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Abstract

Let H̃N , N ≥ 1, be the point-to-point last passage times of directed percolation

on rectangles [(1, 1), ([γN ], N ])] in N × N over exponential or geometric independent

random variables, rescaled to converge to the Tracy-Widom distribution. It is proved

that for some αsup > 0,

αsup ≤ lim sup
N→∞

H̃N

(log logN)2/3
≤
(3

4

)2/3
.

with probability one, and that αsup =
(
3
4

)2/3
provided a commonly believed tail bound

holds. The result is in contrast with the normalization (logN)2/3 for the largest eigen-

value of a GUE matrix recently put forward by E. Paquette and O. Zeitouni. The proof

relies on sharp tail bounds and superadditivity, close to the standard law of the iterated

logarithm. A weaker result on the liminf with speed (log logN)1/3 is also discussed.

1 Introduction and main results

Let (Xi,j)(i,j)∈N×N be an infinite array of independent exponential random variables with

parameter 1. For M ≥ N ≥ 1, let

H(M,N) = max

{ ∑
(i,j)∈π

Xi,j ; π ∈ ΠM,N

}
,

where ΠM,N is the set of all up/right paths in N×N joining (1, 1) to (M,N), be the directed

last passage time on the rectangle [(1, 1), (M,N)] in N× N.

It is a result due to K. Johansson [4] that for each γ ≥ 1,

H̃N =
H([γN ], N)− aN

bN1/3
,
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where a = a(γ) = (1 +
√
γ)2 and b = b(γ) = γ−1/6(1 +

√
γ)4/3, converges as N → ∞ to the

Tracy-Widom distribution F2. As is by now classical, the distribution F2 arises as the limit

of the rescaled largest eigenvalue

λ̃N = N1/6
(
λmax − 2

√
N
)

of the Gaussian Unitary Ensemble (GUE) of size N consisting of an Hermitian matrix with

entries that are independent (up to the symmetry condition) complex Gaussian variables

with mean zero and variance 1.

In addition to this result, it is also shown in [4] that H(M,N) has the same distribution

as the largest eigenvalue of the Laguerre Unitary Ensemble, that is of a complex Wishart

matrix AA∗ where A is an N×M matrix with entries that are independent complex Gaussian

variables with mean zero and variance 1
2
.

It was recently established by E. Paquette and O. Zeitouni [8] that (whenever the GUE is

constructed from a given infinite array of Gaussian variables on the same probability space),

lim sup
N→∞

λ̃N
(logN)2/3

=
(1

4

)2/3
almost surely. It is reasonable to expect (see [8]) that a similar behaviour, of order (logN)2/3,

holds for the largest eigenvalue of a Wishart matrix. One crucial aspect of the investigation

[8] is that the subsequence N = k3 carries much of the almost sure behaviour (and determines

the limiting value) in contrast with the standard geometric subsequences in the classical block

argument of the law of the iterated logarithm (which yields the log log normalization). See

e.g. [3] for a survey on the classical law of the iterated logarithm and some relevant references.

The work [8] also presents a result on the liminf with rate (logN)1/3, although with non-

optimal limits at this point. The different powers 2
3

and 1
3

of the normalizations reflect the

different right and left tails of the Tracy-Widom distribution (1) (as the square-root of the

standard law of the iterated logarithm reflects the symmetric Gaussian tails).

However, in the last passage percolation representation, the almost sure behaviour actu-

ally turns out to be much smaller and of more classical log log type.

Theorem 1. There exists αsup > 0 such that

αsup ≤ lim sup
N→∞

H̃N

(log logN)2/3
≤
(3

4

)2/3
with probability one.

It is expected that αsup =
(
3
4

)2/3
and we actually provide a proof of it based on the

suitable tail estimate which is commonly believed to hold true.

There is a similar, although weaker, result for the liminf.

Theorem 2. There exists 0 < αinf <∞ such that

−αinf ≤ lim inf
N→∞

H̃N

(log logN)1/3
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with probability one.

We have not been able to show the existence of βinf > 0 such that

lim inf
N→∞

H̃N

(log logN)1/3
≤ −βinf

with probability one. From the Tracy-Widom asymptotics (see (1) below), it may be con-

jectured that αinf = βinf = (12)1/3.

The proofs of Theorem 1 and 2 rely on precise tail inequalities on the distribution of

H([γN ], N) together with blocking arguments on the path representation. Roughly speaking,

the powers 2
3

and 1
3

reflect the right and left tails of the Tracy-Widom distribution

1− F2(x) = e−
4
3
x3/2(1+o(1)), F2(−x) = e−

1
12
x3(1+o(1)) (1)

as x → ∞ (cf. e.g. [1]), whereas the log log is the result of a block argument along geo-

metric subsequences. One main difference with the random matrix models is that the path

representation allows for (point-wise) superadditivity, not available for extremal eigenval-

ues, which leads to strong decorrelation and the almost sure log log behaviour. Indeed, the

identity between the law of H([γN ], N) and the law of the largest eigenvalue of a Wishart

matrix for fixed N does not extend at the level of the joint distributions of the sequences

(in particular correlations between two levels). As a consequence, the proofs here turn out

to be simpler than the study developed in [8] which is making use of delicate decorrelation

estimates obtained via a hard analysis of the determinantal kernel of the GUE.

The picture on the tail inequalities used in this note is a bit incomplete at this point,

impacting the main conclusions, although sharp versions should reasonably hold true.

First, the large deviation estimates developed by K. Johansson in [4] show that

lim
N→∞

1

N
logP

(
H([γN ], N) ≥ (a+ ε)N

)
= −J(ε) (2)

for each ε > 0 where J is an explicit rate function such that J(x) > 0 if x > 0. On the left

of the mean,

lim
N→∞

1

N2
logP

(
H([γN ], N) ≤ (a− ε)N

)
= −I(ε) (3)

for each ε > 0 where I(x) > 0 if x > 0.

A superadditivity argument (see [4] and below) actually allows in (2) for the upper bound

P
(
H([γN ], N) ≥ (a+ ε)N

)
≤ e−J(ε)N (4)

for any N ≥ 1 and ε > 0. The relevant information on J is that (cf. [4])

lim
ε→0

J(ε)

ε3/2
=

4

3b3/2
. (5)

(See also [5].)
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Below the mean, we can make use of the results of [6] in the random matrix interpretation

of H([γN ], N) as the largest eigenvalue of a Wishart matrix from which, for some c, C > 0

only depending on γ,

P
(
H([γN ], N) ≤ (a− ε)N

)
≤ C e−cε

3N2

(6)

for every ε > 0 and N ≥ 1.

To investigate the lower bound in Theorem 1, we will also need a lower bound on the

probability in (4), but the sharp version is not so explicit in the literature. First, in the

random matrix description [6], it may be stated that

P
(
H([γN ], N) ≥ (a+ ε)N

)
≥ c e−Cε

3/2N (7)

for every 0 ≤ ε ≤ 1 and N ≥ 1, where c, C > 0 only depend on γ. This inequality is actually

not detailed in [6] but, as explained there, the same arguments may be used.

To further discuss this lower bound in a sharper version, it is of interest to widen the

scope. The investigation here may indeed be considered similarly for random variables Xi,j

with a geometric distribution rather than exponential as in the original contribution [4],

and Theorems 1 and 2 extend to this setting. The fluctuations and large deviations are

actually established initially for geometric distributions in [4] (with suitable values of a, b

and a suitable J function), the exponential case being seen as the limit of the geometric

model with parameter tending to 1. The tail inequality (4) to the right of the mean holds

similarly. Below the mean, in the context of geometric random variables, a refined Riemann-

Hilbert analysis on the determinantal structure of the underlying Meixner Ensemble has

been developed in [2] to show that

logP
(
H([γN ], N) ≤ aN − xbN1/3

)
= − 1

12
x3 +O(x4N−2/3) +O(log x) (8)

uniformly over M ≤ x ≤ δN2/3 for some (large) constant M > 0 and some (small) constant

δ > 0, and every N large enough. Although not written explicitly, it is expected that the

same method (even in a simpler form) may be used above the mean to yield

logP
(
H([γN ], N) ≥ aN + xbN1/3

)
= −4

3
x3/2 +O(x2N−1/3) +O(log x) (9)

uniformly over M ≤ x ≤ δN1/3 for some (large) constant M > 0 and some (small) constant

δ > 0, and every N large enough. The exact value of the lower bound in Theorem 1 relies on

(9). What would actually be needed for this proof is that, for every η > 0, there exist M > 0

(large) and κ > 0 (small) so that for every N large enough, uniformly over M ≤ x ≤ Nκ,

P
(
H([γN ], N) ≥ aN + xbN1/3

)
≥ e−

4
3
(1+η)x3/2 . (10)

The same Riemann-Hilbert analysis on the Laguerre Unitary Ensemble yields (8) in the

exponential case, and supposedly also (9) (as well as in the GUE setting). In particular,

(8) provides a sharp (two-sided) version of (6) while (9) matches (4) and would provide the
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sharp version of (7). Another support for (9), or rather (10), is Lemma 7.3 of [8] which

yields the sharp lower bound in the framework of the GUE with arguments which should

similarly apply to the Laguerre Unitary Ensemble and, with perhaps more work, to the

Meixner Ensemble. Taking (10) for granted, we will prove the sharp version of Theorem 1

with α =
(
3
4

)2/3
both in the exponential and geometric cases.1

2 Proofs

Before addressing the proof of the main results, we emphasize a few useful tools. To start

with, to avoid some unessential technicalities, in the definition of H(M,N) (and related

quantities of the same type), we will actually consider sums
∑

(i,j)∈πXi,j − X1,1 (that is

omitting the common initial point of all paths). It is clear that this change does not alter

any of the limits studied here.

Next, we recall from [4] the simple but basic superadditivity property. For simplicity, we

write below WN = H([γN ], N), N ≥ 1, γ ≥ 1 being fixed throughout this work. Whenever

1 ≤ N ≤ L, let W[N,L] be the maximum of up/right paths joining ([γN ], N) to ([γL], L) in

N×N (with therefore the preceding convention, that is omitting X[γN ],N in the sums). Then,

as is immediate,

WN +W[N,L] ≤ WL (11)

and WN and W[N,L] are independent.

Finally, it will be useful to rely on the following maximal inequality of the type of the

classical Ottaviani inequality for sums of independent random variables or vectors (cf. [7]).

Lemma 3. For any real numbers t, s, and any integers 1 ≤ K < L,

P
(

max
K≤N<L

(WN − aN) ≥ t
)
≤ P(WL − aL ≥ t+ s)

minK≤N<L P(WL−N − a(L−N) ≥ s)
.

Proof. Let CK = {WK − aK ≥ t} and, for K < N < L,

CN = {WN − aN ≥ t} ∩
⋂

K≤M<N

{WM − aM < t}.

The sets CN , K ≤ N < L, are disjoint and⋃
K≤N<L

CN =
{

max
K≤N<L

(WN − aN) ≥ t
}
.

1As indicated by the referee, (9), or rather (10), should actually be much simpler than (8). The probability

to estimate basically amounts to eTr(K) where K is the Meixner kernel restricted to the interval [aN +

xbN1/3, aN + N1/3+δ] which is roughly of order e−
4
3x

3/2

as x → ∞. The estimates provided in [4] should

then potentially yield the conclusion. However, we have not been able to make precise the technical steps

towards this goal so that we prefer to state the conclusion conditionally, although indeed the sharp result

should hold true.
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Then,

P(WL − aL ≥ t+ s) ≥
∑

K≤N<L

P
(
WL − aL ≥ t+ s, CN)

≥
∑

K≤N<L

P
(
W[N,L] − a(L−N) ≥ s, CN)

=
∑

K≤N<L

P
(
W[N,L] − a(L−N) ≥ s

)
P(CN)

where we successively used superadditivity and independence of W[N,L] and CN . Finally,

W[N,L] has the same distribution as

H
(
[γL]− [γN ] + 1, L−N + 1

)
≥ WL−N

from which the conclusion follows. Note for the further purposes that for N = L− 1, WL−N

might be 0 so that the result is only of interest for s ≤ −a.

We address the proof of the limsup theorem. We argue similarly in the exponential and

geometric cases, making clear which tail inequality is used.

Proof of Theorem 1. Let φ : N → R be defined by φ(n) = (log log n)2/3 if n ≥ ee, and

φ(n) = 1 if not, and nk = [ρk], k ∈ N, for some ρ > 1 to be made precise below.

We start with the upper bound. For β > 0 and k ≥ 1, let

Ak =

{
max

nk−1≤N<nk

H̃N

φ(N)
≥ β

}
.

We aim at showing that for every β >
(
3
4

)2/3
,
∑

k P(Ak) <∞, so that the conclusion follows

by the Borel-Cantelli lemma.

By definition of H̃N ,

P(Ak) ≤ P
(

max
nk−1≤N<nk

(WN − aN) ≥ βbn
1/3
k−1φ(nk−1)

)
.

By the maximal inequality of Lemma 3 (with s = −a),

P(Ak) ≤
1

D
P
(
Wnk − ank ≥ βbn

1/3
k−1φ(nk−1)− a

)
where

D = min
nk−1≤N<nk

P
(
Wnk−N − a(nk −N) ≥ −a

)
The weak convergence of (WN − aN)/bN1/3 easily ensures that for some d > 0, D ≥ d for

every large k. Let then β > β′ >
(
3
4
)2/3. Provided ρ is close enough to 1, for every k large

enough,

βn
1/3
k−1φ(nk−1)− a ≥ β′n

1/3
k φ(nk).
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Now, by (4) (and (5)), for every 0 < η < 1 and every k large enough,

P
(
Wnk ≥ ank + β′bn

1/3
k φ(nk)

)
≤ e−

4
3
(1−η)β′3/2φ(nk)3/2 .

At this point therefore, for every k large enough,

P(Ak) ≤
1

d
e−

4
3
(1−η)β′3/2φ(nk)3/2 .

Since β′ >
(
3
4
)2/3, there is η > 0 such that the right-hand side of the preceding inequality

defines the general term of a convergent series. Hence
∑

k P(Ak) < ∞ which completes the

proof of the upper bound.

Next, we turn to the lower bound. Recall that nk = [ρk], k ∈ N, where ρ > 1. Assume

first that there exists α > 0 such that for any ρ > 1,∑
k≥1

P
(
W[nk−1,nk] ≥ a(nk − nk−1) + αb(nk − nk−1)1/3φ(nk − nk−1)

)
= ∞. (12)

Since the random variables W[nk−1,nk], k ≥ 1, are independent, by the independent part of

the Borel-Cantelli lemma, on a set of probability one, infinitely often in k ≥ 1,

W[nk−1,nk] ≥ a(nk − nk−1) + αb(nk − nk−1)1/3φ(nk − nk−1).

On the other hand, according to (6) in the exponential case or (8) in both the exponential

and geometric cases, for any δ > 0,∑
k≥1

P
(
Wnk−1

≤ ank−1 − δbn1/3
k−1φ(nk−1)

)
< ∞.

Hence, almost surely, for every k large enough,

Wnk−1
≥ ank−1 − δbn1/3

k−1φ(nk−1).

As a consequence of the superadditivity inequality (11), on a set of probability one,

infinitely often in k,

Wnk ≥ ank + αb(nk − nk−1)1/3φ(nk − nk−1)− δbn1/3
k−1φ(nk−1).

For every α′ < α, if ρ > 1 is large enough,

αb(nk − nk−1)1/3φ(nk − nk−1)− δbn1/3
k−1φ(nk−1) ≥ α′bn

1/3
k φ(nk).

Therefore, infinitely often in k,

H̃nk =
Wnk − ank
bn

1/3
k

≥ α′φ(nk).

Hence, since α′ < α is arbitrary,

lim sup
N→∞

H̃N

φ(N)
≥ α (13)
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almost surely.

It remains to discuss the choice of α > 0 so that (12) holds. Set mk = nk − nk−1 and

recall that W[nk−1,nk] has the same distribution as

H
(
[γnk]− [γnk−1] + 1, nk − nk−1 + 1

)
≥ Wmk .

On the basis of (7), for some c, C > 0 and every k ≥ 1 large enough,

P
(
Wmk ≥ amk + αbm

1/3
k φ(mk)

)
≥ c e−Cα

3/2φ(mk)
3/2

.

Provided α > 0 is small enough, (12) is satisfied. Now, if we agree that (10) holds true, for

every η > 0 and every k ≥ 1 large enough,

P
(
Wmk ≥ amk + αbm

1/3
k φ(mk)

)
≥ e−

4
3
(1+η)α3/2φ(mk)

3/2

.

In this case, (12) is satisfied for all α <
(
3
4

)2/3
, yielding by (13) the conjectured lower bound

in Theorem 1.

Next, we turn to the liminf theorem. Since the superadditivity property is only one-sided,

a different (weaker) strategy has to be followed, yielding in particular non-optimal bounds.

Proof of Theorem 2. Let ψ(n) = (log log n)1/3 if n ≥ ee, and ψ(n) = 1 if not. Let 0 < τ < 1

and set here nk = [ek
τ
], k ≥ 1.

By the Borel-Cantelli lemma, it is enough to establish that
∑

k P(Bk) <∞ where

Bk =

{
min

nk−1<N≤nk

H̃N

ψ(N)
≤ −2α

}
for some (large enough) α > 0. For every k ≥ 1,

P(Bk) ≤
nk∑

N=nk−1+1

P
(
H̃N

ψ(N)
≤ −2α,

H̃nk−1

ψ(nk−1)
≥ −α

)
+ P

(
H̃nk−1

ψ(nk−1)
≤ −α

)
. (14)

Now

P
(

H̃nk−1

ψ(nk−1)
≤ −α

)
= P

(
Wnk−1

≤ (a− ε)nk−1
)

where εnk−1 = αbn
1/3
k−1 ψ(nk−1). By (6) in the exponential case or (8) in both the exponential

and geometric cases,

P
(
Wnk−1

≤ (a− ε)nk−1
)
≤ C e−c(αb)

3ψ(nk−1)
3

.

The right-hand side defines the general term of a convergent series whenever α > 0 is large

enough.
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Next, by superadditivity (11),

P
(
H̃N

ψ(N)
≤ −2α,

H̃nk−1

ψ(nk−1)
≥ −α

)
≤ P

(
W[nk−1,N ] ≤ a(N − nk−1)− 2αbN1/3ψ(N) + αbn

1/3
k−1 ψ(nk−1)

)
≤ P

(
WN−nk−1

≤ (a− ε)(N − nk−1)
)

where now ε > 0 satisfies

ε(N − nk−1) = αb
[
2N1/3ψ(N)− n1/3

k−1 ψ(nk−1)
]
.

By (6) or (8) again,

P
(
WN−nk−1

≤ (a− ε)(N − nk−1)
)
≤ Ce−c ε

3(N−nk−1)
2

.

Now, for every nk−1 < N ≤ nk,

2N1/3ψ(N)− n1/3
k−1 ψ(nk−1) ≥ N1/3

so that ε(N − nk−1) ≥ αbN1/3. In addition, for some δ > 0 and every k large enough,

N

N − nk−1
≥ nk−1

nk − nk−1
≥ δ k1−τ .

Hence,
nk∑

N=nk−1+1

e−c ε
3(N−nk−1)

2 ≤
nk∑

N=nk−1+1

e−cδ(αb)
3k1−τ ≤ ek

τ

e−cδ(αb)
3k1−τ .

Provided τ < 1
2
, the right-hand side defines the general term of a convergent series in k.

Together with the previous step and (14),
∑

k P(Bk) < ∞, and the proof of Theorem 2 is

complete.
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