
© 2015 Michel Ledoux, licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Anal. Geom. Metr. Spaces 2015; 3:157–166

Research Article Open Access

Michel Ledoux*

Sobolev-Kantorovich Inequalities
DOI 10.1515/agms-2015-0011
Received March 7, 2015; accepted May 20, 2015 5

Abstract: In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study
of pattern formation, bounding the Lr(µ)-norm of a probability density with respect to the reference measure
µ by its Sobolev norm and the Kantorovich-Wasserstein distance to µ. This article emphasizes this family of
interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established in the rather
large setting of non-negatively curved (weighted) Riemannianmanifolds bymeans of heat �ows andHarnack 10
inequalities.
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1 Introduction
In the recent contribution [6], E. Cinti and F. Otto established a number of interpolation inequalities which 15
arise in the analysis of pattern formation in physics (more precisely in the study of branching in supercon-
ductors). Within this framework, they showed in particular that for any positive periodic smooth function
f : [0, 1]n → R such that

´
[0,1]n fdx = 1,∥∥(f − C)+∥∥θr ≤ C ‖∇f‖1 W2(f , 1) (1.1)

where
r = 3n + 2

3n ,

θ = 3n+2
2n and C > 0 only depends on n. Here (f − C)+ = max(f − C, 0) and W2(f , 1) is the Kantorovich-

Wasserstein distance between the probability measures fdx and 1 dx (see below). The proof of this inequality 20
in [6] relies on a speci�c geometric construction of cut-o� functions �rst put forward in [5]. The exponent r
is optimal as veri�ed on peak functions (and, as explained in [6], from this point of view the Kantorovich
distance behaves like a negative fractional Sobolev norm). Note furthermore that (1.1) is invariant under the
change

´
[0,1]n dx 7→ 1

Λn
´
[0,Λ]n dx for any Λ > 0.

The purpose of this work is to show that the inequality (1.1) is actually one specimen in a all family of 25
interpolation inequalities that we call Sobolev-Kantorovich inequalities and that actually hold in a wide gen-
erality.

One suitable framework for such Sobolev-Kantorovich inequalities is the one of (weighted) Riemannian
manifolds with non-negative Ricci curvature, covering in particular the previousmodel example of the torus.
LetM = (M, g) be a complete connected n-dimensional Riemannian manifold with Riemannian measure dx, 30
and let, as referencemeasure, µ be a probability measure onM (with smooth density with respect to dx). The
counterpart of the Euclidean geometric decomposition in [6] will be achieved via non-negative curvature con-
ditions, speci�cally curvature-dimension CD(0, N) of theunderlyingdi�usionoperator invariantwith respect
to µ, or metric measure space (M, g, µ), in the sense of [1, 10, 13] (see Section 2). In case of an n-dimensional
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Riemannian manifold (with �nite, normalized, volume element dx = dµ), the CD(0, N) condition with N = n
amounts to a non-negative lower bound on the Ricci curvature.

Given two probability measures µ and ν on the Borel sets of M, and p ≥ 1, the Kantorovich-Wasserstein
distance Wp(ν, µ) between ν and µ is de�ned by

Wp(ν, µ) = inf
(ˆ

M×M
d(x, y)pdπ(x, y)

)1/p

where the in�mum is taken over all couplings π on the product spaceM ×M with respective marginals ν and
µ and where d(x, y) denotes the Riemannian distance between x and y in M (cf. [13]).

Given the probability µ, the norm of the Lebesgue space Lr(µ), r ≥ 1, is denoted by ‖·‖r.5

With these notation, the general family of Sobolev-Kantorovich interpolation inequalities emphasized in
this work take the following form.

Theorem 1.1. Let (M, g, µ) be aweighted Riemannianmanifold with weighted probabilitymeasure µ satisfying
the curvature-dimension condition CD(0, N) for some N ≥ 1. Given p, q ≥ 1, there is a constant C > 0 only
depending on p, q, N such that for any probability dν = fdµ with smooth density f with respect to µ,10 ∥∥(f − C)+∥∥θr ≤ C ‖∇f‖qWp(ν, µ) (1.2)

where

r =
1 + 1

p +
1
N

1
p +

1
q

(> 1)

and θ = r
( 1
p +

1
q
)
= 1 + 1

p +
1
N .

The Cinti-Otto inequality (1.1) on the �at n-dimensional torus corresponds to q = 1, p = 2 and N = n
for which therefore r = 3n+2

3n . Other values of interests are q = p = 2 for which r = 3N+2
2N . In this case, the

inequality may be compared to the Poincaré-Sobolev inequality (see Section 2)

‖f‖r ≤ C D(M) ‖∇f‖2 (1.3)

for mean-zero smooth functions f , where r = 2N
N−2 (N > 2) and D(M) is the diameter of the manifold, yielding15

a stronger embedding under a stronger interpolation factor D(M) ≥ W2(ν, µ).
In a somewhat weaker form, (1.2) may also be expressed by

‖f‖r ≤ C + C ‖∇f‖1/θq Wp(ν, µ)1/θ .

It is natural to expect that C = 1 =
´
M fdµ on the left-hand side of (1.2) but the proof below is far from such a

claim. The exponents in Theorem 1.1 are optimal on peak functions (in dimension one).

The proof of Theorem 1.1 will be based on heat �ow arguments on the semigroup (Pt)t≥0 with invariant
measure µ underlying the weighted manifold (M, g, µ), and slicing methods in the spirit of [6] and [8]. The20
CD(0, N) condition will allow for the use of heat kernel and Harnack inequalities, consequences of the Li-Yau
parabolic inequality in this framework. These tools are actually also available in the more general context of
Markov Triples (E, µ, Γ) in the sense of [1]. For the speci�c torus example, it is plausible that the Euclidean
arguments of [6] also allow for the full range of parameters.

In�nite dimensional examples of curvature-dimension CD(0,∞)maybeaddressed similarly. For CD(0,∞)25
models, the classical Li-Yau parabolic inequality is however no more available and has to be supplemented
by Wang’s Harnack inequality (cf. [1, 15]). The resulting Sobolev-Kantorovich inequalities (Theorem 4.1) are
then dimension free, and the values q = p = 2 read in particular∥∥(f − C)+∥∥3/23/2 ≤ C ‖∇f‖2W2(ν, µ) (1.4)
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for some numerical C > 0. Under a diameter bound, this result turns into a Nash-type inequality of possible
independent interest,

‖f‖3/2 ≤ C
[
‖f‖21 + D(M)2‖∇f‖22

]1/3‖f‖1/31

for every (smooth) f : M → R.
In the form (1.4), Sobolev-Kantorovich interpolation inequalities are also in the spirit of the Otto-Villani

HWI inequality [1, 12, 13] stating in this context that for any probability dν = fdµ,
ˆ
M
f log f dµ ≤

(ˆ
M

|∇f |2
f dµ

)1/2
W2(ν, µ).

To outline the content of the article, we present in the next section the framework of investigation and the
basic geometric tools which will be used in the proof of Theorem 1.1. These rely on the curvature-dimension
condition CD(0, N) in the form of Harnack and pseudo-Poincaré inequalities. Section 3 is then devoted to the
proof of Theorem 1.1 which adapts, with the preceding geometric tools and a slicing argument, the scheme 5
emphasized in [6]. The subsequent section addresses the in�nite-dimensional case under CD(0,∞) with the
tool of Wang’s Harnack inequality.

2 Framework and geometric tools
For simplicity in the exposition, the results of this work are presented in the weighted Riemannian setting,
that is a complete connected Riemannian manifold (M, g) equipped with a weighted probability measure 10
dµ = e−Vdx where V : M → R is a smooth potential, to which is naturally attached the di�usion operator
L = ∆ −∇V ·∇ with invariant and reversible measure µ and associated heat semigroup (Pt)t≥0.

The curvature-dimension CD(0, N), for someN ≥ 1, conditiononL, or theweightedRiemannianmanifold
(M, g, µ), is described by the Bochner-type inequality

1
2 L
(
|∇f |2

)
−∇f ·∇Lf ≥ 1

N (Lf )2

holding for all smooth f : M → R. For example, the Laplace-Beltrami operator ∆ on an n-dimensional Rie-
mannian manifold with non-negative Ricci curvature satis�es CD(0, n). The curvature condition CD(0,∞)
covers in�nite dimensional models in the sense of the operator L, such as for example log-concave measures 15
on Rn. We refer to [1, 10, 11, 13] for standard references on such a framework.

As mentioned in the introduction, the Sobolev-Kantorovich interpolation inequalities emphasized here
may actually be developed in themore general setting of aMarkov di�usion Triple (E, µ, Γ) in the sense of [1],
consisting of a state space E equipped with a di�usion semigroup (Pt)t≥0 with in�nitesimal generator L and
carré du champ operator Γ, and invariant and reversible probability measure µ. In the weighted Riemannian 20
context, Γ(f , f ) = |∇f |2 for smooth functions f . The curvature condition CD(0, N) in this context stems from
the abstract form of the Bochner identity in terms of the Γ2 operator. The state space Emay be endowed with
an intrinsic distance d for which Lipschitz functions f are such that Γ(f ) is bounded (µ-almost everywhere),
which coincides with the Riemannian distance in the manifold case.

One basic tool in the heat kernel estimates necessary in this investigation will be the Li-Yau parabolic 25
inequality [9] in the form of its following consequences. These results, established �rst on Riemannianmani-
folds with non-negative curvature, extend to the case of weighted Riemannianmanifolds andmore generally
Markov Triples under the curvature-dimension condition CD(0, N) (cf. [1]).

The �rst main property of interest is the following Harnack inequality (cf. [1, 7, 9]).

Proposition 2.1. Let (M, g, µ) be a weighted Riemannian manifold satisfying the curvature-dimension condi-
tion CD(0, N). For any non-negative (measurable) function f on M, and any t, s > 0, x, y ∈ M,

Pt f (y) ≤ Pt+s f (x)
( t + s

t

)N/2
ed(x,y)

2/4s .
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The second main tool is a pseudo-Poincaré inequality.

Proposition 2.2. Let (M, g, µ) be a weighted Riemannian manifold satisfying the curvature-dimension condi-
tion CD(0, N). For any smooth function f on M, and any t > 0,

‖f − Pt f‖q ≤ B
√
t ‖∇f‖q

where B > 0 is numerical (for example B =
√
2) for 1 ≤ q ≤ 2 and only depends on N for q ≥ 2.

About the proof of this proposition (see e.g. Lemma 3 in [8]), it should be pointed out that the case
1 ≤ q ≤ 2 indeed does not require the dimensional Li-Yau inequality and rather relies on Poincaré inequali-
ties for heat kernel measures valid under the only curvature condition CD(0,∞). Speci�cally, the argument5
involves reverse Poincaré inequalities (cf. [1]) which express, under this curvature, that for any (measurable)
h : M → R, and any s > 0, pointwise

2s |∇Psh|2 ≤ Ps(h2) − (Psh)2. (2.1)

Provided indeed with this result, for any (say bounded) h,ˆ
M
h(f − Pt f )dµ = −

ˆ t

0

ˆ
M
h LPs f dµds =

ˆ t

0

ˆ
M
∇Psh ·∇f dµds.

If 2 ≤ q′ ≤ ∞, by Jensen’s inequality on (2.1),

‖∇Psh‖q′ ≤
1√
2s

‖h‖q′

so that by duality, if 1 ≤ q ≤ 2,

‖f − Pt f‖q ≤
ˆ t

0

ds√
2s

‖∇f‖q =
√
2t ‖∇f‖q .

To complete this section, we provide a direct proof of the Poincaré-Sobolev inequality (1.3) relying on the
preceding tools as we could not locate a suitable reference. For a given f : M → R, by Proposition 2.2 with
q = 2, for any t ≥ 0,

‖f‖2 ≤
√
2t ‖∇f‖2 + ‖Pt f‖2.

On the other hand, by Proposition 2.1 with s = D2 = D(M)2, for every non-negative f onM, and every x, y ∈ M
and t ≥ 0,

Pt f (y) ≤ 2
(
1 + D

2

t

)N/2
Pt+D2 f (x).

Hence, after integration in the x variable, ‖Pt f‖∞ ≤ 2
(
1 + D2

t
)N/2‖f‖1 and, by interpolation,

‖Pt f‖2 ≤
√
2
(
1 + D2

t
)N/4‖f‖1.

Combining the preceding, for any (smooth) f and every t ≥ 0,

‖f‖2 ≤
√
2t ‖∇f‖2 +

√
2
(
1 + D

2

t

)N/4
‖f‖1.

Optimizing in t > 0 yields the Nash-type inequality

‖f‖2 ≤ C
[
‖f‖2 + D ‖∇f‖2

]N/(N+2)‖f‖2/(N+2)1

where C > 0 only depends on N. By a standard slicing procedure (see [1, Chap. 6]), the latter amounts to the
Sobolev inequality

‖f‖r ≤ C
′[‖f‖2 + D ‖∇f‖2

]
for r = 2N

N−2 (N > 2). Now, it is also classical in this context (cf. [1, 3]) that a Poincaré inequality for mean-zero
functions f holds true with constant proportional to the diameter, namely

‖f‖2 ≤ C
′′D ‖∇f‖2

for C′′ > 0 only depending on the dimension N. Hence, the announced Poincaré-Sobolev inequality (1.3)10
follows.
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3 Proof of Theorem 1.1
This section is devoted to the proof of the main result, Theorem 1.1. The general scheme follows the approach
developed by E. Cinti and F. Otto [6]. To get a better feeling about the argument, we start with the simpler
weak-type version of the statement. Actually, as put forward and achieved in [6], a main step will be to pass
from the weak formulation to the strong one. 5

Proposition 3.1. In the setting of Theorem 1.1, there is constant C > 0 only depending on p, q, N such that

sup
u≥C

uθ µ(f ≥ u)θ/r ≤ C ‖∇f‖qWp(ν, µ).

Proof. Let thus f be a smooth probability density on M, and recall dν = fdµ. By Proposition 2.2, for every
u > 0 and t > 0,

µ(f ≥ 2u) ≤ µ
(
|f − Pt f | ≥ u

)
+ µ(Pt f ≥ u) ≤

Bq tq/2
uq ‖∇f‖qq + µ(Pt f ≥ u). (3.1)

Now, by Markov’s inequality and symmetry of (Pt)t≥0 with respect to µ,

µ(Pt f ≥ u) ≤
1
u

ˆ
M
1FPt f dµ = 1

u

ˆ
M
Pt(1F)dν

where F = {Pt f ≥ u}. By the Kantorovich duality (cf. [13]), for every ε > 0,
ˆ
M
Pt(1F)dν ≤

1
ε W

p
p(ν, µ) +

ˆ
M
Q̂εPt(1F)dµ

where Q̂ε is the sup-convolution

Q̂εPt(1F)(x) = sup
y∈M

[
Pt(1F)(y) −

1
ε d(x, y)

p
]
.

Clearly, for any x ∈ M, the supremummay be restricted to those y for which d(x, y)p ≤ ε.
Use next the Harnack inequality from Proposition 2.1 with s replaced by ts to get that for every s > 0 and

x, y ∈ M,
Pt(1F)(y) ≤ Pt(s+1)(1F)(x)(1 + s)

N/2 ed(x,y)
2/4ts .

In particular, for every y such that d(x, y)p ≤ ε with ε = (ts)p/2,

Pt(1F)(y) ≤ 2(1 + s)N/2Pt(s+1)(1F)(x)

so that, with this choice of ε,
Q̂εPt(1F)(x) ≤ 2(1 + s)N/2Pt(s+1)(1F)(x).

Therefore, after integration with respect to µ,

µ(F) = µ(Pt f ≥ u) ≤
1

u(ts)p/2
Wp
p(ν, µ) +

2
u (1 + s)

N/2µ(F).

Choose s = 2−5u2/N so that 2
u (1+ s)

N/2 ≤ 1
2 provided that u ≥ C = CN large enough. Hence, together with (3.1),

µ(f ≥ 2u) ≤ B
q tq/2
uq ‖∇f‖qq +

2(5p/2)+1

tp/2u1+(p/N)
Wp
p(ν, µ).

Optimizing in t > 0 yields the conclusion.

On thebasis of theprecedingweak-type estimate,weaddress theproof of Theorem1.1 togetherwith a standard 10
slicing argument as extensively presented in [1] for related functional inequalities.
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Starting as above, for every u > 0 and t > 0, by Proposition 2.2,

µ(f ≥ 2u) ≤ µ(f ≥ 2u, Pt f ≤ u) + µ(f ≥ 2u, Pt f ≥ u)

≤ µ
(
|f − Pt f | ≥ u

)
+ 1
2u

ˆ
M
1F f dµ

≤ B
q tq/2
uq ‖∇f‖qq +

1
2u

ˆ
M
1F f dµ

where F = {Pt f ≥ u}.
Apply the preceding (whichholds true for any smooth–Lipschitz – positive function, not only probability

densities) to fk = min((f − 2k)+, 2k), k ∈ Z, and u = 2k−1, t = tk > 0, so to get

µ(fk ≥ 2k) ≤
(2B)q tq/2k

2qk

ˆ
Ak

|∇f |qdµ + 1
2k

ˆ
M
1Fk fkdµ

≤
(2B)q tq/2k

2qk

ˆ
Ak

|∇f |qdµ + 1
2k

ˆ
M
1Fkdν

where Ak = {2k ≤ f ≤ 2k+1}, Fk = {Ptk fk ≥ 2k−1}, k ∈ Z, and where we used that fk ≤ f in the last step. Note
that µ(f ≥ 2k+1) = µ(fk ≥ 2k), and sum the preceding inequalities, after multiplication by 2rk, over the set of
integers I = {k0, k0 + 1, . . . , k1} for some k0 ≥ 0 to be determined below (and where k1 is arbitrarily large,
tending to in�nity at the end of the argument). Hence,5 ∑

k∈I

2rkµ(f ≥ 2k+1) ≤ (2B)q
∑
k∈I

2(r−q)k tq/2k
ˆ
Ak

|∇f |qdµ +
ˆ
M
ϕ dν (3.2)

where ϕ =
∑

k∈I 2
(r−1)k

1Fk .
By the Kantorovich duality, for any ε > 0,ˆ

M
ϕ dν ≤ 1

ε W
p
p(ν, µ) +

ˆ
M
Q̂εϕ dµ (3.3)

where
Q̂εPtϕ(x) = sup

y∈M

[
ϕ(y) − 1

ε d(x, y)
p
]
= sup

y∈M

[∑
k∈I

2(r−1)k 1Fk (y) −
1
ε d(x, y)

p
]
+
.

It is an elementary, yet crucial, observation emphasized in Claim B in the proof of Proposition 1.3 of [6], that∑
k∈I

2(r−1)k 1Fk (y) ≤ c sup
k∈I

2(r−1)k 1Fk (y) (3.4)

for some c = cr > 0 only depending on r > 1. Therefore, for every �xed x ∈ M,

Q̂εϕ(x) ≤ c sup
y∈M

sup
k∈I

[
2(r−1)k 1Fk (y) −

1
cε d(x, y)

p
]
+

≤ c sup
k∈I

sup
y∈M

[
2(r−1)k 1Fk (y) −

1
cε d(x, y)

p
]
+

≤ c
∑
k∈I

sup
y∈Mk(x)

2(r−1)k 1Fk (y)

(3.5)

where Mk(x) = {y ∈ E; d(x, y)p ≤ cε 2(r−1)k}, k ∈ I.10
Apply next the Harnack inequality from Proposition 2.1 with t = tk > 0 to be speci�ed and s = tksk =

(cε)2/p22(r−1)k/p. Recalling that Fk = {Ptk fk ≥ 2k−1}, for every y ∈ Mk(x),

1Fk (y) ≤ 2−k+1Ptk fk(y) ≤ 2−k+2 (1 + sk)N/2Ptk(sk+1)fk(x).

As a consequence of (3.5),

Q̂εϕ(x) ≤ 4c
∑
k∈I

2(r−2)k(1 + sk)N/2Ptk(sk+1)fk(x).
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Integrating with respect to µ,
ˆ
M
Q̂εϕ dµ ≤ 4c

∑
k∈I

2(r−1)k(1 + sk)N/2µ(f ≥ 2k)

where we used that
´
M Ptk(sk+1)fkdµ =

´
M fkdµ ≤ 2

kµ(f ≥ 2k).
Choose tk = λ 2−2(r−q)k/q and replace ε by λp/2ε where λ > 0. Therefore

ˆ
M
Q̂λp/2εϕ dµ ≤ 4c

∑
k∈I

2(r−1)k
[
1 + (cε)2/p 2r

′k]N/2µ(f ≥ 2k)
where

r′ = 2
p (r − 1) +

2
q (r − q).

On the other hand ∑
k∈I

2(r−q)k tq/2k
ˆ
Ak

|∇f |qdµ ≤ λq/2
∑
k∈I

ˆ
Ak

|∇f |qdµ ≤ λq/2
ˆ
M
|∇f |qdµ

(since for a smooth f : M → R,∇f = 0 on every level set {f = a}).
Summarizing together with (3.2) and (3.3),∑
k∈I

2rkµ(f ≥ 2k+1) ≤ (2B)qλq/2 ‖∇f‖qq +
1

λp/2ε
Wp
p(ν, µ) + 4c

∑
k∈I

2(r−1)k
[
1 + (c ε)2/p 2r

′k]N/2µ(f ≥ 2k).
The �nal step will be to absorb the sum over k ∈ I on the right-hand side by the one on the left-hand side.

To this task, note that r = (r − 1) + N
2 r

′ by the very de�nition of r. For any η > 0, there exist ε = ε(η) > 0 and
k0 = k0(η) ≥ 0 large enough (with further dependence only on p, r, N) so that

2(r−1)k
[
1 + (cε)2/p 2r

′k]N/2 ≤ η 2rk
for every k ≥ k0. Hence,∑

k∈I

2rkµ(f ≥ 2k+1) ≤ (2B)qλq/2 ‖∇f‖qq +
1

λp/2ε
Wp
p(ν, µ) + 4cη

∑
k∈I

2rkµ(f ≥ 2k).

If η > 0 is chosen so that 2r+3cη ≤ 1, then∑
k∈I

2rkµ(f ≥ 2k+1) ≤ 2(2B)qλq/2 ‖∇f‖qq +
2

λp/2ε
Wp
p(ν, µ) + cη 2rk0+3µ(f ≥ 2k0 ).

To conclude, optimize in λ > 0 and make use of the weak-type Proposition 3.1 to control the last term on the
right-hand side of this inequality. It follows that, for k0 large enough, there is a constant C1 > 0 depending
only on p, q, N such that 5∑

k∈I

2rkµ(f ≥ 2k+1) ≤ C1 ‖∇f‖r/θq Wp(ν, µ)r/θ . (3.6)

Finally, it is an easy exercise to check that∥∥(f − C)+∥∥rr = ˆ ∞

0
µ(f ≥ C + t)d(tr)

≤ 2(k0+1)rµ(f ≥ C) + (22r − 2r)
∑
k≥k0

2rkµ(f ≥ 2k+1)

≤ 22r
∑
k≥k0

2rkµ(f ≥ 2k+1)

with for example C = 2k0+1. Therefore, letting k1 → ∞ in (3.6) then yields the conclusion. The proof of
Theorem 1.1 is complete.
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4 The case of the CD(0, ∞) condition
As discussed in the introduction, the dimensional Harnack inequality from Proposition 2.1 is no more avail-
able under the in�nite-dimensional non-negative curvature CD(0,∞) condition and has to be substituted by
Wang’s Harnack inequality [1, 14, 15]. The latter expresses, under thus CD(0,∞), that for any positive (mea-
surable) f on M, and all t > 0, x, y ∈ M,5

Pt f (y)2 ≤ Pt(f 2)(x) ed(x,y)
2/2t . (4.1)

With this tool in hand, we may state the main result in the CD(0,∞) case. Only p = 2 is considered. Besides,
values of q have to be restricted to the interval [1, 2] by Proposition 2.2. In addition, since (3.4) does not hold
for r = 1, the value q = 1 has also to be excluded (although a weak-type estimate holds in this case).

Theorem 4.1. Let (M, g, µ)be aweightedRiemannianmanifoldwithweighted probabilitymeasure µ satisfying
the curvature condition CD(0,∞). Given 1 < q ≤ 2, there is a constant C > 0 only depending on q such that for10
any probability dν = fdµ with smooth density f with respect to µ,∥∥(f − C)+∥∥3/2r ≤ C ‖∇f‖qW2(ν, µ) (4.2)

where
r = 3q

q + 2 .

As in the preceding section, we start with aweak-type estimate, actually valid for any q ∈ [1, 2]. Themain
argument relies here on a somewhat di�erent use of the Harnack inequality, namely a reverse transportation
cost inequality along the �ow (cf. [1, 2]).

Proposition 4.2. In the setting of Theorem 4.1, there is a constant C > 0 only depending on q ∈ [1, 2] such that

sup
u≥C

u3/2µ(f ≥ u)3/2r ≤ C ‖∇f‖qW2(ν, µ).

Proof. As in the proof of Proposition 3.1, for every u > 0 and t > 0,

µ(f ≥ 2u) ≤ (2t)q/2
uq ‖∇f‖qq + µ(Pt f ≥ u).

Recall now the entropic inequality stating that for any (say bounded) measurable h on M,
ˆ
M
hPt f dµ ≤

ˆ
M
Pt f log Pt f dµ + log

ˆ
M
ehdµ.

Applying it to h = 1F where F = {Pt f ≥ u} yields

uµ(F) ≤
ˆ
M
1FPt f dµ ≤

ˆ
M
Pt f log Pt f dµ + log

(
1 + (e − 1)µ(F)

)
Hence, provided that u ≥ 4 (for example),

u µ(Pt f ≥ u) = uµ(F) ≤ 2
ˆ
M
Pt f log Pt fdµ.

Now, as a consequence of Wang’s Harnack inequality (4.1), the entropy of Pt f is bounded from above by the
Kantorovich distance W2(ν, µ) as (see e.g. (1.11) in [2])

ˆ
M
Pt f log Pt f dµ ≤

1
4t W

2
2(ν, µ).

Therefore, for any u ≥ 4,
µ(Pt f ≥ u) ≤

1
2tu W

2
2(ν, µ).
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As a conclusion,

µ(f ≥ 2u) ≤ (2t)q/2
uq ‖∇f‖qq +

1
2tu W

2
2(ν, µ)

which is the result of the proposition after optimization in t > 0.

Proof of Theorem 4.1. We follow the proof of Theorem 1.1 until (3.5) at which point wemake use of (4.1). Recall
that Fk = {Ptk fk ≥ 2k−1}. With tk = cε 2(r−1)k, for every y ∈ Mk(x),

1Fk (y) ≤ 2−2k+2Ptk (fk)(y)
2 ≤ 2−2k+3 Ptk (f

2
k )(x).

Hence, ˆ
M
Q̂εϕ dµ ≤ 8c

∑
k∈I

2(r−1)kµ(f ≥ 2k)

where we used that
´
M f

2
k dµ ≤ 22kµ(f ≥ 2k).

Now, going back to (3.2), the value of r ensures that 2(r−q)k tq/2k = (cε)q/2 so that∑
k∈I

2rkµ(f ≥ 2k+1) ≤ 22q(cε)q/2 ‖∇f‖qq +
1
ε W

2
2(ν, µ) + 8c

∑
k∈I

2(r−1)kµ(f ≥ 2k).

For k0 large enough (only depending on r),∑
k∈I

2rkµ(f ≥ 2k+1) ≤ 22q+1(cε)q/2 ‖∇f‖qq +
2
ε W

2
2(ν, µ) + 16c 2(r−1)k0µ(f ≥ 2k0 ).

The last term on the right-hand of this inequality may then be handled by the weak-type estimate of Proposi-
tion 4.2, concluding the proof of Theorem 4.1 after optimization in ε > 0.

In addition to the preceding statements, there is a version of Proposition 4.2 for p = q = 1. This result shares 5
some similarities with the recent [4].

Proposition 4.3. In the setting of Theorem 4.1, under the curvature condition CD(0,∞), there is a numerical
constant C > 0 such that for any probability dν = fdµ with smooth density f with respect to µ,

sup
u≥C

u2 µ(f ≥ u)2 ≤ C ‖∇f‖1W1(ν, µ).

The proof of this proposition follows the standard pattern. For any u > 0 and t > 0,

µ(f ≥ 2u) ≤
√
2t
u ‖∇f‖1 + µ(Pt f ≥ u).

Now, by (2.1),
√
2t Pt(1F)f is 1-Lipschitz (where as usual F = {Pt f ≥ u}) so that, for the W1 metric,
ˆ
M
Pt(1F)f dµ ≤

ˆ
M
Pt(1F)dµ +

1√
2t

W1(ν, µ) = µ(F) + 1√
2t

W1(ν, µ).

Hence
µ(Pt f ≥ u) ≤

1
u

ˆ
M
1FPt fdµ = 1

u

ˆ
M
Pt(1F)fdµ ≤

1
u µ(Pt f ≥ u) +

1√
2t u

W1(ν, µ)

and for u ≥ 2,
µ(Pt f ≥ u) ≤

2√
2t u

W1(ν, µ).

Therefore
µ(f ≥ 2u) ≤

√
2t
u ‖∇f‖1 +

2√
2t u

W1(ν, µ)

from which the claim follows after optimization in t > 0.
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Proposition 4.3 has some interesting consequences to isoperimetric-type inequalities. Indeed, applied to
f smoothly approaching 1A

µ(A) for say a closed set A in M, it yields that whenever µ(A) ≤ 1
C ,

1
C2W1(A)

≤ µ+(A) (4.3)

where
µ+(A) = lim inf

δ→0

1
δ
[
µ(Aδ) − µ(A)

]
is the Minkowski content (surface measure) of A and, to ease the notation, W1(A) = W1(ν, µ) where dν =
fdµ = 1A

µ(A)dµ. The inequality (4.3) may be seen as a local version of the links between concentration and
isoperimetric-type inequalities under non-negative curvature put forward by E. Milman in [10, 11]. Indeed,5
concentration at some scale amounts to an upper bound on W1(A) in terms of a function of 1

µ(A) which in
turn, by (4.3), ensures that for sets with small measure the surface measure µ+(A) is (uniformly) bounded
away from zero. Due to the concavity of the isoperimetric pro�le under non-negative curvature, the latter
always yields a comparison to the exponential isoperimetric pro�le (see [10, 11] for details).

Acknowledgement: I am grateful to E. Cinti and F. Otto for informing me about their paper [6] and for useful10
exchanges on the topic of this work.
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