)

′

where ⊙ denotes the element-wise product. This leads to

∂ℓ(f(x), y)

∂W
(k)
i,j

=
∂ℓ(f(x), y)

∂a(k)(x)i

∂a(k)(x)i

∂W
(k)
i,j

=
∂ℓ(f(x), y)

∂a(k)(x)i
h
(k−1)
j (x)

Finally, the gradient of the loss function with respect to hidden weights is

▽W (k)ℓ(f(x), y) = ▽a(k)(x)ℓ(f(x), y)h
(k−1)(x)′. (10.3)

The last step is to compute the gradient with respect to the hidden biases. We
simply have

∂ℓ(f(x), y)

∂b
(k)
i

=
∂ℓ(f(x), y)

∂a(k)(x)i

and
▽b(k)ℓ(f(x), y) = ▽a(k)(x)ℓ(f(x), y). (10.4)

We can now summarize the backpropagation algorithm.

• Forward pass: we fix the value of the current weights θ(r) =
(W (1,r), b(1,r), . . . ,W (L+1,r), b(L+1,r)), and we compute the predicted
values f(Xi, θ

(r)) and all the intermediate values (a(k)(Xi), h
(k)(Xi) =

ϕ(a(k)(Xi)))1≤k≤L+1 that are stored.

• Backpropagation algorithm:

– Compute the output gradient▽a(L+1)(x)ℓ(f(x), y) = f(x)− e(y).
– For k = L+ 1 to 1

* Compute the gradient at the hidden layer k

▽W (k)ℓ(f(x), y) = ▽a(k)(x)ℓ(f(x), y)h
(k−1)(x)′

▽b(k)ℓ(f(x), y) = ▽a(k)(x)ℓ(f(x), y)

* Compute the gradient at the previous layer

▽h(k−1)(x)ℓ(f(x), y) = (W (k))′ ▽a(k)(x) ℓ(f(x), y)

and

▽a(k−1)(x)ℓ(f(x), y) = ▽h(k−1)(x)ℓ(f(x), y)

⊙(. . . , ϕ′(a(k−1)(x)j), . . . )
′

4.1 Optimization algorithms

Many algorithms can be used to minimize the loss function, all of them have
hyperparameters, that have to be calibrated, and have an important impact on
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the convergence of the algorithms. The elementary tool of all these algorithms
is the Stochastic Gradient Descent (SGD) algorithm. It is the most simple one:

θnewi = θoldi − ε ∂L
∂θi

(θoldi ),

where ε is the learning rate , and its calibration is very important for the con-
vergence of the algorithm. If it is too small, the convergence is very slow and
the optimization can be blocked on a local minimum. If the learning rate is too
large, the network will oscillate around an optimum without stabilizing and
converging. A classical way to proceed is to adapt the learning rate during the
training: it is recommended to begin with a "large " value of ϵ, (for example
0.1) and to reduce its value during the successive iterations. However, there is
no general rule on how to adjust the learning rate, and this is more the expe-
rience of the engineer concerning the observation of the evolution of the loss
function that will give indications on the way to proceed.
The stochasticity of the SGD algorithm lies in the computation of the gradi-
ent. Indeed, we consider batch learning: at each step, m training examples
are randomly chosen without replacement and the mean of the m correspond-
ing gradients is used to update the parameters. An epoch corresponds to a pass
through all the learning data, for example if the batch sizem is 1/100 times the
sample size n, an epoch corresponds to 100 batches. We iterate the process on
a certain number nb of epochs that is fixed in advance. If the algorithm did not
converge after nb epochs, we have to continue for nb′ more epochs. Another
stopping rule, called early stopping is also used: it consists in considering a
validation sample, and stop learning when the loss function for this validation
sample stops to decrease. Batch learning is used for computational reasons,
indeed, as we have seen, the backpropagation algorithm needs to store all the
intermediate values computed at the forward step, to compute the gradient dur-
ing the backward pass, and for big data sets, such as millions of images, this is
not feasible, all the more that the deep networks have millions of parameters to
calibrate. The batch sizem is also a parameter to calibrate. Small batches gen-

erally lead to better generalization properties. The particular case of batches
of size 1 is called On-line Gradient Descent. The disadvantage of this proce-
dure is the very long computation time. Let us summarize the classical SGD
algorithm.

Algorithm 8 Stochastic Gradient Descent algorithm
Fix the parameters ε : learning rate, m : batch size, nb : number of epochs.
Choose the initial parameter θ
for k = 1 to nb epochs do

for l = 1 to n/m do
Take a random batch of size m without replacement in the learning

sample: (Xi, Yi)i∈Bl

Compute the gradients with the backpropagation algorithm

g =
1

m

∑
i∈Bl

▽θℓ(f(Xi, θ), Yi).

Update the parameters : θ ← θ − εg.
end for

end for

Since the choice of the learning rate is delicate and very influent on the
convergence of the SGD algorithm, variations of the algorithm have been pro-
posed. They are less sensitive to the learning rate. The principle is to add a
correction when we update the gradient, called momentum. The method is
due to Polyak (1964) [28]. The idea is to accumulate an exponentially decay-
ing moving average of past negative gradients and to continue to move in their
direction.The momentum algorithm introduces a variable ν, that plays the role
of a velocity. An hyperparameter α ∈ [0, 1[ determines how fast the contribu-
tion of previous gradients exponentially decay. The method is summarized in
Algorithm 9.
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Algorithm 9 Stochastic Gradient Descent algorithm with momentum
Fix the parameters ε : learning rate, m: batch size, nb : number of epochs,
momentum parameter α ∈ [0, 1[.
Choose the initial parameter θ and the initial velocity ν.
for k = 1 to nb epochs do

for l = 1 to n/m do
Sample a minibach B of size m from the learning sample.
Compute the gradient estimate : g ← 1

m

∑
i∈B▽θℓ(f(Xi, θ), Yi).

Update the velocity : ν ← αν − εg.
Update the parameter : θ ← θ + ν.

end for
end for

This method allows to attenuate the oscillations of the gradient.
In practice, a more recent version of the momentum due to Nesterov (1983)
[27] and Sutskever et al. (2013) [33] is considered, it is called Nesterov ac-
celerated gradient. The variants lie in the updates of the parameter and the
velocity :

ν ← αν − ε 1
m

∑
i∈B

▽θℓ(f(Xi, θ + αν), Yi)

θ ← θ + ν.

The learning rate ε is a difficult parameter to calibrate because it significantly
affects the performances of the neural network. This is why new algorithms
have been introduced, to be less sensitive to this learning rate : the RMSProp
algorithm, due to Hinton (2012) [20] and Adam (for Adaptive Moments)
algorithm, see Kingma and Ba (2014) [22].

The idea of the RMSProp algorithm is to use a different learning rate for

each parameter (components of θ) and to automatically adapt this learning rate
during the training. It is described in Algorithm 10.

Algorithm 10 RMSProp algorithm
Fix the parameters ε : learning rate, m: batch size, nb : number of epochs,
decay rate ρ in [0, 1[
Choose the initial parameter θ
Choose a small constant δ, usually 10−6 (to avoid division by 0)
Initialize accumulation variable r = 0.
for k = 1 to nb epochs do

for l = 1 to n/m do
Sample a minibach B of size m from the learning sample.
Compute the gradient estimate : g ← 1

m

∑
i∈B▽θℓ(f(Xi, θ), Yi).

Accumulate squared gradient r ← ρr + (1− ρ)g ⊙ g
Update the parameter : θ ← θ − ε√

δ+r
⊙ g ( 1√

δ+r
is computed

element-wise).
end for

end for

Adam algorithm (Kingma and Ba, 2014) is also an adaptive learning rate op-
timization algorithm. "Adam" means "Adaptive moments". It can be viewed as
a variant of RMSProp algorithm with momentum. It also includes a bias cor-
rection of the first order moment (momentum term) and second order moment.
It is described in Algorithm 11.

We have presented the most popular optimization algorithms for deep
learning. There is actually no theoretical foundation on the performances of
these algorithms, even for convex functions (which is not the case in deep
learning problems !). Numerical studies have been performed to compare a
large number of optimization algorithms for various learning problems (Schaul
et al. (2014)). There is no algorithms that outperforms the other ones. The
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Algorithm 11 Adam algorithm
Fix the parameters ε : learning rate, m: batch size, nb : number of epochs,
decay rate for moment estimates ρ1 and ρ2 in [0, 1[
Choose the initial parameter θ
Choose a small constant δ, usually 10−6 (to avoid division by 0)
Initialize 1st and 2nd moment variables variable s = 0, r = 0.
Initial time step t = 0.
for k = 1 to nb epochs do

for l = 1 to n/m do
Sample a minibach B of size m from the learning sample.
Compute the gradient estimate : g ← 1

m

∑
i∈B▽θℓ(f(Xi, θ), Yi).

t← t+ 1
Update first moment estimate s← ρ1s+ (1− ρ1)g
Update second moment estimate r ← ρ2r + (1− ρ2)g ⊙ g
Correct biases : ŝ← s/(1− ρt1), r̂ ← r/(1− ρt2)
Update the parameter : θ ← θ − ε√

r̂+δ
⊙ ŝ

end for
end for

algorithms with adaptive learning seem more robust to the hyperparameters.

The choice of the initialization of the parameter θ is also an important point.
Here are some recommendations : the input data have to be normalized to
have approximately the same range. The biases can be initialized to 0. The
weights cannot be initialized to 0 since for the tanh activation function, the
derivative at 0 is 0, this is a saddle point. They also cannot be initialized with
the same values, otherwise, all the neurons of a hidden layer would have the
same behaviour. We generally initialize the weights at random: the values
W

(k)
i,j are i.i.d. Uniform on [−c, c] with possibly c =

√
6

Nk+Nk−1
where Nk is

the size of the hidden layer k. We also sometimes initialize the weights with a
normal distribution N (0, 0.01) (see Goodfellow et al. (2016) [17]).

5 Regularization
To conclude, let us say a few words about regularization. We have already

mentioned L2 or L1 penalization; we have also mentioned early stopping. For
deep learning, the mostly used method is the dropout. It was introduced by
Hinton et al. (2012), [20]. With a certain probability p, and independently of
the others, each unit of the network is set to 0. The probability p is another
hyperparameter. It is classical to set it to 0.5 for units in the hidden layers,
and to 0.2 for the entry layer. The computational cost is weak since we just
have to set to 0 some weights with probability p. This method improves sig-
nificantly the generalization properties of deep neural networks and is now the
most popular regularization method in this context. The disadvantage is that
training is much slower (it needs to increase the number of epochs). Ensem-
bling models (aggregate several models) can also be used. It is also classical
to use data augmentation or Adversarial examples. In the course High Dimen-
sional and Deep Learning next year, we will see the convolutional neural
networks, which are particularly adapted for image classification.
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Figure 10.5: Dropout - source: http://blog.christianperone.com/

6 Conclusion
We have presented in this course the feedforward neural networks, and

explained how the parameters of these models can be estimated. The choice
of the architecture of the network is also a crucial point. Several models
can be compared by using a cross validation method to select the "best" model.

The perceptrons are defined for vectors. They are not well adapted for some
types of data such as images. By transforming an image into a vector, we
loose spatial information, such as forms.

The convolutional neural networks (CNN) introduced by Le Cun (1998)
[23] have revolutionized image processing. CNN act directly on matrices, or
even on tensors for images with three RGB color channels. They are also based
on the methods presented in this course to estimate their parameters (backprop-

agation equations, optimization algorithms ..) The presentation of the convo-
lutional neural networks will studied next year in the High Dimensional and
Deep Learning course.
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Chapter 11

Handling missing data

1 Introduction
Despite the increasing amount of available data and the emergence of the Big

Data, missing data issues remain a common statistical problem and require a
special approach. Ignoring missing data can lead not only to a loss of precision,
but also to strong biases in analysis models.

Data are composed of p quantitative or qualitative variables (Y 1, . . . , Y p)
observed on a sample of n individuals. There are missing data represented by
the M matrix called indication of missing values [29] whose form depends on
the type of missing data.

The main points treated in this chapter are the definition of the different
types of missing data and the illustration of their possible distributions, the de-
scription of the main strategies for managing missing data by data deletion or
completion. The problem is vast and we do not claim to deal with it exhaus-
tively.

2 Types of missing data
In order to properly address the imputation of missing data, it is necessary

to distinguish the causes of missing data, especially if they are not simply the
result of hazard. A typology has been developed by Little & Rubin (1987),
dividing them into 3 categories:

MCAR (missing completely at random). A data is MCAR if the probability
of absence is the same for all observations. This probability therefore
depends only on external parameters independent of this variable. For
example: if each participant in a survey decides to answer the income
question by rolling a die and refusing to answer if face 6 appears [1].
Note that if the amount of MCAR data is not too large, ignoring obser-
vations with missing data will not bias the analysis. However, a loss of
precision in the results will probably occur since the model is built with
less observations.

MAR (Missing at random). The case of MAR data occurs when the data are
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not missing completely randomly. Namely, if the probability of missing
data is related to one or more other observed variables, it is referred to as
"Missing at Random" (MAR). Appropriate statistical methods are avail-
able to avoid bias in the analysis (see Section 4).

MNAR (Missing not at random) Data is missing not at random (MNAR) if
the probability of absence depends on the variable where a missing value
occurs. A common example [25] is when people with a large income
refuse to give their income. MNAR data induce a loss of precision (inher-
ent to any case of missing data) but also a bias that requires the use of a
sensitivity analysis.

2.1 Distribution of missing data

Let Y = (yij) ∈ Rn×p be the rectangular matrix of data for p variables
Y 1, . . . , Y p and n observations. Let us consider M = (mij) the matrix of
indication of the missing values [29], which will define the distribution of the
missing data. We will then consider 3 types of distribution :

1. Univariate missing values. Missing values occur only for one variable Y k.
If an observation yik is missing, then there will be no more observations
of this variable, the observations ylk for l ≥ i are missing. An illustration
is given in Figure 11.1 (case a)).

2. Missing values are said to be monotones if Y j missing for an individual
i implies that all the following variables {Y k}k>j are missing for this
individual (Figure 11.1, case b)). The missing data indicator M is then an
integer M ∈ {1, 2, . . . , p} for each individual, indicating the largest j for
which Y j is observed.

3. The missing values are not monotonic (or arbitrary), as shown in Figure
11.1, case c). In this case, the matrix of missing values is defined by
M = (mij) with mij = 1 if yij is missing and zero otherwise.

Figure 11.1: Distribution of missing data. (a) univariate, (b) monotonous, (c)
arbitrary/non-monotonous

In the case of longitudinal data (see figure 11.2), the monotonic distribution
corresponds to a right censoring.

Figure 11.2: Distributions of missing data for longitudinal variables. (a) full
set, (b) arbitrary/non-monotonic and (c) monotonic

2.2 Probability of absence

The probability of absence according to the type of missing data (MCAR,
MAR, MNAR) can be expressed in terms of the matrix M [29]. The data are
divided in two according to the M matrix of missing data.

• Yobs = (yij/{mij = 0}) is defined as observed data

• Ymis = (yij/{mij = 1}) as missing data.

Finally Y = {Yobs, Ymis}. The missing data mechanism is characterized by
the conditional distribution p(M |Y ).

http://wikistat.fr


105

• In the case of MCAR data, the absence of data does not depend on Y
values so

p(M |Yobs, Ymis) = p(M).

• In the case of MAR, the absence of data depends only on Yobs :

p(M |Yobs, Ymis) = p(M |Yobs).

• Finally, the data are MNAR if the distribution of M also depends on Ymis.

3 Analysis without completion

3.1 Methods with data deletion

In some cases, analysis is possible without imputing missing data. In gen-
eral, two classical methods are used :

• Analysis of complete cases, which consists in considering only those
individuals for whom all the data are available, i.e. by delet-
ing lines with missing values. This is done automatically with R
(na.action=na.omit). This method, as can be seen in 11.3, may
delete too much data and hence greatly increase the loss of precision. In
addition, if the data are not MCAR, removing observations will bias the
analysis since the subsample of cases represented by the complete data
may not be representative of the original sample.

• Analysis of available cases. In order to avoid deleting too much data, it
is possible to do available-case analysis. Different aspects of the prob-
lem are then studied with different sub-samples. However, the different
analyses will not necessarily be compatible with each other. For exam-
ple, if a variable Y 1 is available for all individuals and a variable Y 2 only
for 80% of the individuals, we may estimate the distribution of Y 1 with

Figure 11.3: Distribution of missing data. (a) original data with arbitrary miss-
ing values, (b) remaining observations in complete case analysis

all the individuals and the distribution of Y 2 with 80% of the individu-
als. The available-case analysis also refers to the case where a variable is
removed from the dataset because it has too many missing values.

3.2 Maximum likelihood estimation

Assume that the distribution of Y depends on a parameter θ, for example
Y ∼ Np(µ,Σ), θ = (µ,Σ). We want to estimate θ by maximum likelihood
estimation of the observed data (Yobs,M). We assume that the data are MAR
(Missing at random), and that the distribution of M depends on a parameter ϕ
(for example the variables Mi,j are i.i.d. B(p), ϕ = p). We have

f(Yobs,M, θ, ϕ) =

∫
f(Yobs, Ymis,M, θ, ϕ)dYmis.

Since the data are MAR,

f(Yobs, Ymis,M, θ, ϕ) = f(Yobs, Ymis, θ)f(M/Yobs, ϕ).
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In this case,

f(Yobs,M, θ, ϕ) = f(M/Yobs, ϕ)

∫
f(Yobs, Ymis, θ)dYmis.

If f(M/Yobs, ϕ) does not depend on θ, maximizing w.r.t. θ f(Yobs,M, θ, ϕ)
is equivalent to mazimize f(Yobs, θ) =

∫
f(Yobs, Ymis, θ)dYmis. We consider

the log-likelihood

ℓ(Yobs, θ) = log(f(Yobs, θ)) = log

∫
f(Yobs, Ymis, θ)dYmis.

Generally, this quantity cannot be computed explicitly and EM algorithm is
used.

Let ℓ(Y, θ) be the complete log-likelihood.

ℓ(Y, θ) = log(f(Yobs, Ymis, θ)).

θ is initialized by θ(0). Let θ(t)be the estimator of θ obtained at step t.

• E step: Compute

Q(θ, θ(t)) = E[ℓ(Y, θ)/Yobs, θ(t)]

=

∫
ℓ(Y, θ)f(Ymis/Yobs, θ

(t))dYmis.

• M step: Determine

θ(t+1) ∈ argmaxθQ(θ, θ(t)).

This algorithm is interesting if one can easily compute f(Ymis/Yobs, θ
(t))

(which is the case for multivariate Gaussian distributions for example). One
can prove that ℓ(Yobs, θ(t+1)) ≥ ℓ(Yobs, θ(t)). The likelihood increases at each
step, but the algorithm does not always converge to the maximum likelihood
estimator.

3.3 Methods tolerant to missing data

While most methods automatically remove missing data, some tolerate
them. This is the case for example of trees (CART) which consider surro-
gate splits : At each node splitting, several optimal pairs variable/threshold are
considered and memorized. To compute a prediction, if the data is missing for
an observation, it is not the best division that is used but the one just after. This
is also the case for XGBoost.

4 Imputation Methods
This section provides a non-exhaustive overview of the most common com-

pletion methods. A dataset consists of p quantitative or qualitative variables
(Y 1, . . . , Y p) observed for a sample of n individuals; M refers to the matrix
indicating missing values by mij = 1{yij . is missing}

4.1 Stationary completion

There are several possible stationary completions : the most frequently rep-
resented value (Concept Most Common Attribute Value Fitting, CMCF [37])
or simply the last known value (Last observation carried forward, LOCF).
This method may seem too naive but is often used to lay the foundation for a
comparison between completion methods.
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4.2 Completion by a linear combination of observa-
tions

Another common technique is to replace all missing values with a linear
combination of observations. Let us mention the imputation by the mean : the
missing value yij is replaced by the mean Ȳ j over all observed values of the
variable Y j . This case is generalized to any weighted linear combination of
the observations. The median of Y j can also be considered.

Instead of using all available values, it is possible to restrict oneself to meth-
ods that select the most influential values by local aggregation or regression or
even by combining different aspects.

4.3 Nearest Neighbor Method (KNN)

The completion by k-nearest neighbors or KNN consists in running the fol-
lowing algorithm that models and predicts the missing data. Assume that the
values Yi⋆,J are missing, where J is the subset of variables not observed for
the individual i⋆.

Algorithm 12 Algorithm of k-nearest neighbors (k-nn)
Choice of an integer 1 ≤ k ≤ n.
Computation of the distances d(Yi⋆ , Yi) , i = 1, . . . , n (using only the
observed variables for Yi⋆ to compute the distances).
Retrieve the k observations Yi1 , . . . , Yik for which these distances are the
smallest.
Assign to the missing values the average of the values of the k-nearest neigh-
bors :

∀j⋆ ∈ J, yimp
i⋆j =

1

k
(yi1j + . . .+ yikj)

The nearest neighbors method requires the choice of the parameter k by

optimization of a criterion. Moreover, the notion of distance between indi-
viduals must be chosen carefully. One generally considers the Euclidean or
Mahalanobis distance.

4.4 Local regression

The LOcal regrESSion : LOESS [38] also allows to impute missing data.
For this, a polynomial with small degree is fitted around the missing data by
weighted least squares, giving more weight to values close to the missing data.

Let Yi⋆ be an observation with q (among p) missing values. These missing
values are imputed by local regression following the algorithm below :

4.5 Use of Random Forests

Stekhoven and Bühlmann (2011)[11] have proposed a completion method
based on random forests called missForest. An R library of the same name
is associated with it. This method requires a first naive imputation, by default
a completion by the mean, in order to obtain a complete learning sample. Then
a series of random forests are adjusted until the first degradation of the model.

To formalize this, the initial dataset is separated into four parts. For each
variable Y s, s = 1, . . . , p whose missing values are indexed by ismis ⊆
{1, . . . , n}, one defines

1. ysobs the observed values for Y s.

2. ysmis the missing values for Y s.

3. Xs = Y \ Y s the set of regressors of Y s among which we consider

(a) Xs
obs the regressors for i ∈ isobs = {i, . . . , n} \ ismis

(b) Xs
mis the regressors for i ∈ ismis.

http://wikistat.fr
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Algorithm 13 Algorithm LOESS
Getting the k nearest neighbors Yi1 , . . . , Yik .
Creation of matrices A ∈ Rk×(p−q), B ∈ Rk×q and w ∈ R(p−q)×1 such
that :

- Lines ofA correspond to the k nearest neighbors deprived of the values
at the indices of the missing variables for Yi⋆ .

- The columns of B correspond to the values of the neighbors for the
indices of the missing variables for Yi⋆ .

- The vector w = (Yi⋆)obs corresponds to the (p − q) observed values
of Yi⋆ .

Solving the Least Square Problem

x⋆ = argminx∈Rk ∥ A⊤x− w ∥

where ∥ · ∥ is the quadratic standard of Rk.
The vector of missing data is then predicted by

(Yi⋆)mis = B⊤x⋆.

Note that Xs
obs and Xs

mis may contain missing values.
The method then follows the following algorithm :

MissForest Algorithm

1. First "naive" completion of missing values.

2. Let K be the vector of column indices of Y sorted by increasing amount
of missing values;

3. while γ is not reached do

(a) Y imp
old = previously imputed matrix

(b) for s in K do

i. Adjust Y s
obs ∼ Xs

obs by a random forest
ii. Predict Y s

mis with the regressors Xs
mis.

iii. Y imp
new is the new matrix completed by the predicted values Y s

mis

(c) end for

(d) update the γ criterion

(e) end while

4. return the imputed matrix Y imp.

The stopping criterion γ is reached as soon as the difference between the
newly imputed matrix and the previous one increases for the first time for both
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types of variables.
The difference of the set of continuous variables N is defined as

∆N =

∑
j∈N

∥∥∥Y j,imp
new − Y j,imp

old

∥∥∥2∑
j∈N

∥∥∥Y j,imp
new

∥∥∥2
For the set of qualitative variables F , the difference is defined by

∆F =

∑
j∈F

∑n
i=1 1Y j,imp

new ̸=Y j,imp
old

#NA

where #NA is the number of missing values in the categorical variables.

4.6 Multiple Imputation

Multiple imputation consists, as its name suggests, of imputing missing val-
ues several times in order to combine the results to reduce the error due to the
imputation [10]. It also allows to define a measure of the uncertainty induced
by the completion.

Maintaining the original variability of the data is done by creating imputed
values that are based on variables correlated with missing data and causes of
absence. Uncertainty is taken into account by creating different versions of
missing data and observing the variability between imputed data sets.

Amelia II

Amelia II is a multiple imputation program for continuous variables devel-
oped by James Honaker et al (2011) [21]. The model is based on an assumption
of normality and thus sometimes requires prior transformations of the data: the
lines of the matrix Y are assumed to be i.i.d. with distribution Np(µ,Σ).

Let M be the matrix indicating the missing data and θ = (µ,Σ) the param-

eters of the model. Another hypothesis is that the data are MAR so

p(M |Y ) = p(M |Yobs)

Amelia II’s EMB algorithm combines a bootstrap approach with the EM
algorithm.

• We first draw a B bootstrap sample from Y by sampling with replace-
ment in the lines of Y . We obtain B matrices Y 1, . . . , Y B with size
(n, p). Each matrix contains possibly missing values.

• For all b = 1, . . . , B, we consider the data contained in the matrix Y b,
and we use the EM algorithm described previously to estimate (µ,Σ) by
(µ̂b, Σ̂b).

• For all b = 1, . . . , B, we take the initial data set Y , we assume each
line is distributed as Np(µ̂

b, Σ̂b) and we complete the missing values by
sampling under the conditional distribution of the missing values given
the observed values.

• We obtain B imputed matrices Ŷ 1, . . . , Ŷ B , from which we can take the
mean, and estimate the variability of the completion method.

5 Examples

5.1 Gas consumption frauds

The different completion methods were tested and compared on an example
of gas consumption fraud detection. Let Y ∈ Rn×12 such that yij is the indi-
vidual’s gas consumption for individual i in month j. The distribution of the
missing data is non-monotonic and we assume MAR data. After a log transfor-
mation in order to approach normality, completion was performed. The results
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were compared with a test sample of 10% of the data, previously removed from
the set.

This actual data set had at least one missing value per individual, and a total
of 50.4% of the data was missing. If we consider only the individual monthly
consumption, we obtain the error distribution of each method shown in Figure
11.4.

Figure 11.4: Fraud - Completion errors on a test sample

5.2 Parisian stock market outstanding (EBP)

We are interested in the prices of stock market assets on the Paris market
from 2000 to 2009. We consider 252 prices of companies or indexes regu-
larly quoted over this period. By limiting ourselves to the MCAR case, we
artificially create more and more missing data to impute. For 10% of missing
data, a comparison of imputation methods is given Figure 11.5. Three methods
outperform the others : SVD, missForest and Amelia II.

The robustness of these methods was tested by gradually increasing the

Figure 11.5: EBP - Completion errors on a 10%
test sample

amount of missing data. The results are given Figure 11.6 for Amelia II and
Figure 11.7 for missForest.
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Figure 11.6: EBP - Completion errors on a test sample by Amelia II when the
amount of missing values increases

Figure 11.7: EBP - Completion errors on a test sample by missForest when the
amount of missing values increases
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Chapter 12

Anticiper les Risques Juridiques des Systèmes d’IA

Résumé

Suite à la publication du livre blanc pour une approche de l’IA
basée sur l’excellence et la confiance, la Commission Européenne
(CE) a publié de nombreuses propositions de textes réglementaires
dont un (AI Act) (CE 2021) établissant des règles harmonisées sur
l’intelligence artificielle (IA). Quels seront les conséquences et im-
pacts de l’adoption à venir de ce texte du point de vue d’un math-
ématicien ou plutôt statisticien impliqué dans la conception de sys-
tème d’intelligence artificielle (IA) à haut risque au sens de la CE?
Quels outils et méthodes permettent de répondre aux obligations à
venir de conformité: analyse rigoureuse et documentée des données
traitées, des performances, robustesse, résilience de l’algorithme, de
son explicabilité, des risques, pour les droits fondamentaux, de bi-
ais discriminatoires? Ces questions sont illustrées par un exemple
numérique analogue à un score de crédit (cf. tutoriel) à la recherche
d’un moins mauvais compromis entre toutes les contraintes. Nous
concluons sur les avancées et limites du projet de règlement pour

les systèmes d’IA à haut risque.

1 Introduction
L’adoption en 2018 du Règlement Général de la Protection des Données

(RGPD) a profondément modifié les comportements et pratiques des en-
treprises dans leurs gestions des données, messageries et sites internet. Néan-
moins, les condamnations récurrentes des principaux acteurs du numérique,
notamment pour abus de position dominante, apportent les preuves de
l’inutilité des chartes (softlaw) et résolutions éthiques (ethical washing). En
conséquence et résistant aux accusations fallacieuses de freiner la recherche,
l’Europe poursuit sa démarche visant à harmoniser réglementations et inno-
vations technologiques pour le respect des droits humains fondamentaux mais
aussi la défense des intérêts commerciaux de l’Union.

La publication par la Commission Européenne (CE) d’un livre blanc sur
l’Intelligence Artificielle: une approche européenne axée sur l’excellence et
la confiance (CE 2020) fait suite au guide pour une IA digne de confiance
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rédigé par un groupe d’experts (CE 2019). L’étape suivante est la publication
de propositions de règlements dont certains en cours d’adoption:

• Digital Market Act (2020): recherche d’équité dans les relations commer-
ciales et risques d’entraves à la concurrence à l’encontre des entreprises
européennes;

• Digital Services Act (2020): sites de service intermédiaire,
d’hébergement, de plateforme en ligne et autres réseaux sociaux;
comment contrôler les contenus illicites et risques des outils automa-
tiques de modération;

• Data Governance Act (2020) contractualisation des utilisations, réutilisa-
tions, des bases de données tant publiques que privées (fiducie des don-
nées);

• Artificial Intelligence Act (CE 2021): proposition de règlement établissant
des règles harmonisées sur l’intelligence artificielle.

S’ajoutant au RGPD pour la protection des données à caractère personnel,
l’adoption européenne à venir de ce dernier texte (AI Act) va profondément
impacter les conditions de développements et d’exploitations des systèmes
d’Intelligence Artificielle (systèmes d’IA). Cette démarche fait passer d’une
IA souhaitée éthique (ethical AI), à une obligation de conformité (lawfull AI)
qui confère le marquage "CE" ouvrant l’accès au marché européen. La CE veut
ainsi manifester son leadership normatif à l’international afin que ce pouvoir
de l’UE sur la réglementation et le marché lui confère un avantage concurren-
tiel dans le domaine de l’IA.

En conséquence, le présent document propose une réflexion sur la prise
en compte méthodologique de ce projet de réglementation concernant plus
spécifiquement les compétences usuelles en Statistique, Mathématiques, des
équipes de développement d’un système d’IA, notamment ceux jugés à haut

risque selon les critères européens. Il cible plus particulièrement certaines des
sept exigences citées dans le guide des experts (CE 2019), reprises dans le livre
blanc (CE 2020) et identifiées comme risques potentiels (Besse et al. 2019): 1.
confidentialité et analyse des données ; 2. précision, robustesse, résilience ; 3.
explicabilité ; 4. non-discrimination.

La section 2 suivante extrait de l’AI Act les éléments clefs impactant les
choix et développements méthodologiques puis la section 3 en commente les
conséquences tout en proposant les outils statistiques bien connus de niveau
Master et bagage d’un futur scientifique des données. Ceux ci semblent adap-
tés voire suffisants pour satisfaire aux futures obligations réglementaires de
contrôle des risques afférents aux systèmes d’IA. Enfin la section 4 déroule un
cas d’usage numérique analogue à la prévision d’un score de crédit sur un jeu
de données concret. Cet exemple, extrait d’un tutoriel dont le code est libre-
ment accessible, permet d’illustrer la démarche de recherche d’un moins mau-
vais compromis à élaborer entre confidentialité, performance, explicabilité et
sources de discrimination. Il souligne les difficultés soulevées par la rédaction
de la documentation qui devra accompagner tout système d’IA à haut risque.
En conclusion, nous proposons une synthèse des principales avancées de ce
projet d’AI Act et en relevons, dans la version d’avril 2021, les principales
limites.

2 Impacts techniques de l’AI Act
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2.1 Structure du projet de règlement

Castets-Renard et Besse (2022) détaillent une analyse du régime de respon-
sabilité ex ante1 proposé dans les 89 considérants2 et 85 articles structurés en
12 titres de l’AI Act: entre auto-régulation, certification, normalisation, pour
définir des règles de conformité notamment pour la défense des droits fonda-
mentaux. L’objectif du présent article est plus spécifique, il est focalisé sur les
éléments du projet de réglementation concernant directement le statisticien ou
scientifique des données impliqué dans la conception d’un système d’IA jugé
à haut risque car impactant des personnes physiques.

De façon générale, les considérants, introductifs au projet, listent donc les
principes retenus par la CE et qui ont prévalu à la rédaction des articles.
La CE insiste sur la nécessité de la construction de normes internationales
en priorisant le respect des droits fondamentaux dont la non-discrimination.
Consciente de la place occupée par les algorithmes d’apprentissage statis-
tiques, elle souligne la nécessité de la représentativité statistique des données
d’entraînement et l’importance d’une documentation exhaustive à propos de
ces données et des performances d’un système d’IA. Consciente également de
l’opacité de ces algorithmes, elle demande que les capacités d’interprétation
de leurs sorties ou décisions en découlant soient à jour des recherches scien-
tifiques en cours et qu’un suivi puisse être assuré grâce à une journalisation ou
archivage des décisions et données afférentes.

2.2 Articles les plus concernés

La définition adoptée de l’IA (art. 3) est pragmatique et très flexible en
se basant sur la liste exhaustive des algorithmes concernés (annexe I). Les al-

1Par opposition à ex-post, ex-ante signifie ici que l’analyse ou audit de conformité d’un al-
gorithme d’IA afin de valider sa certification (marquage "CE") est considérée ou effectivement
réalisée avant sa diffusion ou commercialisation et donc avant sa mise en exploitation.

2Les considérants sont une liste de principes qui motivent un décret, une loi ou un règlement
et qui en précèdent le texte contenu dans la liste des articles.

gorithmes d’apprentissage automatique supervisés ou non, par renforcement,
constituent actuellement l’essentiel des applications quotidiennes de l’IA. La
représentation de connaissances, la programmation inductive et plus générale-
ment les systèmes experts très développés dans les années 70s, restent présents
dans certains domaines. Le troisième type d’algorithme cité cible les ap-
proches statistiques, inférences bayésiennes et méthodes d’optimisation. Les
approches statistiques bayésiennes ou non conduisant très généralement à
des prévisions pour l’aide à la décision peuvent être incluses dans la grande
famille de l’apprentissage fondée sur des données. En revanche, les méthodes
d’optimisation comme par exemple celles d’allocation optimale de ressources
des sites d’intermédiation (e.g. Uber, ParcourSup,...) nécessitent une approche
particulière. Cette liste peut être facilement adaptée en fonction des évolu-
tions technologiques. Ces définitions reconnaissent la place prépondérante
de l’apprentissage statistique et donc des données exploitées pour leur con-
struction. Ils laissent de côté les algorithmes procéduraux basés sur les règles
logiques d’une législation comme par exemple ceux présidant aux calculs des
montants d’allocations.

Les articles 5 et 6 adoptent également le principe de définitions pragma-
tiques en listant explicitement les applications prohibées (art. 5) et celles
à haut risque de l’IA facilement adaptables en fonction des évolutions tech-
nologiques. L’article 6 fait la différence entre les systèmes faisant déjà l’objet
d’une réglementation européenne (annexe II: systèmes de transports et de
soins) qui nécessitent une certification ex-ante par un tiers, organisme de no-
tification, contrairement aux autres (annexe III) impactant également des per-
sonnes physiques mais dont le processus de mise en conformité est seulement
déclaratif. Attention: la consultation attentive de ces annexes, de leur évolu-
tion, est importante pour bien distinguer les systèmes à haut risque des autres.
Les scores de crédit bancaire sont concernés (cf. exemple numérique section
4) ainsi que les évaluations individuelles de "police prédictive" ou les scores
de récidive (justice) mais pas explicitement celles concernant des évaluations
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de risques de délits par bloc géographique telles Predpol ou Paved en France.
Pour les applications dans le domaine de la justice, seuls sont concernés les
systèmes d’IA à l’usage des autorités judiciaires (magistrats) tels le projet
abandonné DataJust mais pas ceux à l’usage des cabinets d’avocats (e.g. case
law analytics).

L’article 10 est fondamental, il insiste sur l’importance d’une exploration
statistique préalable exhaustive des données avant de lancer les procédures
largement automatiques d’apprentissage et optimisation. Il évite une forme
d’hypocrisie en autorisant, sous réserve de précautions avancées pour la con-
fidentialité, la constitution de bases de données personnelles sensibles permet-
tant par exemple des statistiques ethniques. Cela autorise la mesure directe des
biais statistiques, sources potentielles de discrimination.

L’article 11 impose la rédaction d’une documentation qui est essentielle pour
ouvrir la possibilité d’audit ex-ante d’un système d’IA à haut risque relevant
de l’annexe II ou celui d’un contrôle ex-post pour ceux relevant de l’annexe
III. Avec un reversement de la charge de preuve, c’est au concepteur de mon-
trer qu’il a mis en œuve ce qu’il était techniquement possible en matière de
sécurité, qualité, explicabilité, non discrimination, pour atteindre les objectifs
attendus de conformité.

L’article 12 impose un archivage ou journalisation du fonctionnement d’un
système d’IA à haut risque. Cette obligation est nouvelle par rapport aux textes
européens précédents. Elle est indispensable pour assurer le suivi des mesures
de performances, de risques et donc pour être capable de détecter des failles
nécessitant des mises à jour voire un ré-entraînement du système ou même son
arrêt. Les conditions d’archivage sont précisées dans l’article 61 (post-market
monitoring).

Selon l’article 13 un utilisateur devrait pouvoir interpréter les sorties, et
doit être clairement informé des performances, éventuellement en fonction
des groupes concernés, ainsi que des risques notamment de biais et donc de

discrimination. Il s’agit ici d’un point sensible directement dépendant de la
complexité des systèmes d’IA à base d’algorithmes sophistiqués donc opaques
d’apprentissage statistique. Le choix des métriques de biais sont laissées à
l’initiative du concepteur. De plus, le manque de recul sur les recherches en
cours en matière d’explicabilité d’une décision algorithmique laissent beau-
coup de latitude à l’interprétation de cet article qui devra être adaptée à
l’évolution des recherches très actives sur ce thème. L’article 14 complète
ces dispositions en imposant une surveillance humaine visant à prévenir ou
minimiser les risques pour la santé, la sécurité ou les droits fondamentaux.

L’article 15 comble une lacune importante par l’obligation de déclaration
des performances (précisions, robustesse, résilience) d’un système d’IA à haut
risque. Il concerne également les algorithmes d’apprentissage par renforce-
ment soumis à des risques spécifiques: dérives potentielles (biais) et attaques
malveillantes (cybersécurité) comme ce fut le cas pour le chatbot Tay de Mi-
crosoft.

Les articles des chapitres suivants du Titre III notifient des obligations sans
apporter de précisions techniques ou méthodologiques: obligations faites au
fournisseur (art. 16), obligation de mise en place d’un système de gestion de
la qualité (art. 17), notamment de toute la procédure de gestion des données
de la collecte initiale à leurs mises à jour en exploitation, ainsi que de la main-
tenance post-commercialisation; obligation de documentation technique (art.
18), d’évaluation de la conformité (art. 19), obligation des utilisateurs (art.
29)...

Les États membres sont, par ailleurs, invités à désigner une autorité notifi-
ante comme responsable du suivi des procédures relatives aux systèmes à haut
risque et un organisme notifié (art. 30 à 39) indépendant, tout à fait classique
des mécanismes de certification déjà en œuvre. Un marquage "CE" sera délivré
aux systèmes conformes (art. 49).

Ce processus de marquage "CE" est essentiel pour les systèmes d’IA à haut
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risque de l’annexe II, il repose sur un audit ex-ante requérant, dans le cas d’une
évaluation externe, des compétences très élaborées de la part de l’organisme
qui en porte la responsabilité afin d’être à même de pouvoir déceler des man-
quements intentionnels ou non. Sans évaluation externe, pour les systèmes
d’IA de l’annexe II, c’est à l’utilisateur de prendre ses responsabilités vis-à-vis
du respect, entre autres, des droits fondamentaux afin de pouvoir faire face à
un contrôle si l’État membre désigne une autorité compétente à ce sujet et lui
en fournit les moyens.

2.3 Conséquences

L’analyse de ces quelques articles amène des commentaires ou questions,
notamment sous le prisme d’une approche mathématique ou statistique de con-
ception d’un système d’IA.

Projet Le projet de règlement (AI Act) entre dans un long processus (3 ou
4 ans comme le RGPD?) de maturation avant une adoption européenne
et une application par les États membres. Les amendements à venir de-
vront être successivement pris en considération pour en analyser les con-
séquences en espérant que des réponses, précisions, corrections, seront
apportées aux points ci-dessous. Néanmoins et compte tenu des temps et
coûts de conception d’un système d’IA, il est important d’anticiper dès
maintenant l’adoption de ce cadre réglementaire.

Exigences essentielles À la suite du guide des experts, le livre blanc appelle à
satisfaire sept exigences essentielles dont celles de non discrimination et
équité, bien être sociétal et environnemental.

Environnement la prise en compte de l’impact environnemental reste
anecdotique, simplement évoquées dans les considérants (28) et
(81), puis l’article 69 (codes de conduite) 2. sans aucune obli-
gation formelle de calculer une balance bénéfices / risques (en-

vironnementaux ou autres) d’un système d’IA. Ainsi, l’obligation
de l’archivage des données de fonctionnement d’un système d’IA
génère un coût environnemental qui mériterait d’être pris en compte
dans les risques afférents à son déploiement au regard de son utilité.

Équité La demande exprimée qu’un système d’IA satisfasse au respect
des droits fondamentaux en référence à la charte de l’UE, notam-
ment celui de non-discrimination, est très présente dans le livre
blanc (cité 16 fois), comme dans les considérants (15, 17, 28, 39)
de la proposition de règlement. En revanche, ce principe n’apparaît
plus explicitement dans les articles. Est-ce sa présence dans des
textes de plus haut niveau comme la Charte des Droits Fondamen-
taux de l’UE qui n’a pas justifié ici une répétition ou encore un
manque d’harmonisation entre les États membres à ce propos? Il
n’y a donc pas de précision sur les façon de "mesurer" une discrim-
ination ou la nécessité de l’atténuer. En revanche, les recherches et
documentations des biais potentiels sont clairement explicitées.

Normes Le considérant (13) appelle à la définition de normes internationales
notamment à propos des droits fondamentaux. En l’absence d’une défini-
tion juridique de l’équité d’un algorithme, celle-ci est définie en creux par
l’absence de discrimination interdite explicitement. Le souci est que la
littérature regorge de dizaines de définitions de biais statistiques pouvant
être à l’origine de sources de discrimination; lesquels considérer en prior-
ité? Il est peu probable que les autorités compétentes se prononcent à ce
sujet, elles se focalisent (LNE 2021) sur les mesures de performances des
systèmes d’IA de l’annexe II, notamment les systèmes de transport et les
dispositifs de santé en vue de leur certification (marquage "CE").

Néanmoins, la recherche d’un biais systémique ou de société est req-
uise dans l’analyse préalable des données (art. 10, 2. (f)), ainsi que
l’obligation de détailler les performances (précision) par groupe ou sous
groupe d’un système d’IA (art. 13, 3., (b) iv). Ceci permet de prendre en
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compte certains type de biais, donc de discriminations spécifiques même
en l’absence de définitions normatives. Des indicateurs statistiques de
biais devenus relativement consensuels dans la communauté académique
sont proposés dans la section suivante.

En revanche, il est regrettable qu’aucune indication, recommandation,
contrainte, ne vienne ensuite préciser ce qui pourrait ou devrait être fait
pour atténuer ou éliminer un biais discriminatoire. Ceci est laissé au libre
arbitre du concepteur d’un système d’IA en espérant que les choix opérés
soient explicitement détaillés en toute transparence pour le fournisseur
qui en assume la responsabilité et pour l’utilisateur en relation avec les
usagers. L’exemple numérique illustre une telle démarche.

Utilisateur & Usager Le règlement traite en priorité les considérations com-
merciales, donc des risques de défaillance inhérents de l’acquisition des
données à la mise en exploitation d’un système d’IA. Tout système doit
satisfaire aux exigences de performance annoncées selon un principe de
sécurité des produits ou responsabilité du fait des produits défectueux.
En revanche, l’usager final, les dommages auxquels il peut être con-
fronté, ne sont pas du tout pris en compte. L’obligation d’information
(art. 13) est ainsi au profit de l’utilisateur et pas à celui de l’usager, per-
sonne physique impactée, qui ne semble donc protégé à ce jour que par
les seules obligations de l’article 22 du RGPD. Il est informé de l’usage
d’un système d’IA le concernant, il peut en contester la décision auprès de
l’utilisateur humain mais l’explication de la décision, des risques encou-
rus, sont soumises aux compétences et à la déontologie professionnelle de
cet utilisateur: conseiller financier pour un client, magistrat pour un jus-
ticiable, responsable des ressources humaines pour un candidat, à moins
d’un cadre juridique spécifique (e.g. code de santé public).

Données le règlement reconnaît le rôle prépondérant des algorithmes
d’apprentissage automatique et donc de la nécessité absolue (considérant

44) de qualité et pertinence des données conduisant à leur entraînement.
L’article 10 impose en conséquence des compétences en Statistique pour
conduire les études préalables à l’entraînement d’un algorithme. Nous
assistons à un renversement de tendance, un retour de balancier, du tout
automatique à une approche raisonnée sous responsabilité humaine de
cette phase d’analyse des données longue et coûteuse mais classique du
métier de statisticien.

Responsabilité De façon générale, l’objectif essentiel n’est plus la perfor-
mance absolue comme dans les concours de type Kaggle et conduisant
à des empilements inextricables d’algorithmes opaques mais de satis-
faire à un ensemble de contraintes pour la mise en conformité, dont
celle de transparence, sous la responsabilité du fournisseur du système
d’IA. L’analyse des responsabilités en cas de défaillance ou de produit
défectueux sera l’objet d’un autre texte.

Documentation Tous les choix opérés lors de la conception d’un système
d’IA: ensembles de données, algorithmes, procédures d’apprentissage et
de tests, optimisations des paramètres, compromis entre confidentialité,
performances, interprétabilité, biais... doivent (art. 11 et annexe IV)
être explicitement documentés en vue d’un audit ex-ante des systèmes de
l’annexe II ou d’un contrôle ex-post d’un système de l’annexe III. C’est
un renversement de la charge de preuve sous la responsabilité du four-
nisseur qui doit pouvoir montrer que le concepteur a mis en œuvre ce qui
était techniquement possible pour satisfaire aux obligations (conformité)
légales de sécurité, transparence, performances et non discrimination.

Autorité notifiante (Chapitre 4 Titre III) Chaque pays va se doter ou désigner
(art. 30) un service chargé entre autres de superviser l’audit ex-ante d’un
système d’IA à haut risque de l’annexe II avant son déploiement qu’il
soit commercialisé ou non. L’autorité notifiante désigne l’organisme de
notification qui exécutera l’audit. De façon assez étonnante, un système
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d’ascenseur élémentaire, n’embarquant qu’une "IA" logique rudimentaire
mais dépendant de l’annexe II, est plus contraint par l’obligation de cer-
tification par un organisme tiers, au contraire d’applications des systèmes
d’IA de l’annexe III (justice, emploi, crédit...) impactant directement des
personnes physiques avec des risques réels envers les droits fondamen-
taux. Il faudra donc être attentif à l’interprétation que fera un État membre
de cette situation afin d’évaluer les possibilités de saisine et compétences
de contrôle d’un système à haut risque de l’annexe III.

Archivage & confidentialité Le règlement cible donc, en première lecture,
les obligations commerciales du fournisseur plutôt que celles étiques ou
déontologiques envers l’usager. Néanmoins le règlement apporte la possi-
bilité de prendre en compte des données sensibles (art. 10, 5.), les obliga-
tions d’archivage des décisions (art. 12), de suivi des performances selon
les groupes (art. 13), une surveillance humaine (art. 14) pendant toute la
période d’utilisation et de correction rétro-active des biais (art. 15). Cette
obligation d’archivage et surveillance du fonctionnement notamment à
destination des groupes sensibles oblige implicitement à l’acquisition, en
toute sécurité (cryptage, anonymisation, pseudonymisation...), de don-
nées confidentielles (e.g. origine ethnique). Cela ne rend-il pas indis-
pensable, selon le domaine d’application, la mise en place d’un proto-
cole explicite de consentement libre et éclairé, d’un engagement éthique,
entre l’utilisateur et l’usager, protégé par le RGPD? Comment sont éval-
ués les risques encourus d’un usager ou groupe d’usager par le recueil et
l’exploitation de leurs données sensibles lors de l’exploitation d’un sys-
tème d’IA face aux bénéfices attendus pour eux mêmes ou l’intérêt pub-
lic?

3 Prise en compte méthodologique de l’AI
Act

3.1 Quels algorithmes

Dans l’attente d’une adoption effective du texte final qui risque d’être
amendé, il est néanmoins prudent, compte tenu des investissements en jeu,
d’anticiper des réponses techniques à certaines contraintes ou obligations faites
aux système d’IA désignés à haut risque. Cet article laisse volontairement de
côté certaines classes d’algorithmes mentionnées ou non dans l’annexe I dont
la liste finale reste l’objet de débats entre les instances européennes.

Un système expert est l’association d’une base de règles logiques ou base de
connaissances construites par des experts du domaine concerné, d’un moteur
d’inférence et d’une base de faits observés pour une exécution en cours. Le
moteur d’inférence recherche la séquence de règles logiquement applicables
à partir des faits observés de la base qui s’incrémente comme conséquences
du déclenchements des règles. Le processus itère jusqu’à l’obtention ou non
d’une décision recherchée et expliquée par la séquence de règles y conduisant.
Très développée dans les années 70, la recherche a marqué le pas face à un
problème dit NP-complet c’est-à-dire de complexité algorithmique exponen-
tielle en la taille de la base de connaissance (nombre de règles). Supplantée
par la ré-émergence des réseaux de neurones (années 80) puis plus largement
par l’apprentissage automatique, la recherche dans ce domaine dit d’IA sym-
bolique est restée active. Elle connaît un renouveau motivé par les capacités
d’explicabilité des systèmes experts.

Les approches statistiques bayésiennes ou non basées sur des données sont
associées implicitement aux méthodes par apprentissage. En revanche, les al-
gorithmes d’allocation optimale de ressources prennent une place à part. Si
les principes d’allocation en tant que tels ne soulèvent pas de problème, ceux
d’ordonnancement ou de tri des ressources peuvent amener des risques réels de
discrimination indirecte. C’est notamment le cas de l’algorithme ParcourSup
lorsque les établissements d’enseignement supérieur introduisent des pondéra-
tions selon le lycée d’origine des candidats: lycée de centre ville vs. lycée de

http://wikistat.fr


120

banlieue. Cette situation rejoint alors le cas des algorithmes déterministes ou
procéduraux. Il s’agit d’algorithmes décisionnels (e.g. calcul de taxes, impôts,
allocations ou prestations sociales,...) basés sur un ensemble de règles de déci-
sion déterministes qui peuvent tout autant présenter des impacts, désavantages
ou risques de discrimination indirecte, malgré une apparente neutralité. La
Défenseure des Droits (2020) est très attentive en France à l’analyse et détec-
tion de ces risques. Celle-ci relèvent de l’analyse experte des règles de déci-
sions codées dans l’algorithme qui en l’état ne sont pas concernés par le projet
de règlement. Néanmoins, la complexité de l’algorithme peut être telle qu’une
analyse experte ex-post ne sera pas en mesure d’évaluer l’étendue des risques
indirects. Aussi, un algorithme déterministe complexe peut être analysé avec
les mêmes outils statistiques que ceux adaptés à un algorithme d’apprentissage
automatique.

Nous insistons donc tout particulièrement sur les systèmes d’IA basés sur
des algorithmes d’apprentissage supervisé ou statistique ou IA empirique par
opposition à l’IA dite symbolique des systèmes experts. Ce sont très majori-
tairement les plus répandus au sein de ceux désignés à haut risque (art. 6) car
susceptibles d’impacter directement des personnes physiques.

Même sans obligation de certification ex-ante par un organisme notifié, une
documentation exhaustive (art. 11) d’un système d’IA à haut risque doit être
produite et fournie à l’utilisateur. Cette section propose quelques indications
méthodologiques pour répondre à cette attente.

3.2 Les données

Tout système d’IA basé sur un algorithme d’apprentissage statistique néces-
site la mise en place d’une base de données d’entraînement fiable et représen-
tative du domaine d’application visé qui doit en tout premier lieu satisfaire aux
exigences de confidentialité du RGPD. Puis, le travail d’exploration statistique,
généralement long et fastidieux d’acquisition, vérification, analyse, prépara-
tion, nettoyage, enrichissement, archivage sécurisé des données, est essentiel à

l’élaboration d’un système d’IA performant, robuste, résilient et dont les biais
potentiels sont sous contrôle. Construire de nouvelles caractéristiques (fea-
tures) adaptées à l’objectif, traquer et gérer éventuellement par imputation des
données manquantes, identifier les anomalies ou valeurs atypiques (outliers)
sources de défaillances, les sources de biais: classes ou groupes sous représen-
tés, biais systémiques, nécessitent compétences et expériences avancées en
Statistique.

Ces compétences sont indispensables pour répondre aux attentes de l’article
10 ainsi qu’aux besoins de la documentation (annexe IV) imposée par l’article
11.

3.3 Qualité, précision et robustesse

Les articles 13 et 15 imposent clairement de devoir documenter les per-
formances et risques d’erreur, éventuellement en fonction de groupes sensi-
bles et protégés, ou de défaillance d’un système d’IA. Cela rend indispensable
l’explicitation de choix notamment des métriques utilisées.

Choix de métrique

L’évaluation de la qualité d’une aide algorithmique à la décision est es-
sentielle à la justification du déploiement d’un système d’IA au regard de
sa balance bénéfice / risques. Dans le cas d’un système IA empirique ou
par apprentissage automatique, il s’agit d’estimer la précision des prévisions
dont les mesures sont bien connues et maîtrisées, parties intégrante du pro-
cessus d’apprentissage. Néanmoins parmi un large éventail des possibles,
le choix, précisément justifié, doit être adapté au domaine, au type de prob-
lème traité, aux risques spécifiques encourus quelque soit le modèle ou le type
d’algorithme d’apprentissage utilisé. Citons par exemple les situations de:

Régression ou modélisation et prévision d’une variable cible Y quantitative.
Elle est généralement basée sur l’optimisation d’une mesure quadratique
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(norme L2) pouvant intégrer, à l’étape d’entraînement, différents types de
pénalisation dont celles de parcimonie (ridge, Lasso) afin de contrôler la
complexité de l’algorithme et éviter les phénomènes de sur-apprentissage.
D’autres types de fonction objectif basée sur une perte en norme L1 ou
valeur absolue, moins sensible à la présence de valeurs atypiques (out-
liers) que la norme quadratique, permet des solutions plus robustes car
tolérantes à des observations atypiques.

Classification ou modélisation, prévision d’une variable Y qualitative. Le
choix d’une mesure d’erreur doit être opéré parmi de très nombreuses
possibilités: taux d’erreur, AUC (area under the ROC Curve pour une
variable Y binaire), score Fβ , risque bayésien, entropie... avec la diffi-
cile prise en compte des situations de classes déséquilibrées qui oriente
le choix du type de mesure et nécessite des précautions spécifiques dans
l’équilibrage de la base d’apprentissage ou les pondérations de la fonction
objectif en prenant en compte une matrice de coûts de mauvais classement
éventuellement asymétrique.

Limites de la précision

Besse (2021) rappelle que les performances de l’IA sont largement suréval-
uées par le battage médiatique dont bénéficient ces technologies. Ces perfor-
mances sont d’autant plus dégradées lorsque la décision concerne la prévision
d’un comportement (achat, départ, embauche, acte violent, pathologie...) in-
dividuel humain dépendant potentiellement d’un très grand nombre de vari-
ables explicatives ou facteurs dont certains peuvent ne pas être observables.
Il importe de distinguer les systèmes d’IA développés dans un domaine bien
déterminé (e.g. process industriel sous-contrôle), où le nombre de facteurs ou
dimensions est raisonnable et identifié, des systèmes d’IA où opère le fléau ou
malédiction de la dimension (curse of dimensionality), lorsque celle-ci est très
grande, voire indéterminée.

L’histoire de la littérature statistique puis d’apprentissage automatique peut
être lue comme une succession de stratégies pour le contrôle du nombre de
variables et ainsi de paramètres estimés dans un modèle statistique ou entraînés
dans un algorithme. Il s’agit par exemple de contrôler le conditionnement
d’une matrice en régression: PLS (partial least square), sélection de variables
(critères AIC, BIC), pénalisations ridge ou Lasso, et ainsi l’explosion de la
variance des prévisions. Plus généralement c’est aussi le contrôle du risque
de sur-ajustement qui doit être documenté comme résultat de l’optimisation
des hyperparamètres: nombre de plus proches voisins, pénalité en machines à
vecteurs supports, nombre de feuilles d’un arbre, de variables tirées aléatoire-
ment dans une forêt d’arbres, profondeur des arbres et nombre d’itérations en
boosting ... structures des couches convolutionnelles et drop out des réseaux de
neurones en reconnaissance d’images. Même si les stratégies d’optimisation
de ces hyperparamètres par validation croisée ou échantillon de validation sont
bien rodées, le fléau de la dimension peut s’avérer rédhibitoire (e.g. Verzelen
2012).

Échantillon test

En tout état de cause, il est indispensable de mettre en place une démarche
très rigoureuse pour conduire à l’évaluation de la précision et donc des per-
formances d’un système d’IA basé sur un algorithme d’apprentissage. Comme
énoncé dans l’article 3, 31. ce sont des données de test indépendantes de celles
d’apprentissage qui sont utilisées à cet effet. Attention néanmoins d’évaluer
les performances sur des données telles qu’elles se présenteront réellement
en exploitation, avec leurs défauts, et pas un simple sous-ensemble aléatoire
de la base d’apprentissage comme c’est trop souvent le cas en recherche
académique. En effet cet ensemble de données peut bénéficier d’une ho-
mogénéité d’acquisition (e.g. même technologie, même opérateur) et de pré-
traitements qui peuvent faire défaut à de réelles données d’entrée à venir en
exploitation. Cela demande donc une extrême rigueur dans la constitution
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d’un échantillon test pour éviter ces pièges bien trop présents en recherche
académique (e.g. Liu et al. 2019, Roberts et al. 2021) et conduisant, sous la
pression de publication, à beaucoup trop de résultats non reproductibles et des
algorithmes non certifiables. Enfin, une surveillance (art. 14) toute la durée de
vie du système d’IA est indispensable afin d’en détecter de possibles dérives
ou dysfonctionnements (art. 12 et 15) affectant la robustesse ou la résilience
des décisions.

Robustesse

L’évaluation de la robustesse est liée aux procédures de contrôle mises en
place pour détecter des valeurs atypiques (outliers) ou anomalies dans la base
d’apprentissage et au choix de la fonction perte de la procédure d’entraînement
de l’algorithme. Impérativement, surtout dans les d’applications sensibles pou-
vant entraîner des risques élevés en cas d’erreur, la détection d’anomalie doit
également être intégrée en exploitation afin de ne pas chercher à proposer
des décisions correspondant à des situations atypiques, étrangères à la base
d’apprentissage.

Résilience

La résilience d’un système d’IA est essentielle pour les dispositifs critiques
(dispositifs de santé connecté, aide au pilotage). Cela concerne par exemple
la prise en compte de données manquantes lors de l’apprentissage comme en
exploitation. Il s’agit d’évaluer la capacité d’un système d’IA à assurer des
fonctions pouvant s’avérer vitales en cas, par exemple, de panne ou de fonc-
tionnement erratique d’un capteur: choix d’un algorithme tolérant aux données
manquantes, imputation de celles-ci, fonctionnement en mode dégradé, alerte
et arrêt du système.

3.4 Explicabilité

Une recherche active

Il est bien trop tôt pour tenter un résumé opérationnel de ce thème et fournir
des indications claires sur la démarche à adopter pour satisfaire aux exigences
réglementaires (art. 13, 15). Il faut pour cela attendre que la recherche ait
progressé et qu’une sélection "naturelle" en extrait les procédures les plus per-
tinentes parmi une grande quantité de solutions proposées; un article de revue
sur ce sujet (Barredo Arrieta et al. 2020) listait plus de 400 références.

Arbre de choix

Tentons de décrire les premiers embranchements d’un arbre de décision en
répondant à quelques questions rudimentaires qu’il faudrait en plus adapter au
domaine d’application car le type de réponse à apporter n’est évidemment pas
le même s’il s’agit d’expliquer le refus d’un prêt ou les conséquences d’une
aide automatisée au diagnostic d’un cancer.

Il importe de bien distinguer les niveaux d’explication: concepteur, utilisa-
teur ou usager, même si ce dernier n’est pas directement concerné par le projet
de règlement. De plus, l’explication peut s’appliquer soit au fonctionnement
général de l’algorithme soit à une décision spécifique.

Il y a schématiquement deux types d’algorithmes dontceux relativement
transparents: modèles linéaires et arbres de décision. L’explication est dans
ce cas possible à condition que le nombre de variables et d’interactions prises
en compte ou le nombre de feuilles d’un arbre reste raisonnable. Toutes les
autres classes d’algorithme d’apprentissage, systématiquement non linéaires
et complexes, sont par construction opaques. Il s’agit alors de construire une
explication par différentes stratégies comme une approximation explicable par
un modèle linéaire, un arbre ou un ensemble de règles de décision détermin-
istes. Une autre stratégie consiste à fournir des indications sur l’ importances
des variables en mesurant l’effet d’une permutation aléatoire de leurs valeurs
(mean decrease accuracy Breiman, 2001), en stressant l’algorithme (Bachoc
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et al. 2020) ou en réalisant une analyse de sensibilité par indices de Sobol
(Bénesse et al. 2021).

Le concepteur d’un algorithme s’intéresse également à l’explication d’une
décision spécifique afin d’identifier la cause d’une erreur, y remédier par exem-
ple en complétant la base d’apprentissage d’un groupe sous-représenté avant de
ré-entraîner l’algorithme. L’utilisateur d’un système d’IA doit être au mieux
informé (art. 13, 15) des possibilités d’expliquer une décision qu’il pourra
retranscrire à l’usager (client, patient, justiciable, citoyen...) selon sa propre
déontologie, son intérêt commercial ou une contrainte légale par exemple pour
des décisions administratives. Pour ce faire quelques stratégies sont proposées
comme une approximation locale par un modèle explicable (linéaire, arbre
de décision) ou par une liste d’exemples contrefactuels c’est-à-dire des situa-
tions les plus proches, en un certain sens, qui conduiraient à décision contraire,
généralement plus favorable (attribution d’un prêt). Lorsque cela s’avère im-
possible, comme par exemple dans le cas d’un diagnostic médical impliquant
un nombre important de facteurs opaques, il importe d’informer précisément
l’utilisateur et donc le patient sur les risques d’erreur afin que consentement de
ce dernier soit effectivement libre et éclairé.

Quelques démonstrations de procédures explicatives sont proposées sur des
sites en accès libre. Citons: gems-ai.com, aix360.mybluemix.net,
github.com/MAIF/shapash

Réalité complexe

Ne pas perdre de vue que l’impossibilité ou simplement la difficulté à for-
muler une explication provient certes de l’utilisation d’algorithmes opaques
mais dont la nécessité est inhérente à la complexité même du réel. Un réel
complexe (e.g. les fonctions du vivant) impliquant de nombreuses variables,
leurs interactions, des effets non linéaires voire des boucles de contre-réaction,
est nécessairement modélisé par un algorithme complexe afin d’éviter des sim-
plifications abusives pouvant gravement nuire aux performances. C’est tout

d’abord le réel qui s’avère complexe à expliquer.

3.5 Biais & discrimination

Bien que très présente dans les textes préliminaires (livre blanc (CE 2021,
considérants de l’AI Act) la référence au risque de discrimination ne l’est
pas de façon explicite dans les projets d’articles. Apparaissent néanmoins
l’obligation de détecter des biais dans les données (art. 10) ainsi que celle
d’afficher des performances ou risques d’erreur par groupe (art. 13). Quelles
en sont les conséquences au regard des difficultés de définir, détecter une dis-
crimination qu’elle soit humaine ou algorithmique?

Détecter une discrimination

Formellement, la stricte équité peut s’exprimer par des propriétés
d’indépendance en probabilité entre la variable cible Y qui exprime une dé-
cision et la variable dite sensible S par rapport à laquelle une discrimination
est en principe interdite. Cette variable peut être quantitative (e.g. âge) ou
qualitative à deux ou plusieurs classes (e.g. genre ou origine ethnique) ou, de
façon plus complexe, la prise en compte d’interactions entre plusieurs variables
sensibles. Néanmoins cette définition théorique de l’équité n’est pas concrète-
ment praticable pour détecter, mesurer, atténuer des risques de biais. De plus,
les textes juridiques font essentiellement référence à un groupe de personnes
sensibles par rapport aux autres. En conséquences et pour simplifier cette pre-
mière lecture pédagogique de la détection des risques de discrimination, nous
ne considérons qu’une variable sensible à 2 modalités: jeune vs. vieux, femme
vs. homme...

Une façon bien établie de détecter une décision humaine discriminatoire
consiste à opérer par testing. Dans le cas d’une présomption de discrimina-
tion à l’embauche, la procédure consiste à adresser deux CV comparables,
à l’exception (counterfactual example) de la modalité de la variable sensible
(e.g. genre, origine ethnique associée au nom) afin de comparer les réponses:
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proposition ou non d’entretien. Cette démarche individuelle est rendue sys-
tématique (Rich, 2014) dans une enquête par l’envoi de milliers de paires de
CV. C’est en France la doctrine officielle promue par le Comité National de
l’Information Statistique et commanditée périodiquement par la DARES (Di-
rection de l’Animation, des Études, de la Recherche et des Statistiques) du
Ministère du travail.

Des indicateurs statistiques peuvent être estimés à l’issue de cette enquête
mais, comme il n’existe pas de définition juridique de l’équité qui devient par
défaut l’absence de discrimination, le monde académique a proposé quelques
dizaines d’indicateurs (e.g. Zliobaitė 2017) afin d’évaluer des biais potentiels
sources de discrimination. Il est nécessaire d’opérer des choix parmi tous les
critères de biais en remarquant que beaucoup de ces indicateurs s’avèrent être
très corrélés ou redondants (Friedler et al. 2019). Empiriquement et après
avoir consulter une vaste littérature sur l’IA éthique ou plutôt sur les risques
identifiés de discrimination algorithmique, un consensus émerge sur le choix
en priorité de trois niveaux de biais statistique. Sont finalement considérés dans
cet article élémentaire trois types de rapports de probabilités (égaux à 1 en cas
d’indépendance stricte) dont Besse et al. (2021) proposent des estimations par
intervalle de confiance afin d’en contrôler la précision.

Parité statistique et effet disproportionné

Le premier niveau de risque de discrimination algorithmique s’illustre sim-
plement: si un algorithme est entraîné sur des données biaisées, il apprend et
reproduit très fidèlement ces biais systémiques, de société ou de population,
par lesquels un groupe est historiquement (e.g. revenu des femmes) désavan-
tagé; plus grave, l’algorithme risque même de renforcer le biais en conduisant
à des décisions explicitement discriminatoires. Il importe donc de pouvoir
détecter, mesurer, atténuer voire éliminer ce type de biais. L’équité ou parité
statistique (ou demographic equality) serait l’indépendance entre la ou les vari-
ables sensibles S (e.g. genre, origine ethnique) et la variable de prévision Ŷ

de la décision. Historiquement, l’écart à l’indépendance pour mesurer ce type
de biais est évalué aux USA dans les procédures d’embauche depuis 1971 par
la notion d’effet disproportionné ou disparate impact et maintenant reprises
systématiquement (Barocas et Selbst, 2016) pour l’évaluation de ce type de
discrimination dans un algorithme. L’effet disproportionné consiste à estimer
le rapport de deux probabilités: probabilité d’une décision favorable (Ŷ = 1)
pour une personne du groupe sensible (S = 0) au sens de la loi sur la même
probabilité pour une personne de l’autre groupe (S = 1):

DI =
P(Ŷ = 1|S = 0)

P(Ŷ = 1|S = 1)
.

Cet indicateur est intégré au Civil Rights act & Code of Federal Regula-
tions (Title 29, Labor: Part 1607 Uniform guidelines on employee selection
procedures) depuis 1978 avec la règle dite des 4/5 ème; si DI est inférieur à
0, 8, l’entreprise doit en apporter les justifications économiques. Les logiciels
commercialisés aux USA et proposant des algorithmes de pré-recrutement au-
tomatique anticipent ce risque juridique (Raghavan et al. 2019) en intégrant
une procédure automatique d’atténuation du biais (fair learning). Il n’y a au-
cune obligation ni mention en France de cet indicateur statistique, seulement
une incitation de la part de la Défenseure des Droits et de la CNIL (2012) en-
vers les services de ressources humaines des entreprises. Il leur est suggéré
de tenir des statistiques ethniques, autorisées dans ce cas sous réserve de con-
fidentialité, sous la forme de tables de contingence dont il serait facile d’en
déduire des estimations d’effet disproportionné.

La mise en évidence d’un biais systémique est implicitement citée lors de
l’étape d’analyse préliminaire des données (art. 10, 2., (f)) mais sans plus de
précision sur la façon dont il doit être pris en compte alors que renforcer al-
gorithmiquement ce biais serait ouvertement discriminatoire. De plus serait-il
politiquement opportun d’introduire une part de discrimination positive afin
d’atténuer la discrimination sociale? C’est évoqué dans le guide des experts
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(CE, 2019, ligne directrice 52) pour améliorer le caractère équitable de la
société et techniquement l’objet d’une vaste littérature académique nommée
apprentissage équitable (fair learning). Cette opportunité n’est pas reprise
explicitement dans l’AI Act mais nous verrons dans l’exemple numérique ci-
dessous qu’elle ne peut être exclue et peut même être pleinement justifiée en
prenant en considération les autres types de biais ci-après.

Erreurs conditionnelles

Les taux d’erreur de prévision et donc les risques d’erreur de décisions sont-
ils les mêmes pour chaque groupe (overall error equality)? Autrement dit,
l’erreur est-elle indépendante de la variable sensible? Ceci peut se mesurer par
l’estimation (intervalle de confiance) du rapport de probabilités (probabilité de
se tromper pour le groupe sensible sur la probabilité de se tromper pour l’autre
groupe):

REC =
P(Ŷ ̸= Y |S = 0)

P(Ŷ ̸= Y |S = 1)
.

Ainsi, si un groupe est sous-représenté dans la base d’apprentissage, il est
très probable que les décisions le concernant soient moins fiables. C’est une
des première critiques formulées à l’encontre des algorithmes de reconnais-
sance faciale et ce risque est également présent dans les applications en santé
(Besse et al. 2020) ou en ressources humaines (De-Arteaga et al. 2019).
L’identification, la prise en compte et la surveillance de ce risque sont présents
(art. 13, 3., (b), ii et art. 15, 1. & 2.) dans le projet de règlement et doivent
donc être explicitement détaillés dans la documentation (art. 11).

Rapports de cote conditionnels

Même si les deux critères précédents sont trouvés équitables, les erreurs
peuvent être dissymétriques (plus de faux positifs, moins de faux négatifs)
au détriment d’un groupe avec un impact d’autant plus discriminatoire que
le taux d’erreur est important. Cet indicateur (comparaison des rapports de

cote ou odds ratio d’indépendance conditionnelle nommé aussi equalli odds)
est au cœur de la controverse concernant l’évaluation COMPAS du risque de
récidive aux USA (Larson et al. 2016). Il est également présent dans l’exemple
numérique ci-après. Cet indicateur double est mesuré par l’estimation de deux
rapports de probabilités: rapports des taux de faux positifs du groupe sensible
sur le taux de faux positifs de l’autre groupe et rapport des taux de faux négatifs
pour ces mêmes groupes.

RFP =
P(Ŷ = 1|Y = 0, S = 0)

P(Ŷ = 1|Y = 0, S = 1)
et RFN =

P(Ŷ = 0|Y = 1, S = 0)

P(Ŷ = 0|Y = 1, S = 1)
.

L’évaluation de ce type de biais n’est pas explicitement mentionné dans le
projet de règlement. Néanmoins il fait partie de la procédure classique
d’évaluation des erreurs en classification à l’aide d’une matrice de confusion
ou de courbes ROC par groupes et ne peut être négligé.

Notons qu’il est d’autant plus difficile de faire abstraction du dernier type
de biais que les trois sont interdépendants et même en interaction avec les
autres risques: précision et explicabilité. Ceci est clairement mis en évi-
dence dans l’exemple numérique suivant. Il y a donc une forme d’obligation
déontologique ou de cohérence statistique à devoir appréhender ces différents
niveaux d’analyse.

4 Exemple numérique
L’exemple jouet ou bac à sable de cette section permet d’illustrer con-

crètement toute la complexité des principes précédemment évoqués en soulig-
nant leur interdépendance. Ce jeu de données est ancien, largement utilisé
pour illustrer tous les travaux visant une atténuation optimale du biais. Le
monde académique espère avoir rapidement accès à bien d’autres "bac à sable"
représentatifs dont la construction est l’objet de l’article 53 de l’AI Act.
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4.1 Données

Les données publiques utilisées imitent le contexte du calcul d’un score de
crédit. Elles sont extraites (échantillon de 45 000 personnes) d’un recensement
de 1994 aux USA et décrivent l’âge, le type d’emploi, le niveau d’éducation, le
statut marital, l’origine ethnique, le nombre d’heures travaillées par semaine,
la présence ou non d’un enfant, les revenus ou pertes financières, le genre et le
niveau de revenu bas ou élevé. Elles servent de référence ou bac à sable pour
tous les développements d’algorithmes d’apprentissage automatique équitable.
Il s’agit de prévoir si le revenu annuel d’une personne est supérieur ou inférieur
à 50k$ et donc de prévoir, d’une certaine façon, sa solvabilité connaissant ses
autres caractéristiques socio-économiques. Ces questions de discrimination
dans l’accès au crédit sont toujours d’actualité (Campisi 2021, Hurlin et al.
2021, Kozodoi et al. 2021) même si le principe du score de crédit s’est général-
isé dès les années 90 avec l’envol du data mining devenu depuis de l’IA.

L’étude complète et les codes de calcul sont disponibles dans un tuto-
riel (calepin Jupyter) mais l’illustration est limitée à un résumé succinct de
l’analyse de la discrimination selon le genre.

4.2 Résultats

Une analyse exploratoire: nettoyage des données, description statistique,
préalable doit être incluse dans la documentation. Elle est l’objet d’un autre
tutoriel dont seuls quelques résultats sont retenus par souci de concision.
Ils mettent en évidence un biais systémique ou de société important: seule-
ment 11, 6% des femmes ont un revenu élevé contre 31, 5% des hommes.
Le rapport DI = 0, 38 est donc très disproportionné et peut s’expliquer par
quelques considérations sociologiques bien identifiées sur le premier plan fac-
toriel (fig. 12.1) d’une analyse factorielle multiple des correspondances cal-
culée après avoir recodé qualitatives toutes les variables. Les femmes tra-
vaillent en moyenne moins d’heures (HW1) par semaine (occupations mé-

nagères et enfants?); même si le niveau de diplôme ne semble pas lié au
genre, elles occupent un poste avec moins de responsabilité (Admin) (effet
plafond de verre?). Un autre type de biais semble présent dans ces données, les
femmes sont associées (co-occurrences plus fréquentes que l’indépendance) à
la présence d’enfants sans pour autant être en situation de couple contrairement
aux hommes. Cette enquête s’adresse-t-elle de façon privilégiée au chef ou à
la cheffe de famille éventuellement monoparentale?

Les données ont été aléatoirement réparties en trois échantillons
d’apprentissage (29 000), destinés à l’estimation des modèles ou entraîne-
ment des algorithmes, de validation (8000) afin d’optimiser certains hyper
paramètres et de test (8000) pour évaluer les différents indicateurs de perfor-
mance et biais. La taille relativement importante de l’échantillon initial permet
de considérer un échantillon de validation représentatif, comme demandé dans
le règlement, afin d’éviter des procédures plus lourdes de validation croisée.
Les résultats de prévision sont regroupés dans la figure 12.2.

Le biais systémique (dataBaseBias) des données est comparé avec celui
de la prévision de niveau de revenu par un modèle classique linéaire de ré-
gression logistique linLogit: DI = 0, 25. Significativement moins élevé
(intervalles de confiance disjoints), il montre que ce modèle renforce le biais et
donc discrimine nettement les femmes dans sa prévision. La procédure naïve
(linLogit-w-s) qui consiste à éliminer la variable dite sensible (genre) du
modèle ne supprime en rien (DI = 0, 27) le biais discriminatoire car le genre
est de toute façon présent à travers les valeurs prises par les autres variables
(effet proxy). Une autre conséquence de cette dépendance aux proxys est que
le testing ou counterfactual test (changement de genre toutes choses égales par
ailleurs) ne détecte plus (DI = 0, 90) aucune discrimination!

Un algorithme non-linéaire élémentaire (tree, arbre binaire de décision)
augmente le biais mais pas de façon statistiquement significative car les inter-
valles de confiance ne sont pas disjoints. Sa précision est meilleure que celle du
modèle de régression logistique mais, si l’objectif est une interprétation utile,
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Figure 12.1: Premier plan factoriel d’une analyse factorielle multiple des cor-
respondances (librairie FactoMineR, Lê et al. 2008)

Figure 12.2: Précision de la prévision (accuracy) et effet disproportionné
(discrimination en fonction du genre) estimé par un intervalle de confiance
sur un échantillon test (taille 9000) pour différents modèles ou algorithmes
d’apprentissage.
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il est nécessaire de réduire la complexité de l’arbre en pénalisant le nombre de
feuilles, d’une centaine à une dizaine. Dans ce cas la précision se dégrade pour
rejoindre celle de la régression logistique; l’explicabilité a un coût.

Un algorithme non linéaire plus sophistiqué (random forest) est très
fidèle au biais des données avec un indicateur (DI = 0, 36) proche de celui du
biais de société et fournit une meilleure précision: 0, 86 au lieu de 0, 84 pour
la régression logistique. Cet algorithme ne discrimine pas plus, apporte une
meilleure précision, mais c’est au prix de l’explicabilité du modèle. Opaque
comme un réseau de neurones, il ne permet pas d’expliquer une décision à
partir de ses paramètres comme cela est facile avec le modèle de régression ou
un arbre binaire de décision de taille raisonnable.

Une question délicate concerne le choix politique de procéder ou non à une
atténuation du biais systémique dans le cas d’un score de crédit. Contrairement
à Hurlin et al. (2021), Goglin (2021) l’aborde de façon très incomplète en
ne considérant, de manière exclusive, que le biais des erreurs selon le genre.
Cet auteur "justifie" de ne pas considérer le biais systémique car le corriger
conduirait des femmes à des situations de surendettement tandis que le 3ème
type de biais est purement oublié. Une analyse plus fine montre, à travers
cet exemple, toute l’importance de prendre en compte simultanément les trois
types de biais afin d’éviter un positionnement quelque peu "paternaliste".

En principe, la précision de la prévision pour un groupe dépend de sa
représentativité. Si ce dernier est sous-représenté, l’erreur est plus importante;
c’est typiquement le cas en reconnaissance faciale mais pas dans l’exemple
traité. Alors qu’elles sont deux fois moins nombreuses dans l’échantillon, le
taux d’erreur de prévision est de l’ordre de 7, 9% pour les femmes et de 17%
(REC = 0, 36) pour les hommes (algorithme d’arbre binaire simplifié). Il
est alors indispensable de considérer le troisième type de biais pour se rendre
compte que c’est finalement au désavantage des femmes. Le taux de faux posi-
tifs est plus important pour les hommes (0, 081) que pour les femmes (0, 016)
(RFP = 0, 20). Ceci avantage les hommes qui bénéficient plus largement

d’une décision favorable même à tort. En revanche, le taux de faux négat-
ifs est plus important pour les femmes (0, 41), à leur désavantage, que pour
les hommes (0, 38) (Rfn = 1, 08) mais ces dernières différences ne sont pas
significatives.

Dans une telle situation en choisissant le seuil de décision par défaut à 0, 5,
une banque prendrait peu de risque: faible taux de faux positifs et taux élevés
de faux négatifs mais, conclusion importante, il apparaît une rupture d’équité
au sens où la banque prend plus de risques au bénéfice des hommes alors que
les taux d’erreur les concernant sont plus élevés.

Une atténuation du biais des rapports de cotes se justifie donc afin de rendre
comparables les chances d’obtention d’un crédit selon le genre et ce même à
tort. Plutôt que d’équilibrer ces chances en pénalisant celles des hommes, une
part de discrimination positive est introduite au bénéfice des femmes pour plus
d’équité en cherchant à rendre égaux les taux de faux positifs selon le genre et
évalués sur l’échantillon de validation.

Les deux dernières lignes de la figure 12.2 proposent une façon simple (post-
processing), parmi une littérature très volumineuse, de corriger le biais pour
plus de justice sociale. Deux algorithmes sont entraînés, un par genre et le
seuil de décision (revenu élevé ou pas, accord ou non de crédit...) est abaissé
pour les femmes : 0, 3 pour les forêts aléatoires, 0, 2 pour un arbre binaire, au
lieu de celui par défaut de 0, 5 pour les hommes. Cette correction des faux
positifs impacte également les taux d’erreur qui deviennent plus équilibrés
selon le genre et provoque également une atténuation de l’effet disproportionné
pour une société plus équitable. L’arbre binaire utilisé (TreeDiscrPos)
est celui pénalisé (peu de feuilles) afin d’obtenir une interprétation facile au
prix de la précision. Les seuils et le paramètre de pénalisation ont été déter-
minés sur l’échantillon de validation avant d’être appliquées indépendamment
à l’échantillon test.
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4.3 Discussion

Nous pouvons tirer quelques enseignements de cet exemple jouet imitant le
calcul d’un score d’attribution de crédit bancaire.

• Sans précaution, si un biais est présent dans les données, il est appris et
même renforcé par un modèle linéaire élémentaire.

• La suppression naïve de la variable sensible (genre) pour réduire le biais
n’y change rien d’où l’importance (art. 10, 5.) d’autoriser la prise d’un
risque contrôlé de confidentialité pour intégrer des données personnelles
sensibles afin de pouvoir détecter des biais.

• Un algorithme sophistiqué, non linéaire et impliquant les interactions en-
tre les variables, ne fait que reproduire le biais mais, opaque, ne permet
plus de justification des décisions si l’effet disproportionné est juridique-
ment attaquable comme aux USA (DI < 0, 8). Dans le cas présent, un
simple arbre binaire pénalisé pour contrôler le nombre de feuilles permet
de concilier accroissement peu important du biais et explicabilité sans
trop pénaliser la précision.

• En présence de proxys du genre comme c’est le cas dans cet exemple, une
procédure de testing (counterfactual test) est complètement inadaptée à la
détection ex-post d’une discrimination algorithmique. Seule une analyse
rigoureuse d’une documentation loyale (art. 11) décrivant les données, la
procédure d’apprentissage, les performances, peut donc s’avérer convain-
cante sur les capacités non discriminatoires d’un algorithme.

• Sur cet exemple, le choix d’un post-processing permettant d’atténuer le
biais des rapports de cotes conditionnels (taux de faux positifs similaires)
selon le genre impacte les trois types de biais pour en réduire simultané-
ment l’importance. C’est une façon de légitimer l’introduction d’une dose

de discrimination positive qui réduit le désavantage fait aux femmes sans
pour autant nuire aux hommes.

• Finalement dans cet exemple illustratif, un arbre pénalisé pour être suff-
isamment simple (nombre réduit de feuilles) et assorti d’une touche de
discrimination positive fournit une aide à la décision explicable à un client
et équitable en terme de risques de la banque vis-à-vis de son genre.

• Certes, dans le cas d’un score de crédit, cela aurait pour conséquence
d’accroître le risque de la banque en réduisant la qualité de prévision et
augmentant le taux de faux positifs pour les femmes mais lui fournirait
des arguments tangibles de communication pour une image "éthique":
des décisions inclusives donc plus équitables et plus explicables sans trop
nuire à la précision.

5 Conclusion
Comme le rappelle Meneceur (2021-b) dans une comparaison exhaustive

des démarches institutionnelles, les très nombreuses approches éthiques visant
à encadrer le développement et l’application des systèmes d’IA ne sont pas des
réponses suffisantes et convaincantes pour développer la confiance des usagers.
Ceci motive la démarche de la CE aboutissant à la publication de ce projet de
règlement alors que le Conseil de l’Europe envisage également un mélange
d’instruments juridiques contraignants et non contraignants pour prévenir les
violations des droits de l’homme et des atteintes à la démocratie et à l’État de
droit; la nécessité de conformité se substitue à l’éthique.

L’analyse du projet de règlement européen montre des avancées significa-
tives pour plus de transparence des systèmes d’IA:

• importance fondamentale des données et donc de leur analyse préalable
fouillée et documentée,

http://wikistat.fr
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• évaluation et documentation explicite des performances et donc des
risques d’erreur ou de manquement: robustesse, résilience,

• documentation explicite sur les capacités d’interprétation d’un système,
d’une décision, à la mesure des technologies et méthodes disponibles,

• prise en compte de certains types de biais: équité sociale dans les don-
nées, performances selon des groupes et suivi des risques possibles de
discrimination associés,

• enregistrement de l’activité pour une traçabilité du fonctionnement,

• contrôle humain approprié pour réduire et anticiper les risques,

• obligation de fournir la documentation exhaustive à l’utilisateur (système
d’IA de l’annexe III), qui est auditée ex-ante par un organisme notifié pour
les systèmes d’IA de l’annexe II, pour l’obtention du marquage "CE".

Néanmoins ce projet de règlement principalement motivé par une harmonisa-
tion des relations commerciales au sein de l’Union selon le principe de sécu-
rité des produits ou de la responsabilité du fait des produits défectueux ne
prend pas en compte des dommages pouvant impacter les usagers. Les con-
séquences ou objectifs de la démarche adoptée par la CE rejoignent d’ailleurs
les exigences de la FTC (Federal Trade Commission) (Jillson, 2021) de loyauté
et transparence vis-à-vis des performances d’un système d’IA commercialisé.
Aussi certains droits fondamentaux, bien que retenus comme exigence essen-
tielle dans le livre blanc se trouvent pour le moins négligés et ce d’autant plus
que les systèmes d’IA à haut risque de l’annexe III ne sont pas concernés par
la certification d’un organisme notifié indépendant.

• Plus largement que les seules applications de l’IA, une prise en compte
d’une forme de frugalité numérique afin de réduire les impacts environ-
nementaux ne semblent pas, dans ce projet d’AI Act, une préoccupation

majeure de la CE. Cela concerne la consommation énergétique pour le
stockage massif et l’entraînement des algorithmes et la sur-exploitation
des ressources minières nécessaires à la fabrication des équipements
numériques.

• Il est certes conseillé de rechercher des biais potentiels dans les données
(art. 10, 2., (f)) avec même la possibilité de prendre en compte des don-
nées personnelles sensibles (art.10, 5.) pour traquer des biais systémiques
sources potentielles de discrimination. Néanmoins, l’absence de préci-
sions sur la façon de mesurer ces biais, de les atténuer ou les supprimer
dans les procédures d’entraînement laisse un vide potentiellement préju-
diciable à l’usager. Alors qu’il est déjà fort complexe pour un usager
d’apporter la preuve d’une présomption de discrimination, par exemple
par testing, lors d’une décision humaine, l’exemple numérique ci-dessus
montre que c’est mission impossible face à une décision algorithmique.
Seule une procédure rigoureuse d’audit de la documentation décrivant les
données, la procédure d’apprentissage et les dispositions mises en place
pour gérer, atténuer les biais, peut garantir une protection a minima des
usagers finaux contre ce type de discrimination. Cette mise en confor-
mité agit comme un renversement de la charge de la preuve mais qui ne
bénéficie, pour les systèmes d’IA de l’annexe III, qu’à l’information de
l’utilisateur pas, dans l’état actuel, à la protection de l’usager.

• Consciente de ces problèmes la Défenseure des Droits a récemment pub-
lié un avis en collaboration avec le réseau européen EQUINET dont les
principales conclusions sont résumées dans un communiqué de presse.
Elle y appelle à replacer le principe de non-discrimination (de l’usager)
au cœur du projet d’AI Act. Une des questions essentielles reste à savoir
qui pourra, en dehors de l’utilisateur, avoir accès à la documentation d’un
système d’IA à haut risque, et donc de pouvoir l’auditer dans de bonnes
conditions. Ce sera sans doute à chaque État membre de légiférer sur ces
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questions.

• Notons que le Laboratoire Nationale de Métrologie et d’Essai (LNE) a
pris les devants en proposant un référentiel de certification de processus
pour l’IA (LNE 2021). Ce référentiel concerne le processus de conception
d’un système d’IA et non la certification du produit final requérant la con-
naissance de normes encore à définir. Le LNE jouera le rôle d’organisme
notifié pour les systèmes de transport de l’annexe II et sa filiale GMED
pour les dispositifs de santé sous la responsabilité de l’Agence Nationale
de Sécurité des Médicaments comme autorité notifiante.

• Le Conseil d’État (2022) publie un rapport dont la recommandation finale
vise spécifiquement à combler certaines des lacunes identifiées de l’AI
Act.

L’étude préconise enfin une transformation profonde de la
CNIL en autorité de contrôle nationale responsable de la régu-
lation des systèmes d’IA, notamment publics, pour incarner
et internaliser le double enjeu de la protection des droits et
libertés fondamentaux, d’une part, et de l’innovation et de la
performance publique, d’autre part.

L’exemple numérique jouet a également pour mérite de montrer clairement
l’interdépendance de toutes les contraintes: confidentialité, qualité, explicabil-
ité, équité (types de biais), que devrait satisfaire un système d’IA pour gagner
la confiance des usagers. Il montre aussi que le problème ne se réduit pas à
un simple objectif de minimisation d’un risque quantifiable pour l’obtention
d’un meilleur compromis. C’est plutôt la recherche d’une moins mauvaise
solution imbriquant des choix techniques, économiques, juridiques, politiques
qu’il sera nécessaire de clairement expliciter dans la documentation rendue
obligatoire par l’adoption à venir d’un AI Act qui serait, de toute façon et mal-
gré les limites actuelles du projet de texte, une avancée notable pour plus de

transparence.
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