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In these notes, we survey developments on the asymptotic behavior
of the largest eigenvalues of random matrix and random growth mod-
els, and describe the corresponding known non-asymptotic exponential
bounds. We then discuss some elementary and accessible tools from
measure concentration and functional analysis to reach some of these
quantitative inequalities at the correct small deviation rate of the fluc-
tuation theorems. Results in this direction are rather fragmentary. For
simplicity, we mostly restrict ourselves to Gaussian models.
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INTRODUCTION

In the recent years, important developments took place in the analysis of the spectrum

of large random matrices and of various random growth models. In particular, univer-

sality questions at the edge of the spectrum has been conjectured, and settled, for a

number of apparently disconnected examples.

Let XN = (XN
ij )1≤i,j≤N be a complex Hermitian matrix such that the entries on

and above the diagonal are independent complex (real on the diagonal) centered Gaus-

sian random variables with variance σ2. Denote by λN1 , . . . , λ
N
N the real eigenvalues of

XN . Under the normalization σ2 = 1
4N of the variance, the famous Wigner theorem

indicates that the spectral measure 1
N

∑N
i=1 δλN

i
converges to the semicircle law, sup-

ported on (−1,+1). Furthermore, the largest eigenvalue λNmax converges almost surely

to 1, the right-end point of the support of the semicircle law. As one main achievement

in the recent developments of random matrix theory, it has been proved in the early

nineties by P. Forrester [Fo1] and C. Tracy and H. Widom [T-W1] that the fluctuations

of the largest eigenvalue are given by

N2/3(λNmax − 1)→ F

where F is the so-called Tracy-Widom distribution. A similar conclusion holds for real

Gaussian matrices, and the result has been extended by A. Soshnikov [So1] to classes of

real or complex matrices with independent entries under suitable moment assumptions.

In the striking contribution [B-D-J], J. Baik, P. Deift and K. Johansson proved in

1999 that the Tracy-Widom distribution governs the fluctuation of an apparently com-

pletely disconnected model, namely the length of the longest increasing subsequence

in a random partition. Denote indeed by Ln the length of the longest increasing sub-

sequence in a random permutation chosen uniformly in the symmetric group over n

elements. Then, as shown in [B-D-J],

1

2n1/6

(
Ln − 2

√
n
)
→ F

weakly, with F the Tracy-Widom distribution. (Note that the normalization is given

by the third power of the mean order 2
√
n, as it would be the case if we replace λNmax

by NλNmax in the random matrix model.)
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Since then, universality of the Tracy-Widom distribution is conjectured for a num-

ber of models, and has been settled recently for some specific ones, including cor-

ner growth models, last-passage times in directed percolation, exclusion processes,

Plancherel measure, random Young tableaux... For example, let w(i, j), i, j ∈ N, be

independent exponential or geometric random variables. For M ≥ N ≥ 1, set

W = W (M,N) = max
π

∑
(i,j)∈π

w(i, j)

where the maximum runs over all up/right paths π in N2 from (1, 1) to (M,N). The

random growth function W may be interpreted as a directed last-passage time in per-

colation. K. Johansson [Joha1] showed that, for every c ≥ 1, up to some normalization

factor,
1

N1/3

(
W
(
[cN ], N

)
− ωN

)
→ F

weakly, where again F is the Tracy-Widom distribution (and ω the mean parameter).

These attractive results, and the numerous recent developments around them (cf.

the review papers [Baik2], [Joha4], [T-W4]...) emphasize the unusual rate (mean)1/3

and the central role of the new type of distribution F in the fluctuations of largest

eigenvalues and random growth models. The analysis of these models is actually made

possible by a common determinantal point process structure and asymptotics of orthog-

onal polynomials for which sophisticated tools from combinatorics, complex analysis,

integrable systems and probability theory have been developed. This determinantal

structure is also the key to the study of the spacings between the eigenvalues, a topic

of major interest in the recent developments of random matrix theory which led in

particular to striking conjectures in connection with the Riemann zeta function (cf.

[De], [Fo2], [Fy], [Kö], [Meh]...).

In these notes, we will be concerned with the simple question of non-asymptotic

exponential deviation inequalities at the correct fluctuation rate in some of the preced-

ing limit theorems. We only concentrate on the order of growth and do not discuss the

limiting distributions. For example, in the preceding setting of the largest eigenvalue

λNmax of random matrices, we would be interested to find, for fixed N ≥ 1 and ε > 0,

(upper-) estimates on

P
(
{λNmax ≥ 1 + ε}

)
and P

(
{λNmax ≤ 1− ε}

)
which fit the weak convergence rate towards the Tracy-Widom distribution. In a sense,

this purpose is similar to the Gaussian tail inequalities for sums of independent ran-

dom variables in the context of the classical central limit theorem. Several results,

usually concerned with large and moderate deviation asymptotics and convergence of

moments, deal with this question in the literature. However, not all of them are eas-

ily accessible, and usually require a rather heavy analysis, connected with stationary
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phase asymptotics of contour integrals or non-classical analytical schemes of the the-

ory of integrable systems such as Riemann-Hilbert asymptotic methods. In any case,

the conclusions so far only deal with rather restricted classes of models. For example,

in the random matrix context, only (complex) Gaussian entries allow at this point for

satisfactory deviation inequalities at the appropriate rate. Directed percolation models

have been answered only for geometric or exponential weights.

The aim of these notes is to provide a few elementary tools, some of them of

functional analytic flavour, to reach some of these deviation inequalities. (We will

only be concerned with upper bounds.) A first attempt in this direction deals with

the modern tools of measure concentration. Measure concentration typically produces

Gaussian bounds of the type

P
({∣∣λNmax − E(λNmax)

∣∣ ≥ r}) ≤ C e−Nr
2/C , r ≥ 0,

for some C > 0 independent of N . These inequalities are rather robust and hold

for large families of distributions. While they describe the correct large deviations,

they however do not reflect the small deviations at the rate (mean)1/3 of the Tracy-

Widom theorem. Further functional tools (if any) would thus be necessary, and such

a program was actually advertised by S. Szarek in [Da-S]. We present here a few

arguments of possible usefulness to this task, relying on Markov operator ideas such as

hypercontractivity and integration by parts. In particular, we try to avoid saddle point

analysis on Laplace integrals for orthogonal polynomials which are at the root of the

asymptotic results. We however still rely on determinantal and orthogonal polynomial

representations of the random matrix models. Certainly, suitable bounds on orthogonal

polynomials might supply for most of what is necessary to our purpose. Our first wish

was actually to try a few abstract and (hopefully) general arguments to tackle some

of these questions in the hope of extending some conclusions to more general models.

The various conclusions from this particular viewpoint are however far from complete,

not always optimal, and do not really extend to new examples of interest. It is the

hope of the future research that new tools may answer in a more satisfactory way some

of these questions.

The first chapter describes, in the particular example of the Gaussian Unitary

Ensemble, the fundamental determinantal structure of the eigenvalue distribution and

the orthogonal polynomial method which allow for the fluctuation and large deviation

asymptotics of the top eigenvalues of random matrix and random growth models. In

the second chapter, we present the known exponential deviation inequalities which may

be drawn from the asymptotic theory and technology. Chapter 3 addresses the measure

concentration tools in this setting, and discusses both their usefulness and limitations.

In Chapter 4, the tool of hypercontractivity of Markov operators is introduced to the

task of deviation and variance inequalities at the Tracy-Widom rate. The last chapter

presents some moment recurrence equations which may be obtained from integration

by parts for Markov operators, and discusses their interest in deviation inequalities

both above and below the limiting expected mean.
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These notes are only educational and do not present any new result. They moreover

focus on a very particular aspect of random matrix theory, ignoring some main develop-

ments and achievements. In particular, references are far from exhaustive. Instead, we

try to refer to some general references where more complete expositions and pointers

to the literature may be found. We apologize for all the omissions and inaccuracies in

this respect. In connection with these notes, let us thus mention, among others, the

book [Meh] by M. L. Mehta which is a classical reference on the main random ma-

trix ensembles from the mathematical physics point of view. It contains in particular

numerous formulas on the eigenvalue densities, their correlation functions etc. The

very recent third edition presents in addition some of the latest developments on the

asymptotic behaviors of eigenvalues of random matrices. The monograph [De] by P.

Deift discusses orthogonal polynomial ensembles and presents an introduction to the

Riemann-Hilbert asymptotic method. P. Forrester [Fo] extensively describes the vari-

ous mathematical physics models of random matrices and their relations to integrable

systems. The survey paper by Z. D. Bai [Bai] offers a complete account on the spectral

analysis of large dimensional random matrices for general classes of Wigner matrices by

the moment method and the Stieltjes transform. The short reviews [Joha4], [T-W4],

[Baik2] provide concise presentations of some main recent achievements. The lectures

[Fy] by Y. Fyodorov are an introduction to the statistical properties of eigenvalues of

large random Hermitian matrices, and treat in particular the paradigmatic example of

the Gaussian Unitary Ensemble (much in the spirit of these notes). Finally, the re-

cent nice and complete survey on orthogonal polynomial ensembles by W. König [Kö]

achieves an accessible and inspiring account to some of these important developments.

More references may be downloaded from the preceding ones.

Thanks are due to G. Schechtman and T. Szankowski for their invitation to this

summer school, and to all the participants for their interest in these lectures.

5



1. ASYMPTOTIC BEHAVIORS

In this first chapter, we briefly present some basic facts about the asymptotic analysis

of the largest eigenvalues of random matrix and random growth models. For simplic-

ity, we restrict ourselves to some specific models (mostly the Hermite and Meixner

Ensembles) for which complete descriptions are available. We follow the recent litera-

ture on the subject. In the particular example of the Gaussian Unitary Ensemble, we

fully examine the basic determinantal structure of the correlation functions and the

orthogonal polynomial method. We further discuss Coulomb gas and random growth

functions, as well as large deviation asymptotics.

1.1. The largest eigenvalue of the Gaussian Unitary Ensemble

One main example of interest throughout these notes will be the so-called Gaussian

Unitary Ensemble (GUE). This example is actually representative of a whole family of

models. Consider, for each integer N ≥ 1, X = XN = (XN
ij )1≤i,j≤N a N×N selfadjoint

centered Gaussian random matrix with variance σ2. By this, we mean thatX is aN×N
Hermitian matrix such that the entries above the diagonal are independent complex

(real on the diagonal) Gaussian random variables with mean zero and variance σ2 (the

real and imaginary parts are independent centered Gaussian variables with variance

σ2/2). Equivalently, the random matrix X is distributed according to the probability

distribution

P(dX) =
1

Z
exp

(
− Tr(X2)/2σ2

)
dX (1.1)

on the space HN ∼= RN
2

of N ×N Hermitian matrices where

dX =
∏

1≤i≤N

dXii

∏
1≤i<j≤N

dRe (Xij)d Im (Xij)

is Lebesgue measure on HN and Z = ZN the normalizing constant. This probability

measure is invariant under the action of the unitary group on HN in the sense that

UXU∗ has the same law as X for each unitary element U of HN . The random matrix
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X is then said to be element of the Gaussian Unitary Ensemble (GUE) (“ensemble”

for probability distribution).

The real case is known as the Gaussian Orthogonal Ensemble (GOE) defined by

a real symmetric random matrix X = XN = (XN
ij )1≤i,j≤N such that the entries XN

ij ,

1 ≤ i ≤ j ≤ N , are independent centered real-valued Gaussian random variables with

variance σ2 (2σ2 on the diagonal). Equivalently, the distribution of X on the space SN
of N ×N symmetric matrices is given by

P(dX) =
1

Z
exp

(
− Tr(X2)/4σ2

)
dX (1.2)

(where now dX is Lebesgue measure on SN ). This distribution is invariant by the

orthogonal group.

For such a symmetric or Hermitian random matrix X = XN , denote by λN1 , . . . , λ
N
N

its (real) eigenvalues.

It is a classical result due to E. Wigner [Wig] that, almost surely,

1

N

N∑
i=1

δλN
i
→ ν (1.3)

in distribution as σ2 ∼ 1
4N , N → ∞, where ν is the semicircle law with density

2
π (1 − x2)1/2 with respect to Lebesgue measure on (−1,+1). This result has been

extended, on the one hand, to large classes of both real (symmetric) and complex

(Hermitian) random matrices with non-Gaussian independent (subject to the symmetry

condition) entries, called Wigner matrices, under the variance normalization σ2 =

E(|Xij |2) ∼ 1
4N , i < j. The basic techniques include moment methods, to show the

convergence of
1

N
E
(

Tr
(
(XN )

p))
to the p-moment (p ∈ N) of the semicircle law, or the Stieltjes transform (a kind of

moment generating function) method. Another point of view on the Stieltjes transform

is provided by the free probability calculus ([Vo], [V-D-N], [H-P], [Bi]...). In the partic-

ular example of the GUE, simple orthogonal polynomial properties may be used (see

below). Actually, all these arguments first establish convergence of the mean spectral

measure

µN = E
(

1

N

N∑
i=1

δλN
i

)
. (1.4)

This convergence has been improved to the almost sure statement (1.3) in [Ar]. We

refer to the paper [Bai] by Z. D. Bai for a complete account on spectral distributions of

large Wigner matrices not addressed here. On the other hand, Wigner’s theorem has

been extended to orthogonal or unitary invariant ensembles of the type (1.1) or (1.2)

where X2 is replaced (by the functional calculus) by v(X) for some suitable function
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v : R → R. The main tool in this case is the Stieltjes transform, and the limiting

spectral distribution (or equilibrium measure, cf. [De], [H-P], [S-T]...) then depends

on (the potential) v. The quadratic potential is the only one leading to independent

entries Xij , 1 ≤ i ≤ j ≤ N , in the matrix X with law (1.1) or (1.2).

It is also well-known that in the GUE and GOE models, as well as in the more

general setting of Wigner matrices (cf. [Bai]), under suitable moment hypotheses, the

largest eigenvalue λNmax = max1≤i≤N λ
N
i converges almost surely, as σ2 = 1

4N , to the

right-end point of the support of the semicircle law, that is 1 in the normalization chosen

here. (By symmetry, the smallest eigenvalue converges to −1. The result extends to the

k-th extremal eigenvalues for every fixed k.) For the orthogonal and unitary invariant

ensembles, the convergence is towards the right-end point of the compact support of

the limiting spectral distribution (cf. [De]).

As one of the main recent achievements of the theory of random matrices, it has

been shown by P. Forrester [Fo1] (in a mathematical physics language) and C. Tracy

and H. Widom [T-W1] that the fluctuations of the largest eigenvalue λNmax of a GUE

random matrix X = XN with σ2 = 1
4N around its expected value 1 takes place at the

rate N2/3. More precisely,

N2/3(λNmax − 1)→ FGUE (1.5)

weakly where FGUE is the so-called (GUE) Tracy-Widom distribution. Note that the

normalization N2/3 may be somehow guessed from the Wigner theorem since, for ε > 0

small,

Card {1 ≤ i ≤ N ;λNi > 1− ε} ∼ N ν
(
(1− ε, 1]

)
∼ Nε3/2

so that for ε of the order of N−2/3 the probability P({λNmax ≤ 1 − ε}) should be

stabilized. The new distribution FGUE occurs as a Fredholm determinant

FGUE(s) = det
(

[Id−KAi]L2(s,∞)

)
, s ∈ R, (1.6)

of the integral operator associated to the Airy kernel KAi, as a limit in this regime of

the Hermite kernel using Plancherel-Rotach orthogonal polynomial asymptotics (see

below). C. Tracy and H. Widom [T-W1] were actually able to provide an alternate

description of this new distribution FGUE in terms of some differential equation as

FGUE(s) = exp

(
−
∫ ∞

2s

(x− 2s)u(x)2dx

)
, s ∈ R, (1.7)

where u(x) is the solution of the Painlevé II equation u′′ = 2u3 + xu with the asymp-

totics u(x) ∼ 1
2
√
πx1/4 e−

2
3x

3/2

as x → ∞. Similar conclusions hold for the Gaussian

Orthogonal Ensemble (GOE) with a related limiting distribution FGOE of the Tracy-

Widom type [T-W2]. Random matrix theory is also concerned sometimes with quater-

nionic entries leading to the Gaussian Simplectic Ensemble (GSE), cf. [Meh], [T-W2].
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A few caracteristics of the distribution FGUE are known. It is non-centered, with a

mean around −.879, and its respective behaviors at ±∞ are given by

C−1 e−Cs
3

≤ FGUE(−s) ≤ C e−s
3/C (1.8)

and

C−1 e−Cs
3/2

≤ 1− FGUE(s) ≤ C e−s
3/2/C (1.9)

for s large and C numerical (cf. e.g. [Au], [John], [L-M-R]...)

As already emphasized in the introduction, the Tracy-Widom distributions actually

appeared recently in a number of apparently disconnected problems, from the length of

the longest increasing subsequence in a random permutation, to corner growth models,

last-passage times in oriented percolation, exclusion processes, Plancherel measure,

random Young tableaux etc, cf. [Joha4], [T-W4], [Baik2], [Kö]... The Tracy-Widom

distributions are conjectured to be the universal limiting laws for this type of models,

with a common rate (mean)1/3 (in contrast with the (mean)1/2 rate of the classical

central limit theorem).

The fluctuation result (1.5) has been extended by A. Soshnikov in the stricking

contribution [So1] to Wigner matrices X = XN with real or complex non-Gaussian

independent entries with variance σ2 = E(|Xij |2) = 1
4N and a Gaussian control of the

moments E(|Xij |2p) ≤ (Cp)p, p ∈ N, 1 ≤ i < j ≤ N . In particular, the assumptions

cover the case of matrices X = (Xij/2
√
N)1≤i,j≤N where the Xij ’s, i ≤ j, are indepen-

dent symmetric Bernoulli variables. This is one extremely rare case so far for which

universality of the Tracy-Widom distributions has been fully justified. Interestingly

enough, one important aspect of Soshnikov’s remarkable proof is that it is actually

deduced from the GUE or GOE cases by a moment approximation argument (and

not directly from the initial matrix distribution). In another direction, asymptotics

of orthogonal polynomials have been deeply investigated to extend the GUE fluctua-

tions to large classes of unitary invariant ensembles. Depending on the structure of

the underlying orthogonal polynomials, the proofs can require rather deep arguments

involving the steepest descent/stationary phase method for Riemann-Hilbert problems

(cf. [De], [Ku], [Baik2], [B-K-ML-M]...). For a strategy based on 1/n-expansion in

unitary invariant random matrix ensembles avoiding the Riemann-Hilbert analysis, see

[P-S]. Further developments are still in progress.

1.2 Determinantal representations

The analysis of the GUE, and more general unitary invariant ensembles, is made pos-

sible by the determinantal representation of the eigenvalue distribution as a Coulomb

gas and the use of orthogonal polynomials. This determinantal point process repre-

sentation is the key towards the asymptotics results on eigenvalues of large random

matrices, both inside the bulk (spacing between the eigenvalues) and at the edge of the
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spectrum. We follow below the classical literature on the subject [Meh], [De], [Fo2],

[P-L]... to which we refer for further details.

Keeping the GUE example, by unitary invariance of the ensemble (1.1) and the

Jacobian change of variables formula, the distribution of the eigenvalues λN1 ≤ · · · ≤ λNN
of X = XN on the Weyl chamber E = {x ∈ RN ;x1 < · · · < xN} may be shown to be

given by

1

Z
∆N (x)2

N∏
i=1

dµ(xi/σ) (1.10)

where

∆N = ∆N (x) =
∏

1≤i<j≤N

(xj − xi)

is the Vandermonde determinant, dµ(x) = e−x
2/2 dx√

2π
the standard normal distribu-

tion on R and Z = ZN the normalization factor. We actually extend the probability

distribution (1.10) to the whole of RN by symmetry under permutation of the coor-

dinates, and thus speak, with some abuse, of the joint distribution of the eigenvalues

(λN1 , . . . , λ
N
N ) as a random vector in RN .

It is on the basis of the representation (1.10) that the so-called orthogonal poly-

nomial method may be developed. Denote by P`, ` ∈ N, the normalized Hermite

polynomials with respect to µ, which form an orthonormal basis of L2(µ). Since, for

each `, P` is a polynomial function of degree `, elementary manipulations on rows or

columns show that the Vandermonde determinant ∆N (x) is equal, up to a constant

depending on N , to

DN = DN (x) = det
(
P`−1(xk)

)
1≤k,`≤N .

The following lemma is then a useful tool in the study of the correlation functions.

It is a simple consequence of the definition of the determinant together with Fubini’s

theorem.

Lemma 1.1. On some measure space (S,S,m), let ϕi, ψj , i, j = 1, . . . , N , be square

integrable functions. Then

∫
SN

det
(
ϕi(xj)

)
1≤i,j≤N det

(
ψi(xj)

)
1≤i,j≤N

N∏
k=1

dm(xk)

= N ! det

(∫
S

ϕiψjdm

)
1≤i,j≤N

.

Replacing thus ∆N by DN in (1.10), a first consequence of Lemma 1.1 applied to
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ϕi = ψj = P`−1 and dm = 1(−∞,t/σ]dµ is that, for every t ∈ R,

P
(
{λNmax ≤ t}

)
=

1

Z ′

∫
RN

DN (x)2
N∏
k=1

dm(xk)

= det
(
〈P`−1, Pk−1〉L2(]−∞,t/σ],dµ)

)
1≤k,`≤N

= det
(

Id− 〈P`−1, Pk−1〉L2((t/σ,∞),dµ)

)
1≤k,`≤N

(1.11)

where Z ′ =
∫
RN DN (x)2

∏N
k=1 dµ(xk) and 〈· , ·〉L2(A,dµ) is the scalar product in the

Hilbert space L2(A, dµ), A ⊂ R.

On the basis of Lemma 1.1 and the orthogonality properties of the polynomials P`,

the eigenvalue vector (λN1 , . . . , λ
N
N ) may be shown to have determinantal correlation

functions in terms of the (Hermite) kernel

KN (x, y) =
N−1∑
`=0

P`(x)P`(y), x, y ∈ R. (1.12)

The following statement provides such a description.

Proposition 1.2. For any bounded measurable function f : R→ R,

E
( N∏
i=1

[
1 + f(λNi )

])

=
N∑
r=0

1

r!

∫
Rr

r∏
i=1

f(σxi) det
(
KN (xi, xj)

)
1≤i,j≤rdµ(x1) · · · dµ(xr).

Proof. Starting from the eigenvalue distribution (1.10), we have

E
( N∏
i=1

[
1 + f(λNi )

])
=

1

Z ′

∫
RN

N∏
i=1

[
1 + f(σxi)

]
DN (x)2dµ(x1) · · · dµ(xN )

where, as above, Z ′ =
∫
RN DN (x)2dµ(x1) · · · dµ(xN ). By Lemma 1.1, Z ′ = N ! while

similarly∫
RN

N∏
i=1

[
1 + f(σxi)

]
DN (x)2dµ(x1) · · · dµ(xN )

= N ! det
(
〈(1 + g)P`−1, Pk−1〉L2(µ)

)
1≤k,`≤N

= N ! det
(

Id + 〈P`−1, Pk−1〉L2(gdµ)

)
1≤k,`≤N

11



where we set g(x) = f(σx), x ∈ R. Hence,

E
( N∏
i=1

[
1 + f(λNi )

])
= det

(
Id + 〈P`−1, Pk−1〉L2(gdµ)

)
1≤k,`≤N

.

Now, the latter is equal to

N∑
r=0

1

r!

N∑
`1,...,`r=1

det
(
〈P`i−1, P`j−1〉L2(gdµ)

)
1≤i,j≤r

,

and thus, by Lemma 1.1 again, also to

N∑
r=0

1

r!

N∑
`1,...,`r=1

1

r!

∫
Rr

det
(
f(σxj)P`i−1(xj)

)
1≤i,j≤r

× det
(
P`i−1(xj)

)
1≤i,j≤rdµ(x1) · · · dµ(xr).

By the Cauchy-Binet formula, this amounts to

N∑
r=0

1

r!

∫
Rr

r∏
i=1

f(σxi)det
(
KN (xi, xj)

)
1≤i,j≤rdµ(x1) · · · dµ(xr)

which is the announced claim.

What Proposition 1.2 (more precisely its immediate extension to the computation

of E
(∏N

i=1[1 + fi(λ
N
i )]
)

for bounded measurable functions fi : R → R, i = 1, . . . , N)

puts forward is the fact that the distribution of the eigenvalues, and its marginals, are

completely determined by the kernel KN of (1.12) In particular, replacing f by εf in

Proposition 1.2 and letting ε→ 0, the mean spectral measure µN of (1.4) is given, for

every bounded measurable function f , by

E
(

1

N

N∑
i=1

f(λNi )

)
=

∫
R
f(σx)

1

N

N−1∑
`=0

P 2
` dµ. (1.13)

Choosing f = −1(t,∞) in Proposition 1.2 shows at the other end that the distribution

of the largest eigenvalue λNmax may be expressed by

P
(
{λNmax ≤ t}

)
=

N∑
r=0

(−1)r

r!

∫
(t/σ,∞)r

det
(
KN (xi, xj)

)
1≤i,j≤rdµ(x1) · · · dµ(xr), t ∈ R.

(1.14)

This identity emphasizes the distribution of the largest eigenvalue λNmax as the Fredholm

determinant of the (finite rank) operator

ϕ 7→
∫ ∞
t/σ

ϕ(y)KN (·, y)dµ(y)
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with kernel KN . That this expression be called a determinant is justified in particular

by (1.11) (cf. e.g. [Du-S] or [G-G] for generalities on Fredholm determinants).

A classical formula due to Christoffel and Darboux (cf. [Sze]) indicates that

KN (x, y) = κN
PN (x)PN−1(y)− PN−1(x)PN (y)

x− y
, x, y ∈ R. (1.15)

(Note, see Chapter 3, that P ′N =
√
N PN−1.) In the regime given by (1.5), set then

t = 1 + sN−2/3, while as usual σ2 = 1
4N . After a change of variables in (1.14),

P
(
{λNmax ≤ 1 + sN−2/3}

)
=

N∑
r=0

(−1)r

r!

∫
(s,∞)r

det
(
K̃N (xi, xj)

)
1≤i,j≤r dx1 · · · dxr

where

K̃N (x, y)

= KN

(
2
√
N + 2xN−1/6, 2

√
N + 2yN−1/6

)√ 2

π

1

N1/6
e−[
√
N+xN−1/6]2e−[

√
N+yN−1/6]2 .

Now, in this regime, the kernel K̃N (x, y) may be shown to converge to the Airy kernel

KAi(x, y) =
Ai (x)Ai′ (y)−Ai′ (x)Ai (y)

x− y
, x, y ∈ R,

through the appropriate asymptotics on the Hermite polynomials known as Plancherel-

Rotach asymptotics (cf. [Sze], [Fo1]...). Here Ai is the special Airy function solution

of Ai′′ = xAi with the asymptotics Ai(x) ∼ 1
2
√
πx1/4 e−

2
3x

3/2

as x → ∞. By further

functional arguments, the convergence may be extended at the level of Fredholm de-

terminants to show that, for every s ∈ R,

lim
N→∞

P
(
{λNmax ≤ 1 + sN−2/3}

)
=
∞∑
r=0

(−1)r

r!

∫
(s,∞)r

det
(
KAi(xi, xj)

)
1≤i,j≤r dx1 · · · dxr

= det
(

[Id−KAi]L2(s,∞)

)
= FGUE(s),

justifying thus (1.5) (cf. [Fo1], [T-W1], [De]).
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1.3 Coulomb gas and random growth functions

Probability measures on RN of the type (1.10) may be considered in more generality.

Given for example a (continuous or discrete) probability measure ρ on RN , and β > 0,

let

dQ(x) =
1

Z

∣∣∆N (x)
∣∣βdρ(x) (1.16)

where Z =
∫
|∆N |βdρ < ∞ is the normalization constant. As we have seen, such

probability distributions naturally occur as the joint law of the eigenvalues of matrix

models. For example, in the GUE case (cf. (1.10)), β = 2 and ρ is a product Gaussian

measure. (In the GOE and GSE cases, β = 1 and 4 respectively, cf. [Meh].) For more

general (orthogonal, unitary or simplectic) ensembles induced by the probability law

Z−1 exp(−Tr v(X))dX on matrices, ρ is the product measure of the density e−v(x).

One general idea is that among reasonable families of distributions ρ, for exam-

ple product measures of identical factors, the asymptotic behavior of the probability

laws (1.16) is governed by the Vandermonde determinant, and thus exhibits common

features. It would be of interest to describe a few general facts about these laws. Dis-

tributions of the type (1.16) are called Coulomb gas in mathematical physics. The

largest eigenvalue of the matrix models thus appears here as the rightmost point or

charge max1≤i≤N xi under (1.16).

When dρ(x) =
∏N
i=1 dµ(xi) for some probability measure µ on R or Z, and β = 2,

the preceding Coulomb gas distributions may be analyzed through the orthogonal

polynomials of the underlying probability measure µ (provided they exists) as in the

example of the GUE discussed previously. In particular, the correlation functions admit

determinantal representations. In this case, the probability measures (1.16) are thus

sometimes called orthogonal polynomial ensembles. Accordingly, the joint law of the

eigenvalues of the GUE is called the Hermite (orthogonal polynomial) Ensemble. In

what follows, we only consider Coulomb gas of this sort given as orthogonal polynomial

ensembles (cf. [De], [Kö]...).

Following the analysis of the GUE, fluctuations of the largest eigenvalue or right-

most charge of orthogonal polynomial ensembles toward the Tracy-Widom distribution

may be developed on the basis of the common Airy asymptotics of orthogonal polyno-

mials (at this regime). The principle of proof extends to kernels KN properly conver-

gent as N → ∞ to the Airy kernel. When the orthogonal polynomials admit suitable

integral representations, the asymptotic behaviors may generally be obtained from a

saddle point analysis. For example, the `-th Hermite polynomial may be described as

P`(x) =
(−1)`√
`!

ex
2/2 d

`

dx`
(e−x

2/2),

and thus, after a standard Fourier identity,

P`(x) =
(−i)`√
`!

ex
2/2

∫ +∞

−∞
s`eisx−s

2/2 ds√
2π

.
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The asymptotic behavior as `→∞ may then be handled by the so-called saddle point

method (or steepest descent, or stationary phase) of asymptotic evaluation of integrals

of the form ∫
Γ

φ(z)etψ(z)dz

over a contour Γ in the complex plane as the parameter t is large (cf. [Fy] for a

brief introduction). While these asymptotics are available for the classical orthogonal

polynomials from suitable representation of their generating series, the study of more

general weights can lead to rather delicate investigations. This might require deep

arguments involving steepest descent methods of highly non-trivial Riemann-Hilbert

analysis as developed by P. Deift and X. Zhou [D-Z]. We refer to the monograph [De]

by P. Deift for an introduction to these methods and complete references up to 1999,

including the important contribution [D-K-ML-V-Z]. A further introduction is the set

of notes [Ku] including more recent developments and references. See also references

in [Baik2]. Discrete orthogonal polynomial ensembles are deeply investigated in [B-K-

ML-M]. When suitable contour integral representations of the kernels are available, the

standard saddle point method is however enough to determine the expected asymptotics

(see e.g. [Joha2] for an example of regularized Wigned matrices).

The orthogonal polynomial method cannot be developed however outside the (com-

plex) case β = 2. Specific arguments have to be found. The real case for example uses

Pfaffians and requires non-trivial modifications (cf. [Meh]). In particular, it is possible

to relate the asymptotic behavior of the largest eigenvalues of the GOE to the one of

the GUE through a generalized two-dimensional kernel, and thus to conclude to similar

fluctuation results (cf. [T-W2], [Wid1]). In particular, the limiting GOE Tracy-Widom

law takes the form

FGOE(s) = FGUE(s)1/2 exp

(
− 1

2

∫ ∞
2s

u(x)dx

)
, s ∈ R.

Coulomb gas associated to the classical orthogonal polynomial ensembles are of

particular interest. Among these ensembles, the Laguerre and (discrete) Meixner en-

sembles play a central role and exhibit some remarkable features. The Laguerre Ensem-

ble represents the joint law of the eigenvalues of Wishart matrices. Let G be a complex

M×N , M ≥ N , random matrix the entries of which are independent complex Gaussian

random variables with mean zero and variance σ2, and set Y = Y N = G∗G. The law

of Y defines a unitary invariant probability measure on HN , and the distribution of the

eigenvalues is given by a Coulomb gas (1.16) with β = 2 and ρ (up to the scaling param-

eter σ) the product measure of the Gamma distribution dµ(x) = Γ(γ+1)−1xγe−xdx on

(0,∞) with γ = M −N . The Laguerre polynomials being the orthogonal polynomials

for the Gamma law, the corresponding joint distribution of the eigenvalues is called

the Laguerre Ensemble. Real Wishart matrices are defined similarly (with β = 1),

and Wishart matrices with non-Gaussian entries may also be considered. The limiting

spectral measure of Wishart matrices, as σ2 ∼ 1
4N , and M ∼ cN , c ≥ 1, is described

by the so-called Marchenko-Pastur distribution (or free Poisson law) [M-P] (cf. [Bai]).
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The Meixner Ensemble is associated to a discrete weight. Let µ be the so-called

negative binomial distribution on N with parameters 0 < q < 1 and γ > 0 given by

µ
(
{x}
)

=
(γ)x
x!

qx(1− q)γ , x ∈ N, (1.17)

where (γ)x = γ(γ + 1) · · · (γ + x− 1), x ≥ 1, (γ)0 = 1. If γ = 1, µ is just the geometric

distribution with parameter q. The orthogonal polynomials for µ are called the Meixner

polynomials (cf. [Sze], [Ch], [K-S]).

As already mentioned above, asymptotics of the Laguerre and Meixner polynomi-

als may then be used as for the GUE, but with increased technical difficulty, to show

that the largest eigenvalue of (properly rescaled) Wishart matrices and the rightmost

charge, that is the function max1≤i≤N xi (‘largest eigenvalue’), of the Meixner orthog-

onal polynomial Ensemble, fluctuate around their limiting value at the Tracy-Widom

regime. This has been established by K. Johansson [Joha1] for the Meixner Ensemble.

The Laguerre Ensemble appears as a limit as q → 1, and has been investigated indepen-

dently by I. Johnstone [John] who also carefully analyzes the real case along the lines

of [T-W2]. In [So2], A. Soshnikov extends these conclusions to Wishart matrices with

non-Gaussian entries following his previous contribution [So1] for Wigner matrices.

Further classical orthogonal polynomial ensembles may be considered. For example,

fluctuations of the Jacobi Ensemble constructed over Jacobi polynomials and associated

to Beta matrices are addressed in [Co].

The Laguerre and Meixner Ensembles actually share some specific Markovian type

properties which make them play a central role in connection with various probabilistic

models. In the remarkable contribution [Joha1], K. Johansson indeed showed that the

Meixner orthogonal polynomial Ensemble entails an extremely rich mathematical struc-

ture connected with many different interpretations. In particular, its rightmost charge

may be interpreted in terms of shape functions and last-passage times. Let w(i, j),

i, j ∈ N, be independent geometric random variables with parameter q, 0 < q < 1. For

M ≥ N ≥ 1, set

W = W (M,N) = max
π

∑
(i,j)∈π

w(i, j) (1.18)

where the maximum runs over all up/right paths π in N2 from (1, 1) to (M,N). An

up/right path π from (1, 1) to (M,N) is a collection of sites {(ik, jk)}1≤k≤M+N−1

such that (i1, j1) = (1, 1), (iM+N−1, jM+N−1) = (M,N) and (ik+1, jk+1) − (ik, jk) is

either (1, 0) or (0, 1). The random growth function W may be interpreted as a directed

last-passage time in percolation. Using the Robinson-Schensted-Knuth correspondence

between permutations and Young tableaux (cf. [Fu]), K. Johansson [Joha1] proved

that, that for every t ≥ 0,

P
(
{W ≤ t}

)
= Q

({
max

1≤i≤N
xi ≤ t+N − 1

})
(1.19)
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where Q is the Meixner orthogonal polynomial Ensemble with parameters q and γ =

M − N + 1. As described in [Joha1], this model is also closely related to the one-

dimensional totally asymmetric exclusion process. It may also be interpreted as a

randomly growing Young diagram or a zero-temperature directed polymer in a random

environment (cf. also [Kö]).

Provided with this correspondence, the fluctuations of the rightmost charge of the

Meixner Ensemble may be translated on the growth function W (M,N). As indeed

shown in [Joha1], for every c ≥ 1, (some multiple of) the random variable

W
(
[cN ], N

)
− ωN

N1/3
,

where

ω =
(1 +

√
qc )2

1− q
− 1,

converges weakly to the Tracy-Widom distribution FGUE.

In the limit as q → 1, the model covers the fluctuation of the largest eigenvalue of

Wishart matrices, studied independently in [John]. Namely, if w is a geometric random

variable with parameter 0 < q < 1, as q → 1, (1 − q)w converges in distribution to a

exponential random variable with parameter 1. If W = W (M,N) is then understood

as a maximum over up/right paths of independent such exponential random variables,

the identity (1.19) then translates into

P
(
{W ≤ t}

)
= Q

({
max

1≤i≤N
xi ≤ t

})
, t ≥ 0, (1.20)

where Q is now the Coulomb gas of the Laguerre Ensemble with parameter σ = 1. (It

should be mentioned that no direct proof of (1.20) is so far available.) This example

thus admits the double description as a largest eigenvalue of random matrices and a

last-passage time.

The central role of the Meixner model covers further instances of interest. Among

them are the Plancherel measure and the length of the longest increasing subsequence

in a random permutation. (See [A-D] for a general presentation on the length of the

longest increasing subsequence in a random permutation.) It was namely observed by

K. Johansson [Joha3] (see also [B-O-O]) that, as q = θ
N2 , N →∞, θ > 0, the Meixner

orthogonal polynomial Ensemble converges to the θ-Poissonization of the Plancherel

measure on partitions. Since the Plancherel measure is the push-forward of the uniform

distribution on the symmetric group Sn by the Robinson-Schensted-Knuth correspon-

dence which maps a permutation σ ∈ Sn to a pair of standard Young tableaux of the

same shape, the length of the first row is equal to the length Ln(σ) of the longest

increasing subsequence in σ. As a consequence, in this regime,

lim
N→∞

P
({
W (N,N) ≤ t

})
= P

(
{LN ≤ t}

)
, t ≥ 0,
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where N is an independent Poisson random variable with parameter θ > 0. The

orthogonal polynomial approach may then be used to produce a new proof of the

important Baik-Deift-Johansson theorem [B-D-J] on the fluctuations of Ln stating

that
Ln − 2

√
n

2n1/6
→ FGUE (1.21)

in distribution.

The Markovian properties of the specific geometric and exponential distributions

make it thus possible to fully analyze the shape functions W and their asymptotic

behaviors. (If the definition of up/righ paths is modified, a few more isolated cases

have been studied [Baik1], [Joha1], [Joha3], [Se2], [T-W3]...) It would be a challeng-

ing question to establish the same fluctutation results, with the same (mean)1/3 rate,

for random growth functions W (M,N) (1.18) constructed on more general families of

distributions of the w(i, j)’s, such as for example Bernoulli variables. While superad-

ditivity arguments show that W ([cN ], N)/N is convergent almost surely as N → ∞
under rather mild conditions, fluctuations around the (usually unknown) limit are al-

most completely open so far. Even the variance growth (see Chapter 4) has not yet

been determined.

1.4 Large deviation asymptotics

In addition to the preceding fluctuation results for the largest eigenvalues or rightmost

charges of orthogonal polynomial ensembles, some further large deviation theorems

have been investigated during the past years. The analysis again relies of the determi-

nantal structure of Coulomb gas together with a careful examination of the equilibrium

measure from the logarithmic potential point of view [S-T].

For example, translated into the framework of the preceding random growth func-

tion W (M,N) defined from geometric random variables, K. Johansson also proved in

the contribution [Joha1] a large deviation theorem in the form of

lim
N→∞

1

N
logP

({
W
(
[cN ], N ]

)
≥ N(ω + ε)

})
= −J(ε) (1.22)

for each ε > 0, where J is an explicit function such that J(x) > 0 if x > 0 (see

below). The result is actually due to T. Seppäläinen [Se3] in the simple exclusion

process interpretation of the model. The large deviation principle on the left of the

mean takes place at the speed N2 and expresses

lim
N→∞

1

N2
logP

({
W
(
[cN ], N ]

)
≤ N(ω − ε)

})
= −I(ε) (1.23)

for each ε > 0, where I(x) > 0 for x > 0. As we will see it below, the rate functions

J and I of (1.22) and (1.23) actually partly reflect the N2/3 rate of the fluctuation

results.
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In contrast with the fluctuation theorems of the preceding section which rely on

specific orthogonal polynomial asymptotics, such large deviation principles hold for

large classes of (both continuous or discrete) Coulomb gas (1.16)

dQ(x) =
1

Z

∣∣∆N (x)
∣∣β N∏
i=1

dµ(xi),

for arbitrary β > 0 and under mild hypotheses on µ (cf. [Joha1], [BA-D-G], [Fe]).

They are closely related to the large deviation principles at the level of the spectral

measures emphasized by D. Voiculescu [Vo] (as a microstate description) and G. Ben

Arous and A. Guionnet [BA-G] (cf. [H-P]) (as a Sanov type theorem). These results

examine the large deviation principles for the empirical measures 1
N

∑N
i=1 δxi

at the

speed N2 in the space of probability measures on R. The rate function is minimized

at the equilibrium measure, almost sure limit of the empirical measure (the semicircle

law for example in case of the Hermite Ensemble).

The corresponding rate function of the large deviation principles for the right-most

charges (largest eigenvalues) is then usually deduced from the one for the empirical

measures. The speed of convergence is however different on the right and on the left

of the mean. In the example of the largest eigenvalue λNmax of the GUE with σ2 = 1
4N ,

it is shown in [BA-D-G] that

lim
N→∞

1

N
logP

(
{λNmax ≥ 1 + ε}

)
= −JGUE(ε) (1.24)

where, for every ε > 0,

JGUE(ε) = 4

∫ ε

0

√
x(x+ 2) dx. (1.25)

Note that JGUE(ε) is of the order of ε3/2 for the small values of ε, in accordance with

the Tracy-Widom theorem (1.5). Similarly, on the left of the mean,

lim
N→∞

1

N2
logP

(
{λNmax ≤ 1− ε}

)
= −IGUE(ε) (1.26)

for some function IGUE such that IGUE(x) > 0 for every x > 0 (cf. also [Joha1], [Fe]).

The speedN2 partly indicates that the largest eigenvalues tend to accumulate below the

right-end point of the support of the spectrum. The Laguerre and Meixner examples

will be discussed in the next chapter. It is expected that for large classes of potentials

v in the driving measure dµ = e−vdx of the Coulomb gas Q, the corresponding rate

function J on the right of the mean is such that J(ε) ∼ ε3/2 for small ε. Large deviations

for the length of the longest increasing subsequence have been described in [Se1], [D-Ze].
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2. KNOWN RESULTS ON

NON-ASYMPTOTIC BOUNDS

The purpose of these notes is to describe some non-asymptotic exponential deviation

inequalities on the largest eigenvalues or rightmost charges of random matrix and ran-

dom growth models at the order (mean)1/3 of the fluctuation results. It actually turns

out that several results are already available in the literature, motivated by convergence

of moments in Tracy-Widom type theorems or moderate deviation principles interpo-

lating between fluctuations and large deviations. We thus survey in this chapter some

results developed to this aim, which however, as we will see it, usually require a rather

heavy analysis and only concern some rather specific models. In particular, Wigner

matrices or random growth functions with arbitrary weights do not seem to have been

accessed by any method so far. We treat upper deviation inequalities both above and

below the mean, and analyze their consequences to variance inequalities.

2.1. Upper tails on the right of the mean

As presented in the first chapter, the Tracy-Widom theorem on the behavior of the

largest eigenvalue λNmax of the GUE with the scaling σ2 = 1
4N expresses that

lim
N→∞

P
(
{λNmax ≤ 1 + sN−2/3}

)
= FGUE(s), s ∈ R. (2.1)

In addition to this fluctuation result, the largest eigenvalue λNmax also satisfies the large

deviation theorems of Section 1.4. In order to quantify these asymptotic results, one

would be interested in finding (upper-) estimates, for each fixed N ≥ 1 and ε > 0, on

P({λNmax ≥ 1 + ε}) and P({λNmax ≤ 1− ε}). Actually, from the discussion on the speed

of convergence in the large deviation asymptotics (1.24) and (1.26) and the behaviors

(1.8) and (1.9) of the Tracy-Widom distribution FGUE, we typically expect that for

some C > 0 and all N ≥ 1,

P
(
{λNmax ≥ 1 + ε}

)
≤ C e−Nε

3/2/C and P
(
{λNmax ≤ 1− ε}

)
≤ C e−N

2ε3/C
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for ε > 0. The range of interest concerns particularly small ε > 0 to cover the values

ε = sN−2/3 in (2.1), justifying the terminology of small deviation inequalities. Bounds

of this type may then be used towards convergence of moments and variance bounds,

or moderation deviation results. (We do not address the question of lower estimates

which does not seem to have been investigated in the literature.)

A first approach to such a project would be to carefully follow the proof of the

Tracy-Widom theorem, and to control the various Fredholm determinants by appro-

priate (finite range) bounds on orthogonal polynomials. This is the route taken by

G. Aubrun in [Au] which allowed him to state the following small deviation inequality

for the largest eigenvalue λNmax of the GUE (with σ2 = 1
4N ).

Proposition 2.1. For some numerical constant C > 0, and all N ≥ 1 and ε > 0,

P
(
{λNmax ≥ 1 + ε}

)
≤ C e−Nε

3/2/C .

As announced, when ε = sN−2/3, the deviation inequality of Proposition 2.1 fits

the fluctuation result (2.1). The bound is also in accordance with the tail behavior

(1.9) of the Tracy-Widom distribution FGUE at +∞.

This line of reasoning can certainly be pushed similarly for the orthogonal poly-

nomial ensembles for which a Tracy-Widom theorem holds, and for which asymptotics

of orthogonal polynomials together with the corresponding bounds are available. This

issue is seemingly not clearly addressed in the literature. Results of this type seem

to be discussed in particular in [G-T-W]. As already emphasized, this might however

require a quite deep analysis, including steepest descent arguments of Riemann-Hilbert

type (cf. [De]). An attempt relying on measure concentration and weak convergence to

the equilibrium measure is undertaken in [Bl] to yield asymptotic deviation inequalities

of the correct order for some families of unitary invariant ensembles.

Another direction to deviation inequalities on the right of the mean may be devel-

oped in the context of last-passage times, relying on superaddivity and large deviation

asymptotics. Let us consider for example the random growth function W (M,N) of

Chapter 1, last-passage time in directed percolation for geometric random variables

with parameter 0 < q < 1. As we have seen it, up to some multiplicative factor,

lim
N→∞

P
({
W
(
[cN ], N

)
≤ ωN + sN1/3

})
= FGUE(s), s ∈ R. (2.2)

where we recall that

ω =
(1 +

√
qc )2

1− q
− 1.

Fix N ≥ 1 and c ≥ 1, and set W = W ([cN ], N). As for the largest eigenvalue λNmax of

the GUE, to quantify (2.2), we may ask for exponential bounds on the probabilities

P
(
{W ≥ N(ω + ε)}

)
and P

(
{W ≤ N(ω − ε)}

)
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for ε > 0. One may also ask for example for bounds on the variance of W , which are

expected to be of the order of N2/3 by (2.2).

As observed by K. Johansson in [Joha1], inequalities on P({W ≥ N(ω + ε)}) may

be obtained from the large deviation asymptotics (1.22) together with a superadditivity

argument (compare [Se1]). It is indeed immediate to see that W (M,N) is superadditive

in the sense that

W (M,N) +W
(
[M + 1, 2M ], [N + 1, 2N ]

)
≤W (2M, 2N)

where W ([M + 1, 2M ], [N + 1, 2N ]) is understood as the supremum over all up/right

paths from (M + 1, N + 1) to (2M, 2N). Since W ([M + 1, 2M ], [N + 1, 2N ]) is inde-

pendent with the same distribution as W (M,N), it follows that for every t ≥ 0,

P
((
{W (M,N) ≥ t

})2 ≤ P
((
{W (2M, 2N) ≥ 2t

})
.

Iterating, for every integer k ≥ 1,

P
((
{W (M,N) ≥ t

})2k

≤ P
((
{W (2kM, 2kN) ≥ 2kt

})
.

Together with the large deviation property (1.22), as k → ∞, for every fixed N ≥ 1

and ε > 0,

P
(
{W ≥ N(ω + ε)}

)
≤ e−NJ(ε). (2.3)

Now the function J(ε) is explicitely known. It has however a rather intricate descrip-

tion, based itself on the knowledge of the equilibrium measure of the Meixner Ensemble.

Precisely, as shown in [Joha1],

J(ε) = JMEIX(ε) =
1

1− q

∫ x

1

(x− y)
[ c− q
y +B

+
1− qc
y +D

] dy√
y2 − 1

where

x = 1 +
(1− q)ε

2
√
qc

, B =
c+ q

2
√
qc
, D =

1 + qc

2
√
qc

.

One may nevertheless check that

J(ε) ≥ C−1 min(ε, ε3/2), ε > 0,

where C > 0 only depends on c and q. As a consequence, we may state the following

exponential deviation inequality. Note that this conclusion requires both the delicate

large deviation theorem (1.22) for the Meixner Coulomb gas together with the deep

combinatorial description (1.19) (in order to make use of superaddivity of the growth

function W (M,N)).

Proposition 2.2. For some constant C > 0 only depending on the parameter 0 < q < 1

of the underlying geometric distribution and c ≥ 1, and all N ≥ 1 and ε > 0,

P
(
{W ≥ N(ω + ε)}

)
≤ C e−N min(ε,ε3/2)/C .
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Note that in addition to the small deviation inequality at the Tracy-Widom rate,

Proposition 2.2 also emphasizes the order e−Nε/C for the large values of ε due to the

precise knowledge of the rate function JMEIX. We will come back to this observation

in the context of the GUE below.

The explicit knowledge of the rate function JMEIX actually allows one to make use

of the non-asymptotic inequality (2.3) for several related models. For example as we

already saw it, if w is geometric with parameter 0 < q < 1, then as q → 1, (1 − q)w
converges in distribution to an exponential random variable with parameter 1. In this

limit, (2.3) turns into

P
(
{W ≥ N(ω + ε)}

)
≤ e−NJLAG(ε) (2.4)

where now W is the supremum (1.18) over up/right paths of independent exponential

random variables with parameter 1, ω =
(
1 +
√
c
)2

and JLAG is the Laguerre rate

function

JLAG(ε) =

∫ x

1

(x− y)
(1 + c)y + 2

√
c

(y +B)2

dy√
y2 − 1

with

x = 1 +
ε

2
√
c
, B =

1 + c

2
√
c
.

One may check similarly that JLAG(ε) ≥ C−1 min(ε, ε3/2) so that the bound (2.4) thus

provides an analogue of Propositions 2.1 and 2.2 for the Laguerre Ensemble for both

the interpretation in terms of the last-passage time W or the largest eigenvalue of

Wishart matrices.

Now one may further go from Wishart matrices to random matrices from the GUE,

and actually recover in this way Proposition 2.1. Namely, recalling the Wishart matrix

Y = Y N = GG∗ with variance σ2, as M →∞,

σ−1
√
M
( Y
M
− σ2 Id

)
→ X

in distribution where X follows the GUE law (with variance σ2). In particular,

σ−1
√
M
( 1

M
λNmax(Y )− σ2

)
→ λNmax(X). (2.5)

Now, after the scaling σ2 = 1
4N , (2.4) indicates that for M = [cN ], c ≥ 1,

P
(
{λNmax(Y ) ≥ ω+ε

4 }
)
≤ e−NJLAG(ε)

for every N ≥ 1 and ε > 0. Change then ε into 2
√
c ε and take the limit (2.5) as

c → ∞. Denoting as usual by λNmax the largest eigenvalue of the GUE with variance

σ2 = 1
4N , it follows that

P
(
{λNmax ≥ 1 + ε}

)
≤ e−NJGUE(ε) (2.6)
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where JGUE(ε), ε > 0, was given in (1.25) as

JGUE(ε) = 4

∫ ε

0

√
x(x+ 2) dx.

Since JGUE(ε) ≥ C−1 max(ε2, ε3/2), ε > 0, we thus recover in this way Proposition 2.1,

and actually more precisely

P
(
{λNmax ≥ 1 + ε}

)
≤ C e−N max(ε2,ε3/2)/C (2.7)

for every ε > 0. As in Proposition 2.2, this exponential deviation inequality emphasizes

both the small deviations of order ε3/2 in accordance with the Tracy-Widom theorem

and the large deviations of the order ε2.

It may actually be shown directly that (2.6) follows from the large deviation princi-

ple (1.24) as a consequence of superadditivity, however on some related representation.

It has been proved namely, via various arguments, that the largest eigenvalue λNmax

from the GUE with σ2 = 1 has the same distribution as

sup

N∑
i=1

(Biti −B
i
ti−1

) (2.8)

where B1, . . . , BN are independent standard Brownian motions and the supremum

runs over all 0 = t0 ≤ t1 ≤ · · · ≤ tN−1 ≤ 1. Proofs in [Bar], [G-T-W] are based on the

Robinson-Schensted-Knuth correspondence, while in [OC-Y] advantage is taken from

non-colliding Brownian motions and queuing theory, and include generalizations related

to the classical Pitman theorem (see [OC]). The representation (2.8) may be thought

of as a kind of continuous version of directed last-passage percolation for Brownian

paths. On the basis of this identification, it is not difficult to adapt the superadditivity

argument developed for the random growth function (1.18) to deduce (2.6) from the

large deviation bound (1.24). In any case, the price to pay to reach Propositions 2.1

and 2.2 is rather expensive.

It should be pointed out that outside these specific models, non-asymptotic small

deviation inequalities at the Tracy-Widom rate are so far open. Universality conjectures

would expect similar deviation inequalities for general Wigner matrices or directed last

passage times W with general independent weights. Soshnikov’s proof [So1] only allows

for asymptotic inequalities (cf. Section 5.2). Similarly, only the choice of geometric and

exponential random variables wij gives rise so far to statements such as Proposition

2.2.

The central role of the Meixner model shows, by appropriate scalings and the

explicit expression of the rate function JMEIX, that the tail (2.3) actually covers further

instances of interest. As discussed in Section 1.3, one such instance is the length of the

longest increasing subsequence in a random permutation and the Baik-Deift-Johansson
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theorem (1.21). Namely, in the regime q = θ
N2 , N →∞, the deviation inequality (2.3)

may indeed be used to show that, for every n ≥ 1 and every ε > 0,

P
({
Ln ≥ 2

√
n (1 + ε)

})
≤ C exp

(
− 1

C

√
n min

(
ε3/2, ε

))
(2.9)

where C > 0 is numerical, in accordance thus with (1.21) and the large deviation

theorem of [D-Z]. The previous bound also matches the upper tail moderate deviation

theorem of [L-M].

2.2 Upper tails on the left of the mean

We next turn to the probability that the largest eigenvalue or rightmost charge is less

than or equal to the right-end point of the spectral measure. As already mentioned,

the intuition, together with the large deviation asymptotics (1.23) and (1.26), suggests

that it is much smaller than the probability that the largest eigenvalue exceeds the

right-end point. Let us consider again the Meixner model in terms of the directed

last-passage time function W of (1.18) with geometric random variables. We thus look

for the probability that W = W ([cN ], N) is less than or equal to N(ω − ε) for each

ε > 0 and fixed N ≥ 1. Things are here much more delicate. Seemingly, only a few

results are available, relying furthermore on delicate and quite difficult to access meth-

ods and arguments. The following result has been put forward in [B-D-ML-M-Z] by

refined Riemann-Hilbert steepest descent methods in order to investigate convergence

of moments and moderate deviations. Some related estimates are developed in [B-D-R]

in the context of random Young tableaux, and in [L-M-R] for the length of the longest

increasing subsequence.

Proposition 2.3. For some constant C > 0 only depending on the parameter 0 < q < 1

of the underlying geometric distribution and c ≥ 1, and all N ≥ 1 and 0 < ε ≤ ω,

P
(
{W ≤ N(ω − ε)}

)
≤ C e−N

2ε3/C .

(Actually, the statement in [B-D-ML-M-Z] seems to concern only large values of

N .)

As for Proposition 2.1, the preceding inequality matches the behavior at −∞ of

the Tracy-Widom distribution FGUE given by (1.8).

After [B-D-R] and [B-D-ML-M-Z], H. Widom [Wid2] noticed a somewhat less pre-

cise estimate, replacing N2ε3 by its square root, using a more simple trace bound,

however still requiring steepest descent. We will come back to this observation in

Chapter 5.

It is plausible that the behavior of the constant C in Proposition 2.3 allows for limits

to the Laguerre and Hermite Ensembles as in the preceding section. This is however
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not completely obvious from the analysis in [B-D-ML-M-Z]. On the other hand, there

is no doubt that a similar Riemann-Hilbert analysis may be performed anagously for

these examples, and that the statements corresponding to Proposition 2.3 hold true.

We may for example guess the following for the largest eigenvalue λNmax of the GUE

with σ2 = 1
4N .

Proposition 2.4. For some numerical constant C > 0, and all N ≥ 1 and 0 < ε ≤ 1,

P
(
{λNmax ≤ 1− ε}

)
≤ C e−N

2ε3/C .

As already mentioned, similar estimates have been obtained in [L-M-R] in the proof

of the lower tail moderate deviations for longest increasing subsequences, where, based

on the investigation [B-D-J], the following speed of convergence is established: there

exists a numerical constant C > 0 such that for every n ≥ 1 and every 0 < ε ≤ 1,

P
({
Ln ≤ 2

√
n (1− ε)

})
≤ C e−n ε

3/C . (2.10)

2.3 Variance inequalities

The non-asymptotic deviation inequalities of Sections 2.1 and 2.2 allow for convergence

of moments towards the Tracy-Widom distribution [B-D-ML-M-Z], [Wid2]. In partic-

ular, they may easily be combined to reach variance bounds. For example, the next

statement on the growth function W = W ([cN ], N) follows from Propositions 2.2 and

2.3.

Corollary 2.5. For some constant C > 0 (only depending on q and c), and every

N ≥ 1,

var (W ) = E
([
W − E(W )

]2) ≤ CN2/3.

Proof. Fix N ≥ 1. We may write

N−2 var (W ) ≤ N−2 E
(
[W − ω]2

)
≤
∫ ∞

0

P
({
W ≥ N(ω + t)

})
dt2

+

∫ ω

0

P
({
W ≤ N(ω − t)

})
dt2.

By Proposition 2.2,∫ ∞
0

P
({
W ≥ N(ω + t)

})
dt2 ≤ C

∫ ∞
0

e−N min(t,t3/2)/Cdt2 ≤ CN−4/3
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where C, here and below, may vary from line to line. On the other hand, by Proposition

2.3, ∫ ω

0

P
({
W ≤ N(ω − t)

})
d(t2) ≤ C

∫ ω

0

e−N
2t3/Cdt2 ≤ CN−4/3.

The proposition is established.

It is worthwhile mentioning that a weaker bound in Proposition 2.3, with N2ε3

replaced by Nε3/2 as proved in [Wid2], is sufficient for the proof of Corollary 2.5.

Taking Proposition 2.4 for granted, we get similarly for the largest eigenvalue λNmax

of the GUE with σ2 = 1
4N the following variance bound.

Corollary 2.6. For some numerical constant C > 0, and all N ≥ 1,

var (λNmax) ≤ CN−4/3.

As the proof of Corollary 2.5 shows, we actually have that for some C > 0 and all

N ≥ 1,

E
(
|λNmax − 1|2

)
≤ CN−4/3.

The same arguments furthermore leads to

sup
N

E
(∣∣N2/3(λNmax − 1)

∣∣p) <∞
for any p > 0 which allow for convergence of moments in the Tracy-Widom theorem.

In particular, ∣∣E(λNmax)− 1
∣∣ ≤ CN−2/3. (2.11)

We will observe in Chapter 5 below that moment recurrence equations may be used to

see that actually

E(λNmax) ≤ 1− 1

CN2/3
(2.12)

for some C > 0 and all N ≥ 1. In particular thus, (2.11) means that

1− 1

C ′N2/3
≤ E(λNmax) ≤ 1− 1

CN2/3

for some C,C ′ > 0 and all N ≥ 1.
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3. CONCENTRATION INEQUALITIES

In this chapter, we present a few classical measure concentration tools that may be

used in the investigation of exponential deviation inequalities on the largest eigenval-

ues and growth functions. These tools are of general interest, apply in rather large

settings and provide useful informations at the level of large deviation bounds for both

extremal eigenvalues and spectral distributions. While measure concentration yields

the appropriate (Gaussian) large deviation bounds, it however does not produce the

correct small deviation rate (mean)1/3 of the asymptotic theorems presented in Chapter

1. For simplicity, we mostly detail below the relevant inequalities in the Gaussian case.

We successively present concentration inequalities for largest eigenvalues and random

growth functions, spectral measures, as well as Coulomb gas.

3.1 Concentration inequalities for largest eigenvalues

Let µ denote the standard Gaussian measure on Rn with density (2π)−n/2e−|x|
2/2 with

respect to Lebesgue measure. One basic concentration property (cf. [Le1]) indicates

that for every Lipschitz function F : Rn → R with ‖F‖Lip ≤ 1, and every r ≥ 0,

µ
({
F ≥

∫
Fdµ+ r}

)
≤ e−r

2/2. (3.1)

Together with the same inequality for −F , for every r ≥ 0,

µ
({
|F −

∫
Fdµ| ≥ r}

)
≤ 2 e−r

2/2. (3.2)

The same inequalities hold for a median of F instead of the mean. Independence upon

the dimension of the underlying state space is one crucial aspect of these properties.

We may apply for example these inequalities to the largest eigenvalue λNmax of the

GUE. Namely, by the variational characterization,

λNmax = sup
|u|=1

uXNu∗, (3.3)
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so that λNmax is easily seen to be a 1-Lipschitz map of the N2 independent real and

imaginary entries Xii, 1 ≤ i ≤ N , Re (Xij)/
√

2, Im (Xij)/
√

2, 1 ≤ i < j ≤ N , of

XN . Together with the scaling of the variance σ2 = 1
4N we thus get the following

concentration inequality on λNmax.

Proposition 3.1 For all N ≥ 1 and r ≥ 0,

P
({∣∣λNmax − E(λNmax)

∣∣ ≥ r}) ≤ 2 e−2Nr2 , r ≥ 0.

As a consequence, note that var (λNmax) ≤ C N−1 that should be compared with

Corollary 2.6. Actually, while Proposition 3.1 describes the Gaussian decay of λNmax for

the large values of r, it does not catch the r3/2 rate of the small deviation inequality

(2.7). It actually seems that viewing the largest eigenvalue as one particular example of

Lipschitz function of the entries of the matrix does not reflect enough the structure of

the model. This comment more or less applies to all the results of this chapter deduced

from the concentration principle.

A similar inequality holds for the GOE, and actually for more general families of

Gaussian matrices. Before however going on with further applications of the general

principle of measure concentration, a few words are necessary at the level of the center-

ings. The inequalities emphasized in the preceding chapter indeed discuss exponential

deviation inequalities from the limiting expected value (for example 1 for the scaled

largest eigenvalue λNmax of the GUE) while the concentration principle typically pro-

duces tail inequalities around some mean (or median) value of the given functional

(such as E(λNmax)). A comparison thus requires proper control over E(λNmax) or similar

average values. In the example of the GUE, (2.11) is of course enough to this task, but

to make the concentration inequalities relevant by themselves, one needs independent

estimates. A few remarks in this regard may be developed.

Keep again the GUE example. We may ask whether E(λNmax), or a median of λNmax,

are smaller than 1, or at least suitably controlled. As emphasized in [Da-S], Gaussian

comparison principles are of some help to this task. Consider the real-valued Gaussian

process

Gu = uXNu∗ =

N∑
i,j=1

Xijuiuj , |u| = 1,

where u = (u1, . . . , uN ) ∈ CN . It is immediate to check that for every u, v ∈ CN ,

E
(
|Gu −Gv|2

)
= σ2

N∑
i,j=1

|uiuj − vivj |2.

Hence, if we define the Gaussian process indexed by u ∈ CN , |u| = 1,

Hu =
N∑
i=1

gi Re (ui) +
N∑
j=1

hj Im (uj)
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where g1, . . . , gN , h1, . . . , hN are independent standard Gaussian variables, then, for

every u, v such that |u| = |v| = 1,

E
(
|Gu −Gv|2

)
≤ 2σ2E

(
|Hu −Hv|2

)
.

By the Slepian-Fernique lemma (cf. [L-T]),

E
(

sup
|u|=1

Gu
)
≤
√

2σ E
(

sup
|u|=1

Hu

)
≤ 2
√

2σ E
([ N∑

i=1

g2
i

]1/2)
.

When σ2 = 1
4N , we thus get that

E
(
λNmax

)
≤
√

2. (3.4)

Together with the one-sided version of the inequality of Proposition 3.1, for every r ≥ 0,

P
(
{λNmax ≥

√
2 + r}

)
≤ e−2Nr2

that thus agrees with (2.7) for r large.

It is worthwhile mentioning that in the real GOE case, the comparison theorem

may be sharpened into

E
(
λNmax

)
≤ 4σ2E

([ N∑
i=1

g2
i

]1/2)
< 1 (3.5)

(cf. [Da-S]). In particular therefore

P
(
{λNmax ≥ 1 + r}

)
≤ e−Nr

2

for every r ≥ 0, which is more directly comparable to the Tracy-Widom theorem.

However (3.5) is not sharp enough to reach (2.12).

Bounds such as (3.4) or (3.5) extend to the class of sub-Gaussian distributions (cf.

[L-T], [Ta3]) including thus random matrices with symmetric Bernoulli entries. They

may then be combined as above with Proposition 3.3 below.

On the basis of the supremum representation (3.3) of the largest eigenlue or the very

definition (1.18) of last passage time in oriented percolation, one may actually wonder

whether bounds on the supremum of Gaussian or more general processes (Zt)t∈T may

be useful in this type of investigation. Numerous developements took place in the

last decades (cf. [L-T] and the recent monograph [Ta3]) in the analysis of bounds on

E(supt∈T Zt) and P({supt∈T Zt ≥ r}), r ≥ 0, with rather sophisticated chaining argu-

ments involving metric entropy or majorizing measures. For real symmetric matrices

X, the task would be for example to investigate processes given by

Zu = uXNu∗ =

N∑
i,j=1

Xijuiuj , |u| = 1,
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where u = (u1, . . . , uN ) ∈ RN and Xij , 1 ≤ i ≤ j ≤ N , are independent centered either

Gaussian or Bernoulli variables, and to study the size of the unit sphere |u| = 1 under

the L2-metric

E
(
|Zu − Zv|2

)
=

N∑
i,j=1

|uiuj − vivj |2, |u| = |v| = 1.

While these tools provide general, typically Gaussian, bounds, the unusual and more

refined rates from random matrix theory do not seem to have been accessed so far

from this point of view. It might be a worthwhile project to investigate this question

in more detail.

We now come back to the application of measure concentration to general families

of random matrices and random growth functions. This is actually the main interest

in the theory. The concentration inequality of Proposition 3.1 indeed applies to large

families of both real and complex random matrices, the entries of which form a random

vector with a dimension free concentration property. For notational simplicity, we only

deal below with real matrices but up to numerical factors, all the results hold similarly

in the complex case. That is, we are looking for measures µ on Rn, representing the

joint law of the entries of a given matrix, which satisfy, as (3.1) or (3.2) for Gaussian

measures, the dimension free concentration inequality

µ
({
|F −

∫
Fdµ| ≥ r

})
≤ C e−r

2/C , r ≥ 0 (3.6)

for some C > 0 independent of n and every 1-Lipschitz function F : Rn → R. The

mean may be replaced by a median of F . Actually, other tails than Gaussian may

be considered, and we refer to [Le1] for a general account on the concentration of

measure phenomenon and examples satisfying it. Now, it is immediate (cf. e.g. (3.3))

that the singular values (resp. eigenvalues) of a N × N matrix X (resp. symmetric

matrix) are Lipschitz functions of the vector of the N2 (resp. N(N + 1)/2) entries

of X. One thus immediately concludes to concentration inequalities of the type of

Proposition 3.1 for singular values or eigenvalues of matrices the joint law of the entries

satisfying a concentration inequality (3.6). This observation already yields various

concentration inequalities for singular values and eigenvalues of families of Gaussian

matrices. Another simple example of interest consists of matrices with independent

uniform entries (which may be realized as a contraction of Gaussian variables). The

following proposition summarizes this conclusion. Note that if X = (Xij)1≤i,j≤N is a

real symmetric N × N random matrix, then its eigenvalues are 1-Lipschitz functions

of the entries Xii, 1 ≤ i ≤ N ,
√

2Xij , 1 ≤ i < j ≤ N (justifying in particular the

normalization of the variances in the GOE). For simplicity, we do not distinguish below

between the diagonal and non-diagonal entries, and simply use that the eigenvalues are

Lipschitz with a Lipschitz coefficient less than or equal to
√

2 with respect to the vector

Xij , 1 ≤ i ≤ j ≤ N .
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Proposition 3.2. Let X = (Xij)1≤i,j≤N be a real symmetric N ×N random matrix

and Y = (Yij)1≤i,j≤N be a real N ×N random matrix. Assume that the distributions

of the random vectors Xij , 1 ≤ i ≤ j ≤ N , and Yij , 1 ≤ i, j ≤ N , in respectively

RN(N+1)/2 and RN
2

satisfy the dimension free concentration property (3.6). Then, if

τ is any eigenvalue of X, respectively singular value of Y , for every r ≥ 0,

P
({
|τ − E(τ)| ≥ r

})
≤ C e−r

2/2C , resp. C e−r
2/C .

We next discuss two examples of distributions satisfying concentration inequalities

of the type (3.6) and illustrate there application to matrix models.

A first class of interest consists of measures satisfying a logarithmic Sobolev inequal-

ity which form a natural extension of the Gaussian example. A probability measure

µ on R or Rn is said to satisfy a logarithmic Sobolev inequality if for some constant

C > 0 ∫
Rn

f2 log f2dµ ≤ 2C

∫
Rn

|∇f |2dµ (3.7)

for every smooth enough function f : Rn → R such that
∫
f2dµ = 1. The prototype

example is the standard Gaussian measure on Rn which satifies (3.7) with C = 1.

Another example consists of probability measures on Rn of the type dµ(x) = e−V (x)dx

where V − c |x|
2

2 is convex for some c > 0 which satisfy (3.7) for C = 1
c . An important

aspect of the logarithmic Sobolev inequality is its stability by product that yields

dimension free constants. That is, if µ1, . . . , µn are probability measures on R satisfying

the logarithmic Sobolev inequality (3.7) with the same constant C, then the product

measure µ1⊗· · ·⊗µn also satisfies it (on Rn) with the same constant. The application

of logarithmic Sobolev inequalities to measure concentration is developed by the so-

called Herbst argument that indicates that if µ satisfies (3.7), then for any 1-Lipschitz

function F : Rn → R and any λ ∈ R,∫
eλF dµ ≤ eλ

∫
Fdµ+Cλ2/2.

In particular, by a simple use of Markov’s exponential inequality (for both F and −F ),

for any r ≥ 0,

µ
({
|F −

∫
Fdµ| ≥ r}

)
≤ 2 e−r

2/2C ,

so that the dimension free concentration property (3.6) holds. We refer to [Le1] for

a complete discussion on logarithmic Sobolev inequalities and measure concentration.

Related Poincaré inequalities, in connection with variance bounds and exponential

concentration, may be considered similarly in this context and in the applications

below.

As a consequence of this discussion, if X = (Xij)1≤i,j≤N is a real symmetric

N × N random matrix and Y = (Yij)1≤i,j≤N a real N × N random matrix such
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that the entries Xij , 1 ≤ i ≤ j ≤ N and Yij , 1 ≤ i, j ≤ N define random vectors

in respectively RN(N+1)/2 and RN
2

the law of which satisfy the logarithmic Sobolev

inequality (3.7), then the conclusion of Proposition 3.2 holds. By the product property

of logarithmic Sobolev inequalities, this is in particular the case if the variables Xij

and Yij are independent and satisfy (3.7) with a common constant C (for example,

they have a common distribution e−vdx where v′′ ≥ c = 1
C > 0). In particular thus, if

λNmax denotes the largest eigenvalue of X,

P
({∣∣λNmax − E(λNmax)

∣∣ ≥ r}) ≤ 2 e−r
2/4C , r ≥ 0

for every r ≥ 0.

Another family of interest are product measures. The application of measure con-

centration to this class however requires an additional convexity assumption on the

functionals. Indeed, if µ is a product measure on Rn with compactly supported fac-

tors, a fundamental result of M. Talagrand [Ta2] shows that (3.2) holds for every

Lipschitz convex function. More precisely, assume that µ = µ1 ⊗ · · · ⊗ µn where each

µi is supported on [a, b]. Then, for every 1-Lipschitz convex function F : Rn → R,

µ
(
{|F −m| ≥ r}

)
≤ 4 e−r

2/4(b−a)2 (3.8)

where m is a median of F for µ. (Classical arguments, cf. [Le1], allow for the replace-

ment of m by the mean of F up to numerical constants.) Since, by the variational

characterization, the largest eigenvalue λNmax of symmetric (or Hermitian) matrices is

clearly a convex function of the entries, such a statement may immediately be applied

to yield concentration inequalities similar to Propositions 3.1 and 3.2.

Proposition 3.3. Let X be a real symmetric N ×N matrix such that the entries Xij ,

1 ≤ i ≤ j ≤ N , are independent random variables with |Xij | ≤ 1. Denote by λNmax the

largest eigenvalue of X. Then, for any r ≥ 0,

P
({
|λNmax −M | ≥ r

})
≤ 4 e−r

2/32

where M is a median of λNmax.

Up to some numerical constants, the median may be replaced by the mean. A

similar result is expected for all the eigenvalues. A partial result in [A-K-V] yields a

bound of the order of 4 e−r
2/32 min(k,N−k+1)2 on the k-th largest eigenvalue which, for

k far from 1 or N is much bigger than the corresponding one in the Gaussian case for

example. The analogous question for singular values (in particular the smallest one)

in this context seems also to be open. Further inequalities on eigenvalues and norms

following this principle, together with additional material, are discussed in [Mec] and

[G-P].
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We refer to [Ta2], [Le1] for further examples of distributions with the concentration

property.

Similar measure concentration tools may be developed at the level of random

growth functions. Consider for example an array (wij)1≤i≤M,1≤j≤N of real-valued

random variables and let, as in the preceding sections,

W = max
π

∑
(i,j)∈π

wij

where the sup runs over all up/right paths from (1, 1) to (M,N). It is clear that

F (x) = sup
∑

(i,j)∈π xij is a Lipschitz map of the MN coordinates (xij)1≤i≤M,1≤j≤N
with Lipschitz constant

√
M +N − 1. The following statement is thus an immediate

consequence of the basic concentration principle. It applies thus in particular to in-

dependent Gaussian variables, or more general distributions satisfying a logarithmic

Sobolev inequality. Since F is clearly a convex function of the coordinates, the re-

sult also applies to independent random variables with compact supports (such as for

example Bernoulli variables).

Proposition 3.4. Let (wij)1≤i≤M,1≤j≤N be a set of real-valued random variables such

that the distribution on RMN satisfies the concentration property (3.6) for all Lipschitz

convex functions. Then, for any r ≥ 0,

P
({∣∣W − E(W )

∣∣ ≥ r}) ≤ C e−r
2/C(M+N−1).

While again of interest, and of rather wide applicability, this exponential bound

however does not describe the expected rate drawn from the Meixner model as exam-

ined in the previous sections. In particular, the variance growth drawn from Proposition

3.4 with M = N only yields var (W ) ≤ C ′N (where C ′ > 0 only depends on C) while

it is expected to be of the order of N2/3 (cf. Corollary 2.5). Similar comments apply

to the concentration inequalities for the length of the longest increasing subsequence

investigated in [Ta2] which do not match the Baik-Deift-Johansson theorem (1.21). In-

deed, building on the general principle underlying (3.8), M. Talagrand got for example

that

P
({
|Ln −m| ≥ r

})
≤ 4 e−r

2/8m

for 0 ≤ r ≤ m.

3.2 Concentration inequalities for spectral distributions

The general concentration principles do not yield the correct small deviation rate at the

level of the largest eigenvalues. They however apply to large classes of Lipschitz func-

tions. In particular, as investigated by A. Guionnet and O. Zeitouni [G-Z], applications
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to functionals of the spectral measure yield sharp exponential bounds in accordance

with the large deviation asymptotics for empirical measures (cf. Section 1.4). For ex-

ample, if f : R→ R is Lipschitz, it is not difficult to check that F = 1√
N

∑N
i=1 f(λNi )

is a Lipschitz function of the (real and imaginary) entries of XN . Moreover, if f is

convex on the real line, then F is convex on the space of matrices (Klein’s lemma).

Therefore, the general concentration principle may be applied to functions of the spec-

tral measure. For example, if X is a GUE random matrix with variance σ2 = 1
4N , and

if f : R→ R is 1-Lipschitz, as a consequence of (3.2), for any r ≥ 0,

P
({∣∣∣∣ 1

N

N∑
i=1

f(λNi )−
∫
fdµN

∣∣∣∣ ≥ r}) ≤ 2 e−2N2r2 (3.9)

(where we recall that µN is the mean spectral measure (1.4)). Inequality (3.9) is in

accordance with the N2 speed of the large deviation principles for spectral measures.

With the additional assumption of convexity on f , similar inequalities hold for real or

complex matrices the entries of which are independent with bounded support. The

various examples of distributions with the measure concentration property discussed

for example in the previous sections may thus be developed similarly at the level of the

spectral measures, and Propositions 3.2 and 3.3 have immediate counterparts for the

Lipschitz functions F as above. We may for example state the following.

Proposition 3.5. Let X = (Xij)1≤i,j≤N be a real symmetric N ×N random matrix.

Assume that the distribution of the random vector Xij , 1 ≤ i ≤ j ≤ N , in RN(N+1)/2

satisfy the dimension free concentration property (3.6) for all Lipschitz (resp. Lipschitz

and convex) functions Then, for any 1-Lipschitz (resp. 1-Lipschitz and convex) function

f : R→ R,

P
({∣∣∣∣ 1

N

N∑
i=1

f(λNi )−
∫
fdµN

∣∣∣∣ ≥ r}) ≤ C e−Nr
2/2C

for all r ≥ 0.

Extended inequalities have been investigated along these lines in [G-Z] to which we

refer for further applications to various families of random matrices.

Interestingly enough, these concentration inequalities may be used to improve the

Wigner theorem from the statement on the mean spectral measure to the almost sure

conclusion. For example, in the context of the GUE, as a consequence of (3.9),

1

N

N∑
i=1

f(λNi )−
∫
fdµN → 0

almost surely for every Lipschitz function f : R → R. Assuming that µN → ν, the

semicircle law, it easily follows after a density argument that, almost surely,

1

N

N∑
i=1

δλN
i
→ ν
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weakly as probability measures on R.

3.3 Concentration inequalities for Coulomb gas

The GUE model shares both the structure of a Wigner matrix with independent

entries and the one of a unitary invariant ensemble. As a unitary ensemble, we have seen

in Chapter 1 how the joint eigenvalue distribution may be represented as a Coulomb

gas (1.16). Under suitable convexity assumption on the underlying potential, Coulomb

gas actually also share concentration properties which follow from general convexity

principles.

Let indeed, as in (1.16),

dQ(x) =
1

Z

∣∣∆N (x)
∣∣βdρ(x)

where ρ is a probability measure on RN and Z = ZN =
∫
|∆N |βdρ < ∞ the normal-

ization constant. For particular values of β > 0 and suitable distributions ρ, Q thus

represents the eigenvalue distribution of some random matrix model. We consider prob-

ability measures ρ given by dρ = e−V dx for some symmetric (invariant by permutation

of the coordinates) potential V : RN → R. Typically, in the context of eigenvalues of

random matrix models, V (x) =
∑N
i=1 v(xi), x = (x1, . . . , xN ) ∈ RN , where v : R→ R

is the underlying potential of the matrix distribution exp(−Tr v(X))dX. Assume now

that V (x)− c |x|
2

2 is convex for some c > 0. For example, if

V (x) =
|x|2

2
=

1

2

N∑
i=1

x2
i ,

we would deal with the joint eigenvalue distribution of the GUE. By exchangeability,

we may describe equivalently the measure Q by

dQ(x) =
N !

Z
∆N (x)β 1E dρ(x) (3.10)

where E = {x ∈ RN ;x1 < · · · < xN}. Now, log ∆β
N is concave on the convex set E,

so that the probability measure Q of (3.10) enters the general setting of probability

measures with density e−U , U strictly convex, on a convex set in RN . The general

theory of the Prékopa-Leindler and transportation cost inequalities as presented in

[Le1] then shows that Q satisfies a Gaussian like concentration inequality for Lipschitz

functions. The next statement describes the result.

Proposition 3.6. Let Q be defined by (3.10) with dρ = e−V dx where V is symmetric

and such that V (x)−c |x|
2

2 is convex for some c > 0. Then, for any 1-Lipschitz function

F : RN → R and any r ≥ 0,

Q
({
|F −

∫
FdQ| ≥ r

})
≤ 2 e−r

2/2c.
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Applied to the particular Lipschitz function given by max1≤i≤N xi, we recover

Proposition 3.1 for the GUE, which thus applies to more general orthogonal of unitary

ensembles with a strictly convex potential. Proposition 3.6 may also be used to cover

the concentration inequalities for Lipschitz functions of the spectral measure of the

preceding section. However, again, the Tracy-Widom rate does not seem to follow from

this description. It actually appears that in distributions dQ(x) = 1
Z

∣∣∆N (x)
∣∣βdρ(x),

the important factor is the Vandermonde determinant ∆N and not the underlying

probability measure ρ, while in the concentration approach, we rather focus on ρ.
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4. HYPERCONTRACTIVE METHODS

We presented in Chapter 2 the known asymptotic exponential deviation inequalities

on largest eigenvalues and last-passage times. As described there, these actually follow

from quite refined methods and results. The aim of this chapter and the next one

is to suggest some more accessible tools to reach some of these bounds (or parts of

them) at the correct small deviation order. The tools developed in this chapter are of

functional analytic flavour, with a particular emphasis on hypercontractive methods.

They however still rely on the orthogonal polynomial representation.

In the first part, we present an elementary approach, relying on the hypercontrac-

tivity property of the Hermite semigroup, to the small deviation inequality of Proposi-

tion 2.1 for the largest eigenvalue of the GUE. We then investigate, following the recent

contribution [B-K-S] by I. Benjamini, G. Kalai and O. Schramm, variance bounds for

directed last-passage percolation with the same tool of hypercontractivity.

4.1 Upper tails on the right of the mean

We first briefly describe the semigroup tools we will be using. Consider the Hermite of

Ornstein-Uhlenbeck operator

Lf = ∆f − x · ∇f

acting on smooth functions f : Rn → R. It satisfies the integration by parts formula∫
f(−Lg)dµ =

∫
∇f · ∇gdµ (4.1)

for smooth functions f, g on Rn with respect to the standard Gaussian measure µ on

Rn. The associated semigroup Pt = etL, t ≥ 0, solution of the heat equation ∂
∂t = L,

is, in this case, explicitely described by the integral representation

Ptf(x) =

∫
Rn

f
(
e−tx+ (1− e−2t)1/2y

)
dµ(y), t ≥ 0, x ∈ Rn. (4.2)

Note that P0f = f and Ptf →
∫
fdµ (for suitable f ’s).
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To illustrate L and Pt in the one-dimensional case, recall the generating function

of the (normalized) Hermite polynomials P`, ` ∈ N, on the real line is given by

eλx−λ
2/2 =

∞∑
`=0

λ`√
`!
P`(x), λ, x ∈ R.

Since for every t ≥ 0 and λ ∈ R,

Pt(eλx−λ
2/2) = e(λe−t)x−(λe−t)2/2,

it follows that Pt(P`) = e−`tP`, ` ∈ N. Hence the Hermite polynomials are the eigen-

functions of L, with eigenvalues −`, ` ∈ N (L is sometimes called the number operator).

The central tool in this section is the celebrated hypercontractivity property of the

Hermite semigroup first put forward by E. Nelson [Ne] in quantum field theory. It

expresses that, for any function f (in Lp),

‖Ptf‖q ≤ ‖f‖p (4.3)

for every 1 < p < q < ∞ and t > 0 such that e2t ≥ q−1
p−1 (cf. [Ba]). Lp-norms are

understood here with respect to the Gaussian measure µ.

For comparison, it might be worthwhile mentioning that hypercontractivity has

been shown by L. Gross [Gr] to be equivalent to the logarithmic Sobolev inequality

(3.7) (with C = 1) for the standard normal distribution µ, in actually the general

setting of Markov operators (cf. [Bak]).

We now make use of hypercontractivity to reach small deviation inequalities for the

largest eigenvalues of the GUE. We follow the note [Le2]. Recall thus X from the GUE

with σ2 = 1
4N , with eigenvalues λN1 , . . . , λ

N
N . The starting point is the representation

(1.13) of the spectral measure µN in terms of the Hermite polynomials and the simple

union bound

P
(
{λNmax ≥ t}

)
≤ NµN

(
[ t,∞)

)
, t ∈ R, N ≥ 1. (4.4)

Let N ≥ 1. As a consequence, for every ε > 0 (recall σ2 = 1
4N ),

P
(
{λNmax ≥ 1 + ε}

)
≤
∫ ∞

2
√
N(1+ε)

N−1∑
`=0

P 2
` dµ (4.5)

(where µ is here the standard Gaussian measure on R). Now, by Hölder’s inequality,

for every r > 1, and every ` = 0, . . . , N − 1,∫ ∞
2
√
N(1+ε)

P 2
` dµ ≤ µ

(
[2
√
N(1 + ε),∞)

)1−(1/r) ‖P`‖22r

≤ e−2N(1+ε)2(1− 1
r ) ‖P`‖22r
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where we used the standard bound on the tail of the Gaussian measure µ. Since as we

have seen Pt(P`) = e−`tP`, it follows from the hypercontractivity property (4.3) that

for every r > 1 and ` ≥ 0,

‖P`‖2r ≤ (2r − 1)`/2.

Hence, ∫ ∞
2
√
N(1+ε)

N−1∑
`=0

P 2
` dµ ≤ e−2N(1+ε)2(1− 1

r )
N−1∑
`=0

(2r − 1)`

≤ 1

2(r − 1)
e−2N(1+ε)2(1− 1

r )+N log(2r−1).

Optimizing in r → 1 then shows, after a Taylor expansion of log(2r − 1) at the third

order, that for some numerical constant C > 0 and all 0 < ε ≤ 1,

P
(
{λNmax ≥ 1 + ε}

)
≤ C ε−1/2 e−Nε

3/2/C (4.6)

for C > 0 numerical. Up to some polynomial factor, we thus recover the content of

Proposition 2.1. (The argument is easily extended to also include the large deviation

behavior of the order of ε2 (cf. (2.7) and Section 2.3).

The same strategy may be developed similarly for orthogonal polynomial ensembles

which may be diagonalized by an hypercontractive operator [Le2]. This is the case for

example of the Laguerre operator, so that this approach yields exponential deviation

inequalities for the largest eigenvalue of Wishart matrices or last-passage times for

exponential random variables. The class of interest seems however to be restricted to

the classical examples of Hermite, Laguerre and Jacobi polynomials [Ma]. Even the

application of the method to discrete orthogonal polynomial ensembles does not seem

to be clear.

4.2 Variance bounds

This section is devoted to the question of the variance growth of last-passage time func-

tions for more general distributions than geometric and exponential. We follow here

a recent contribution by I. Benjamini, G. Kalai and O. Schramm [B-K-S] who proved

sub-linear growth by means of hypercontractive tools. In connection with the growth

models discussed in the preceding sections, we only investigate here the directed perco-

lation model. Furthermore, for simplicity again, we restrict ourselves in the exposition

of this result to a Gaussian setting. It actually holds for a variety of examples discussed

at the end of the section.

Consider thus, as in Section 3.1, an array (wij)1≤i≤M,1≤j≤N of independent stan-

dard Gaussian random variables and let

W = max
π

∑
(i,j)∈π

wij
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where the maximum runs over all up/right paths from (1, 1) to (M,N). Assume fur-

thermore for simplicity that M = N . We saw from the general concentration bounds

in Chapter 3 that var (W ) ≤ CN (while it is expected to be of the order of N2/3 by

Corollary 2.5). We provide here, following [B-K-S], a slight, but significant improve-

ment.

For a suitably integrable function f : RN
2

→ R, denote by

varµ(f) =

∫
f2dµ−

(∫
fdµ

)2

its variance with respect to the standard Gaussian measure µ on RN
2

. When f is

smooth enough, the heat equation for the Ornstein-Uhlenbeck semigroup (P)t≥0 with

generator L on RN
2

allows one to write

varµ(f) = −
∫ ∞

0

dt
d

dt

∫
(Ptf)2dµ

= 2

∫ ∞
0

dt

∫
Ptf(−LPtf)dµ

= 2

N∑
i,j=1

∫ ∞
0

dt

∫
(∂ijPtf)2dµ.

From the integral representation (4.2) of the Ornstein-Uhlenbeck semigroup,

|∂ijPtf | ≤ e−t Pt
(
|∂ijf |

)
, i, j = 1, . . . , N, t ≥ 0. (4.7)

Hence, together with hypercontractivity (4.3), for every t ≥ 0 and every i, j = 1, . . . , N ,∫
(∂ijPtf)2dµ ≤ e−2t

∫ [
Pt
(
|∂ijf |

)]2
dµ ≤ e−2t‖∂ijf‖21+e−2t .

Setting u = e−2t, and v = u+ 1,

varµ(f) ≤
N∑

i,j=1

∫ 1

0

‖∂ijf‖21+udu =

N∑
i,j=1

∫ 2

1

‖∂ijf‖2v dv. (4.8)

By a simple upper-bound on the right-hand side, this inequality may also be written

as

Varµ(f) ≤ 4
N∑

i,j=1

‖∂ijf‖22
1 + log

(
‖∂ijf‖22/‖∂ijf‖21

) . (4.9)

Inequality (4.9) is actually due to M. Talagrand [Ta1] on the discrete cube, and was

investigated in [B-H] in the Gaussian case as a dual version of the logarithmic Sobolev

(3.7).
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Recall now the (Lipschitz) function

F (x) = max
π

∑
(i,j)∈π

xij , x = (xij)0≤i,j≤N ∈ RN
2

.

The idea is to apply (4.8) or (4.9) to this function F to gain a factor logN in the variance

by showing that ‖∂ijF‖1 is small enough, at least on sufficiently many coordinates

(i, j). It is not immediate how this may be achieved*. To overcome this difficulty, the

authors of [B-K-S] had to resort to an averaging lemma in the context of non-oriented

percolation for Bernoulli variables (see also [B-R] for more general distributions). It

is a natural hope that the same argument may be adapted to the present context to

yield a proof of the following conjecture.

Conjecture 4.1. Let W be the directed last-passage time of an array of independent

standard Gaussian random variables on the square from (1, 1) to (N,N), N ≥ 2. Then

var (W ) ≤ CN

logN

where C > 0 is numerical.

Provided the argument develops suitably, the proof should then apply more gener-

ally to examples where both the hypercontractive bound and the commutation prop-

erty (4.7) may be applied. One instance would be the example of uniform random

variables. A further example is the case of exponential variables, for which however

the much stronger Corollary 2.5 is available.

* The published proof of this result in the GAFA Seminar Lecture Notes is erroneous

since it assumes that all the sets Aπ are equally distributed. It is thus necessary to

more carefully follow the argument in [B-K-S]. We are grateful to R. Rossignol for

pointing out this mistake to us.
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5. MOMENT METHODS

In this chapter, we take a somewhat different route from the one of Chapter 4 and con-

centrate on moments of the spectral distribution. Moment methods and combinatorial

arguments are at the roots of the study of random matrix models, and for example

are typically used in proofs of Wigner’s theorem (cf. Section 1.1). The combinatorial

part has been significantly improved by A. Soshnikov in [So1] to reach fluctuation re-

sults. Here, we again make advantage of the orthogonal polynomial structure to derive

recurrence equations for moments, which may be shown of interest in non-asymptotic

deviation inequalities. The strategy is based on integration by parts for the underlying

Markov operator of the orthogonal polynomial ensemble.

In the first paragraph, we derive in this way the moment equations of the GUE

model using simple integration by parts arguments for the Hermite operator. We

then emphasize their usefulness in non-asymptotic deviation inequalities on the largest

eigenvalues. Below the mean, we follow an argument by H. Widom relying on a simple

trace inequality.

5.1 Moment recurrence equations

Let µ denote again the standard Gaussian measure on R. By integration by parts, for

every smooth function f on R, ∫
xfdµ =

∫
f ′dµ. (5.1)

(This formula is actually a particular case of the integration by parts formula (4.1)

applied to g = P1 = x the first eigenvector of the one-dimensional Ornstein-Uhlenbeck

operator Lf = f ′′ − xf ′ with eigenvalue 1.)

By (1.13), moments of the mean spectral measure (1.4) amounts to moments of

orthogonal polynomial measures. In this direction, we examine first a reduced case.

Let

ap = aNp =

∫
x2pP 2

Ndµ, p ∈ N,
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where we recall that the Hermite polynomials P`, ` ∈ N, are normalized in L2(µ). (The

odd moments are zero by symmetry.) By (5.1),

ap =

∫
xx2p−1P 2

Ndµ = (2p− 1)ap−1 + 2

∫
x2p−1PNP

′
Ndµ. (5.2)

Repeating the same step,

ap − (4p− 3)ap−1 + (2p− 1)(2p− 3)ap−2

= 2

∫
x2p−2P ′N

2
dµ+ 2

∫
x2p−2PNP

′′
Ndµ.

(5.3)

Now, PN is an eigenfunction of −L with eigenvalue N . Thus, by the integration by

parts formula (4.1) for L,

Nap =

∫
x2pPN (−LPN )dµ = 2p

∫
x2p−1PNP

′
Ndµ+

∫
x2pP ′N

2
dµ.

Together with (5.2), ∫
x2pP ′N

2
dµ = (N − p)ap + p(2p− 1)ap−1. (5.4)

In the same way, on the basis of (5.2),

N
[
ap − (2p− 1)ap−1

]
= 2

∫
x2p−1(−LPN )P ′Ndµ

= 2(2p− 1)

∫
x2p−2P ′N

2
dµ+ 2

∫
x2p−1P ′NP

′′
Ndµ.

Now, since P ′N =
√
N PN−1 (which may be checked from the generating function of

the Hermite polynomials) is eigenfunction of −L with eigenvalue N − 1, we also have

that

(N − 1)
[
ap − (2p− 1)ap−1

]
= 2

∫
x2p−1PN (−LP ′N )dµ

= 2(2p− 1)

∫
x2p−2PNP

′′
Ndµ+ 2

∫
x2p−1P ′NP

′′
Ndµ.

Substracting to the latter,

ap − (2p− 1)ap−1 = 2(2p− 1)

∫
x2p−2P ′N

2
dµ− 2(2p− 1)

∫
x2p−2PNP

′′
Ndµ,

so that, by (5.4),

2(2p− 1)

∫
x2p−2PNP

′′
Ndµ = −ap + (2p− 1)(2N − 2p+ 1)ap−1

+ (2p− 1)(2p− 2)(2p− 3)ap−2.

(5.5)
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Plugging (5.5) and (5.4) into (5.3) finally shows the recurrence equations

ap = (4N + 2)
2p− 1

2p
ap−1 +

(2p− 1)(2p− 2)(2p− 3)

2p
ap−2 (5.6)

(a0 = 1, a1 = 2N + 1).

We now make use of the following elementary lemma that appears as a version in

this context of the classical Christoffel-Darboux formula (1.15).

Lemma 5.1. For every integer k ≥ 1, and every N ≥ 1,

k

∫
xk−1

N−1∑
`=0

P 2
` dµ =

√
N

∫
xkPNPN−1dµ.

Proof. Let A be the first order operator Af = f ′−xf acting on smooth functions f on

the real line R. The integration by parts formula for A (analogous to (4.1)) indicates

that for smooth functions f and g,∫
g(−Af)dµ =

∫
g′fdµ.

Since −LPN = NPN and P ′N =
√
NPN−1 for every N ≥ 1, the recurrence relation for

the (normalized) Hermite polynomials PN , takes the form

xPN =
√
N + 1PN+1 +

√
N PN−1.

Hence,
A(P 2

N ) = PN
[
2P ′N − xPN

]
=
√
N PNPN−1 −

√
N + 1PN+1PN .

Therefore,

(−A)

(N−1∑
`=0

P 2
`

)
=
√
N PNPN−1

from which the conclusion follows from the integration by parts formula for A.

Recall now the GUE random matrix X = XN with σ2 = 1
4N and N ≥ 1 fixed. Set,

for every integer p,

bp = bNp =
1

N
E
(
Tr (X2p)

)
= E

(
1

N

N∑
i=1

(
λNi
)2p)

=

∫
R

(
x

2
√
N

)2p
1

N

N−1∑
`=0

P 2
` dµ
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where we used (1.13). (The odd moments are zero by symmetry.) By Lemma 5.1,

(2p− 1)

∫
x2p−2

N−1∑
`=0

P 2
` dµ =

∫
x2p−1PNP

′
Ndµ

so that, by (5.2),

22p−1Np(2p− 1)bp−1 = ap − (2p− 1)ap−1

for every p ≥ 1. As a consequence of (5.6), we may then deduce the following recurrence

equations on the moments of X.

Proposition 5.2. For every integer p ≥ 2,

bp =
2p− 1

2p+ 2
bp−1 +

2p− 1

2p+ 2
· 2p− 3

2p
· p(p− 1)

4N2
bp−2

(b0 = 1, b1 = 1
4 .)

This recurrence equation, reminiscent of the three-step recurrence equation for or-

thogonal polynomials, was first put forward in an algebraic context by J. Harer and D.

Zagier [H-Z] (to determine the Euler characteristics of moduli spaces of curves). It is

also discussed in the book by M. L. Mehta [Meh]. The proof above is essentially due to

U. Haagerup and S. Thorbjørnsen [H-T]. Similar recurrence identities may be estab-

lished, with the same strategy, for the Laguerre and Jacobi orthogonal polynomials,

and thus the corresponding moments of Wishart and Beta matrices [H-T], [Le3].

It should be pointed out that the equation

χp =
2p− 1

2p+ 2
χp−1 =

(2p)!

22pp!(p+ 1)!
(5.7)

is the recurrence relation of the (even) moments of the semicircle law (the so-called

Catalan numbers, the number of non-crossing pair partitions of {1, 2, . . . , 2p}). In

particular, Proposition 5.2 may then be used to produce a quick proof of the Wigner

theorem, showing namely that bNp → χp for every p. Moreover, for every fixed p and

every N ≥ 1,

χp ≤ bNp ≤ χp +
Cp
N2

where Cp > 0 only depends on p.
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5.2 Upper tails on the right of the mean

We next make use of the recurrence equations of Proposition 5.2 to recover the sharp

exponential bounds on the probability that the largest eigenvalues of the GUE matrix

exceeds its limiting value discussed by other means in the preceding chapters.

We start again from (4.5). Together with Markov’s inequality, for every N ≥ 1,

ε > 0 and p ≥ 0,

P
(
{λNmax ≥ 1 + ε}

)
≤ (1 + ε)−2pNbp

where we recall that bp = bNp are the 2p-moments of µN (or X = XN ). Now, by

induction on the recurrence formula of Proposition 5.2 for bp, it follows that, for every

p ≥ 2,

bp ≤
(

1 +
p(p− 1)

4N2

)p
χp. (5.8)

By Stirling’s formula,

χp ≤
C

p3/2
, p ≥ 1. (5.9)

Hence, for 0 < ε ≤ 1 and some numerical constant C > 0 possibly changing from line

to line below,

P
(
{λNmax ≥ 1 + ε}

)
≤ CNp−3/2 e−εp+p

3/4N2

.

Therefore, optimizing in p ∼
√
εN , 0 < ε ≤ 1, we recover the sharp small deviation

inequality

P
(
{λNmax ≥ 1 + ε}

)
≤ C e−Nε

3/2/C ,

N ≥ 1, 0 < ε ≤ 1, C > 0 numerical, of Proposition 2.1. When ε ≥ 1, the optimization

is modified to recover the large deviation rate of the order of Nε2. With respect to

the hypercontractive approach of Chapter 4, no further polynomial factors have to be

added.

As observed by S. Szarek in [Sza], the moment recurrence equation of Proposition

5.2 and the preceding argument may be used to reach the sharp upper bound (2.12)

on E(λNmax), and even

E
(

max
1≤i≤N

|λNi |
)
≤ 1− 1

CN2/3
(5.10)

for some numerical C > 0 and all N ≥ 1. Indeed, for every p ≥ 1,

E
(

max
1≤i≤N

|λNi |
)
≤
(
Nbp

)1/2p
,

and thus, by (5.8),

E
(

max
1≤i≤N

|λNi |
)
≤
(
Nχp ep

3/4N2)1/2p
. (5.11)
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If t > 0 and N ≥ 1 are such that p = [tN2/3] ≥ 3, then, together with (5.9),

E
(

max
1≤i≤N

|λNi |
)
≤
[(C2/3

t

)3/2t

et
2/4

]1/2N2/3

.

The constant C > 0 in (5.9) may be taken to be π−1/2 so that taking for example

t = C
√

e shows that the bracket in the preceding inequality is strictly less than 1.

Therefore (5.10) holds except for some few values of N which may be checked directly

on the basis of (5.11).

As a consequence of (5.8), for every t > 0,

sup
N≥1

NbN[tN2/3] ≤ Ct
−3/2eCt

3

(5.12)

for the moments of the GUE. One important step in Soshnikov’s extension [So1] of the

Tracy-Widom theorem to more general (real or complex) Wigner matrices amounts to

establish that lim supN→∞NbN
[N2/3]

<∞, actually

lim sup
N→∞

NbN[tN2/3] ≤ Ct
−3/2eCt

3

for every t > 0. This is accomplished through delicate combinatorial arguments on

moments. It is however an open question so far whether its non-asymptotic version

(5.12) also holds for these families of random matrices, which would then yield the

expected deviation inequalities for every fixed N ≥ 1. It would be of particular interest

to study the case of Bernoulli entries.

Very recently, O. Khorunzhiy [Kh] developed Gaussian integration by parts meth-

ods at the level of traces, together with triangle recurrence schemes, to reach moment

bounds on both the GUE and the GOE. The estimates provide exact expressions for

the 1/N -corrections of the moments, but do not allow yet for the sharp deviation in-

equalities on largest eigenvalues. This first step outside the orthogonal polynomial

method might however be promising.

This strategy relying on integration by parts for Markov generators and moment

equations may be used similarly for some other classical orthogonal polynomial ensem-

bles of the continuous variables. For example, the Laguerre and Jacobi ensembles are

studied along these lines in [Le3] to yield deviation inequalities at the Tracy-Widom

rate of the largest eigenvalue of Wishart and Beta matrices. Discrete examples may

also be considered, although not necessarily through recurrence equations, but rather

the explicit expression for moments (this is actually also possible in the continuous

variable). For example, integration by parts with respect to the negative binomial

distribution (1.17) with parameters q and γ reads∫
xfdµ =

γq

1− q

∫
f(x+ 1)dµ
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for any, say, polynomial function f on N. It allows one to express the factorial moment

(of order p) of the mean spectral measure of the Meixner Ensemble as∫
x(x− 1) · · · (x−p+ 1)

1

N

N−1∑
`=0

P 2
` dµ

=
( q

1− q

)p p∑
i=0

q−i
(
p

i

)2
1

N

N−1∑
`=i

(γ + `)p−i ` !

(`− i)!

(5.13)

where P` are the associated normalized Meixner polynomials. Therefore, if Q is the

Coulomb gas of the Meixner Ensemble, by the union bound inequality (4.4) and the

representation (1.13) of the spectral measure, for every t ≥ 0,

Q
({

max
1≤i≤N

xi ≥ t
})
≤
∫ ∞
t

N−1∑
`=0

P 2
` dµ

≤ (t− p)!
t!

( q

1− q

)p p∑
i=0

q−i
(
p

i

)2 N−1∑
`=i

(γ + `)p−i ` !

(`− i)!
.

Stirling’s formula may then be used to control the right-hand side of the latter, and

to derive exponential deviation inequalities on the rightmost charge. Together with

Johansson’s combinatorial formula (1.19), the conclusion of Proposition 2.2 on the

random growth functions W may be recovered in this way, avoiding superadditivity

and large deviation arguments. In the limit from the Meixner Ensemble to the length of

the longest increasing subsequence Ln, it also covers the tail inequality (2.9) (cf. [Le4]).

However, the key of the analysis still relies on the orthogonal polynomial representation.

5.3 Upper tails on the left of the mean

We next turn, with the tool of moment identities, to the probability that the largest

eigenvalue of the GUE is less than or equal to 1. As discussed in Chapter 2, bounds on

this probability turn out to be much more delicate. We present here a simple inequality,

in the context of the GUE, taken from the note [Wid2] by H. Widom.

We start from the determinantal description (1.11)

P
(
{λNmax ≤ t}

)
= det

(
Id−K

)
where, for each t ∈ R, K = Kt is the symmetric N ×N matrix

(〈P`−1, Pk−1〉L2((t/σ,∞),dµ))1≤k,`≤N .

Since for any unit vector u = (u1, . . . , uN ) ∈ RN ,

0 ≤
N∑

k,`=1

uku`〈P`−1, Pk−1〉L2((t/σ,∞),dµ) ≤ 1,
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the eigenvalues ρ1, . . . , ρN of K are all non-negative and less than or equal to 1. Hence,

P
(
{λNmax ≤ t}

)
=

N∏
i=1

(1− ρi) ≤ e−ΣN
i=1ρi .

Now, by (1.13),

N∑
i=1

ρi =

N∑
`=1

〈P 2
`−1〉L2((t/σ,∞),dµ)

= NµN
(
(t,∞)

)
.

Therefore, for every t ∈ R,

P
(
{λNmax ≤ t}

)
≤ exp

(
−NµN

(
(t,∞)

))
. (5.14)

Note that (5.14) would be the inequality that one would deduce if the λNi ’s were

independent. The latter are however strongly correlated so that (5.14) already misses

a big deal of the interactions between the eigenvalues.

Let us now apply (5.14) to t = 1 − ε, 0 < ε ≤ 1. By Wigner’s theorem,

µN ((1− ε,∞)→ ν((1− ε, 1)) where we recall that ν is the semicircle law (on (−1,+1)).

It is easy to evaluate

ν
(
(1− ε, 1)

)
≥ C−1ε3/2, 0 < ε ≤ 1,

where C > 0 is numerical. We expect that

µN
(
(1− ε,∞)

)
≥ C−1ε3/2, 0 < ε ≤ 1, (5.15)

at least for every N ≥ 1 such that CN−2/3 ≤ ε ≤ 1. To this task, we could invoke a

recent result of F. Götze and A. Tikhomirov [G-T] on the rate of convergence of the

spectral measure of the GUE to the semicircle which implies that∣∣∣µN((1− ε,∞)
)
− ν
(
(1− ε, 1)

)∣∣∣ ≤ C

N

for some C > 0 and all N ≥ 1, and thus (5.15). While the proof of [G-T] requires quite

a bit of analysis, we provide here an independent elementary argument to reach (5.15)

using the moment equations.

Fix N ≥ 1 and 0 < ε ≤ 1. For every p ≥ 1,

b2p =

∫
R
x4pdµN (x) ≤ (1− ε)2p bp + 2

∫ ∞
1−ε

x4pdµN (x).

From the recurrence equations put forward in Proposition 5.2, for every p,

b2p ≥ χ2p

50



while (cf. (5.8))

bp ≤
(

1 +
p(p− 1)

4N2

)p
χp ≤ ep

3/4N2

χp.

By the Cauchy-Schwarz inequality,∫ ∞
1−ε

x4pdµN (x) ≤ µN
(
(1− ε,∞)

)1/2
b
1/2
4p .

Hence,

µN
(
(1− ε,∞)

)
≥ 4−1 e−16p3/N2

χ−1
4p

[
χ2p − ep

3/4N2

χp

]2
.

Choose then p = [ε−1] and assume that N−2/3 ≤ ε ≤ 1. Then

µN
(
(1− ε,∞)

)
≥ e−18 χ−1

4p

[
χ2p − e1/4 χp

]2
.

Since by Stirling’s formula χp ∼ π−1/2p−3/2 as p→∞, uniform bounds show that for

some constant C > 0,

µN
(
(1− ε,∞)

)
≥ C−1ε3/2.

Together with (5.14), we thus conclude that for some C > 0, every N ≥ 1 and

every ε such that N−2/3 ≤ ε ≤ 1,

P
(
{λNmax ≤ 1− ε}

)
≤ C e−Nε

3/2/C . (5.16)

Increasing if necessary C, the inequality easily extends to all 0 < ε ≤ 1. The deviation

inequality (5.16) is weaker than the one of Proposition 2.4 and does not reflect the N2

rate of the large deviation asymptotics. Its proof is however quite accessible, and gives

a firm basis to N−4/3 growth rate of Corollary 2.6.

The preceding argument may be extended to more general orthogonal polynomial

ensembles provided the corresponding version of (5.15) can be established. In case

for example of the Meixner Ensemble, the explicit expression (5.13) for the factorial

moments of the mean spectral measure might be useful to this task.
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Séminaire de Probabilités XXXVI. Lecture Notes in Math. 1801, 135–164 (2003). Springer.

[P-S] L. Pastur, M. Sherbina. On the edge unviversality of the local eigenvalue statistics of

matrix models (2003).

[S-T] E. B. Saff, V. Totik. Logarithmic potentials with external fields. Springer (1997).
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