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heat flow monotonicity

heat kernel/semigroup/equation

various settings

basics on heat kernel

heat semigroup, heat equation in R"



HEAT KERNEL
standard heat kernel on R"

1
he(x) = 5 e PP/ 50, x e R

solution of Oy = Al

heat semigroup ¢ :R" — R

Hip(x) = o *hy(x) = / ply) eyl @ dgn/z’ t>0, xeR"
n 7

HsoH; = Hgyy, Hp =1d

probabilistic interpretation

Hip(x) = E(p(x 4+ By)), (Bi)»y Brownian motion



HEAT EQUATION

—|x—y|? d n
Hip(x) = @*hy(x) = /”@(y)e lx=y| /4t(4my)n/2’ t>0, xeR

HsoH; = Hgyy, Hp =1d

for every ¢ : R" — R bounded and continuous
u(t,x) = Hyp(x), t>0, xeR"
solution of (heat equation)
O = Au on 10,00 xR"

with initial condition (0, -)

2

(A generatorof (H;).,, H; = e'®)



HEAT KERNEL /SEMIGROUP / EQUATION
huge topic: mathematics, physics, mechanics, biology...
domains on R" (Dirichlet, Neumann, mixture)

heat semigroup on a Riemannian manifold (M, g)
generator Laplace-Beltrami operator A

geometric structures

with drift L =A — (VV,V)
V :R" — R smooth, ¢ Vdx invariant measure
Pi=¢l t>0,
u = P;f solves Ou = Lu

example: V(x) = % Ornstein-Uhlenbeck semigroup



FOKKER-PLANCK

partial differential equations

dual formulation of

o = Lu, L=A-(VV,V)

Fokker-Planck equation
op = Ap+ V- (pVV)

probability densities p = p(t,x) (= ue

(with respect to Lebesgue measure)



developments of the last decades

fruitful interactions
between heat flow approach

and geometric and functional inequalities

heat flow monotonicity
multiple integral inequalities,

Sobolev and isoperimetric-type inequalities

illustration in a (very!) elementary sample example



HOLDER'S INEQUALITY

sample example

Rnfog1*9dx < </”fdx>9(/wgdx)la

fig R" 5 Ry, 6el0,1]

show that, for every t > 0,

Hi(fg" %) < (Hef)(H:g)'™°

lim (471)"/*Hy :/ pdx

t—o00

inequality between functions, at every point (omitted)



HEAT FLOW MONOTONICITY

Hi(f'5'™") < (Hf)'(Hig)'™

interpolation along the heat semigroup (Duhamel’s principle)
As) = Hi((Hi—sf)’ (Hi-s8)' "), s[04
decreasing
Hi(f’8'7) = A(t) < A(0) = (Hif) (Hig)'™"

take derivative!

A(s) < 07



F = logH; sf, ef =H; f, G =logH; g, ¢ =H; ;g
A(s) = Hy(e"e1=96) = Hy(eX)

K = 6F+(1-0)G

similarly for G



TIME DERIVATIVE
F =logH; sf, G =1logH;sg, K=60F+(1-6)G
A(s) = Hy(eX)
chain rule
N'(s) = 0sH(e") + Hs(0s(eX))
heat equation
OsH;(eX) = AH,(eX) = HyA(eX)
0s(eX) = koK = —eX[feTA(e") + (1 - 0)e CA(e")]

A(s) = H, <eK [e—KA(eK) —[oeFAEF) +(1- e)e—GA(eG)]])



SPACE DERIVATIVE
A(s) = H, (eK [e’KA(eK) — [peEAF) + (1 - 0)e’GA(eG)]]>

derivation in space e FA(ef) = AF + |VF?

similarly for G and K = 6F+ (1 -6)G
N(s) = H, (eK[|w<|2 —GVEP - (1— 9)|vc\2])
VK = 6VF+ (1 -6)VG

(quadratic) convexity ~ A'(s) < 0



HEAT FLOW PROOF OF HOLDER'S INEQUALITY

important aspect of the heat flow proof

reduction to a quadratic inequality

(forany 6 € [0,1])

proof of Holder by Cauchy-Schwarz!

introduction of geometric features



BRASCAMP-LIEB INEQUALITIES

H. Brascamp, E. Lieb (1976)
K. Ball (1989)

uy, ..., Uy, unitvectorsin R”"

decomposition of the identity

m
chuk@)uk = Idgn»
k=1

0<¢g <1, k=1,....,m

for all non-negative functions f,:R — R, k=1,...,m

/”zﬁf"ck(<“k’x>)dx < ﬁ(/Rfkdx>Ck



BRASCAMP-LIEB INEQUALITIES
m m Ck
LTI omax < T ( [ tv)
R k=1 k=1 VR
decomposition of the identity > " ;| cxuy @ 1y = Idps

Dk Gk =1

improvement of Holder’s inequality

in the directions u;, k=1,...,m



BRASCAMP-LIEB INEQUALITIES

example: decomposition of the identity in R?

along the cubic roots of unity

3 2/3
[ FPWES (b 0B fypasty < TT( [ )
k=1

best constants in Young’s convolution inequality
Shannon’s inequality in information theory

hypercontractivity



BRASCAMP-LIEB INEQUALITIES

multidimensional versions

H. Brascamp, E. Lieb (1976) rearrangements
F. Barthe (1998)  optimal transport

heat flow monotonicity
E. Carlen, E. Lieb, M. Loss (2004)
J. Bennett, A. Carbery, M. Christ, T. Tao (2008)
geometric and combinatorial analysis of extremal functions

sphere, symmetric spaces, Lie groups

discrete models, symmetric group



GAUSSIAN BRASCAMP-LIEB INEQUALITIES

standard Gaussian measure on R"

. . _‘X‘Z/Z dx

(product of dv; on R)

m
chuk@)uk = Idgn
k=1

0<c¢ <1, k:1,...,m

for all non-negative functions f; :R — R, k=1,...,m

/” zﬁfzk«uk’@)hﬂ(’c) < ﬁ(/[gfkd/yl)q(



AN EXAMPLE

n=2 m=2, M1:(1,0), ”2:(/0;\/1—02>a ,OE]O,].[
(sub-) decomposition of identity  cju1 @ 1y + coup @ up < Idpe

1,02 €]0,1[, pPrca = (1—c1)(1 — )

fi,f»: R — R non-negative
/R/Rffl(xl)fZCZ(pxl + V1 — p2xg)dry(x1)dy(x2)

< (frer) (L)



AN EXAMPLE
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Py = T,—+,t >0 Ornstein-Uhlenbeck semigroup
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(sub-) decomposition of identity  cju1 @ 1y + coup @ up < Idpe

1,02 €]0,1[, pPrca = (1—c1)(1 — )

f1.f2 : R" — R non-negative

[ [ s on + V= P

< (fan) (frs)



AN EXAMPLE

Tpp(x) = / p(px + 1= p2y)dy(y), xeR"

T, contractionin LF(y), 1<p<oo

Py = T,~+,t >0 Ornstein-Uhlenbeck semigroup

Langa < ([ am) ([ ae)

1 1 i
Plza; Pzzgv fi—>f;'pl

duality



HYPERCONTRACTIVITY
E. Nelson (1966)

1T, £l < 11,

1 _p-1
P> p2—1

1< py <p) < oo,

stronger than contractivity: L¥i(y) C LP2(y)

quantum field theory

smoothing property

Sobolev-type inequalities



LOGARITHMIC SOBOLEV INEQUALITY

L. Gross (1975)

hypercontractivity
ITofly < Wl Ph=1+ (2 —1)
derivativein p (— 1)
equivalent to logarithmic Sobolev inequality

[ rogstay <2 [ (vay, [ fay=1
R” R” R”

proof by Ornstein-Uhlenbeck semigroup D. Bakry, M. Emery (1985)



LOGARITHMIC SOBOLEV INEQUALITY

logarithmic Sobolev inequality

[ rrogptay <2 [ (vfay, [ fav=1
R~ R” R~

classical Sobolev inequality in R" (n > 3)

1P, < CullVFIB = Cu | IVfPdx, £ eClR?)

logarithmic Sobolev inequality: independent of dimension

infinite dimensional analysis



1P, < CullVFIE = Cu [ V7Pax

root of the full scale of Sobolev inequalities

f=f

Il e < Cop IVl 1<p<n



A C R" same volume as a ball B

vol,(A) = vol,(B) = wy,r"

vol,_1(0B) = nw,r"!

vol,_1(8B) = nwy "vol,(A)"=D/" < vol,_;(9A)



GAUSSIAN ISOPERIMETRY

standard Gaussian measure on R"

) =

(2m)n/2

‘ A
N» R
.j":»k‘g



GAUSSIAN ISOPERIMETRY

standard Gaussian measure on R"

dx

— o2 _ 2t
dy(x) = e (2n)72

boundary measure
1
7(8A) = liminf = [y(A:) — ~(A)]

e—=0 €

A: neighbourhood of A

what are the extremal sets

of the isoperimetric problem for ~?



GAUSSIAN ISOPERIMETRY
half-spaces

H = {xeR" (x,u) <a}, ucR" unitvector, a¢cR

Gaussian isoperimetric inequality

if 7(A) =~(H) then 7(dA) > ~(dH)

iy




(dimensionone)  H = {x = (x1,...,x,) € R"; xy < a}

a 5 —a?/2
WH) = [ e R —a@, y(0H) = ¥ =

z,

o 12 1



HIERARCHY

heat flow monotonicity

¢
hypercontractivity

0

logarithmic Sobolev inequalities

i

Gaussian isoperimetry

17

heat flow monotonicity



C. Borell (1985)

Tup) = [ plox+VI= @i, xe®

Py = T,~+,t >0 Ornstein-Uhlenbeck semigroup




GAUSSIAN ISOPERIMETRY

[ Ty < [ 11,0007

1(04) > tmsup [T [vm) - [ 1 TpmlA)dv}
p— P 2

with equality for half-spaces

if 7(A) =y(H) then 7(9A) > 7(9H)

Gaussian isoperimetric inequality



BORELL'S THEOREM

C. Borell (1985)

Tpp(x) = /ﬂ{{nw(pX+vlpzy)dv(y)» x €R"

Py = T,~+,t >0 Ornstein-Uhlenbeck semigroup
A,B Borelsetsin R", p € [0,1]
| T < [ 1,00
H,K half-spaces, v(H) = 7(A), v(K) = ~(B)

rearrangement techniques A. Ehrhard (1983)



E. Mossel, J. Neeman (2015)

J, function
/R 14 T,(15)dy < /R 1y T,(1x)dy = J,(u,0), u = ~(H), v = 7(K)

Jp 10,1 = [0,1]  explicit

Jo(L1) =1, Jp(1,0) = J,(0,1) = J,(0,0) = 0




HEAT FLOW PROOF

L 1014 ta(ox+ VI= 29))dr (i)

< ]p(/n ﬂAd%/n ]le’Y>

replace 14 by P14, 1p by Pilg, t>0
Py = T,~+,t >0 Ornstein-Uhlenbeck semigroup

generator L = A — (VV,V), V(x) = 1|x?

run the flow between t=0 and t=

variationsin t >0



CONCAVITY

L 1014 ta(ox+ VI= 29)dr (09

< ]p(/n ﬂAd%/ﬂ ]le’Y>

provided

( onJ, 0312]p>
po12], On],

is negative definite

hypercontractivity  JH(u,0) = u“v?,  p?cico = (1 —c1)(1 —c)

Bellman functions P. Ivanisvili, A. Volberg (2015)



C. Borell (1985)

Tup) = [ plox+VI= @i, xe®

Py = T,~+,t >0 Ornstein-Uhlenbeck semigroup




HEAT FLOW PROOF OF ISOPERIMETRY
isoperimetric comparison theorem
du = e Vdx probability, V:R" — R smooth
Hess(V) > pld

comparison of isoperimetric profile

1
T, > —T

\/)5 Y
infinite dimensional analogue of the Lévy-Gromov theorem
Riemannian manifold (M",g), Ric > n—1

Ivolg > Tsn



HEAT FLOW PROOF

heat flow proof of classical isoperimetric inequality in R"?

on the sphere S"?

mass transportation
H. Knothe (1957), M. Gromov (1980),

B. Klartag (2017), F. Cavaletti, A. Mondino (2017)

metric measure space
synthetic Ricci curvature lower bounds

J. Lott, C. Villani, K.-Th. Sturm (2005-10)



NOISE STABILITY

heat flow proof of Borell’s theorem

motivation: noise stability
theoretical computer science
Boolean analysis on {0,1}"
social choice, cryptography,

complexity, learning theory,

hardness of approximation, random graphs...



GAUSSIAN NOISE STABILITY

Gaussian setting: probabilistic interpretation

X :Q — R" with distribution ~

XP = pX++1-p2Y

Y independent copy (noise)
correlation E(X ® X*) = pld
f,g:R" - R non-negative

E(f(X)3(X?)) = /Rnprgdv



GAUSSIAN NOISE STABILITY

A Borel setin R”
S,(A) = P(X e A X eA)

noise stability of A  (sensitivity)

stablest sets?
S,(A) = E(1a4(X)14(X")) = / 14 Tp(1a)dy
Borell’s theorem

/]lATp(ILB)d’yS / 1 Tp(Lk)dy
n JRn

half-spaces are the most stable



DISCRETE CUBE

{—1,+1}" discrete cube

X = (X1,...,X,) uniformon {—1,+1}"

XP uniform and p-correlated
XP = (X{,.... X))
Y independent copy

X! = X; with probability p and X’ =Y; with probability 1— p

correlation E(X ® X?) = pld



X = (Xy,...,X;) uniformon {—1,+1}"

XP uniform and p-correlated

stablest sets?

PX€A) =3



Sp(A) = P(X €A XP €A

1

lim S,(M,) = - — zi arccos(p)

n—00 2 s

W. Sheppard 99



Sp(A) = P(X €A XP €A

. 1 1
nlggo S,(My) = 5 5 arccos(p)

W. Sheppard... 1899

1

1 11
lim Earccos(p) =1o(5.5)

central limit theorem



MAJORITY IS STABLEST ?

X = (Xq,...,Xn) uniformon {-1,+1}"
X? uniform and p-correlated

S)(A) =P(XeAXPeA) (PXeA=1)

is it true that

) ?

NI—

Sp(A) < I,(3,

no, dictator D = {x; = +1}

S,(D) = P(XeD,X’eD) = }L(l+p) > J,(3,3)



INFLUENCE

dictators have a notable coordinate

influenceof i=1,...,n on AC {-1,+1}"
L(A) = P(X e A m(X) ¢ A)

Ti(x) = (Xl,.. =Xy ,xn)

dictator: big influences 1

majority: small influences (= 0)

s



MAJORITY IS STABLEST

E. Mossel, R. O’Donnell, K. Oleszkiewicz (2010)

Majority is Stablest among sets with small influences

for € >0,

if L;i(A)<n(p,e), i=1,...,n, then

approximation of the Gaussian model

by central limit theorem for multilinear forms



MAX-CUT

Max-Cut problem in graph theory

’v-~~\

NP-complete
optimality of the proportion of algorithmic approximation

under the unique game conjecture of S. Khot

polynomial algorithm of proportion given by J, (%, %)



RECENT DEVELOPMENTS

simplified proof of Majority is Stablest
A. De, E. Mossel, ]. Neeman (2016)

discrete version of Borell’s inequality

as a four-point inequality

(analogue of two-point inequality of hypercontractivity

Bonami-Beckner inequality)

symmetric group, graphs...



Thank you for your attention



