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ABSTRACT. We establish an improved form of the classical logarithmic Sobolev
inequality for the Gaussian measure restricted to probability densities which
satisfy a Poincaré inequality. The result implies a lower bound on the deficit in
terms of the quadratic Kantorovich-Wasserstein distance. We similarly inves-
tigate the deficit in the Talagrand quadratic transportation cost inequality this
time by means of an L!-Kantorovich-Wasserstein distance, optimal for product
measures, and deduce a lower bound on the deficit in the logarithmic Sobolev
inequality in terms of this metric. Applications are given in the context of the
Bakry—Emery theory and the coherent state transform. The proofs combine
tools from semigroup and heat kernel theory and optimal mass transportation.

1. Introduction. The classical logarithmic Sobolev inequality of L. Gross [27] for
the standard Gaussian measure

2 dx

on the Borel sets of R™ (cf. e.g. [42, 43, 6]) states that if dv = fdv is a probability
measure with density f with respect to ~,

H) < 5 1() (L1)

where
H(v) = H(v|v) = Rnflogfdv
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is the relative entropy of v with respect to v and

2
10) = 1(v12) = [ ey

is the Fisher information of v with respect to ~.

Logarithmic Sobolev inequalities (LSI) are a useful tool in analysis and prob-
ability in the study of convergence to equilibrium, large deviations, and measure
concentration. They are also equivalent to hypercontractivity for their associated
semigroup (cf. [42, 43, 6]). To ensure that the various terms of the LSI are well-
defined, some smoothness and positivity properties of the density f of v have to
be considered. These may be handled by approximation and regularization (see
e.g. [6]). When dealing with entropy H(v) and Fisher information I(v) (and below
the LSI deficit drgr(v) (1.3)), it will be usually implicitly understood that they are
well-defined (and finite) for suitable density functions f.

The constant 1/2 in the Gaussian LST (1.1) is known to be optimal, and it was
first shown in [13] that the cases of equality are exactly the measures of the form

6|2
dy(z) = " dy(z), beR™ (1.2)
In other words, the extremal densities f are exponential functions. (Note that b is
the barycenter of 7y, so that in particular the only centered extremal measure is vy
itself.)
However, the study of the logarithmic Sobolev deficit

Srsi(v) = %1(1/) ~H) (1.3)

to quantify proximity with the extremal measures is still largely open in spite of
recent developments for classical Sobolev and related isoperimetric inequalities. In
the broader context of stability results for functional inequalities, when looking at
a functional inequality with known optimal constants and optimizers, a natural
question is indeed whether functions that are close to achieving the optimum are
close to some optimizer. The task is to bound from below the deficit by some
functional that measures how far we are from some optimizer (typically, a distance).
Examples of such results are the recent quantitative stability estimates for Sobolev
[15, 23], Brunn-Minkowski [21, 20], and isoperimetric inequalities [25, 22, 19, 30].

The first main result of this note is to propose a (strict) strengthening of the
Gaussian LSI (1.1) within a subclass of probability measures v which in turn pro-
duces a lower bound on the deficit dp,s1(v). Denote by P(\) the class of probability
measures v on the Borel sets of R™ satisfying a Poincaré inequality with constant
A > 0 in the sense that for every smooth g : R™ — R such that fR” gdv =0,

A deVS/ |Vg|?dv. (1.4)
R® R"

Note that under such a Poincaré inequality, the measure v necessarily has a second
moment.

Theorem 1. For any centered (fRn zdv = 0) probability measure dv = fdvy in the
class P(A),

c(N)
H(v) < TI(V)7
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where Lt A oe A
— A+ Alog

The constant is sharp, as can be seen when taking v with density f(z) =
\/Xe(l_)‘)rzﬂ, A > 0, on the line. Of course, since the constant 1/2 in the Gaussian
LSI is optimal, such a strengthening can only be expected to hold on a subset of
probability measures.

In dimension n = 1, the class of probability measures satisfying a Poincaré
inequality (1.4) has been completely characterized. A probability measure v with
density p with respect to the Lebesgue measure and median m satisfies a Poincaré
inequality if and only if the following holds (see [8, 6]):

1
AT = sup v([z, +o00 / —dt < o0,
sup v toel) |5

™o
A_ = sup v(] — oo,z / —dt < oc.
z<m (] ]) x p(t)

Moreover, the optimal Poincaré constant Aop¢ for v satisfies
1
3 max(AT, A7) < Agpy < 4dmax(AT, A7).

In higher dimension, there is no such simple characterization, but fairly general suf-
ficient conditions are available. For example, if v has a density of the form e~V with
respect to the Lebesgue measure, a sufficient condition is the existence of a €]0,1]
such that a|VV|? — AV is bounded from below by some positive constant outside
of some ball (see [2]). A more classical condition is the Bakry-Emery criterion

Hess(V') > n1d for some 7 > 0 (1.5)

on the potential V' ([3, 42, 6]) ensuring a Poincaré inequality with constant A = 7.
As an equivalent formulation of Theorem 1, for v centered in P(\),

drsi(v) > (M) I(v) (1.6)

where ¢1(A) = 3 (1 — ¢(X)). The non-centered version of (1.6), and thus of Theo-

rem 1, reads as follows.

Corollary 2. For any probability measure dv = fd~y in the class P(\) with barycen-
ter b =b(v),

2
Sisi) > (N / IV (log £) — b’dv.
Corollary 2 follows by a rescaling argument involving the barycenter. For dv =
fd~ with mean b, define

dvy(z) = fla +bje~ CoE) dy(a). (1.7)

The probability measure v, has mean 0 and, as is easily checked, satisfies H(v,) =
2
H(v) — % and I(vp) = I(v) — |b|?, so that érs1(v) = dnsi(v). The conclusion then

easily follows.

Theorem 1 improves upon the recent [29] where stronger conditions on the Hes-
sian of the density f are considered (in particular parts of the class P(\)), with
weaker dependence of the constant. The work [29] actually investigates how far an
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admissible density is from saturating the logarithmic Sobolev inequality as mea-
sured with Wasserstein distance, providing a control of the deficit dpsi(v) in the
logarithmic Sobolev inequality by the (quadratic) Kantorovich-Wasserstein distance
Wa (v, ). Within the class P(A), this is easily achieved via Theorem 1 together with
the Talagrand quadratic transportation cost inequality [41] (cf. [42, 43, 6])

Wo(r,y)? < 2H(v) (1.8)

holding for all probability measures v (absolutely continuous with respect to ).
Recall that the Kantorovich-Wasserstein distance Wy (v, p) between two probability
measures v and p is given by

Watp) = inf ([ [ o y2dw<x,y>)1/2

where the infimum is over all couplings 7 of probability measures on R™ x R™ with
respective marginals v and pu. Note that if v € P(A), it has necessarily a second
moment so that the Kantorovich-Wasserstein distance Wa (v, ) is finite.

Corollary 3. For any centered probability measure dv = fdry in the class P(\),
Srsi(v) > ca(A) Wa(v, y)?,

where ca(N) = %(ﬁ —1) and c(X) is as in Theorem 1.

This corollary may be compared to the Otto-Villani HWT inequality [37] (cf. [42,
43, 6]), valid for any probability v,

1
H) < Wa(,7) VD) — 5 Walv,7)” (19)
It should be mentioned that one cannot expect
Srsi(v) > cWa(v,7)?

to hold for some ¢ > 0 and all probability measures v. Indeed, such an inequality
combined with the HWI inequality would then imply the logarithmic Sobolev in-
equality H(v) < ;Lfc I(v) (by applying Young’s inequality to the term W+/T in the
HWT inequality) with therefore a constant strictly better than the optimal 1/2. A
complete stability result for the Gaussian LSI therefore requires a distance weaker
than Ws.

In this direction, Theorem 1 may also be used to provide a lower bound on the
deficit dr.g1 in terms of the total variation distance (which is the L' distance between

densities). Indeed, as the standard Gaussian measure «y satisfies a (1, 1)-Poincaré

inequality (cf. e.g. [31])
/R lgldy < 2/R Vgl dy (1.10)
for every smooth g : R™ — R with mean zero, if dv = fd,
[ar=lay <2 [ (9say < 200

by the Cauchy-Schwarz inequality. We then only state the consequence of (1.6) in
the centered case.

Corollary 4. For any centered probability measure dv = fdv in the class P(\),

2
susit) = S [ i alar) = 2oy,
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While Corollaries 3 and 4 are strictly weaker than Theorem 1, they have the
advantage of providing a lower bound on the deficit in the Gaussian LSI in terms
of a metric.

A one-dimensional stability result of the same kind as Corollary 3 is proven in
Corollary 4.4 of [9], however with a worse constant of proportionality. The main
assumption is uniform log-concavity of v (i.e. (1.5)) which is used to apply a
(1,1)-Poincaré inequality. As far as we know, the argument of [9] does not extend
to higher dimensions. Nevertheless, the one-dimensional result may be combined
with a tensorization argument to cover the case of n-dimensional random vectors
with uniformly log-concave distributions whose one-dimensional projections form a
martingale. Such an assumption is not the same as simply assuming that the mean
of v is zero. More generally,

Srsi(v) > e Wa(7,7)?,

where 7 is the law of a random vector X obtained by modifying a random vector
X with law v in such a way that its one-dimensional marginals X,...,X,, form a
martingale [9]. For unconditional random variables, this is the same as assuming
the mean to be zero, but in general it does not seem like Wy (7, ) and Wa (v, y) can
be easily compared. The contribution [9] also contains deficit estimates for general
v, but with lower bounds that are either not a power of a distance, are dimension-
dependent, or involve v. For example, there is a universal constant ¢ > 0 such that
for all smooth probability measures v on R",

T(7,7)?
H(7)
where U is the previously discussed martingale rearrangement of v and 7 is a trans-

portation cost associated to the function ¢ — t — log(1 + t).

5LSI(V) Z & (111)

The second main result of this note investigates the deficit in the Talagrand
quadratic transportation cost inequality (1.8). A result of Otto and Villani [37]
states that a measure satisfying a logarithmic Sobolev inequality automatically
satisfies a Talagrand-type inequality (1.8). It is easy to see, using the HWT inequality
(1.9), that the cases of equality for Talagrand’s inequality are exactly the same as
for the Gaussian LSI. Therefore, it is natural to investigate lower bounds on the
Talagrand deficit

6Ta1(y) = 2H(V) - W2(V7 ’7)2
In dimension one, it was shown by Barthe and Kolesnikov [7] that the deficit
Ora1(v) satisfies
Sra(v) = cint [ p(a = yl)w(dr.dy),

where the infimum is over couplings 7 of v and =, and ¢(t) = t — log(1 + ¢). Note
that the right-hand side in this inequality is an optimal transport cost, with a cost
that is quadratic-then-linear in the distance. This inequality immediately yields the
weaker version

Stal(v) > ¢ min (Wi (r,7)% W1i(v,7)),

just by applying the elementary inequality ¢ — log(1 +¢) > %min(tQ, t), where W1
is the L!-Kantorovitch-Wasserstein distance (with ¢>-cost function on R"™) between
the one-dimensional measures v and ~.
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We establish here the following multi-dimensional version of the Barthe-Kolesnikov

result. Let
Wia(v,p) = inf/ / E |zi — yildm(z,y)
n R =

be the L!-Kantorovich-Wasserstein distance with ¢!-cost function on R™ where the
infimum is over couplings 7 of v and p.

Theorem 5. There is a numerical constant ¢ > 0 such that for any centered prob-
ability measure dv = fdy on R™ with finite second moments and f > 0 locally
bounded,

0Ta1(¥) > ¢ min (Wl’l(y’ ) , AESIC Pﬁ).
n vn
One feature of this result is that it is valid for general measures. Moreover, the
lower bound is expressed in terms of a metric on the space of probability measures
on R™ and the exponent is independent of the dimension. In general, the deficit
in Theorem 5 is only optimal for small perturbations of the Gaussian. For an n-
dimensional product measure v = v®" §r,(v") = ndra(v) grows linearly in n.
This is also the behavior of
n .n\2
Wl,l(y )Y ) _ nW1,1(V,’Yl)2-
n
When n >> Wy 1(v,v1) 72, the expected growth is lost. Nevertheless, for product
measures whose one-dimensional marginals are close enough to v = v (i.e. such
that Wy 1(v,7')? < £), Theorem 5 yields the correct order of magnitude in the
dimension.
Theorem 5 furthermore yields a new proof of the equality case for the Gaussian
LSI. Indeed, by the HWI inequality,

dusi(v) 2 5 (Vi) - Wa(w)

Therefore, if v is such that ds1(v) = 0, then I(v) = Wa(r,7)2. By the conjunction
of the Talagrand (1.8) and LSI (1.1) inequalities,

V\/'g(y,'y)2 < 2H(v) < I(v),

so that there is also equality in Talagrand’s inequality and thus d1,(v) = 0. There-
fore, Theorem 5 implies that the only centered measure satisfying dpsr(v) = 0 is
precisely . The non-centered case follows as for Corollary 2.

The preceding argument may be quantified in terms of the W; ; metric and yields
a general stability result for LSI. Recall v, from (1.7).

Corollary 6. There is a numerical constant ¢ > 0 such that for any probability
measure dv = fdy on R™ with f > 0 locally bounded and positive entropy, and with
barycenter b = b(v),

orsi(v) > m min(

Indeed, as above, by the HWI (1.9), logarithmic Sobolev (1.1) and Talagrand’s
(1.8) inequalities,

usil) 2 5 (VIO - Wal)) 2 5 (VITG) ~ Walm))

Wii(ve,7)* Wii(vp,7)?
n2 ’ n '
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Hence

o _QHE) —Wiw1))*  _ dra(v)?
= 2(/2H@) + Wa(v,y))2 — 16H(v) "

The result then follows from Theorem 5 for a centered v, and in the general case
by recentering as above.

Note that the inequality given by Corollary 6 is of a similar form to (1.11) estab-
lished in [9] for smooth measures. It does not seem that the measure 7 involved in
(1.11) is directly comparable to v in general, whereas v, is an explicit transforma-
tion of v. In particular, Corollary 6 immediately implies the equality cases of LSI
for general measures without any additional argument.

dLsi(v)

Finally, there is also a lower bound on the deficit dp,s1(~) which may be expressed
only in terms of Kantorovich-Wasserstein distances. For simplicity, only the cen-
tered case is considered.

Corollary 7. There is a numerical constant ¢ > 0 such that for any centered
probability measure dv = fdy on R"

C 12 4 C 1.1V ?
5LSI(V) > min lm , % <\/W2(V7 7)2 —+ W — WQ(Z/, ’y)) ] .

For the proof, argue as for Corollary 6 combining the HWI, logarithmic Sobolev
and Talagrand inequalities to get that

dusi(v) 2 5 (Va0 O] — Wa7)

Write Wy = Wa(v, ) and W11 = W1 1(v,7) to ease the notation. By Theorem 5,

2 2
1. cWi cW
osi(v) > 5 min [( W2+ nl’l W2> , < W3 + \/%’1 WQ) ]

2 2
I cW3 cW
—me[W%( 1+nv\}’21_1>,< W32 + \/%»1_\)\/2)].

: 2 2
Since Wi ; <n W3,

1+CW%71 - 1+C,W%_’1
nW3 — nW3

for some ¢’ > 0 only depending on ¢, and the claim follows.

This work exploits two techniques to prove deficit estimates (semigroup and
transport techniques). Several other methods have been used in the literature to
study deficit estimates for functional inequalities (Sobolev inequalities, isoperimetric
inequalities):

e Expansion and compactness arguments, used in [5] and extended in [26] to
study Sobolev inequalities. This technique yields lower bounds on the deficit in
strong metrics, but has the drawback of not giving estimates of the constants
involved (since the argument is by contradiction). In particular, it is not clear
how the constant obtained in [5] depends on the dimension. For the LSI,
mimicking the expansion argument of [5] suggests looking for deficit estimates
which do not appear to be true in full generality.
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e Stochastic calculus techniques, used by Eldan in [18] to study the Gaussian
isoperimetric inequality. For the LSI, one could follow the proof of the LSI of
[32] to obtain a representation of the deficit in terms of the quadratic variation
of a certain stochastic process, but deducing from this representation a lower
bound in terms of a useful distance seems like a challenging problem.

e Recently, Barchiesi, Brancolini and Julin [4] gave a proof of a sharp, dimension-
free quantitative Gaussian isoperimetric inequality, using techniques from cal-
culus of variations by reducing the problem to analyzing the first and second
variations of a suitable functional. Such arguments were also used in [24] to
prove (nonquantitative) transport inequalities.

e A technique involving a Taylor expansion on a compact manifold has been
employed in [30, 28] to address the stability of the polygonal isoperimetric
inequality. The spectral theory of circulant matrices shows up in the analysis
and is utilized to compare the associated quadratic forms. In the context of
LSI, one could consider Gaussian manifolds and perform a Taylor expansion
of the deficit to identify suitable lower bounds involving classical LP metrics.
Such an approach was recently employed by Christ in the context of the sharp
Hausdorff-Young inequality [14] and may be relevant for LSI via the Beckner-
Hirschman entropic uncertainty principle.

The rest of the paper is organized as follows. In Section 2, we prove the main
results. In Section 3, we establish several one-dimensional results. Lastly, in Sec-
tion 4, we present an improvement of the Bakry-Emery theorem for symmetric
measures satisfying a Poincaré inequality and obtain quantitative versions of the
Wehrl conjectures established by Lieb [33] and Carlen [12] in the context of the
coherent state transform.

2. Proofs of Theorems 1 and 5. We start with the proof of Theorem 1. The
results in [29] rely on mass transportation tools. The arguments here are based
on the standard semigroup interpolation along the Ornstein-Uhlenbeck semigroup
going back to [3] (cf. [1, 6]), together with heat kernel inequalities as developed
in [6] (to which we refer for the necessary background).

Proof of Theorem 1. Recall the Ornstein-Uhlenbeck semigroup (Pt)tZ(] given on
suitable functions g : R® — R by

Pig(x) = / gle Pz +V1—ey)dy(y), t>0, xR

The Ornstein-Uhlenbeck semigroup (F;),, is invariant and symmetric with respect

to v and, on smooth functions, VP,g = e *P,(Vg) (as vectors). For each t > 0, set
dvy = P, fd~y. The classical de Brujin’s formula indicates that

H(v) = /0 T L)t (2.12)

This identity follows from the fact that the Fisher information I(14) is the time-
derivative of the entropy along the Ornstein-Uhlenbeck flow.

In the first step of the argument, we show that for any ¢ > 0, v, satisfies a
Poincaré inequality (1.4) with constant

1

At = Nle—2t 11 g2t
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To prove this, consider a smooth function g with

/gdut:/ gPtfdw:/ Pgdv = 0

(by symmetry of P). First, by the local Poincaré inequalities for (P,), (cf. [6]),
for every t > 0,

Pg?) < (Pg)* + (1= e *)P(|Vg]?).
Hence,

/ g2duvy :/ Pt(gQ)dyg/ (Ptg)Qdyﬁ-(l—e*Qt)/ Pt(\Vg|2)dy.
n n n R"'L

Then, by the Poincaré inequality applied to P,g, since f]Rn P,gdv =0,

1
/ g dv, < 7/ |VPtg|2dV+(1—e*2t)/ Pt(|Vg|2)d1/
n )\ Rn R’Vl
o2t
(5 +1-e) [ R(voP)v
) o
2t

(eT +1- e_%) /Rn |Vg|?dv,

where we used the heat kernel inequality |VPig|? < e=2P,(]Vg|?) and again the
symmetry of P;. The claim follows.

Towards the second step of the argument, recall that by integration by parts, for
every t > 0,

VP f|?
) = [ L0 [ ppwospspe = [ Vo nspan.
n R7l Rn

A

IN

IN

P f
As is classical (cf. [1, 6]),
d
ﬁl(ut) = —2/ P,fTo(log P, f)dy = —2/ I'y(log P, f)dv, (2.13)

where I'a(v) = |[Hess(v)|? + |Vv|?.
Since v has a first moment, |V P, f| € L!(v) for every t > 0. Then, if v; = log P, f,
by the Gaussian integration by parts formula,

Vo dyy = VP, fdy = / x P, f d.
R’H,

n

Rn
By symmetry,

/’ zPfdy = Pta:fdfyze_t/ xzfdy=0.

Since 14 satisfies a Poincaré inequality with constant \;, applied to vy = log P; f for
which therefore [p, Vodyy =0,

)\t/ | Ve |2 dvy S/ |Hess(vt)’2d1/t.
Rn Rn

R™

As a consequence,
d
& I(Vt) S _2()\t + 1) I(Vt).
Integrating this differential inequality, for every ¢ > 0,
A
—4t M

I(n) < I(v)e Y
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Finally, by de Brujin’s formula (2.12), the conclusion follows. The proof of Theo-
rem 1 is complete. O

We now turn to the proof of Theorem 5, which is based on mass transportation
arguments.

Proof of Theorem 5. The starting point is Cordero-Erausquin’s mass transportation
proof of Talagrand’s inequality [16]. Let dv = fdv be centered and

T = (Ty,...,T,) : R" — R"
be the Brenier map pushing v onto v. It satisfies the Monge-Ampere equation
e lel*/2 = f(T(ac))eilT(@lQ/2 det (VT'(2)),
d~v-a.e. in the sense of Alexandrov [35, 11]. Following [16],

H(v) > %Wg(u, )2 + / [A6 — log det (Id + Hess(6))]dvy

n

where VO(x) = T(xz) — x. Since the Laplacian is the sum of the eigenvalues of
the Hessian, and since by the Brenier theorem 7 is given by the gradient V¢ of a
convex function ¢ : R™ — R (cf. [42, 43]), denoting by Aq,..., A, the non-negative
eigenvalues of VT, we have

Sral (v / Z/\ —1—log\]dy > - / Zmin(mﬁu?,uﬁu)dw
"= i=1

LetI:{1<z<n'\)\-—1|<1}. Then

Zmln )\—1|2)\—1| Z|)\—1\2+Z|/\—1|

i=1 i€l icle

> Z|)\i—1‘2+ Z|)\i—1‘2.
icl iele

Sra) = 5 [ S 1Py [ S -1k
el iele
1
> - (// |)\_1|2d’7> 6/ /Z‘|)\z‘—1|2d7
el iele

by Jensen’s inequality. Assuming that dra(v) < « for some « > 0,

R TR i)

Then

> 112 112
Sta(v) > mmam 5 (/ /;A 1 dv+/ /;CIA 1 dv)

> —1)? .
- 72maxa 1) (/ ZP\ 1l d'y)

Hence

Y
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Now, by the Cauchy-Schwarz inequality,

- 112 — - s ]2 1 - o
;Mz 12 = | Y [(VT),; — b zﬁ;!vm )]

ij=1
The characterization T" = V¢, where ¢ : R™ — R is convex, implies that ¢ is an
Alexandrov solution to

e—lel?/2
JT(@))e TR
Since f > 0 and T are locally bounded, the right-hand side is bounded away from
zero and infinity on every compact set. In particular, ¢ is W' [36] (see also

Remark 8 below). The (1,1)-Poincaré inequality (1.10) holds for mean zero W1
functions. Observing that [, [Ti(x) — 2;]dy =0, i =1,...,n, we thus obtain that

n 2
1 1
OTa P — T, — x;|d > W )2,
Ta(v) = 288n max(a, 1) (/]Rn ;l i 7) ~ 288nmax(a, 1) 11(:7)

As a result, for every a > 0,

det (Hess(¢)) =

2
Sra(v) 2 min (el o).

288n max(a, 1)’

Optimizing in « > 0 concludes the proof of Theorem 5. O

Remark 8. In the proof of Theorem 5, [36] was employed to deduce W?21-regularity
of the potential function ¢. In our framework, one may also infer the regularity
in a different way. Indeed, from [10] it follows that if ¢ is not strictly convex at
a point, then it is affine on a line. Since ¢ is globally convex, this implies that it
only depends on (n — 1) variables. In particular, V¢(R™) is contained in an (n—1)-
dimensional subspace, and this contradicts that V¢ pushes dy onto fdv. Hence, ¢
is strictly convex on R”, and the desired regularity follows from [17].

3. One dimensional estimates via mass transfer. The proof of Theorem 1
relies on heat kernel theory. In this section, we establish an L! estimate via mass
transfer theory for measures satisfying a (1, 1)-Poincaré inequality on the real line

)\/|g|du < /\Vg|du (3.14)
R R

for some A > 0 and every smooth mean zero g : R — R. Sufficient conditions
to guarantee the (1,1)-Poincaré are given in [2] (see e.g. Theorem 1.5 there). In
general, the L! Poincaré is stronger than the standard L? inequality (1.4), which
makes Theorem 9 below weaker than Theorem 1. However, the emphasis here is on
the method of proof.

Theorem 9. Let dv = fdvy be a probability measure on R with barycenter b = b(v)
satisfying a (1,1)-Poincaré inequality with constant X > 0. Then there exists ¢ =
é(N\) > 0 such that if dps1(v) <1,

orsi(v) = 5</R |(log f)' —b’dV>2~
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Proof. Let T be the optimal transport map between dv = fdv and dv. Note that
T = G~ 'oF, where F and G are the cumulative distribution functions of dv and
d~y, respectively. In particular,

f)elel 2

4 _
I'(z) = o—IT@P/2

From Cordero-Erausquin’s mass transportation proof of the logarithmic Sobolev
inequality [16], we extract the estimates

2151(v) > /}R T — 2 + (log f)'|dv(x) (3.15)
and
Susi(v) > /R [T"—1—1log (14 (T’ —1))]dv(x) (3.16)

where T is the optimal transport map between dv = fdy and dy. Recall ¢ :
(—1,00) — R defined by ¢(t) =t — log(1 + t) and set

t2
~ t -1<t<1
t) =< 6° =t= 3.17
) {<p(t)—2+log2, t>1. (3:.17)

Note that ¢(t) = @(|t|) is convex and ¢(t) > $5&(t). By (3.16), Jensen’s inequality
and the fact that 77 > 0, we obtain

1 _ 1 .
drsi(v) > —/(p(|T/—1|)d1/ > —0 /\T’—1|du . (3.18)
10 Jr 10 R
Since it is asumed that dps1(v) < 1, it follows from the properties of @ that

@(/RIT’lldu) > c</RT’1|du)2

for a universal ¢ > 0. Hence

2
orsi(v) > c(/ T’ — 1|du) . (3.19)
R
By the push-forward condition, [;(z —T)dv = b — [, Tdv = b. Thus, combining
this information with (3.15), the Cauchy-Schwarz inequality and the (1, 1)-Poincaré
inequality (3.14),

/R|(logf) bldv < /R|(logf) —(x—T)|du+/R|(x—T)—b|du

1
25LSI(V) + */ |T/ — 1‘ dv.
A Jr

IN

Together with (3.19), the claim is easily completed. O

The next corollary is achieved as Corollary 2.

Corollary 10. Let dv = fd~y be a centered probability measure on R satisfying a
(1,1)-Poincaré inequality with constant A > 0. Then there exists ¢ = ¢(A) > 0 such
that if dpsi(v) < 1,

~ 2
dusi(v) > ¢|lv —Al|py-
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As already mentioned, since Theorem 1 cannot hold for all probability measures,
one may not hope to generalize Corollary 2 by enlarging the function space. How-
ever, this does not prevent the weaker estimates in Theorem 9 and Corollary 10
from being true in general. If these estimates held in full generality, without the
assumption that v satisfies some Poincaré inequality, then they would automatically
recover the equality cases of the Gaussian logarithmic Sobolev inequality.

We conclude this section by proving a version of Corollaries 2 and 3 on the real
line for probability measures satisfying a second moment bound (without assuming
a Poincaré inequality). The proof is again based on mass transfer. Recall the
function ¢ (3.17) from the proof of Theorem 9.

Theorem 11. Let dv = fdvy be a probability measure on R with barycenter b = b(v)
such that Var,(xz) < 1. Then, for some C > 0,

_ 2
drsi(v) > @(C/ |(log )" —b| dl/>~
R
In particular, for some numerical ¢ > 0,
Srsi(v) > e Wa(v, )
where vy, is given in (1.2).

A multidimensional version of this result was proved in [9], with a smoothness
assumption on f. The proof there is based on a rescaling property of the LSI. The
contribution here is an alternative technique of proof. It would be of interest to see if
the multidimensional version can be similarly obtained using transport arguments.

Proof. By approximation, it may be assumed that f has compact support and is
smooth enough with derivative at least in L!(7). Letting as above T : R — R be
the increasing map pushing v onto 7, we have

/Ryaogf)'—bfdy - /R\(logf)'+(T_x)_(T—x)—deV
= / ‘(logf)’—I—(T—x)Fdl/—&—bQ—/ |T—x|2d1/—2/(T—x+b)(1ogf)’du
R R R
_ ! _ 2 v 2 2 v — _ ! _ ' d~.
—/R‘(logf)—I-(T x)|°dv +b /R\T x|*d Z/R(T x)fdy 2b/Rfd'y

By Gaussian integration by parts, fR fldy = fR xfdy = b and similarly

/R(T*:E)f/d’y = /Rz(Tf:c)duf/R(T'fl)du.

After some algebra, it follows that

/R’(logf)’—lﬂ dv = /R|(1ogf)’+(T—x)| du+2/(T'—1)dV—|—Var,,(x)—1.

R
Using (3.15) and (3.18), we get that

/]R ’(log ) - b|2du < 26ps1(v) + 26 (us1(v)) + Var, (z) — 1,

1is the inverse of ¢ on R*. Since ¢~ 1(x) > Cx for some C > 0,

rsi(v) > &(C/}J(logf)'—bﬁdu).

where @~
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But [, |(log f)'—b|*dv is the relative Fisher information of v with respect to the non-

centered Gaussian dry, = eba=b?/ 2dry which satisfies a logarithmic Sobolev inequality
with constant % Therefore, together with Talagrand’s inequality (1.8),

[ Nog =t > B 1) > Walwr?

and hence
Susi(v) > §(CWa(v,7)?).
By definition of the Wassertein distance W,

Wy (v,7)* < 2Var,(x) + 2 Var,, (z) < 4

under the assumption Var,(z) < 1. Since ¢ behaves quadratically near the origin,
it finally follows that for some numerical ¢ > 0,

Susi(v) > eWa(v, )™

4. Extensions and applications.

4.1. The Bakry-Emery theorem for symmetric measures in P(\). In what
follows we describe an extension of Theorem 1 to families of log-concave measures.
Let dp = e~Vdx where V : R® — R a smooth potential be a probability measure on
R™ satisfying the convexity condition (1.5), that is Hess(V') > n1d for some n > 0.
The Gaussian case corresponds to the quadratic potential V (z) = % with n =1.

Given a probability measure dv = fdu with density f with respect to pu, the
relative entropy and Fisher information with respect to pu are defined as in the

Gaussian case by
VP

dp,
f /‘L

H(v|p) = flog fdu and I(v|p) = /
Rﬂ, n
and the Bakry-Emery LSI (see [3, 42, 43, 6]) ensures that
1
H(v|p) < Q—WI(V\M).

As for the Gaussian LSI, the proof relies on the semigroup (PY),-, with infinitesimal

generator LY = A —VV -V for which the analogues of (2.12) and (2.13) read, with
dvy = PY fdp,

H(v|p) = /OOOI(I/tM)dt

and p
aI(Vt“L) = —2/ Iy (PY log f)dv,

where, this time,
Ty(v) = |Hess(v)|” + (Hess(V)Vo, Vo) > [Hess(v)|” + n|Vo[2.
If we try to mimic the proof of Theorem 1 in this context, it should be proved
that as soon as v belongs to P(\), v, belongs to P(A\;) with

1

A = A—le=20t 1 —1(1 _ e—2nt)
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(which is proved as in the Gaussian case), and that, whenever v is centered,
fR" Vuidyy = 0 for all t > 0 where v; = log PtV f. The latter requirement is however
not true in this general context. It can nevertheless hold in some more restricted
setting, for example as soon as V' is even and v is symmetric (i.e. if f is also even)
in which case [,, Voidyy = [;, VVdyy = 0.

These observations lead to the following improvement of the Bakry-Emery the-
orem for symmetric measures in P(A).

Theorem 12. Assume that du = e~Vdx is a symmetric probability measure such
that Hess(V) > nld for some nn > 0, and let dv = fdu be a symmetric probability
measure in the class P(X\) for some A > 0. Then, for everyt >0,

I |p) < e %I(v 1)
Consequently, if X #n,
n—A—AInn—1n\)

2(n—A)?

H(v|p) < I(v|p)

and, if A =mn,
HM@s%mwy

Note that this result is not a stability result, since the constant given by the
Bakry—Emery theorem is not optimal in general. Theorem 12 nevertheless yields
improved estimates on the speed of convergence to equilibrium for the semigroup,
of interest for example in the context of Monte Carlo Markov Chain sampling of
the measure p.

Similar estimates can obtained for measures which are given by bounded per-
turbations of uniformly convex potentials, using the Holley-Stroock approach. This
includes the important example of the quartic double-well potential V (x) = (22—1)?2
(which is used in statistical physics for continuous versions of the Ising model).

4.2. Coherent state transform. For h > 0, let duj, denote h ™" times the Lebesgue
measure on C" viewed as R2". The coherent state transform is an integral trans-
form mapping (L?(R"),dx) isometrically onto a subspace of (R?",du;) and given
explicitly by

¢me@=www/emwfmwmw@m

with A* = % The map £ is built out of Weyl’s representation of the Heisenberg
group and has applications in quantum mechanics, where [£¢|? is interpreted as
the phase space density in the state 1. Bounds on |£|? are useful in estimating,
e.g., the ground state energy of a Schrodinger operator (see [34, 12]).

The concentration of a density p can be measured via the entropy functional S
defined by

S(p) = —/R2 plog pdpup,.

Note that this is the physical entropy, which is the negative of the mathematical
entropy. Wehrl [44] conjectured n to be a lower bound on the entropy of phase
space densities induced by £ acting on (L2(R"), dx), that is

S(p) > n
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whenever p = |£1|? and ¢ € (L?(R"), dz). Lieb [33] established this inequality with
a method based on the sharp Young and Haussdorf-Young inequalities. Carlen [12]
recovered Lieb’s result via an approach based on the logarithmic Sobolev inequality
and also settled the problem of characterizing the cases of equality.

In what follows we apply our results from the previous sections to show that in
some configurations, one can obtain positive lower bounds on the Wehrl deficit

6Wehrl(p) = S(p) —-n
in terms of well-known metrics. The method of proof is based on Carlen’s approach.

Theorem 13. Suppose p = |L1)|? is a probability density on (R?", duy) with
barycenter b =1b, € R*". Let

dv,(2) eﬁjﬂ(\/ZZ)éh(Z)y
dvys(z) = efp(\/z z+b>dfy(z)

where 7y is the standard Gaussian measure on R*". There exists ¢ > 0 such that if
™ 2
p is not identically e~ %1*1" | then

c o (W1,1(Vp,b77)4 Wl,l(Vp,b>'7)2>

H(v,) m n? ’ n

dwenr(p) >

Moreover, in the class of probability densities p with finite second moments, dwenr(p) =
0 exactly when p = e~ Rlz—=0l® for some 2o € R®™ or alternatively, when ¥y, 4 (7) =

z|2

. n |
e T ho(x — qo) for some (po,qo) € R?™ and ¢o(x) = (%) Zem 2,

Proof. Let fy, be the density of v, with respect to v so that fR2n frdy = fR% pduy, =
1 and

™
H(v,) = /]R2 frlog frdy = /}R2 <Ep|$|2+p10gp)duh.

Since fj is not identically 1, the strict convexity of the function ¢ — tlogt implies
(via Jensen) that H(v,) > 0. Since p has finite first moment, W1 1(v,p,7) < oo.
Thus, if H(v,) = oo, there is nothing to prove, so we may assume without loss that
p has finite second moments.

A direct calculation shows that

h 2
Vil e n Ve(y a2l h h RN\
=e2 | —————4+24/—Vplr/—2z) - z+pl\/— 2]
fn 27 h 2w 2 2
p( 27\')
and, by changing variables and using the divergence theorem,
vV fnl? h |Vpl? 2

/ ﬂd’y:/ —ﬂ+2Vp-x+jp\x|2 dpp

R27 fh R2n 2w P h

h 2 2
= / ( Vol + =5 p |x2> dup, — 4n.
R2n \ 2T p h

1 h Vpl?
dusi(vp) = §I(Vp) —H(v,) = E/R? | pp dup, + S(p) — 2n.

Therefore,
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Since p = |£4|?, an application of [12, Theorem 6] yields

Vpl|? 1 dnm
/ Vel dpn = 4/ VpE|2dpy = —— .
RZn p R2n h

Thus drs1(vp) = S(p) —n and Corollary 6 implies

c (Wi, 1)t Wi (vpp,7)?
—n > ) ’ , ’
S(p) —n 2 H(v,) mln( 4n? ’ 2n
where
(0 = e+ el ) = ([ ) Jan o

and by, is the barycenter of f;, with respect to the Gaussian. To conclude the proof
of the inequality, note that

2T 2
by, = / Z2fpdy = \/7/ zp(z)dpp = Wbp'
RQn R2n

Next, assume that S(p) = n. Since p has finite second moments, H(v,) < oo. If
H(v,) = 0, Jensen’s inequality ensures that p has the desired form. If 0 < H(v,) <
0o, it follows that v, = 7. Thus,

2|2 [ h
e 2 p( 27Tz+bp> =1

for some b, = (po, qo) € R?". Consequently,
p(z) = e B0l = LWy, 4 7

and Lieb [33] has shown that the map 1 — |£4|? is injective. O

In a similar way, one may use Corollaries 3 and 4 to obtain dimension-independent
lower bounds on the Wehrl deficit for a subclass of probability measures. For in-
stance, Corollary 3 implies the following result.

Theorem 14. Suppose p = |Ly|* is a probability density on (R?",duy) with
barycenter b = b, € R2", finite second moments, and such

z = e|z|2/2p(\/ o z)
2m

satisfies a Poincaré inequality with constant X > 0. Then

Swenr(p) > c2(N) Wa(v,5,7)?,

where ca(N) is as in Corollary 3.

As an example of illustration, for M > 0, let

p(z) € Far = {e7¥®) : Hess(y)) > M}.

fnlz) = ez'2/2p< 2};)

Set

and note that

—Hess(log(fx)) = %Hess(w) <\/§Z> —Id > ? —Id.

Thus, if M > 37“, the previous theorem applies in Fjy.
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It is well known that the range of £ is closely related to the space A% of entire
function ® on C™ such that

/\@(z)\Qe_%lzlz/hdpdq < 00

where z = (g + ip)/+/2. The precise statement is that for every ¢ € (L?(R"), dx),
L(p.q) = eV (g — ip) VI +a)/ 40"

where ® € A2. 1In fact, Segal [38, 39] (see also [40]) proved that the map L :
¢ — ® is unitary from (L2(R™),dz) onto A2, and therefore Carlen [12] calls £
the Segal transform. With this in mind, the Segal transform may be useful in
characterizing the subspace of functions ) in the domain of £ mapping to functions

|L¥|? admitting a Poincaré inequality and hence a dimensionless Ws-estimate via
Theorem 14.
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