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Abstract

We provide some lower bounds on the deficit in the Gaussian logarithmic Sobolev
inequality in terms of the so-called Stein characterization of the Gaussian distribution.
The techniques are based on the representation of the relative Fisher information along
the Ornstein-Uhlenbeck semigroup by the Minimum Mean-Square Error from information
theory.
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1 Introduction and main results

The classical logarithmic Sobolev inequality for the standard Gaussian measure

dγ(x) = e−|x|
2/2 dx

(2π)n/2

on the Borel sets of Rn expresses that for any smooth probability density f with respect to γ,

H(f) =

∫
Rn
f log f dγ ≤ 1

2

∫
Rn

|∇f |2

f
dγ =

1

2
I(f) (1)
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where H(f) is the relative entropy of the measure fdγ with respect to γ and I(f) is its Fisher
information.

It is a classical result, due to E. Carlen [10, 11], that the exponential densities

eb(x) = eb·x−|b|
2/2, x ∈ Rn, b ∈ Rn, (2)

are saturating the inequality (1) and are the only ones. Note that the probability density eb
with respect to γ has mean b and covariance matrix the identity Id.

Modulo smoothness assumptions on the underlying density f , a proof of this result may be
given by interpolation along the Ornstein-Uhlenbeck semigroup (cf. [27]). Let (Pt)t≥0 be the
Ornstein-Uhlenbeck semigroup with integral representation

Ptg(x) =

∫
Rn
g
(
e−tx+

√
1− e−2t y

)
dγ(y), t ≥ 0, x ∈ Rn, (3)

for any suitable g : Rn → R. By expansion along this semigroup, the Bakry-Émery calculus
(see [2, 3, 4, 27] and below) yields that

H(f) =
1

2
I(f)−

∫ ∞
0

∫
Rn
Ptf

∣∣Hess(logPtf)
∣∣2dγ dt. (4)

Here and throughout this work, | · | denotes the Euclidean norm on vectors and matrices
(Hilbert-Schmidt norm). Hence, if there is equality in (1), for almost every t ≥ 0 and x ∈ Rn,
Hess(logPtf)(x) = 0 so that log f(x) is affine.

Following recent investigations for classical Sobolev and isoperimetric inequalities, both
for the Lebesgue and Gaussian measures, the question has been raised to quantify the deficit
in the logarithmic Sobolev inequality via a suitable distance to the saturating exponential
densities. In the broader context of stability results for functional inequalities, when looking
at a functional inequality with known optimal constants and optimizers, a natural question is
indeed whether functions that are close to achieving the optimum are close to some optimizer.
The task is to bound from below the deficit by some functional that measures how far we
are from some optimizer (typically, a distance). Such quantitative estimates both strengthen
the underlying functional inequality and provide physical measurements of the quality of the
inequality with respect to the saturating functions. Functional stability inequalities are then in
turn critical in quantitative convergence to equilibrium. Examples are the recent quantitative
stability estimates for Sobolev [13, 21], Brunn-Minkowski [19, 18] and isoperimetric inequalities
[23, 20, 30, 15, 6]. See also the survey [17].

Towards this goal, introduce therefore, for a (smooth) probability density f with respect to
γ, the deficit

δ(f) =
1

2
I(f)− H(f) ≥ 0 (5)

in the logarithmic Sobolev inequality (1) for the density f . We speak equivalently of the deficit
of the probability dµ = fdγ. Relevant lower bounds on the deficit may then be interpreted as
a stability estimate on the functional inequality with respect to the extremizers.
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Stability in the logarithmic Sobolev has therefore motivated recently a number of investi-
gations. However, the various conclusions so far do not appear fully satisfactory, in particular
with respect to dimension free bounds which should reasonably be expected (as the logarith-
mic Sobolev inequality itself does not depend on the dimension of the underlying state space).
Note that the corresponding study of the deficit in the Gaussian isoperimetric inequality has
produced (optimal) dimension free bounds [30, 6, 15] with respect to a natural distance to
the extremal sets (half-spaces). While the logarithmic Sobolev inequality may be derived from
the Gaussian isoperimetric inequality (cf. [4]), the derivation does not seem to preserve any
information on the deficit.

To briefly survey some of the recent conclusions on the deficit in the logarithmic Sobolev
inequality, note first the lower bound, under the condition

∫
Rn |x|

2dµ ≤ n,

δ(f) ≥ 1

100n
W2(µ, γ)4 (6)

emphasized in [7] after an inequality of [5]. Here W2(µ, γ) is the Monge-Kantorovich distance
between µ and γ given by

W2(µ, γ) = inf

(∫
Rn

∫
Rn
|x− y|2dπ(x, y)

)1/2

,

the infimum being taken over all couplings π on Rn×Rn with respective marginals µ and γ. The
proof of (6) put forward in [7] relies on the dimensional self-improved form of the logarithmic
Sobolev inequality [5] (see also [4]) expressing that for any smooth density f with respect to γ,

H(f) ≤ 1

2

∫
Rn

∆f dγ +
n

2
log

(
1 +

I(f)

n
− 1

n

∫
Rn

∆f dγ

)
. (7)

(It is part of the result that the expression inside the logarithm is positive.) Hence, after a
simple rewriting,

δ(f) ≥ n

2
θ

(
I(f)−

∫
Rn ∆fdγ

n

)
where θ(r) = r− log(1 + r), r > −1. Now, by a double integration by parts with respect to the
Gaussian density, ∫

Rn
|x|2dµ =

∫
Rn
|x|2f dγ = n+

∫
Rn

∆f dγ.

Hence, whenever
∫
Rn |x|

2dµ ≤ n, then
∫
Rn ∆fdγ ≤ 0 and since θ is increasing,

δ(f) ≥ n

2
θ

(
I(f)

n

)
.

Next we may use again the logarithmic Sobolev inequality I(f) ≥ 2 H(f) together with the
Talagrand [35] quadratic transportation cost inequality (cf. e.g. [4, 33, 36])

2 H(f) ≥ W2(µ, γ)2. (8)
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Under the condition
∫
Rn |x|

2dµ ≤ n, W2(µ, γ)2 ≤ 4n, and since θ(r) ≥ r2

50
(for example) on the

interval [0, 4], the lower bound (6) follows. In Section 6, we will provide an independent proof
of (6) based on the information theoretic tools developed in this work.

In another direction, the dimension free lower bound

δ(f) ≥ c(λ) W2(µ, γ)2 (9)

has been established in the recent [16] but under the further assumption that µ centered satisfies
a Poincaré inequality with constant λ > 0.

One drawback of (6) is of course, besides the dimensional condition
∫
Rn |x|

2dµ ≤ n, that
the lower bound depends on n and vanishes as n→∞. It is mentioned in [16] that one cannot
expect a dimension free lower bound only in terms of the Monge-Kantorovich metric W2. In
addition, for the extremal eb of (2),

∫
Rn |x|

2ebdγ = n+ |b|2, so that the condition
∫
Rn |x|

2dµ ≤ n

rules out all extremizers but the centered one (that is γ itself). It is therefore of interest to look
for a measure to the extremizers which may produce stability estimates as much as possible
independent of the dimension and moreover suitably identifying the extremal densities.

The papers [7, 16, 14] contain further stability results involving related transport distances
between modifications of µ and γ, however still dimensional. The note [22] presents a lower
bound on the deficit based on a distance (modulo translation) in dimension n starting with a
distance in dimension one first introduced in [8].

In another direction, investigations have also concerned upper bounds on the deficit. The
perspective is somewhat different here and gave recently rise to lower bounds on the (Euclidean)
entropy gap for log-concave densities relevant to the study of affine-isoperimetric inequalities
(cf. [1, 9]).

The aim of this work is to propose a lower bound on the deficit δ(f) in the logarithmic
Sobolev inequality in terms of the Stein characterization of the standard normal distribution
γ. Before addressing the result, let us first emphasize that, in order to make sense of δ(f),
it is legitimate to assume that H(f) < ∞. Since the deficit should be small, it will also hold
that I(f) < ∞. In particular, this condition entails the fact that the density f has some
smoothness, and regularity will be implicitly assumed for the various expressions to be well-
defined. In addition, the finiteness of H(f) ensures by the entropic inequality (see e.g. [4, Section
5.1.1]) that ∫

Rn
|x|2dµ =

∫
Rn
|x|2f dγ ≤ 4 H(f) + 4 log

∫
Rn

e|x|
2/4dγ <∞.

Throughout this study of the deficit δ(f) of the density f , it will therefore be assumed that∫
Rn |x|

2dµ < ∞ (although this condition is not everywhere strictly necessary). In particular,
we may consider the covariance matrix Γ = (Γij)1≤i,j≤n of µ given for all i, j = 1, . . . , n by

Γij =

∫
Rn
xixj dµ−

∫
Rn
xi dµ

∫
Rn
xj dµ.

The investigation will therefore involve the Stein characterization of the normal distribution,
and more generally ideas related to Stein’s method (cf. [12, 31, 34]). Recall indeed the basic
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integration by parts formula ∫
Rn
xϕ dγ =

∫
Rn
∇ϕdγ

for any smooth ϕ : Rn → R. This equation is characteristic of the Gaussian distribution γ in
the sense that if µ is a probability measure on Rn (with finite mean) such that for any smooth
ϕ : Rn → R, ∫

Rn
xϕ dµ =

∫
Rn
∇ϕdµ (10)

(as vectors in Rn), then it is necessarily equal to γ. Indeed, apply for example (10) to ϕ(x) =

eiλ·x, λ ∈ Rn, to get that the Fourier transform F (λ) =
∫
Rn eiλ·xdµ(x), λ ∈ Rn, of µ satisfies

∇F = −λF , hence F (λ) = e−|λ|
2/2 and µ = γ.

According to this description, let, for a given probability measure µ on Rn,

D(µ, γ) = sup
ϕ∈R

∣∣∣∣ ∫
Rn

[
xϕ−∇ϕ

]
dµ

∣∣∣∣ (11)

where R is the class of the resolvents (for the Ornstein-Uhlenbeck semigroup (Pt)t≥0)

ϕ = Rψ = 4

∫ ∞
0

e−4tPtψ dt

with ψ : Rn → R (smooth, for example C1) such that
∫
Rn ψ

2Ptfdγ ≤ 1 for every t ≥ 0. The
value 4 has no particular meaning. It is shown in Section 2 that R is a determining class for γ,
that is, if µ and γ agree on functions of the class R, then µ = γ.

The main result of this work is a stability estimate in the logarithmic Sobolev inequality by
means of the Stein functional (11). If f is a probability density with respect to γ with mean b,
define the shifted probability density

fb(x) = f(x+ b) e−(b·x+|b|
2/2), x ∈ Rn, (12)

which has mean zero with respect to γ. (In other words, ifX is a random vector with distribution
fdγ and mean b, X − b has distribution fbdγ and mean zero.) Then, whenever dµb = fbdγ is
close to γ, that is fb is close to the constant 1 function, f(x + b) is close to eb·x+|b|

2/2, hence
after translation f is close to the extremal eb of (2).

Theorem 1. Let f be a probability density on Rn and let dµ = fdγ. Assume that µ has
barycenter b and covariance matrix Γ ≤ Id (in the sense of symmetric matrices). Then,

δ(f) ≥ 1

4
D(µb, γ)4.

The functional D(µ, γ) might not be fully transparent, and for the comparison with more
classical distances, let us consider besides

D′(µ, γ) = sup
ϕ∈B

∣∣∣∣ ∫
Rn

[
xϕ−∇ϕ

]
dµ

∣∣∣∣ (13)
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where the supremum runs over the class B of smooth functions ϕ on Rn with

‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1,
∥∥Hess(ϕ)

∥∥
∞ ≤ 1

where ‖ϕ‖∞, ‖∇ϕ‖∞, ‖Hess(ϕ)‖∞ denote respectively the uniform norm of f and of the
Euclidean norm of ∇f and Hess(f). The functionals D(µ, γ) and D′(µ, γ) are compared in
Section 2 where it is shown that

D′(µ, γ) ≤ 2
(
1 + I(f)

)1/2D(µ, γ).

The main Theorem 1 therefore yields the following alternate lower bound on the deficit. Note
that I(fb) = I(f)− |b|2 ≤ I(f).

Theorem 2. Let f be a probability density on Rn and let dµ = fdγ. Assume that µ has
barycenter b and covariance matrix Γ ≤ Id (in the sense of symmetric matrices). Then,

δ(f) ≥ 1

64(1 + I(fb))2
D′(µb, γ)4.

In the preceding statements, the covariance hypothesis Γ ≤ Id is of course not very natural,
although the aforementioned investigations implicitly encountered the same difficulty, and for
example (6) assumes that

∫
Rn |x|

2dµ ≤ n. However, with respect to (6), the lower bound in
Theorem 1 does not involve specifically the dimension n in front of the metric. Moreover, the
result identifies the extremal with mean b while, as we have seen, (6) is restricted to mean zero
densities.

To somewhat appreciate the input of Theorem 1 with respect to previous bounds, let us
consider a simple product example. Consider namely the distribution dµ = fdγ of a cen-
tered Gaussian vector with diagonal covariance matrix (σ2

i )1≤i≤n such that σi ≤ 1 (hence the
conditions Γ ≤ Id and

∫
Rn |x|

2dµ ≤ n are satisfied). By the product structure and a direct
computation, it is easily seen that

δ(f) =
n∑
i=1

[1− σ2
i

2σ2
i

+ log σi

]
.

For the matter of further comparison,

1

4

n∑
i=1

(1− σ2
i )

2

σ4
i

≥ δ(f) =
1

2

n∑
i=1

[1− σ2
i

σ2
i

+ log σ2
i

]
≥ 1

4

n∑
i=1

(1− σ2
i )

2
. (14)

By the obvious coupling,

W2(µ, γ) =

( n∑
i=1

(1− σi)2
)1/2

.

On the other hand, by integration by parts, for any smooth ϕ : Rn → R and any i = 1, . . . , n,∫
Rn

[xiϕ− ∂iϕ]dµ = (σ2
i − 1)

∫
Rn
∂iϕdµ.
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Take ψ(x) = α · x, x ∈ Rn, where α = (α1, . . . , αn) ∈ Rn with
∑n

i=1 α
2
i ≤ 1. For any t ≥ 0,∫

Rn
ψ2Ptf dγ =

∫
Rn
Pt(ψ

2)dµ

=
n∑

i,j=1

αiαj

∫
Rn
Pt(xixj)dµ

=
n∑

i,j=1

αiαj

∫
Rn

[
e−2txixj + (1− e−2t)δij

]
dµ

≤ |α|2 ≤ 1.

Hence ψ ∈ R. Now, if ϕ = Rψ, for any i = 1, . . . , n,

∂iϕ = 4

∫ ∞
0

e−4t ∂iPtψ dt = 4αi

∫ ∞
0

e−5t dt =
4

5
αi.

As a consequence,

D(µ, γ) ≥ 4

5

( n∑
i=1

(1− σ2
i )

2
α2
i

)1/2

,

and taking the supremum over all α with
∑n

i=1 α
2
i ≤ 1,

D(µ, γ) ≥ 4

5
max
1≤i≤n

(1− σ2
i ).

Then, (6) produces the lower-bound

δ(f) ≥ 1

100n

( n∑
i=1

(1− σ2
i )

)2

while Theorem 1 yields

δ(f) ≥ 1

10
max
1≤i≤n

(1− σ2
i )

4
.

According to (14), it therefore appears that if σi = σ < 1, i = 1, . . . , n, the lower-bound (6)
is of the accurate order. Nevertheless, as soon as a large proportion of σi’s are much closer
(equal) to 1, then (6) deteriorates as n → ∞ while Theorem 1 keeps the correct order as the
true δ(f). Note that in this example, the lower-bound (9) from [16] is optimal.

Coming back to the condition Γ ≤ Id, it would already be of interest to understand how the
deficit δ could control the proximity of the covariance matrix to the identity. In Section 3, we
provide a variation on Theorem 1 that somehow takes into account this deficiency. In particular,
it is shown there that

2δ(f) + ‖Γ− Id‖2 ≥ 1

4
D(µb, γ)4 (15)

where, for an n× n matrix A,
‖A‖ = sup

|α|=1

Aα · α
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(despite the notation, observe that ‖ · ‖ is not a norm). A more precise version (Theorem 8)
allows for a deficit for arbitrary sizes of ‖Γ− Id‖.

In another direction, the next result provides a kind of compactness argument to bound
from below the deficit by an unknown constant depending on f .

Theorem 3. Let f be a probability density on Rn and let dµ = fdγ. Assume that µ has
barycenter b and that I(f) <∞. Then

δ(f) ≥ c(f)D(µb, γ)4

where c(f) > 0 is a constant depending on f only via the uniform integrability of the family of
measures (α · x)2dµ, where α runs over the unit sphere of Rn.

The distance, or rather measure of proximity in the sense of Stein, D′(µ, γ) may be recast in
terms of the Stein kernel associated with a given distribution, and compared to its discrepancy
as emphasized in [29]. For a centered probability measure µ, let τµ be a Stein kernel (matrix)
of µ in the sense that for any smooth ϕ : Rn → R,∫

Rn
xϕ dµ =

∫
Rn
τµ∇ϕdµ

(as vectors in Rn). Then

D′(µ, γ) = sup
ϕ∈B

∣∣∣∣ ∫
Rn

[
(τµ − Id)∇ϕ

]
dµ

∣∣∣∣.
Recalling the Stein discrepancy between µ and γ,

S
(
µ | γ) =

(∫
Rn
|τµ − Id|2dµ

)1/2

(where we recall that | · | stands for the Hilbert-Schmidt norm when applied to matrices), it
holds that

D′(µ, γ) ≤ S
(
µ | γ). (16)

For the matter of comparison, note from [29] that W2(µ, γ) ≤ S(µ, γ).

As an additional link between the deficit and the Stein characterization, the recent [29] points
out an improved form of the logarithmic Sobolev inequality involving the Stein discrepancy
S = S

(
µ | γ) as

H(f) ≤ S2

2
log

(
1 +

I(f)

S2

)
.

In terms of the deficit δ = δ(f) = 1
2

I(f)− H(f),

H(f) ≤ S2

2
log

(
1 +

2 H(f) + 2δ

S2

)
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so that if r = 2H(f)
S2

, then r ≤ log
(
1 + r + 2δ

S2

)
, that is

2δ

S2
≥ er − 1− r ≥ r2

2
=

2 H(f)2

S4
.

Therefore
δ(f) ≥ H(f)2

S2
.

Together with the transportation cost inequality (8), we may therefore state the following
corollary, close in spirit to (6).

Proposition 4. Let dµ = fdγ centered on Rn with Stein kernel τµ and associated discrepancy
S
(
µ | γ). Then

δ(f) ≥ W2(µ, γ)4

4 S(µ | γ)2
. (17)

Remark 5. In [29, Theorem 3.2], it is proved that

W2(µ, γ) ≤ S
(
µ | γ

)
arccos

(
e
− H(f)

S2(µ | γ)

)
.

Such a relation allows one to infer that

H(f) ≥ S2 (µ | γ ) log

(
1

cos(W2(µ, γ) S(µ | γ)−1)

)
,

so that the estimate (17) can be slightly improved as

δ(f) ≥ S
(
µ | γ

)2
log

(
1

cos(W2(µ, γ) S(µ | γ)−1)

)2

. (18)

Notice that, in view of W2(µ, γ) ≤ S(µ | γ), one has that

cos(1) ≤ cos
(
W2(µ, γ) S

(
µ | γ

)−1) ≤ 1.

The paper is organized as follows. In the next Section 2, we describe properties and com-
parisons of the functionals D(µ, γ) and D′(µ, γ). Section 3 provides the crucial information
theoretic tools to analyze the deficit in terms of D(µ, γ), and on which the proof of Theorem 1
relies. Theorems 1 and 3 are then established in Sections 4 and 5 respectively. The final section
is devoted to an alternate proof of the lower bound (6) based on the tools of Section 3.

2 Properties of D(µ, γ) and D′(µ, γ)

The purpose of this section to compare D(µ, γ) and D′(µ, γ). Before, we collect some general
informations on D(µ, γ) to get a better feeling about it.
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Recall that we assume throughout the investigation that the density f is smooth and that∫
Rn |x|

2dµ =
∫
Rn |x|

2fdγ < ∞. Recall also that the Ornstein-Uhlenbeck semigroup (Pt)t≥0
described by the integral representation (3) is invariant and symmetric with respect to γ. Its
infinitesimal generator L = ∆ − x · ∇ satisfies the integration by parts formula, for smooth
functions g, h : Rn → R, ∫

Rn
g Lh dγ = −

∫
Rn
∇g · ∇h dγ.

It should be noted first that the integrals
∫
Rn [xϕ − ∇ϕ]dµ in the definition of D(µ, γ) are

well-defined. If ϕ = Rψ with
∫
Rn ψ

2Ptfdγ =
∫
Rn Pt(ψ

2)dµ ≤ 1 for every t ≥ 0,∫
Rn
|xϕ|dµ ≤ 4

∫ ∞
0

e−4t
∫
Rn
|xPtψ|dµ dt

≤ 4

(∫
Rn
|x|2dµ

)1/2 ∫ ∞
0

e−4t
(∫

Rn
(Ptψ)2dµ

)1/2

dt

≤
(∫

Rn
|x|2dµ

)1/2

<∞.

Next, after integration by parts in the integral representation (3) of Pt, for every x ∈ Rn,

|∇Ptψ|2(x) =
n∑
i=1

(∂iPtψ)2(x)

= e−2t
n∑
i=1

(∫
Rn
∂iψ
(
e−tx+

√
1− e−2t y

)
dγ(y)

)2

=
e−2t

1− e−2t

n∑
i=1

(∫
Rn
yi ψ

(
e−tx+

√
1− e−2t y

)
dγ(y)

)2

≤ e−2t

1− e−2t
Pt(ψ

2)(x)

so that ∫
Rn
|∇ϕ|dµ ≤ 4

∫ ∞
0

e−4t
∫
Rn
|∇Ptψ|dµ dt ≤ 4

∫ ∞
0

e−5t√
1− e−2t

dt ≤ 4.

The family R is a determining class in the sense that whenever D(µ, γ) = 0, then µ = γ. To
check this claim, choose ψ(x) = eiλ·x, λ ∈ Rn (rather their real and imaginary parts), so that

ϕ(x) = Rψ(x) = 4 e−|λ|
2/2

∫ 1

0

u3 eiuλ·x+|λ|
2u2/2du, x ∈ Rn.

With F the Fourier transform of µ,∫
Rn

[
xϕ−∇ϕ

]
dµ = −4i e−|λ|

2/2

∫ 1

0

u3 e|λ|
2u2/2

[
∇F (uλ) + uλF (uλ)

]
du.

If the left-hand side of this identity is zero, after the change of u into u
|λ| ,∫ ρ

0

u3 eu
2/2
[
∇F (uθ) + uλF (uθ)

]
du = 0
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where ρ = |λ| and θ = λ
|λ| , λ 6= 0. This relation holding true for any ρ > 0 and θ ∈ Sn−1, it

follows that ∇F (w) + wF (w) = 0 for any w ∈ Rn, and thus F is the Fourier transform of the
standard normal γ on Rn.

The next proposition is the announced comparison between D(µ, γ) and D′(µ, γ).

Proposition 6. Let dµ = fdγ. Then

D′(µ, γ) ≤ 2
(
1 + I(f)

)1/2D(µ, γ).

Proof. Given ϕ ∈ B, it is straightforward to check that ϕ = Rψ where

ψ = −1

4
(L− 4 Id)ϕ.

Hence the condition
∫
Rn ψ

2Ptfdγ ≤ 1 for every t ≥ 0 in the definition of D(µ, γ) turns into∫
Rn

(Lϕ− 4ϕ)2Ptf dγ ≤ 16.

Developing the square, we examine successively the three terms∫
Rn
ϕ2Ptfdγ,

∫
Rn

LϕϕPtfdγ,

∫
Rn

(Lϕ)2Ptf dγ

under the boundedness assumptions on ϕ and its derivatives.

First
∫
Rn ϕ

2Ptfdγ ≤ ‖ϕ‖∞ ≤ 1. To handle∫
Rn

LϕϕPtfdγ,

write by integration by parts that∫
Rn

LϕϕPtfdγ = −
∫
Rn
∇ϕ · ∇(ϕPtf)dγ

= −
∫
Rn
|∇ϕ|2Ptf dγ −

∫
Rn
ϕ∇ϕ · ∇Ptf dγ.

Now, if ‖ϕ‖∞ ≤ 1 and ‖∇ϕ‖∞ ≤ 1, by the Cauchy-Schwarz inequality and the exponential
decay recalled in (23) below,∣∣∣∣ ∫

Rn
ϕ∇ϕ · ∇Ptf dγ

∣∣∣∣ ≤ ∫
Rn
|∇Ptf |dγ ≤

√
I(Ptf) ≤ e−t

√
I(f).

As a consequence, for every t ≥ 0,∣∣∣∣ ∫
Rn

LϕϕPtf dγ

∣∣∣∣ ≤ 1 +
√

I(f) .

11



Finally, again by integration by parts,∫
Rn

(Lϕ)2Ptf dγ = −
∫
Rn
∇ϕ · ∇(LϕPtf)dγ

= −
∫
Rn

Lϕ∇ϕ · ∇Ptf dγ −
∫
Rn
∇ϕ · ∇LϕPtf dγ

Under ‖∇ϕ‖∞ ≤ 1,

−
∫
Rn

Lϕ∇ϕ · ∇Ptf dγ ≤
∫
Rn
|Lϕ||∇Ptf |dγ ≤

1

2

∫
Rn

(Lϕ)2Ptf dγ +
1

2
I(Ptf).

Therefore ∫
Rn

(Lϕ)2Ptfdγ ≤ −2

∫
Rn
∇ϕ · ∇LϕPtf dγ + I(Ptf).

Now
−2∇ϕ · ∇Lϕ = 2 Γ2(ϕ)− L

(
|∇ϕ|2

)
where Γ2(ϕ) = |Hess(ϕ)|2 + |∇ϕ|2 ≤ 2. Once more by integration by parts,∫

Rn
L
(
|∇ϕ|2

)
Ptfdγ = −

∫
Rn
∇
(
|∇ϕ|2

)
· ∇Ptfdγ

and ∣∣∇(|∇ϕ|2)∣∣ ≤ 2|∇ϕ|
∣∣Hess(ϕ)

∣∣ ≤ 2.

Altogether, if follows that ∫
Rn

(Lϕ)2Ptfdγ ≤ 4 + 2
√

I(f) + I(f).

As a consequence of the preceding three upper bounds, and using that
√
I(f) ≤ 1

2
(1+I(f)),

for any t ≥ 0, ∫
Rn

(Lϕ− 4ϕ)2Ptfdγ ≤ 33 + 6 I(f) ≤ 64
(
1 + I(f)

)
.

As a result, ϕ ∈ B implies that ϕ ∈ 2
√

1 + I(f)R, and the proof of the proposition is completed
by homogeneity.

3 Information theoretic representation

With this section we start addressing the proof of the main result, and in particular develop
the information theoretic tools towards a suitable expression for the deficit in the semigroup
formulation (4).

Recall the Ornstein-Uhlenbeck semigroup (Pt)t≥0 from (3). Note that, as vector valued
functions, provided f : Rn → R is smooth, ∇Ptf = e−tPt(∇f). It is immediate on the integral
representation (3) to observe that, by integration by parts, for every t ≥ 0, as vectors in Rn,

Pt(xf) = e−txPtf + (1− e−2t)Pt(∇f) = e−txPtf + 2 sh(t)∇Ptf. (19)

12



From (19) is deduced an alternate description of the Fisher information

I(Ptf) =

∫
Rn

|∇Ptf |2

Ptf
dγ

along the semigroup as

4 sh2(t) I(Ptf) =

∫
Rn

|Pt(xf)− e−txPtf |2

Ptf
dγ.

Given a probability density f with respect to γ, let X be a random vector with distribution
dµ = fdγ. Let furthermore N be independent with law γ, and set, for every t ≥ 0,

Xt = e−tX +
√

1− e−2tN.

Note that Xt has distribution Ptfdγ since for any bounded measurable ϕ : Rn → R,

E
(
ϕ(Xt)

)
=

∫
Rn

∫
Rn
ϕ
(
e−tx+

√
1− e−2t y

)
f(x)dγ(x)dγ(y)

=

∫
Rn
Ptϕf dγ =

∫
Rn
ϕPtf dγ.

The next observation is that if u = Pt(xf)
Ptf

: Rn → Rn, then

E
(
X |Xt

)
= u(Xt).

Indeed, for any bounded measurable ϕ : Rn → R,

E
(
ϕ(Xt)E

(
X |Xt

))
= E

(
Xϕ(Xt)

)
=

∫
Rn
xPtϕf dγ =

∫
Rn
ϕPt(xf)dγ

while
E
(
ϕ(Xt)u(Xt)

)
=

∫
Rn
Pt(ϕu)f dγ =

∫
Rn
ϕuPtf dγ

from which the announced claim follows.

As a consequence, for every t ≥ 0

4 sh2(t) I(Ptf) =

∫
Rn
Ptf

∣∣∣∣Pt(xf)

Ptf
− e−tx

∣∣∣∣2 dγ = E
(∣∣E(X |Xt

)
− e−tXt

∣∣2). (20)

In this Ornstein-Uhlenbeck context, the representation (20) of the Fisher information is
the analogue of the Minimum Mean-Square Error (MMSE) emphasized in [25, 26, 28, 32].
The proximity with the linear estimator X`

t = e−tXt will turn out essential in the further
developments. In particular, (20) rewrites as

4 sh2(t) I(Ptf) = E
(∣∣E(X −X`

t |Xt

)∣∣2), t ≥ 0.

13



At this stage, it might be of interest to point out that if E(X |Xt) = X`
t (for some t > 0), then

X must be standard normal. Indeed, under this assumption, for any smooth ϕ : Rn → R,

E
(
ϕ(Xt)X

)
= E

(
ϕ(Xt)X

`
t

)
,

that is
(1− e−2t)E

(
X ϕ(Xt)

)
= e−t

√
1− e−2t E

(
N ϕ(Xt)

)
.

After integration by parts with respect to N ,

E
(
X ϕ(Xt)

)
= e−t E

(
∇ϕ(Xt)

)
.

For ϕ(x) = eiλ·x, λ ∈ Rn, this amounts again to the differential equation ∇F = −λF for the
Fourier transform F (λ) = E(eiλ·X) of X.

We next investigate the analogue of (20) for the time derivative of the Fisher information
I(Ptf). Actually, this derivative is at the root of the representation formula (4) that we recall
here

H(f) =
1

2
I(f)−

∫ ∞
0

∫
Rn
Ptf

∣∣Hess(logPtf)
∣∣2dγ dt. (21)

Indeed, de Bruijn’s formula first expresses that

d

dt
H(Ptf) = −

∫
Rn
Ptf |∇ logPtf |2dγ = − I(Ptf)

so that
H(f) =

∫ ∞
0

I(Ptf)dt.

At the second order, following the Γ-calculus as exposed e.g. in [2, 4],

d

dt
I(Ptf) = −2

∫
Rn
Ptf Γ2(logPtf)dγ

= −2

∫
Rn
Ptf
[∣∣Hess(logPtf)

∣∣2 +
∣∣∇(logPtf)

∣∣2]dγ
= −2

∫
Rn
Ptf

∣∣Hess(logPtf)
∣∣2dγ − 2 I(Ptf).

(22)

Note, as is classical, that this differential equation implies the exponential decay of the Fisher
information

I(Ptf) ≤ e−2t I(f), t ≥ 0. (23)

By integration by parts, it follows from (22) that

H(f) =

∫ ∞
0

e−2t
(
e2t I(Ptf)

)
dt =

1

2
I(f) +

1

2

∫ ∞
0

e−2t
d

dt

(
e2t I(Ptf)

)
dt

and hence (21).

Accordingly, in the study of the deficit δ(f) = 1
2

I(f)−H(f), we are therefore interested into∫
Rn
Ptf

∣∣Hess(logPtf)
∣∣2dγ =

∫
Rn
Ptf

∣∣∣∣Hess(Ptf)

Ptf
− ∇Ptf ⊗∇Ptf

(Ptf)2

∣∣∣∣2dγ.
14



We analyze this expression as the Fisher information in (20). Taking partial derivative ∂j in
(19) first yields that

∂jPt(xif) = e−tδijPtf + e−txi∂jPtf + 2 sh(t)∂ijPtf

for all i, j = 1, . . . , n. After a further use of (19),

2 sh(t)∂jPt(xif) = (1− e−2t)δijPtf + e−txiPt(xjf)− e−2txixjPtf + 4 sh2(t)∂ijPtf.

Applying then (19) one more time but to xif for every i, we finally get that

4 sh2(t)∂ijPtf = Pt(xixjf)− (1− e−2t)δijPtf − e−t
[
xiPt(xjf) + xjPt(xif)

]
+ e−2txixjPtf.

On the other hand, always from (19), for all i, j = 1, . . . , n,

4 sh2(t)∂iPtf∂jPtf = Pt(xif)Pt(xjf)− e−t
[
xiPt(xjf) + xjPt(xif)

]
Ptf + e−2txixj(Ptf)2.

In compact notation, it follows that

4 sh2(t)

[
Hess(Ptf)

Ptf
− ∇Ptf ⊗∇Ptf

(Ptf)2

]
=

Pt(x⊗ x f)

Ptf
− Pt(xf)

Ptf
⊗ Pt(xf)

Ptf
− (1− e−2t) Id.

Recall that if u = Pt(xf)
Ptf

: Rn → Rn, then E
(
X |Xt

)
= u(Xt) (as vectors). Exactly in the

same way, if v = Pt(x⊗x f)
Ptf

, then

E
(
X ⊗X |Xt

)
= v(Xt)

as n× n matrices. Hence (recall E(|X|2) <∞), setting

Zt = Cov
(
X |Xt

)
= E

(
X ⊗X |Xt

)
− E

(
X |Xt

)
⊗ E

(
X |Xt

)
, (24)

it holds
16 sh4(t)

∫
Rn
Ptf

∣∣Hess(logPtf)
∣∣2dγ = E

(∣∣Zt − (1− e−2t)Id
∣∣2).

From (21), we may therefore emphasize the following identity which will be the cornerstone
for the analysis of the deficit.

Proposition 7. Under the preceding notation,

δ(f) =

∫ ∞
0

1

16 sh4(t)
E
(∣∣Zt − (1− e−2t)Id

∣∣2)dt. (25)

4 Proof of Theorem 1

This section addresses the proof of Theorem 1, therefore based on the representation (25) of
Proposition 7.
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Since δ(f) = δ(fb) where fb is the shifted density from (12), it is enough to deal with the
centered case b = 0 = E(X).

For every t ≥ 0, we bound from below the expectation E
(∣∣Zt − (1 − e−2t)Id

∣∣2). Recall the
linear estimator X`

t = e−tXt. Observe that

Zt = Cov
(
X |Xt

)
= Cov

(
X −X`

t |Xt

)
so that

E
(∣∣Zt − (1− e−2t)Id

∣∣2) = E
(∣∣Cov

(
X −X`

t |Xt

)
− (1− e−2t)Id

∣∣2). (26)

By Jensen’s inequality

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ n∑
i,j=1

[
E(UiUj)− (1− e−2t)2(Γij − δij)

]2
(27)

where Ui, i = 1, . . . n, are the coordinates of the vector U = E(X −X`
t |Xt).

Assume therefore that Γ ≤ Id. Hence

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ n∑
i,j=1

[
E(UiUj)

]2
.

In particular, for every unit vector α = (α1, . . . , αn) in Rn,
n∑

i,j=1

[
E(UiUj)

]2 ≥ [E( n∑
i,j=1

αiαjUiUj

)]2
so that

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ [E([α · E(X −X`
t |Xt

)]2)]2
.

Let now ψ : Rn → R smooth such that E(ψ(Xt)
2) ≤ 1. For α fixed, by the Cauchy-Schwarz

inequality,

E
([
α · E

(
X −X`

t |Xt

)]2) ≥ [E(ψ(Xt)α ·
[
E
(
X −X`

t |Xt

)])]2
.

Now,

E
(
ψ(Xt)α·

[
E
(
X −X`

t |Xt

)])
= E

(
ψ(Xt)α · [X − e−tXt]

)
= (1− e−2t)E

(
α ·X ψ(Xt)

)
− e−t

√
1− e−2t E

(
α ·N ψ(Xt)

)
= (1− e−2t)α · E

(
Xψ(Xt)− e−t∇ψ(Xt)

)
where integration by parts with respect toN is performed in the last step. Taking the supremum
over all unit vectors α, it therefore follows that for any (smooth) ψ : Rn → R such that
E(ψ(Xt)

2) ≤ 1,

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ (1− e−2t)4
∣∣∣E(Xψ(Xt)− e−t∇ψ(Xt)

)∣∣∣4.
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Switching back to semigroup notation and recalling that Xt has distribution Ptfdγ, for any
t ≥ 0,

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ (1− e−2t)4
∣∣∣∣ ∫

Rn

[
xPtψ −∇Ptψ

]
dµ

∣∣∣∣4
where we recall that dµ = fdγ and

∫
Rn ψ

2Ptfdγ = E(ψ(Xt)
2) ≤ 1. From (25), we therefore

obtain that

δ(f) ≥
∫ ∞
0

e−4t
∣∣∣∣ ∫

Rn

[
xPtψ −∇Ptψ

]
dµ

∣∣∣∣4dt.
By Jensen’s inequality in the t variable,

δ(f) ≥ 1

4

∣∣∣∣ ∫
Rn

[
xϕ−∇ϕ

]
dµ

∣∣∣∣4
where ϕ = Rψ. Considering the definition of D(µ, γ), the proof of Theorem 1 is complete.

To conclude this section, we present a variation on Theorems 1 and 2 which somehow takes
into account the covariance condition.

Consider, for each 0 < ε ≤ 1, the modified class Rε consisting of the functions

ϕ = Rεψ = 4

∫ ∞
s

e−4tPtψ dt

with e−4s = ε and
∫
Rn ψ

2Ptfdγ ≤ 1 for every t ≥ 0. Note that R1 = R. It is easily seen that Rε

is a determining class for any ε. Define accordingly Dε(µ, γ). The following statement covers
in particular (15), and with the flexibility on ε > 0 actually allows for a lower bound on the
deficit independently of the size of ‖Γ− Id‖ = sup|α|=1(Γ− Id)α · α.

Theorem 8. Let f be a probability density on Rn and let dµ = fdγ. Assume that µ has
barycenter b and covariance matrix Γ. Then, for every 0 < ε ≤ 1,

2δ(f) + ε ‖Γ− Id‖2 ≥ 1

4 ε3
Dε(µb, γ)4. (28)

Whenever δ(f) > 0, a sensible choice for ε could be

ε = ε(δ) = min

(
1,

δ(f)

‖Γ− Id‖2

)
yielding

3δ(f) ≥ 1

4 ε(δ)3
Dε(δ)(µb, γ)4 ≥ 1

4
Dε(δ)(µb, γ)4. (29)

Proof. Assume that b = 0 and start from (27). For any unit vector α in Rn,

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ [E([α · U ]2
)
− (1− e−2t)2

[
(Γ− Id)α · α

]]2
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itself lower-bounded by

1

2

[
E
(
[α · U ]2

)]2 − 2(1− e−2t)4
[
(Γ− Id)α · α

]2
.

Arguing as above,

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ (1− e−2t)4
[

1

2

∣∣∣∣ ∫
Rn

[
xPtψ −∇Ptψ

]
dµ

∣∣∣∣4 − 2‖Γ− Id‖2
]
.

Now, from (25) of Proposition 7, we may bound from below the deficit for every s > 0 by

δ(f) ≥
∫ ∞
s

1

16 sh4(t)
E
(∣∣Zt − (1− e−2t)Id

∣∣2)dt.
Hence, by the preceding,

δ(f) ≥ 1

2

∫ ∞
s

e−4t
∣∣∣∣ ∫

Rn

[
xPtψ −∇Ptψ

]
dµ

∣∣∣∣4dt− 2

∫ ∞
s

e−4t ‖Γ− Id‖2dt

≥ 1

2

∫ ∞
s

e−4t
∣∣∣∣ ∫

Rn

[
xPtψ −∇Ptψ

]
dµ

∣∣∣∣4dt− 1

2
e−4s ‖Γ− Id‖2.

By the same Jensen’s inequality argument, but now on the interval (s,∞),

δ(f) ≥ 1

8
e12s
∣∣∣∣ ∫

Rn

[
xϕ−∇ϕ

]
dµ

∣∣∣∣4 − 1

2
e−4s ‖Γ− Id‖2

where now ϕ = Rεψ with ε = e−4s. Theorem 8 then follows.

5 Proof of Theorem 3

As for the preceding theorems, we may and do assume that b = 0. From the latter (28) (with
ε = 1), we get that

2δ(f) ≥ 1

4
D(µ, γ)4 −

∥∥Γ− Id
∥∥2. (30)

The challenge now is to control the covariance matrix by the deficit. Assume therefore that
‖Γ− Id‖ > 0, otherwise apply Theorem 1. Recalling that Zt = Cov(X |Xt), for any t ≥ 0 and
any unit vector α in Rn, by Jensen’s inequality,

E
(∣∣Zt − (1− e−2t)Id

∣∣2) = E
(∣∣Cov

(
X |Xt

)
− (1− e−2t)Id

∣∣2)
≥
[
(Γ− Id)α · α + e−2t − E

([
E
(
α ·X |Xt

)]2)]2
.

By a rough estimate,

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ 1

2

[
(Γ− Id)α · α

]2 − 2 e−4t − 2
[
E
([

E
(
α ·X |Xt

)]2)]2
18



and taking the supremum over α, for any t ≥ 0,

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ 1

2

∥∥Γ− Id
∥∥2 − 2 e−4t − 2 sup

|α|=1

[
E
([

E
(
α ·X |Xt

)]2)]2
. (31)

The following lemma is the compactness argument from which the conclusion will follow.

Lemma 9. Set
ρ(t) = sup

|α|=1

E
([

E
(
α ·X |Xt

)]2)
, t ≥ 0.

Then, whenever X is centered and I(f) <∞,

lim
t→∞

ρ(t) = 0.

Proof. Fix first a unit vector α ∈ Rn, and let t ≥ 0. We develop the proof in the semigroup
language. As discussed in Section 3, E(α ·X |Xt) = uα(Xt) where uα = Pt(α·xf)

Ptf
. Hence

E
([

E
(
α ·X |Xt

)]2)
=

∫
Rn

Pt(α · xf)2

Ptf
dγ.

Now,∫
Rn

Pt(α · xf)2

Ptf
dγ ≤

∫
{|Pt(α·xf)|≤Ptf}

Pt(α · xf)2

Ptf
dγ +

∫
{|Pt(α·xf)|≥Ptf}

Pt(α · xf)2

Ptf
dγ

≤
∫
Rn

∣∣Pt(α · xf)
∣∣dγ +

∫
At

Pt(α · xf)2

Ptf
dγ

(32)

where At = {|Pt(α · xf)| ≥ Ptf}.

Observe that

γ(At) ≤ γ
(
2|Pt(α · xf)| ≥ 1

)
+ γ
(
2|Ptf − 1| ≥ 1

)
≤ 2

∫
Rn

∣∣Pt(α · xf)
∣∣dγ + 2

∫
Rn

∣∣Ptf − 1
∣∣dγ.

Since Pt(α · xf) is centered with respect to γ, by the Gaussian L1-Poincaré inequality,∫
Rn

∣∣Pt(α · xf)
∣∣dγ ≤ 2

∫
Rn

∣∣∇(Pt(α · xf)
)∣∣dγ ≤ 2 e−t

∫
Rn

∣∣∇(α · xf)
∣∣dγ.

Now, since α is a unit vector,∫
Rn

∣∣∇(α · xf)
∣∣dγ ≤ 1 +

∫
Rn
|α · x| |∇f |dγ ≤ 1 +

(∫
Rn
|x|2f dγ

)1/2

I(f)1/2.

Again by the Gaussian L1-Poincaré and Cauchy-Schwarz inequalities,∫
Rn

∣∣Ptf − 1
∣∣dγ ≤ 2

∫
Rn
|∇Ptf |dγ ≤ 2

√
I(Ptf) ,
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so that, by (23), ∫
Rn

∣∣Ptf − 1
∣∣dγ ≤ 2 e−t

√
I(f) .

These estimates already ensure that, uniformly in |α| = 1,

lim
t→0

∫
Rn

∣∣Pt(α · xf)
∣∣dγ = 0

and limt→0 γ(At) = 0.

To handle the second term in (32), note that by the Cauchy-Schwarz inequality (for Pt),∫
At

Pt(α · xf)2

Ptf
dγ ≤

∫
At

Pt
(
(α · x)2f

)
dγ

=

∫
Rn
Pt(1At)(α · x)2f dγ

≤
∫
Rn
Pt(1At)|x|2f dγ.

Since
∫
Rn Pt(1At)dγ = γ(At), the conclusion follows by dominated convergence. Lemma 9 is

established.

On the basis of Lemma 9, we may now conclude the proof of Theorem 3. Going back to
(31), for every t ≥ 0

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ 1

2

∥∥Γ− Id
∥∥2 − 2 e−4t − 2 ρ(t).

By Lemma 9, choose t0 large enough so that

2 e−4t + 2 ρ(t) ≤ 1

4

∥∥Γ− Id
∥∥2

for every t ≥ t0. Then, for t ≥ t0,

E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ 1

4

∥∥Γ− Id
∥∥2

and
δ(f) ≥

∫ ∞
t0

1

16 sh4(t)
E
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ e−4t0

16

∥∥Γ− Id
∥∥2. (33)

The conclusion of the proof of Theorem 3 is then a suitable combination of (33) and (30).

It may be observed that, in dimension one, the conclusion of Lemma 9 actually amounts, by
(20), to the following result which we present as a statement of possible independent interest.
From the classical exponential decay (23), e2t I(Ptf) ≤ I(f) for every t ≥ 0. Under the centering∫
R xfdγ = 0, we actually have

Corollary 10. Let f be a smooth probability density on the real line R with respect to γ such
that

∫
R xfdγ = 0,

∫
R |x|

2fdγ <∞ and I(f) <∞. Then

lim
t→∞

e2t I(Ptf) = 0.
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6 An alternate proof of the estimate (6)

To conclude this work, we present in this section an alternate proof of the lower bound (6)

δ(f) ≥ c

n
W2(µ, γ)4 (34)

under the condition
∫
Rn |x|

2dµ ≤ n (with the constant c = 1
4
).

Recall Zt, t ≥ 0, from (24). By the Cauchy-Schwarz inequality, for every t,

nE
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ [E(Tr
(
Zt − (1− e−2t)Id

))]2
. (35)

Now, after some straightforward calculations,

E
(
Tr
(
Zt − (1− e−2t)Id

))
= E

(
|X|2

)
−

n∑
i=1

E
(
E(X i |Xt)

2
)
− n(1− e−2t)

where X i, i = 1, . . . , n, are the coordinates of the vector X. On the other hand,

E
(∣∣E(X |Xt

)
− e−tXt

∣∣2) =
n∑
i=1

E
(
E(X i |Xt)

2
)
− e−2t(2− e−2t)E

(
|X|2

)
+ n e−2t(1− e−2t).

Therefore, whenever E(|X|2) =
∫
Rn |x|

2dµ ≤ n,

−E
(
Tr
(
Zt − (1− e−2t)Id

))
≥ E

(∣∣E(X |Xt

)
− e−tXt

∣∣2).
Hence, by (20) and (35),

nE
(∣∣Zt − (1− e−2t)Id

∣∣2) ≥ 16 sh4(t) I(Ptf)2,

and combined with (25),

δ(f) ≥ 1

n

∫ ∞
0

I(Ptf)2dt. (36)

Now write dµt = Ptf dγ, t ≥ 0, and define

w(t) = W2(µ, µt).

In particular, w(∞) = W2(µ, γ) (while w(0) = 0). Recall from [33] that w′(t) ≤
√

I(Ptf),
t ≥ 0. From the transportation cost inequality (8) applied to µt, w(t)2 ≤ 2H(Ptf), and
with the logarithmic Sobolev inequality w(t)2 ≤ 2H(Ptf) ≤ I(Ptf). Hence, combining these
inequalities, for every t ≥ 0,

w(t)3w′(t) ≤ w(t)3
√

I(Ptf) ≤ I(Ptf)2.

Together with (36),

δ(f) ≥ 1

n

∫ ∞
0

w(t)3w′(t)dt =
1

4n
w(∞)4 =

1

4n
W2(µ, γ)4

and therefore the desired conclusion (34) with c = 1
4
.
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