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Abstract

We connect recent developments on Gaussian noise estimation and the Minimum

Mean-Square Error to earlier results on entropy and Fisher information heat flow ex-

pansion. In particular, derivatives of the Minimum Mean-Square Error with respect to

the noise parameter are related to the heat flow derivatives of the Fisher information and

a special Lie algebra structure on iterated gradients. The results lead in particular to a

partial answer to the Minimum Mean-Square Error conjecture.

1 Introduction

Recent works in information theory have been developed on the Minimum Mean-Square Error

(MMSE) in the estimation of a random variable from its observation perturbated by a Gaussian

noise [5, 6]. The concept of MMSE has been very fruitful, in particular has allowed for a simple

proof of Shannon’s monotonicity of entropy [4, 10] (see also [9]), first established in [1].

Given a random vector X in Rn, let Xt = X +
√

2tN , t ≥ 0, where N is an independent

standard normal on Rn. The Minimum Mean-Square Error

MMSE(t) = E
(∣∣X − E

(
X |Xt

)∣∣2), t ≥ 0.

is an estimate of the input X of the model given the noisy output Xt (the notation | · | being

the Euclidean norm in Rn). The MMSE can be studied as a function of the signal-to-noise

ratio and as a functional of the input distribution. In particular, the aforementioned articles

(and the references therein) provide a study of the analytic properties of the MMSE and of its

derivatives with respect to the parameter of the noise perturbation, in relation with entropy

and Fisher information.
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The MMSE actually appears as an alternate description of the standard Fisher information

along the heat flow. Given a random vector X with smooth positive density f with respect to

the Lebesgue measure, let

I(X) =

∫
Rn

|∇f |2

f
dx

denote its Fisher information. For each t > 0, the law of Xt is a convolution with a Gaussian

kernel and as such admits a smooth density ft. With some abuse in notation, let then I(t) =

I(Xt) be the Fisher information of Xt. As emphasized in [5], the MMSE actually directly

connects to the Fisher information I(t), t > 0, along the flow via the identity

4t2 I(t) = 2nt−MMSE(t), t > 0,

recalled below in Section 2.

The purpose of this note is to relate some of the conclusions of [5, 6] to earlier results

on entropy and Fisher information expansions under heat flow [7] by means of the so-called

Γ-calculus for Markov diffusion operators (cf. [3]). In particular, the Lie algebra structure on

the iterated Γ-gradients emphasized in [7] provides the suitable structure to understand the

successive derivatives of the MMSE and an induction mechanism to compute arbitrary orders.

This tool moreover allows for a partial answer to the MMSE conjecture of [6] stating that the

MMSE/Fisher information characterizes (up to the sign) the distribution of the underlying

random variable.

The first paragraph of the paper (Section 2) relates, following [5], the standard notion of

Fisher information to the MMSE. Section 3 describes via the Γ-calculus the successive deriva-

tives of the Fisher information by the Lie brackets from [7], and the subsequent section interprets

the main conclusion on the MMSE itself. Section 5 emphasizes conditional cumulants towards

the representation of the derivatives of the MMSE. On the basis of this representation, the next

section addresses the MMSE conjecture in a particular case. The final Section 7 collects a few

bounds on the Fisher information and the MMSE of independent interest already discussed in

[6]. The Appendix (Section 8) presents proofs of some specific properties of the Lie brackets in

this context.

2 MMSE and Fisher information

We start by connecting, following [5], the MMSE to the Fisher information along the heat flow.

On a probability space (Ω,A,P), let therefore X be a random vector and Xt = X +
√

2tN ,

t ≥ 0, where N is an independent standard normal on Rn with the Gaussian distribution

dγ(x) = e−|x|
2/2 dx

(2π)n/2
.

Denote by pt(x) the Gaussian kernel

pt(x) =
1

(4πt)n/2
e−|x|

2/4t, t > 0, x ∈ Rn,
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so that in particular, for any measurable and bounded ϕ : Rn → R,

E
(
ϕ(Xt)

)
= E

(∫
Rn

ϕ
(
X +

√
2t x
)
dγ(x)

)
= E

(∫
Rn

ϕ(X + x) pt(x)dx

)
= E

(∫
Rn

ϕ(x) pt(x−X)dx

)
.

Therefore, for any t > 0, the law of Xt has a strictly positive C∞ density ft with respect to the

Lebesgue measure which is given as the convolution of the law of X with pt, that is

ft(x) = E
(
pt(x−X)

)
, x ∈ Rn.

The Fisher information I(Xt) = I(t) of Xt is therefore represented along the heat flow as

I(t) =

∫
Rn

|∇ft|2

ft
dx, t > 0. (2.1)

As will be seen below via the connection with the MMSE, I(t) is actually well defined (finite)

for every t > 0.

Define now, for any t > 0,

gt(x) = E
(
Xpt(x−X)

)
, x ∈ Rn.

Then, assuming first that X is integrable, the conditional expectation E(X |Xt) may be repre-

sented by

E
(
X |Xt

)
=

gt
ft

(Xt)

(almost surely). Indeed, if ϕ : Rn → R is measurable and bounded,

E
(
ϕ(Xt)E

(
X |Xt

))
= E

(
Xϕ(Xt)

)
= E

(∫
Rn

Xϕ(X + x) pt(x)dx

)
=

∫
Rn

ϕ(x)E
(
Xpt(x−X)

)
dx,

while

E
(
ϕ(Xt)

gt
ft

(Xt)
)

=

∫
Rn

ϕ(x)gt(x)dx

from which the claim follows.

As a consequence, if ht = x− gt
ft

, then

Xt − E
(
X |Xt

)
= ht(Xt).

Note that although E(X |Xt) may not be well-defined if X is not integrable, it makes sense

to consider the integrable random variable Xt − E(X |Xt) which is identified to
√

2tE(N |Xt)

since

Xt = E
(
Xt |Xt

)
= E

(
X |Xt

)
+
√

2tE
(
N |Xt

)
.
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In particular, X − E(X |Xt) makes also sense and has moments of all orders. Therefore, the

Minimum Mean-Square Error

MMSE(t) = E
(∣∣X − E

(
X |Xt

)∣∣2), t ≥ 0. (2.2)

is well-defined for every t ≥ 0.

Now, observe that by the Lebesgue differentiation theorem,

2t∇ft = E
(
(X − x)pt(x−X)

)
= gt − xft.

Hence

4t2 I(t) =

∫
Rn

1

ft

∣∣xft − gt∣∣2dx
=

∫
Rn

ft

∣∣∣x− gt
ft

∣∣∣2dx
= E

(∣∣Xt − E
(
X |Xt

)∣∣2)
= 2tE

(
|N |2

)
− E

(∣∣X − E
(
X |Xt

)∣∣2)
since Xt − E(X |Xt) is orthogonal to X − E(X |Xt).

Therefore the Fisher information I and the MMSE are related by the identity

4t2 I(t) = 2nt−MMSE(t), t > 0. (2.3)

In particular, the Fisher information I(t) is well-defined for every t > 0 whatsoever the under-

lying random vector X.

The Mutual Mean Square Error MMSE of [5] and [6] is actually studied as a function of the

noise parameter as

mmse(s) = E
(∣∣X − E

(
X |
√
sX +N

)∣∣2) = E
(∣∣X − E

(
X |Xt

)∣∣2) = MMSE(t) (2.4)

for t = t(s) = 1
2s

, s > 0. It is indeed in this form that the successive derivatives of the Fisher

information and of the MMSE will connect most suitably (as opposed to the relation (2.3)).

The study of the function mmse(s), s > 0, will then require various, unfortunately somewhat

heavy, changes of variables in the subsequent analysis.

It is shown in [6] that the mmse function is infinitely differentiable at every s > 0, and

at s = 0 whenever X has moments of all orders (and thus also the MMSE and the Fisher

information). We freely use these properties below.

3 Heat flow derivatives

We present here in the context of the heat semigroup on Rn the results of [7] on the successive

derivatives of entropy and Fisher information.
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The derivatives of entropy along the heat flow have been examined from various viewpoints

in the literature, in particular in connection with logarithmic Sobolev inequalities (cf. e.g. [2, 3]).

Given a random vector X and Xt = X+
√

2tN , t > 0, with probability density ft with respect to

the Lebesgue measure, consider, provided it exists, the entropy (with a positive sign convention)

along the flow

H(t) =

∫
Rn

ft log ft dx, t > 0.

The classical de Brujin formula expresses that

d

dt
H(t) = − I(t) (3.1)

(where we recall the Fisher information I(t) of (2.1)). Note that with v = log ft, t > 0,

I(t) =

∫
Rn

ft |∇v|2 dx.

Similarly, as is classical from the Bakry-Émery calculus [2, 3],

d2

dt2
H(t) = 2

∫
Rn

ft |∇2v|2dx (3.2)

where ∇2v is the matrix of the second derivatives of v. (According to the end of Section 2, it

may be implicitly assumed here and below that entropy and Fisher information are infinitively

differentiable on (0,∞).) Note that while the calculus of [2, 3, 7] is developed along a semigroup

from a given probability density, it makes sense in the same way along the densities ft, t > 0,

since the latter solve similarly the heat equation ∂tft = ∆ft.

Nevertheless, it is known from [7] that the rule

d`

dt`
H(t) = (−1)` 2`−1

∫
Rn

ft |∇`v|2dx

cannot be iterated for ` ≥ 3. The work [7] actually develops (in the context of an abstract

Markov diffusion operator) the suitable algebraic framework to express the successive derivatives

of entropy and Fisher information along the heat flow via the Γ-calculus on the iterated gradients

(cf. [3]). We recall here some of the main elements of this description.

Consider the bilinear symmetric carré du champ operator

Γ(u1, u2) = ∇u1 · ∇u2

acting on smooth functions u1, u2 : Rn → R. For simplicity, set Γ(u) = Γ(u, u). Introduce

the Lie bracket between the Laplace operator ∆ (or more generally a linear operator L) and a

j-multilinear (j ≥ 1) symmetric form B(u) = B(u, . . . , u) on (smooth) functions by

2 [∆, B](u) = ∆B(u)− jB(∆u, u, . . . , u).
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Here [∆, B] is actually a j-multilinear form which is defined by polarization from [∆, B](u) =

[∆, B](u, . . . , u). For example if B is 2-linear,

2 [∆, B](u1, u2) = ∆B(u1, u2)−B(∆u1, u2)−B(u1,∆u2)

= [∆, B](u1 + u2, u1 + u2)− [∆, B](u1, u1)− [∆, B](u2, u2).

It is classical and easy to see that if we define Γ`(u1, u2) = ∇`u1 · ∇`u2 (the dot product being

understood as the scalar product between `-tensors) with Γ1 = Γ, for every ` ≥ 1,

[∆,Γ`](u) = Γ`+1(u) = ∇`u · ∇`u = |∇`+1u|2. (3.3)

However, in order to study the time derivatives of entropy, it is necessary to go one step

further in the brackets and to consider

2 [Γ, B](u) = 2 Γ
(
B(u), u

)
− jB

(
Γ(u), u, . . . , u

)
.

Here, since Γ is 2-multilinear, [Γ, B] is now (j + 1)-multilinear and obtained by polizarization

from [Γ, B](u) = [Γ, B](u, . . . , u). For example, if B is 2-linear,

2 [Γ, B](u1, u2, u3) =
1

3

∑
σ

[
Γ
(
B(uσ(1), uσ(2)), uσ(3)

)
−B

(
Γ(uσ(1), uσ(2)), uσ(3)

)]
where the sum runs over all permutations σ of {1, 2, 3}. We refer to [7] for more details.

In this framework, the main conclusion of [7] is summarized in the following statement.

According to the preceding, define for every ` ≥ 2,

Γ̃` = [∆ + Γ, Γ̃`−1]

recursively from Γ̃1(u) = Γ(u) = |∇u|2 (for smooth u : Rn → R). Note that actually

Γ̃` = [∆, Γ̃`−1] + [Γ, Γ̃`−1]

which by induction yields a sum of j-multilinear forms with 2 ≤ j ≤ `. Recall v = log ft.

Theorem 1. For every ` ≥ 1,

d`

dt`
H(t) = (−1)` 2`−1

∫
Rn

ft Γ̃`(v)dx.

For the further purposes, we will rather deal (equivalently by (3.1)) with the derivatives of

the Fisher information. Theorem 1 therefore expresses that

d`

dt`
I(t) = (−2)`

∫
Rn

ft Γ̃`+1(v)dx, ` ≥ 0. (3.4)

It is a main feature, at the root of the Bakry-Émery criterion for logarithmic Sobolev

inequalities (cf. [2, 7, 3]), that Γ̃2 = Γ2. Indeed,

Γ̃2 = [∆ + Γ,Γ] = [∆,Γ] = Γ2.
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However, the whole point of Theorem 1 is that this identity does not extend to the higher

orders. Specifically,

Γ̃2 = Γ2,

Γ̃3 = Γ3 + [Γ1,Γ2],

Γ̃4 = Γ4 + 2 [Γ1,Γ3] + [Γ1, [Γ1,Γ2]],

Γ̃5 = Γ5 + 3 [Γ1,Γ4] + 2 [Γ2,Γ3] + 3 [Γ1, [Γ1,Γ3]]

+ [Γ2, [Γ1,Γ2]] + [Γ1, [Γ1, [Γ1,Γ2]]],

. . .

For example, in dimension one, Γ̃1(u) = u′2, Γ̃2(u) = u′′2, but

Γ̃3(u) = u′′′
2 − 2u′′

3
,

Γ̃4(u) = u(4)
2 − 12u′′u′′′

2
+ 6u′′

4
,

Γ̃5(u) = u(5)
2 − 30u′′′

2
u(4) − 20u′′u(4)

2
+ 120u′′

2
u′′′

2 − 24u′′
5
.

The successive expressions Γ̃`(u) are more and more cumbersome, but precisely given by the

Lie bracket structure.

It will be useful to record the following rough description of the Γ̃`(u), ` ≥ 1, in dimension

one. Its proof is postponed to the Appendix, Section 8. Recall Γ̃1(u) = Γ(u) = u′2.

Proposition 2. For every ` ≥ 2 and every smooth function u : R→ R,

Γ̃`(u) = R̃`

(
u(2), . . . , u(`)

)
(3.5)

where u(j), j ≥ 2, denote the successive derivatives of u and where R̃` = R̃`(Z2, . . . , Z`) is a

polynomial in the variables Z2, . . . , Z` of the form

R̃`(Z2, . . . , Z`) = Z2
` +R`−1(Z2, . . . , Z`−1)

where R`−1 is some polynomial of ` − 2 coordinates (R1 ≡ 0). The polynomial R`−1 is not

explicit, although it may be noticed that it contains (−1)`(` − 1)!Z`
2. Moreover Γ̃`(u) is 2`-

homogeneous under the transformation u(x) 7→ uλ(x) = u(λx), λ ∈ R, in the sense that

Γ̃`(uλ)(x) = λ2` Γ̃`(u)(λx). (3.6)

In particular, R̃`(λ
2Z2, . . . , λ

`Z`) = λ2`R̃`(Z2, . . . , Z`).

For example, according to the above expressions for Γ̃2, Γ̃3, Γ̃4, Γ̃5,

R̃2(Z2) = Z2
2 ,

R̃3(Z2, Z3) = Z2
3 − 2Z3

2 ,

R̃4(Z2, Z3, Z4) = Z2
4 − 12Z2Z

2
3 + 6Z4

2 ,

R̃5(Z2, Z3, Z4, Z5) = Z2
5 − 30Z2

3Z4 − 20Z2Z
2
4 + 120Z2

2Z
2
3 − 24Z5

2 .
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4 Derivatives of the mmse

The preceding section provides a full description of the successive derivatives of the Fisher

information I(t), t > 0. We develop here the connection with the derivatives of the mmse

mmse(s) = MMSE(t), t = t(s) = 1
2s
, s > 0,

of (2.4) via suitable changes of functions and variables.

Recall v = v(t, x) = log ft(x), t > 0, x ∈ Rn, which defines a C∞ function of both the

space and time variables. Recall also the Gaussian kernel pt(x) = 1
(4πt)n/2 e−|x|

2/4t and set

h = h(t, x) = ft(x)
pt(x)

. Since ∂tpt = ∆pt as well as ∂tft = ∆ft, it is an easy exercise to check that

h solves the pde

∂th = ∆h− 1

t
x · ∇h.

With t = t(s) = 1
2s

, set furthermore k = k(s, x) = h
(
t,
√

2t x
)

= h
(

1
2s
, x√

s

)
. Then

∂sk = − 1

2s
Lk (4.1)

where L is the Ornstein-Uhlenbeck generator acting on smooth function ϕ on Rn as

Lϕ = ∆ϕ− x · ∇ϕ.

The operator L has to be thought of as the Laplacian with a drift in such a way that the

standard Gaussian measure γ is its invariant and symmetric measure.

Let then q = log k and introduce, for s > 0,

m(s) =
1

s

∫
Rn

kΥ(q)dγ =
1

s

∫
Rn

Υ(k)

k
dγ (4.2)

where Υ(q) = Γ(q) = |∇q|2 (the change to the letter Υ will be justified below). The function

m(s), s > 0, is closely linked to the mmse. To this aim, observe first that after a change of

variables, with always t = t(s) = 1
2s

,

m(s) = 4t2
∫
Rn

ft |∇w|2dx.

where w = log h. Indeed, recalling that k = h
(

1
2s
, x√

s

)
, after the change of variables x√

s
= y,

and t = 1
2s

,

1

s

∫
Rn

kΥ(q)dγ =
1

s

∫
Rn

|∇k|2

k
dγ

=
1

s2

∫
Rn

1

h
(

1
2s
, x√

s

) |∇h|2( 1
2s
, x√

s

)
e−|x|

2/2 dx

(2π)n/2

= 4t2
∫
Rn

1

h(t, y)
|∇h|2(t, y)pt(y)dy

=

∫
Rn

ft
|∇h|2

h2
dy

= 4t2
∫
Rn

ft |∇w|2dy.
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Since w = log h = v − log pt, going back to v = log ft,

|∇w|2 =
∣∣∣v +

x

2t

∣∣∣2 = |∇v|2 +
1

t
x · ∇v +

|x|2

4t2
=
|∇ft|2

f 2
t

+
1

tft
x · ∇ft +

|x|2

4t2
.

Therefore

m(s) = 4t2
∫
Rn

ft |∇w|2dx = 4t2 I(t) + 4t

∫
Rn

x · ∇ft dx+

∫
Rn

|x|2ft dx

= 4t2 I(t)− 4nt+

∫
Rn

|x|2ft dx

where we used that∫
Rn

x · ∇ft dx = −
∫
Rn

x · E
(x−X

2t
pt(x−X)

)
dx

= − 1

2t
E
(∫

Rn

x · (x−X) pt(x−X)dx

)
= − 1

2t
E
(∫

Rn

(x+X) · x pt(x)dx

)
= − 1

2t

∫
Rn

|x|2pt(x)dx = −n.

Using in addition that ∫
Rn

|x|2ft dx = E
(
|Xt|2

)
= E

(
|X|2

)
+ 2nt,

it follows that

m(s) = 4t2 I(t)− 2nt+ E
(
|X|2

)
= −MMSE(t) + E

(
|X|2

)
.

Hence

m(s) = −mmse(s) + E
(
|X|2

)
. (4.3)

This identity requires a second moment on X. However, as will be clear from the main Theo-

rem 7 below, this condition is no more necessary at the first (and next) derivatives (for which

E(|X|2) cancels out).

The analysis of the derivatives of the mmse is thus brought back to the derivatives of the

function m of (4.2). The function m is of the form of a Fisher information but, with respect to

the setting of Section 2, the underlying generator and semigroup are the Ornstein-Uhlenbeck

ones rather than the standard heat (Brownian) generator and semigroup, with the Gaussian

measure γ as invariant and symmetric measure. The principle of proof emphasized in [7] is

nevertheless exactly the same, with simply some variations in the expression of the iterated

gradients.

Denote by Υ`, ` ≥ 1, the iterated gradients associated to Ornstein-Uhlenbeck operator

L = ∆− x · ∇ defined by Υ` = [L,Υ`−1], ` ≥ 2, with Υ1(u) = Γ(u) = |∇u|2. As developed in
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[7], these iterated gradients are closely related to the standard gradients Γ`, ` ≥ 1, of (3.3) in

the following way. Let Q` the polynomial in the variable Z

Q`(Z) =
`−1∏
i=0

(Z − i) =
∑̀
i=1

a`iZ
i,

and set by extension

Q`(Υ) =
∑̀
i=1

a`i Υi.

Then, for every ` ≥ 1,

Q`(Υ) = Γ`.

For example, Q1(Υ) = Υ1 = Γ1, Q2(Υ) = Υ2 −Υ1 = Γ2, Q3(Υ) = Υ3 − 3Υ2 + 2Υ1 = Γ3.

As in the standard Laplacian case, introduce the brackets Υ̃` = [L+Γ, Υ̃`−1], ` ≥ 2, starting

from Υ̃1 = Υ1 = Γ1 = Γ, and set then

Q`(Υ̃) =
∑̀
i=1

a`i Υ̃i.

Note that Υ̃2 = Υ2 (= Γ2 + Γ).

The differentiation process expressed by Theorem 1 then takes the same form. At the first

and second steps, the derivatives of

m(s) =
1

s

∫
Rn

kΥ(q)dγ, s > 0,

are given by

d

ds
m(s) =

1

s2

∫
Rn

k
[
Υ2(q)−Υ1(q)

]
dγ =

1

s2

∫
Rn

k Q2(Υ̃)(q)dγ,

d2

ds2
m(s) =

1

s3

∫
Rn

k
[
Υ̃3(q)− 3Υ2(q) + 2Υ1(q)

]
dγ =

1

s3

∫
Rn

k Q3(Υ̃)(q)dγ.

By induction, we end up with the following conclusion [7].

Theorem 3. In the preceding notation, for every ` ≥ 0,

d`

ds`
m(s) =

1

s`+1

∫
Rn

k Q`+1(Υ̃)(q)dγ.

For the proof, we may refer more precisely to the key relation (3.7) from [7] which expresses

that
d

ds

∫
Rn

k Q`(Υ̃)(q)dγ =
`

s

∫
Rn

k Q`(Υ̃)(q)dγ +
1

s

∫
Rn

k Q`+1(Υ̃)(q)dγ,

from which the inductive step follows immediately.
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Theorem 3 provides a full description of the derivatives of the function m, and therefore of

the mmse, in terms of the iterated gradients Υ` and their brackets. While the following is not

strictly necessary towards the main conclusion, it will be convenient to record it here as the

calculus with the standard gradients Γ` is somewhat more direct than the one with the Υ`’s.

Actually, in the same way as Q`(Υ) = Γ`, we also have

Proposition 4. For every ` ≥ 1,

Q`(Υ̃) = Γ̃`.

We postpone the proof of this proposition to the appendix.

As a consequence of Proposition 4, and Theorem 3,

d`

ds`
m(s) =

1

s`+1

∫
Rn

k Γ̃`+1(q)dγ.

According to the change of variables (3.6), we therefore obtain a first description of the deriva-

tives of the mmse. Recall t = t(s) = 1
2s

and w = log
ft(s)
pt(s)

.

Corollary 5. For every ` ≥ 1,

d`

ds`
mmse(s) = − 1

s2(`+1)

∫
Rn

ft(s) Γ̃`+1(w)dx.

5 Conditional cumulants

In order to make Corollary 5 effective, we express in this section the quantities Γ̃`(w), ` ≥ 1, in

terms of conditional cumulants. For simplicity, we deal with dimension one and analyze first

the spatial derivatives of v = v(t, x) = log ft(x), t > 0, denoted v(`), ` ≥ 1.

Denote by κ`t = κ`t(x), ` ≥ 1, the conditional cumulants given Xt = x defined by the

expansions in λ ∈ R,

log
E(eλXpt(x−X))

ft(x)
=

∞∑
`=1

λ`

`!
κ`t(x). (5.1)

The first (conditional) cumulant is the mean

κ1t (x) = E
(
X |Xt = x

)
while the second cumulant is the variance

κ2t (x) = E
(
X2 |Xt = x

)
− E

(
X |Xt = x

)2
.

By the kernel representation of the heat semigroup, for every t > 0 and λ ∈ R,

ft(x+ 2tλ) = E
(
pt(x+ 2tλ−X)

)
=

1√
4πt

E
(
e−(x+2tλ−X)2/4t

)
= e−λ

2t−λx E
(
eλXpt(x−X)

)
.

11



Hence

v(x+ 2tλ) = log ft(x+ 2tλ) = −λ2t− λx+ logE
(
eλXpt(x−X)

)
that is, by (5.1),

v(x+ 2tλ)− v(x) = −λ2t− λx+
∞∑
`=1

λ`

`!
κ`t(x).

Since by a (formal) Taylor expansion, v(x+2tλ) =
∑∞

`=0
(2tλ)`

`!
v(`)(x), it follows by comparison

that 2tv′ = κ1t − x, 4t2v′′ = κ2t − 2t and, for every ` ≥ 3, (2t)`v(`) = κ`t. Recalling that

w = v − log pt = v − x2

4t
− 1

2
log(4πt),

we therefore reach the following conclusion.

Proposition 6. For every ` ≥ 1,

(2t)`w(`) = κ`t. (5.2)

We can now go back to Corollary 5. Recall the polynomials R̃`, ` ≥ 1, from Proposition 2

so that

Γ̃`+1(w) = R̃`+1

(
w(2), . . . , w(`+1)

)
= (2t)−2(`+1)R̃`+1

(
κ2t , . . . , κ

`+1
t

)
.

Hence, with t = t(s) = 1
2s

,

d`

ds`
mmse(s) = −

∫
Rn

ft R̃`+1(κ
2
t , . . . , κ

`+1
t )dx. (5.3)

Let K`
s be the conditional cumulants of X given

√
sX + N , equivalently Xt(s) to shorten

the notation, that is with generating series in λ ∈ R,

logE
(
eλX |Xt(s)

)
=

∞∑
`=1

λ`

`!
K`
s.

Note that all these conditional cumulants, besides the first one, have moments of all orders (on

the same scheme as for (2.2)). Indeed, as is classical, K`
s

`!
, ` ≥ 2, is the coefficient in front of λ`

of the formal series expansion

−
∑
k≥1

1

k

(
−
∑
m≥2

λm

m!
Mm

s

)k
where

Mm
s = E

([
X − E

(
X |Xt(s)

)]m ∣∣Xt(s)

)
, m ≥ 2, (5.4)

are the conditional centered moments. For example,

K2
s = M2

s , K3
s = M3

s , K4
s = M4

s − 3(M2
s )

2
.

In addition, E(K2
s ) = E(M2

s ) = MMSE(t(s)).

Recalling that Xt has law ftdx, the identities (5.3) lead to the following main conclusion

describing the successive derivatives of the mmse in terms of the conditional cumulants K`
s,

` ≥ 1.

12



Theorem 7. In the preceding notation, for every ` ≥ 1, at s > 0,

d`

ds`
mmse(s) = −E

(
R̃`+1(K

2
s , . . . , K

`+1
s )

)
. (5.5)

As an illustration, the first derivatives are given by

d

ds
mmse(s) = −E

(
(K2

s )
2)
,

d2

ds2
mmse(s) = −E

(
(K3

s )
2 − 2(K2

s )
3)
,

d3

ds3
mmse(s) = −E

(
(K4

s )
2 − 12K2

s (K3
s )

2
+ 6(K2

s )
4)
,

d4

ds4
mmse(s) = −E

(
(K5

s )
2 − 30(K3

s )
2
K4
s − 20K2

s (K4
s )

2
+ 120(K2

s )
2
(K3

s )
2 − 24(K2

s )
5)
.

These identities are in accordance with the formulas of [8, 6] expressed in terms of the conditional

central moments (5.4). Indeed,

d

ds
mmse(s) = −E

(
(M2

s )
2)
,

d2

ds2
mmse(s) = −E

(
(M3

s )
2 − 2(M2

s )
3)
,

d3

ds3
mmse(s) = −E

(
(M4

s )
2 − 6M4

s (M2
s )

2 − 12M2
s (M3

s )
2

+ 15(M2
s )

4)
d4

ds4
mmse(s) = −E

(
(M5

s )
2 − 20M2

sM
3
sM

5
s − 30(M3

s )
2
M4

s − 20M2
s (M4

s )
2

+ 120(M2
s )

3
M4

s + 310(M2
s )

2
(M3

s )
2 − 204(M2

s )
5)
.

To illustrate these identities, observe for example that if X is centered normal with variance

σ2, then

mmse(s) =
σ2

1 + σ2s
, s > 0,

while K1
s = σ2s

1+σ2s
Xt(s), K

2
s = σ2

1+σ2s
, and K`

s = 0 if ` ≥ 2, so that

d`

ds`
mmse(s) = (−1)``!

( σ2

1 + σ2s

)`+1

= −(−1)`+1`!E
(
(K2

s )
`+1)

.

6 On the MMSE conjecture

The work [6] raises the conjecture that the knowledge of the Minimum Mean-Square Error

MMSE(t), t ≥ 0 (equivalently the entropy H(t) or the Fisher information I(t), t > 0, along the

flow), determines the underlying distribution of a centered real-valued random variable X up

to the sign, namely either the law of X or of −X. Note indeed that

MMSE(t) = E
([
X − E

(
X |Xt

)]2)
, t ≥ 0,

13



is invariant by translation of X by a constant, so does not characterize the mean, and by the

change of X into −X.

The idea expressed by the preceding investigation is that the MMSE could act as a kind of

moment generating function, its successive derivatives (at 0) determining the moments or the

cumulants of the underlying distribution. To make use of Theorem 7 following this principle,

observe first that the expected conditional cumulants E(K`
s), ` ≥ 1, converge as s → 0 to the

cumulants K`(X) of X, provided all moments of X are finite. It might be of interest to briefly

justify this intuitive statement. To this task, let us first show that E(X |Xt) → E(X) almost

surely as t→∞ whenever X is integrable. Indeed, in the notation of Section 2,

E
(
X |Xt

)
=

gt
ft

(Xt) =
Ẽ(X̃pt(Xt − X̃))

Ẽ(pt(Xt − X̃))
=

Ẽ(X̃ e−(Xt−X̃)2/4t)

Ẽ(e−(Xt−X̃)2/4t)

where X̃ is an independent copy of X. Now, if E(|X|) = E(|X̃|) < ∞, by dominated conver-

gence, almost surely,

lim
t→∞

Ẽ
(
X̃ e−(Xt−X̃)2/4t

)
= e−N

2/2 E(X)

while

lim
t→∞

Ẽ
(
e−(X̃

2−2X̃Xt)/4t
)

= e−N
2/2

from which the claim follows.

Assuming all moments of X are finite, for each m, the family [X − E(X |Xt)]
m, t ≥ 0,

is uniformly integrable. Therefore, as s → 0 (recall s = 1
t

= 1
2t(s)

), the expected conditional

moments E(Mm
s ) converge to the centered moments E([X − E(X)]m) of X. (In particular,

MMSE(t)→ K2(X) as t→∞.) Now, the same type of arguments shows that, for every k ≥ 1,

and every m1, . . . ,mk ≥ 1,

E(Mm1
s · · ·Mmk

s ) → E
([
X − E(X)

]m1
)
· · ·E

([
X − E(X)

]mk
)

and similarly with the conditional cumulants K`
s,

E(Km1
s · · ·Kmk

s ) → Km1(X) · · ·Kmk(X).

On the basis of Theorem 7 and the latter, a partial result towards the MMSE conjecture

may therefore be emphasized. Recall from Proposition 2 that R̃2(Z2) = Z2
2 and, for every ` ≥ 2,

R̃`+1(Z2, . . . , Z`+1) = Z2
`+1 +R`(Z2, . . . , Z`).

Hence, in the limit as s→ 0 in (5.5), the quantities(
K`+1(X)

)2
+R`

(
K2(X), . . . , K`(X)

)
, ` ≥ 1

are determined by the mmse/MMSE. While these expressions are recursive, the knowledge

of K2(X), . . . , K`(X) only determines K`+1(X) up to the sign. Therefore, only the case of

non-negative cumulants may be handled.
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Corollary 8. Let X be a centered random variable determined by its moments such that all its

cumulants K`(X), ` ≥ 0, are non-negative. Then the MMSE characterizes the distribution of

X.

SinceK`(−X) = (−1)`K`(X), ifX is a centered random variable determined by its moments

such as both K`(X) and K`(−X), ` ≥ 0, are non-negative, then necessarily K`(X) = 0 for odd

`’s and the law of X is symmetric.

It may be pointed out that, within this corollary, the knowledge of all derivatives of

MMSE/mmse at zero is enough to determine the law of X. Since it is not known whether

mmse(s) is real-analytic at zero, which is proved in [5] only under extra assumptions, this

might be weaker than knowing the function mmse.

A simple example of a random variable for which the hypotheses of the corollary are satisfied

is the case of a symmetric infinitively divisible random variable X (determined by its moments).

That is, the law of X has Fourier transform of the form eψ where

ψ(t) = −σ
2t2

2
+

∫
R
(eitx − 1)dµ(x)

where σ2 ≥ 0 and µ is a symmetric measure on R such that µ({0}) = 0 and
∫
R x

2kdµ(x) < ∞
for every k ≥ 1. Then K2(X) = σ2 +

∫
R x

2dµ(x), K2k+1(X) = 0, k ≥ 1, and

K2k(X) =

∫
R
x2kdµ(x), k ≥ 2.

One may also consider the case of a Lévy measure µ supported on R+. Concrete examples

may be achieved as compound Poisson distributions. Let Y be a symmetric or positive random

variables and P an independent Poisson variable with parameter θ > 0. Considering Y0, Y1, . . . ,

independent copies of Y , set

X =
P∑
k=0

Yk.

Then K`(X) = θE(Y `) ≥ 0, ` ≥ 1.

It might be worthwhile mentioning in addition that the knowledge of the cumulants up to

the sign is not enough to characterize the distribution in general. For example, the hyperbolic

distribution dx
2π cosh(πx/2)

has Laplace transform 1
cos(λ)

while the Laplace transform of the symmet-

ric Bernoulli measure on {−1,+1} is cosh(λ). The odd cumulants of these two distributions

are zero, while if K2`, ` ≥ 1, denote the even cumulants of the Bernoulli law, those of the

hyperbolic distribution are (−1)`+1K2` .

The multivariate version of the MMSE conjecture is also worth consideration, and might

involve multidimensional versions of the Fisher information and cumulants. Some formulas in

this regard are displayed in the next section.
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7 Some monotonicity properties of the MMSE

In this last section, we collect a few simple monotonicity properties of the Fisher information

and the MMSE, some of them already emphasized in [6].

We first mention from the identity

4t2 I(t) = 2nt−MMSE(t), t > 0,

of (2.3) that, for every t > 0,

I(t) ≤ n

2t
(7.1)

which connects in this Euclidean setting to the classical Li-Yau parabolic inequality on heat

kernels in Riemannian manifolds1.

The derivative formulas of the preceding sections may be extended to higher dimension, at

the expense however of somewhat cumbersome computations and notation. For simplicity, let

us stick here at the level of the Fisher information and its first derivative.

Let thus X be a random vector in Rn and Xt = X +
√

2tN , t ≥ 0, as above. With

Zt = Cov
(
X |Xt

)
= E

([
X − E(X |Xt)

]
⊗
[
X − E(X |Xt)

]
|Xt

)
= E

(
X ⊗X |Xt

)
− E

(
X |Xt

)
⊗ E

(
X |Xt

)
,

it holds from Sections 2 and 3 that

4t2 I(t) = 2nt−MMSE(t) = −E
(
Tr(Zt − 2t Id)

)
(7.2)

and

8t4
d

dt
I(t) = −E

(
|Zt − 2t Id|2

)
(7.3)

(where | · | is the Hilbert-Schmidt norm on matrices). Indeed, from (3.2),

d

dt
I(t) = −2

∫
Rn

ft |∇2v|2dx = −2

∫
Rn

ft

∣∣∣∣∇2ft
ft
− ∇ft ⊗∇ft

f 2
t

∣∣∣∣2dx.
Now, in the same form as

2t
∇ft
ft

=
gt
ft
− x

where gt(x) = E(Xpt(x−X)) and E(X |Xt) = gt
ft

(Xt), it holds true that

4t2
∇2ft
ft

= x⊗ x− 2t Id− 2x⊗ gt
ft

+
ht
ft

1The Li-Yau inequality states that if ft is a positive solution of the heat equation on a n-dimensional

Riemannian manifold with non-negative Ricci curvature, then ∆ log ft ≥ − n
2t which integrated yields (7.1)

(see [3]).

16



where ht(x) = E(X ⊗Xpt(x−X)) and E(X ⊗X |Xt) = ht
ft

(Xt). Hence

4t2
(
∇2ft
ft
− ∇ft ⊗∇ft

f 2
t

)
=

ht
ft
− gt
ft
⊗ gt
ft
− 2t Id

from which the claim (7.3) follows by definition of Zt.

Combining (7.2) and (7.3) yields some interesting consequences. First,

2t2
d

dt
MMSE(t) = 4nt2 + 4tE

(
Tr(Zt − 2t Id)

)
+ E

(
|Zt − 2t Id|2

)
= E

(
|Zt|2

)
≥ 0,

so that MMSE(t), t ≥ 0, is increasing.

This property can be made somewhat more precise. Indeed,

E
(
Tr(Zt − 2t Id)

)2 ≤ nE
(
|Zt − 2t Id|2

)
from which it follows that

2t2
d

dt
MMSE(t) ≥ 1

n
MMSE(t)2.

Hence
d

dt

( 1

MMSE(t)

)
≤ − 1

2nt2
.

Therefore, for all 0 < t ≤ t′,

1

MMSE(t′)
− 1

MMSE(t)
≤ 1

2n

( 1

t′
− 1

t

)
.

In particular, as t′ →∞, MMSE(t′)→M2(X) = E(|X − E(X)|2), so that for every t ≥ 0,

MMSE(t) ≤ 2ntM2(X)

2nt+M2(X)
. (7.4)

Note that the right-hand side of (7.4) is precisely the MMSE of a random vector distributed

according to the standard normal law γ, which thus achieves the maximum of the MMSE over

centered random variables with finite second moment.

Another property was emphasized in [6] as the single crossing property. Namely, if MMSE(t0)
2 ≥

−2nt20α(t0) at t0 > 0 for some (smooth) function α(t), t > 0, then

d

dt
MMSE(t)

∣∣∣
t=t0
≥ −α(t0).

Indeed, setting F (t) = β(t) + MMSE(t), t > 0, where β is an anti-derivative of α, by (7.2),

F ′(t0) = α(t0) + 2n+
2

t0
E
(
Tr(Zt0 − 2t0 Id)

)
+

1

2t20
E
(
|Zt0 − 2t0 Id|2

)
≥ − 1

2nt20
E
(
Tr(Zt0 − 2t0 Id)

)2
+

1

2t20
E
(
|Zt0 − 2t0 Id|2

)
≥ 0.

As discussed in [6], a sensible choice for the function α is the MMSE of a standard normal given

by the right-hand side of (7.4).
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8 Appendix: Proofs of Propositions 2 and 4

Proof of Proposition 2. Although the proposition is presented for functions on the real line,

we use the general (multi-dimensional) notation. The proof of (3.5) of Proposition 2 relies on

the following statement. The more precise description of the multilinear forms V` therein is not

strictly necessary for the purpose. Property (3.6) also follows from this statement.

Proposition 9. For every ` ≥ 3, Γ̃`(u) = Γ`(u) + V`(u) where

V`(u) =
∑̀
j=3

∑
α1,...,αj∈{2,...,`−1}
α1+···+αj=2`

cα1,...,αj
u(α1) · · ·u(αj) (8.1)

for real coefficients cα1,...,αj
, α1, . . . , αj ∈ {2, . . . , ` − 1}, j = 3, . . . , `. In addition, cα1,...,α`

=

(−1)`(`− 1)!.

It might be of interest to understand the combinatorial structure of the coefficients c.

Proof. The proof is performed by induction. Assuming that Γ̃`(u) = Γ`(u)+V`(u), we examine

[∆, Γ̃`](u) = [∆,Γ`](u)+[∆, V`](u) and [Γ, Γ̃`](u) = [Γ,Γ`](u)+[Γ, V`](u) (as Γ̃`+1 = [∆+Γ, Γ̃`]).

First [∆,Γ`](u) = Γ`+1(u), providing the term Γ`+1(u) in Γ̃`+1(u). Next

[Γ,Γ`](u) = Γ
(
Γ`(u), u

)
− Γ`

(
Γ(u), u

)
= u′

(
u(`)

2)′ − (u′
2
)
(`)
u(`)

which is of the form V`+1(u).

We then study [∆, V`](u) and [Γ, V`](u) for some V` of the form (8.1). Let

B(u) = B(u, . . . , u) = u(α1) · · ·u(αj)

be j-multilinear symmetric in smooth functions u where α1, . . . , αj are integers greater than 2

(satisfying α1 + · · ·+ αj = 2`). By definition,

2[∆, B](u) = ∆
(
B(u)

)
− jB(∆u, u, . . . , u)

=
(
u(α1) · · ·u(αj)

)′′ − j∑
i=1

u(α1) · · ·u(αi+2) · · ·u(αj)

=

j∑
i,i′=1,i 6=i′

u(α1) · · ·u(αi+1) · · ·u(αi′+1) · · ·u(αj).

Hence [∆, V`](u) has the form V`+1(u). In the same way,

2[Γ, B](u) = 2 Γ
(
u,B(u)

)
− jB

(
Γ(u), u, u, . . . , u

)
= 2u′

j∑
i=1

u(α1) · · ·u(αi+1) · · ·u(αj) −
j∑
i=1

u(α1) · · · (u′2)
(αi) · · ·u(αj).

18



Now (u′2)
(αi)

= 2u′u(αi+1) +P (u) where P (u) only involves derivatives of u up to the order αi,

with total degree αi + 2. Therefore [Γ, V`](u) is also of the form V`+1(u). Moreover, if j = ` so

that necessarily α1 = · · · = α` = 2, then 2[Γ, B](u) = −2` u(2)
`+1

, the only term of this form in

V`+1(u), justifying the last assertion of the statement. The proposition is established.

Proof of Proposition 4. We use induction on `. By construction of the polynomials

Q`(Z) =
`−1∏
i=0

(Z − i) =
∑̀
i=1

a`iZ
i, ` ≥ 1,

it holds that Q`+1(Z) =
∑`

i=1 a
`
iZ

i+1 − `Q`(Z). Hence,

Q`+1(Υ̃) = [L + Υ, Q`(Υ̃)]− `Q`(Υ̃).

Then, by the induction hypothesis,

Q`+1(Υ̃) = [L + Γ, Γ̃`]− ` Γ̃` = [L, Γ̃`] + [Γ, Γ̃`]− ` Γ̃`.

Since Γ̃`+1 = [∆ + Γ, Γ̃`], it suffices to show that

[L, Γ̃`] = [∆, Γ̃`] + ` Γ̃`. (8.2)

We establish (8.2) also by induction. On the one hand,

[L, Γ̃`+1] = [L, [∆, Γ̃`]] + [L, [Γ, Γ̃`]].

On the other hand, by the induction hypothesis,

[∆, Γ̃`+1] = [∆, [∆, Γ̃`]] + [∆, [Γ, Γ̃`]] = [∆, [L, Γ̃`]]− ` [∆, Γ̃`] + [∆, [Γ, Γ̃`]].

The identity (8.2) at the order `+ 1 reads

[L, Γ̃`+1] = [∆, Γ̃`+1] + (`+ 1)[∆ + Γ, Γ̃`]

so that in order it holds true, it amounts to show that

[L, [∆, Γ̃`]] + [L, [Γ, Γ̃`]] = [∆, [L, Γ̃`]] + [∆, Γ̃`] + [∆, [Γ, Γ̃`]] + (`+ 1)[Γ, Γ̃`].

Since [∆,L] = −∆, by the Lie bracket property (cf. [7]),

[∆, [L, Γ̃`]] + [∆, Γ̃`]− [L, [∆, Γ̃`]] = 0

so that it is left to show that

[L, [Γ, Γ̃`]] = [∆, [Γ, Γ̃`]] + (`+ 1)[Γ, Γ̃`]. (8.3)

Again by the Lie bracket property, and the fact that [L,Γ] = Υ2 = Γ2 + Γ = [∆,Γ] + Γ,

[L, [Γ, Γ̃`]] = −[Γ̃`, [L,Γ]] + [Γ, [L, Γ̃`]] = −[Γ̃`, [∆,Γ]] + [Γ, Γ̃`] + [Γ, [L, Γ̃`]]

while

[∆, [Γ, Γ̃`]] = −[Γ̃`, [∆,Γ]] + [Γ, [∆, Γ̃`]].

Since by the induction hypothesis [L, Γ̃`] = [∆, Γ̃`]+` Γ̃`, it immediately follows that (8.3) holds

true, thereby completing the proof of Proposition 4.
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[5] D. Guo, S. Shamai, S. Verdú. Mutual information and minimum mean-square error in

Gaussian channels. IEEE Trans. Inform. Theory 51 (2005), 1261–1282.
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Institut de Mathématiques de Toulouse
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