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Abstract

Let X1, . . . , Xn be independent random variables with common distribution the stan-

dard Gaussian measure µ on R2, and let µn = 1
n

∑n
i=1 δXi be the associated empirical

measure. We show that, for some numerical constant C > 0,

1

C

log n

n
≤ E

(
W2

2(µn, µ)
)
≤ C

(log n)2

n

where W2 is the quadratic Kantorovich metric, and conjecture that the left-hand side

provides the correct order. The proof is based on the recent pde and mass transportation

approach developed by L. Ambrosio, F. Stra and D. Trevisan.

1 Introduction

Given x1, . . . , xn and y1, . . . , yn in Rd, and p ≥ 1, the optimal matching problem raises the

question of controlling

inf
1

n

n∑
i=1

|xi − yσ(i)|p

where the infimum runs over all permutations σ of {1, . . . , n} (and | · | is the Euclidean dis-

tance on Rd). The random matching problem deals with samples X1, . . . , Xn and Y1, . . . , Yn of

independent and identically distributed (iid) random variables in Rd, and a first order analysis

aims at studying the order of growth in n of the averages

E
(

inf
1

n

n∑
i=1

|Xi − Yσ(i)|p
)
. (1)
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Optimal matching problems have been investigated from various viewpoints in both the math-

ematics and physics literature, and we refer for example to the monographs [38, 33] for some

account on the subject.

A typical and most central instance of the optimal matching problem is provided by the

example of independent Xi and Yi uniformly distributed on the unit cube [0, 1]d. Since the

typical distance between n points in [0, 1]d is of order 1
n1/d , the quantities (1) are expected to

be of the order 1
np/d . However, this is only correct when d ≥ 3. While it is of the order 1

np/2 in

dimension one due to the specific structure in this case, a major and groundbreaking result in

this setting is the Ajtai-Komlós-Tusnády theorem [1] stating that in dimension d = 2,

E
(

inf
1

n

n∑
i=1

|Xi − Yσ(i)|p
)
≈
( log n

n

)p/2
(2)

where A ≈ B expresses that C−1A ≤ B ≤ CA for some C > 0 (independent of n). This

two-dimensional phenomenon is one most interesting feature of the analysis due to the fact

emphasized in [33] that “obstacles to matchings at different scales may combine in dimension 2

but not in dimension d ≥ 3”.

The preceding questions maybe addressed in the closely related transportation cost frame-

work between an empirical and a reference measure. The question is then formulated in terms

of the Kantorovich distances. Given p ≥ 1, the Kantorovich distance (cf. [35] e.g.) between

two probability measures µ and ν on the Borel sets of Rd with a finite p-th moment is defined

by

Wp(ν, µ) = inf

(∫
Rd×Rd

|x− y|pdπ(x, y)

)1/p

(3)

where the infimum is taken over all couplings π on Rd×Rd with respective marginals ν and µ.

As is classical,

inf
1

n

n∑
i=1

|xi − yσ(i)|p = Wp
p

(
1

n

n∑
i=1

δxi ,
1

n

n∑
i=1

δyi

)
. (4)

Denote then by X1, . . . , Xn independent random variables in Rd with common distribution

µ and let

µn =
1

n

n∑
i=1

δXi

be the empirical measure on the sample (X1, . . . , Xn). It has been a main question of interest

in probability and statistics to investigate the rate of convergence of µn to µ. In particular, the

order of decay in Kantorovich distances has attracted a lot of attention. We discuss here some

known results on the order of decay in n of the expectations

E
(
Wp

p(µn, µ)
)
, (5)

concentrating on upper bounds on these quantities. By the triangle inequality and (4), these

bounds immediately transfer to the matching problem between two samples. The parameters

entering the discussion are actually p ≥ 1, the distribution µ and the dimension d, and it turns
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out, as emphasized above, that the two-dimensional case is a particular, most interesting, issue.

We only highlight a few conclusions, refereeing to some relevant references for more complete

descriptions and results. For the matter of comparison, it would have been perhaps more

appropriate to consider the 1
p
-th power of (5), but to lighten the notation we leave it like that.

Furthermore, under mild concentration properties (see [8]), the behaviours of [E(Wp
p(µn, µ))]1/p

and E(Wp(µn, µ)) are of the same order.

The one-dimensional case is of particular nature due to explicit representations of the Kan-

torovich metrics Wp(ν, µ) in terms of the underlying distributions ν and µ. We refer to the

recent monograph [8] for an account on this case. In particular, it follows from the analysis

there that E(W1(µn, µ)) is of the order of 1√
n

for large families of distributions µ. For instance,

E
(
W1(µn, µ)

)
= O

( 1√
n

)
as soon as

∫
R |x|

qdµ <∞ for some q > 2. However, when p > 1 some differences occur already

on basic examples emphasizing the size of the support of µ as influencing the rate. For example,

if µ is uniform on a compact interval, E(Wp
p(µn, µ)) is of order 1

np/2 for any p ≥ 1 while for the

(standard) Gaussian distribution

E
(
Wp

p(µn, µ)
)
≈


1

np/2 if 1 ≤ p < 2,
log logn

n
if p = 2,

1
n(logn)p/2

if p > 2.

(6)

While the rate is therefore the same as in the uniform case for 1 ≤ p < 2, two changes occur as

p = 2 and p > 2. This result is achieved in [8] from a characterization of E(Wp
p(µn, µ)) when µ

is log-concave in terms of its isoperimetric profile (including further models of interest such as

for instance the exponential distribution).

Turning to d ≥ 1, for µ the uniform distribution on [0, 1]d, the Ajtai-Komlós-Tusnády

theorem [1], together with the corresponding result for d ≥ 3 (cf. [38, 33]), therefore expresses

that

E
(
Wp

p(µn, µ)
)
≈


1

np/2 if d = 1,(
logn
n

)p/2
if d = 2,

1
np/d if d ≥ 3.

(7)

(Actually, the upper bounds for d ≥ 3 seem only formally established for 1 ≤ p < d
2

in the

literature, but we provide below the suitable argument for the missing interval.) This result

was established in [1] for d = 2 by combinatorial arguments, then reproved and made more

precise by P. Shor [29] and M. Talagrand (cf. [31, 32, 33]) via generic chaining. The point is

that, from the Kantorovich representation (12),

W1(µn, µ) = sup
1

n

n∑
i=1

[
ϕ(Xi)− E

(
ϕ(Xi)

)]
where the supremum is taken over 1-Lipschitz maps ϕ, and as such the study enters the frame-

work of bounds on stochastic processes.
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The corresponding results for distributions with unbounded support gave rise to a number

of contributions. When p = 1, due to the works [17, 21, 37], the preceding extends to large

families of distributions. For example, when d = 2,

E
(
W1(µn, µ)

)
= O

(√
log n

n

)
(8)

as soon as
∫
R2 |x|qdµ <∞ for some q > 2.

When p > 1, the general investigations of [15, 9, 20] mainly based on dyadic decompositions

yield the following typical conclusions. If for example
∫
Rd |x|qdµ < ∞ for some q > p

1−κ where

κ = min(p
d
, 1
2
), then

E
(
Wp

p(µn, µ)
)

= O
( 1

nκ

)
. (9)

(Actually, in [20], the case p = d
2

involves some extra logarithmic factor.) As discussed in [20],

at this level of generality, these results are essentially optimal, and provide the correct orders

for d ≥ 3 (cf. (7)). Furthermore, for irregular laws, the decay can be faster (see [7, 15]), but we

do not address this issue here. With respect to the Ajtai-Komlós-Tusnády theorem however,

one structural aspect of the proof of the general bounds (9) is that, for d = 1 or 2, they will

never yield anything better than a rate of the order of 1√
n
.

Some of the preceding bounds have been supplemented by the existence of the suitably

renormalized quantity (5) as n → ∞ (cf. [16, 11, 15, 7]). A major recent achievement in this

regard is due to L. Ambrosio, F. Stra and D. Trevisan [4] who showed that for µ uniform on

[0, 1]2,

lim
n→∞

n

log n
E
(
W2

2(µn, µ)
)

=
1

4π
. (10)

The result actually applies to the (normalized) uniform measure on a two-dimensional compact

Riemannian manifold M , the factor 1
4π

expressing the common small time behaviour of the

trace of the Laplace operator in the form of

lim
t→0

4πt

∫
M

pt(x, x)dµ(x) = 1

where pt(x, y), t > 0, x, y ∈M , is the associated heat kernel. The methods of proof are based on

a deep analysis combining pde and mass transportation tools following an ansatz put forward

in the physics literature [12]. As such, the rates in (7) and the limit in (10) do actually reflect

the behaviour of the associated heat kernel depending in particular on the dimension. In case

of the 2-dimensional sphere, a proof of the optimal matching rate is provided in the recent [22]

via gravitational allocation.

The purpose of this work is to investigate E(Wp
p(µn, µ)) for the standard Gaussian law µ

on Rd for p = d = 2 (with some additional results for 1 ≤ p < 2 and d ≥ 1) with the methods

emphasized in [4], replacing the heat kernel by the Mehler kernel. The main conclusion is the

following statement.
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Theorem 1. Let X1, . . . , Xn be independent with common law the standard normal distribution

µ on R2, and set µn = 1
n

∑n
i=1 δXi

. For some numerical constant C > 0, and every n ≥ 2,

1

C

log n

n
≤ E

(
W2

2(µn, µ)
)
≤ C

(log n)2

n
. (11)

For this specific model, these bounds are much more precise than the general orders (9)

and are close to the example of the uniform measure on [0, 1]2. It may be conjectured that

the correct order should be given by the left-hand side of (11). This conjecture is supported

by simulations of F. Stra (communication from L. Ambrosio) which seem to indicate that the

corresponding limit in (10) could be 1
5
. Besides, the argument when applied to d ≥ 3 produces

also an extra logarithmic factor which is not necessary by (9). On the other hand, it will be

shown in the last part of this work that E(Wp
p(µn, µ)) ≈

(
logn
n

)p/2
for any 1 ≤ p < 2, and it

could be argued that in dimension one, there is a change of rate at p = 2.1

To establish Theorem 1, we will first quantify some of the geometric parameters entering the

asymptotic analysis of (10). These parameters will involve lower bounds on the curvature and

upper bounds on the heat kernels. This will be achieved via a functional and mass transporta-

tion analysis, following the steps in [4] but only extracting the relevant information towards an

upper bound. In this process, we will verify that the case d ≥ 3 of (7) holds true for any p ≥ 1

as conjectured in [4].

Turning to the content of this work, Section 2 presents the general transportation arguments

inspired from [4] to bound Kantorovich distances by suitable (dual) Sobolev norms. These tools

are then applied to the matching problem in the setting of weighted Riemannian manifolds

in Section 3, while in the subsequent section the full range of (7) is detailed. The direct

application of the general transportation bounds to the Gaussian model in Section 5 only yields

weak bounds which have to be tightened in Section 6 via an additional localization argument,

yielding Theorem 1. The last Section 7 addresses the range 1 ≤ p < 2.

2 Transportation bounds

This paragraph is devoted to the transportation analysis of developed by L. Ambrosio, F. Stra

and D. Trevisan in [4], on the basis of the heuristics of [12], yielding bounds on Kantorovich

metrics by dual Sobolev norms. In order to cover at the same time the framework of [4] and

instances with infinite support such as Gaussian measures, it is useful to consider the setting

of so-called weighted Riemannian manifolds.

The definition (3) of the Kantorovich distance may be formulated for probability measures

on a metric space, the Euclidean distance | · | being replaced by the distance ρ on the space. To

describe the results of this work, it will be convenient to deal with a metric space arising from a

1Note added in proofs: it has been proved recently by M. Talagrand that the correct rate in (11) is actually
(logn)2

n ; his arguments are of combinatorial nature. A subsequent proof in the spirit of the tools developed here

is provided in a follow-up of this work.
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smooth complete connected Riemannian manifold (M, g) without boundary of dimension d ≥ 1,

denoting by ρ the Riemannian distance and by dx the Riemannian volume element. To both

deal with compact Riemannian manifolds, in which case the Riemannian volume element will

be assumed to be normalized to a probability measure, and families of probability measures on

Rd with unbounded support, we will consider weighted probability measures dµ = e−V dx on

(M, g), where V : M → R is some smooth potential, and the resulting weighted Riemannian

manifold (M, g, µ). The modern geometric analysis of weighted Riemannian manifolds (M, g, µ)

is described by curvature-dimension conditions CD(K,N), K ∈ R, N ≥ 1, involving a lower

bound K on the extended Bakry-Émery-Ricci curvature and an upper bound N on the dimen-

sion (not necessarily topological) (cf. [35, 6]). Underlying these curvature-dimension conditions

is the second order differential operator L = ∆ − ∇V · ∇, where ∆ is the Laplace-Beltrami

operator on (M, g), with invariant and symmetric measure µ. A typical and central example

is of course simply the standard Gaussian measure dµ(x) = e−|x|
2/2 dx

(2π)d/2
on Rd with the asso-

ciated Ornstein-Uhlenbeck operator L = ∆ − x · ∇ yielding a weighted Riemannian manifold

with curvature-dimension CD(1,∞). More general frameworks covering these instances are

the settings of Markov triples (E, µ,Γ) of [6] and of RCD∗(K,N) Riemannian metric measure

spaces studied in [2, 3, 18] to which most of the conclusions developed here may be transferred.

Of particular usefulness in this study is the Kantorovich dual description of the metric

Wp(ν, µ) as

W1(ν, µ) = sup

(∫
M

ϕdν −
∫
M

ϕdµ

)
(12)

where the supremum runs over all 1-Lipschitz maps ϕ : M → R, and for p > 1,

1

p
Wp

p(ν, µ) = sup

(∫
M

Q1ϕdν −
∫
M

ϕdµ

)
(13)

where the supremum is taken over all bounded continuous functions ϕ : M → R and where

Qsϕ(x) = inf
y∈M

[
ϕ(y) +

ρ(x, y)p

psp−1

]
, s > 0, x ∈M,

is the infimum-convolution Hopf-Lax semigroup. It is classical (cf. e.g. [19]) that Qsϕ(x), s > 0,

x ∈M , solves the Halmiton-Jacobi equation

d

ds
Qsϕ = −1

q
|∇Qsϕ|q. (14)

in (0,∞)×M with initial condition ϕ, where 1
p

+ 1
q

= 1.

One first result is a control of the Kantorovich metric Wp(ν, µ) by the H−1,p-Sobolev norm of

the Radon-Nykodim derivative of ν with respect to µ. In the weighted Riemannian framework,

recall the second order differential operator L = ∆−∇V · ∇ for which the integration by parts

formula ∫
M

ϕ(−Lψ)dµ =

∫
M

∇ϕ · ∇ψ dµ (15)
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holds true for all smooth ϕ, ψ : M → R. Denote by (Pt)t≥0 the Markov semigroup with

infinitesimal generator L [6]. Formally the inverse (−L)−1 of the non-negative operator −L

may be described by

(−L)−1 =

∫ ∞
0

Pt dt

acting on mean zero functions in the suitable domain, a core of which being the set C∞c of C∞

compactly supported functions on M . Whenever the spectrum σ(−L) of −L is discrete, (−L)−1

can be spectrally represented on a suitable function f as

(−L)−1f =
∑

λ∈σ(−L)\{0}

1

λ
fλuλ (16)

where (uλ)λ∈σ(−L) is an L2(µ) orthonormal basis of eigenvectors and fλ = 〈f, uλ〉. Such a

picture occurs on a compact manifold for example. On Rd equipped with the standard Gaussian

measure µ, the family of Hermite polynomials provide an orthonormal basis of eigenvectors of

L2(µ) with eigenvalues λk = k, k ∈ N (counted with mutiplicity).

Define then, for every p ≥ 1, the dual Sobolev norm H−1,p(µ) by

‖g‖H−1,p(µ) =

(∫
M

∣∣∇((−L)−1g)
∣∣p dµ)1/p

for functions g : M → R with
∫
M
gdµ = 0 for which ∇((−L)−1g) exists and belongs to Lp(µ).

In the particular case p = 2, the integration by parts formula (15) and the symmetry of (Pt)t≥0
yield ∫

M

∣∣∇((−L)−1g)
∣∣2dµ =

∫
M

g(−L)−1g dµ

=

∫ ∞
0

∫
M

gPtg dµ dt

= 2

∫ ∞
0

∫
M

(Ptg)2dµ dt,

(17)

and in particular a simpler description of the admissible functions g.

For general p 6= 2, a variant of the dual Sobolev norm is provided by Riesz transforms

inequalities. For example on a compact manifold for the Riemannian measure dµ = dx, for any

1 < p <∞ and any smooth g : M → R,∫
M

|∇g|p dµ ≤ C

(∫
M

∣∣(−L)1/2g
∣∣pdµ+

∫
M

|g|pdµ)

)
.

This inequality follows from the more general investigation of Riesz transforms on weighted

Riemannian manifolds satisfying the curvature condition CD(K,∞) for some K ∈ R developed

by D. Bakry in [5]. It is a consequence of his result that the second term
∫
M
|g|pdµ on the right-

hand side may be omitted when K = 0, including the particular example of the Gaussian

model (going back in this case to [26]). It may mentioned in addition that this term may also
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be omitted when g is centered, at least in the compact setting. We briefly discuss this issue in

the relevant case p > 2. Indeed, it is enough to this purpose to ensure that

‖g‖pp =

∫
M

|g|pdµ ≤ C

∫
M

∣∣(−L)1/2g
∣∣pdµ = C

∥∥(−L)1/2g
∥∥p
p
.

But, by the Hardy-Littlewood theory for semigroups of N. Varopoulos [34],

‖g‖p ≤ C
(∥∥(−L)1/2g

∥∥
r

+ ‖g‖r
)

where 1
p

= 1
r
− 1

d
with 1 < r < d. Hence

‖g‖p ≤ C
(∥∥(−L)1/2g

∥∥
p

+ ‖g‖r
)

and after, if necessary, a finite number of iteration, it may be assumed that r ≤ 2. But then,

by the spectral gap or Poincaré inequality (see (19) below) – which holds true on a compact

manifold –, since g is centered,

‖g‖r ≤ ‖g‖2 ≤ C
∥∥(−L)1/2g

∥∥
2
≤ C

∥∥(−L)1/2g
∥∥
p

so that we indeed reach ‖g‖p ≤ C‖(−L)1/2g‖p.

As a consequence of this discussion, on a compact manifold, for p > 2 and any mean zero

smooth function g : M → R,

‖g‖pH−1,p(dx) =

∫
M

∣∣∇(−L)−1g)
∣∣p dµ ≤ C

∫
M

∣∣(−L)−1/2g
∣∣pdµ. (18)

This result will be used in Section 4 when extending (7) to any p ≥ 1 and d ≥ 1.

The following statement is the main energy estimate on the Kantorovich distance Wp(ν, µ)

between two probability measures ν and µ with ν absolutely continuous with respect to µ by

the dual Sobolev norm H−1,p(µ) of the Radon-Nikodym density f = dν
dµ

.

Theorem 2. For any 1 ≤ p < ∞, and for all dν = fdµ with f − 1 in the domain of the dual

Sobolev norm H−1,p(µ),

Wp(ν, µ) ≤ p ‖f − 1‖H−1,p(µ).

When p = 2, Theorem 2 is closely related to Poincaré-type inequalities and their connection

with transportation cost inequalities. Recall that if dν = fdµ, the relative entropy of ν with

respect to µ is given by

H
(
ν |µ

)
=

∫
M

f log f dµ.

It is a standard result (cf. [35, 6]) that if µ satisfies the quadratic transportation cost inequality

W2
2(ν, µ) ≤ 2C H

(
ν |µ

)
for some constant C > 0 and every ν absolutely continuous with respect to µ, then µ satisfies

the Poincaré inequality ∫
M

g2dµ ≤ C

∫
M

|∇g|2dµ (19)
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for any smooth g : M → R with
∫
M
gdµ = 0. This property may be established by a Taylor

expansion on dνε = (1 + εg)dµ as ε→ 0 together with the limit (cf. [35])

lim
ε→0

1

ε2
W2

2(νε, µ) = ‖g‖2H−1,2(µ).

In view of this asymptotics, the inequality of Theorem 2 is of the correct order for p = 2 up to

a factor 4.

Proof of Theorem 2. Let first p > 1. By a standard regularization procedure, it may be assumed

that f is smooth and that f > 0. Set then g = f − 1 so that g > −1 and
∫
M
gdµ = 0. Let

θ : [0, 1] → [0, 1] be increasing, smooth, with θ(0) = 0 and θ(1) = 1. For every bounded

continuous ϕ : M → R, by the Hamilton-Jacobi equation (14),∫
M

Q1ϕdν −
∫
M

ϕdµ =

∫ 1

0

d

ds

∫
M

(
1 + θ(s)g

)
Qsϕdµ ds

=

∫ 1

0

∫
M

[
θ′(s)g Qsϕ−

(
1 + θ(s)g

)1

q
|∇Qsϕ|q

]
dµ ds

=

∫ 1

0

∫
M

[
− θ′(s)∇

(
(−L)−1g

)
· ∇Qsϕ−

(
1 + θ(s)g

)1

q
|∇Qsϕ|q

]
dµ ds

where we used integration by parts (15) in the last step.

By Young’s inequality a · b ≤ |a|p
p

+ |b|q
q

,∫
M

Q1ϕdν −
∫
M

ϕdµ ≤ 1

p

∫ 1

0

θ′(s)p
∫
M

|∇((−L)−1g)|p

[1 + θ(s)g]p−1
dµ ds

and since g > −1,∫
M

Q1ϕdν −
∫
M

ϕdµ ≤ 1

p

∫ 1

0

θ′(s)p

[1− θ(s)]p−1
ds

∫
M

∣∣∇((−L)−1g)
∣∣p dµ.

Therefore, by the Kantorovich duality formula (13),

Wp
p(ν, µ) ≤

∫ 1

0

θ′(s)p

[1− θ(s)]p−1
ds

∫
M

∣∣∇((−L)−1g)
∣∣p dµ.

The optimal choice of θ is provided by θ(s) = 1− (1− s)p for which
∫ 1

0
θ′(s)p

[1−θ(s)]p−1 ds = pp. The

proof is thereby completed by the Kantorovich duality formula (13). The conclusion extends

(or by a direct argument) to p = 1. Theorem 2 is established.

3 Application to the matching problem

In this first section on the matching problem, we address the issue of identifying the geometric

features on a bound on Wp(µn, µ) by means of Theorem 2. We thus consider a probability

measure dµ = e−V dx on complete Riemannian manifold (M, g), invariant measure of the second
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order differential operator L = ∆ − ∇V · ∇. Let X1, . . . , Xn be a sample of independent

random variables with distribution µ and µn = 1
n

∑n
i=1 δXi

. We follow the arguments of the

investigation [4].

The first step is a (short time) regularization procedure by the heat kernel. Recall the

semigroup (Pt)t≥0 with generator L, and denote by pt(x, y), t > 0, x, y ∈ M , the (symmetric)

heat kernel such that for any suitable ϕ : M → R,

Ptϕ(x) =

∫
M

ϕ(y)pt(x, y)dµ(y), t > 0, x ∈M.

In particular
∫
M
pt(x, y)dµ(y) = 1 for every x and by the semigroup property

ps+t(x, y) =

∫
M

ps(x, z) pt(z, y)dµ(z)

for s, t > 0, x, y ∈M .

Fix t > 0 and set

f tn(y) =
1

n

n∑
i=1

pt(Xi, y)

and dµtn = f tndµ. By the standard convexity of the Kantorovich metrics Wp
p, p ≥ 1, which is

for example immediately checked on the dual representation (13) (cf. e.g. [35]),

Wp
p(µn, µ

t
n) ≤ 1

n

n∑
i=1

Wp
p

(
δXi

, pt(Xi, ·)dµ
)

=
1

n

n∑
i=1

∫
M

ρ(Xi, y)p pt(Xi, y)dµ(y).

After expectation E = dµ in the iid Xi’s,

E
(
Wp

p(µn, µ
t
n)
)
≤
∫
M

∫
M

ρ(x, y)p pt(x, y)dµ(x)dµ(y) = Dp
t . (20)

The quantity Dp
t is called the dispersion factor, and in various instances (see below), may be

shown to be of the order of tp/2 (for small t > 0).

The second step is the mere application of the energy estimate of Theorem 2. Namely, with

f = f tn, and after integration with respect to the random variables Xi, i = 1, . . . , n,

E
(
Wp

p(µ
t
n, µ)

)
≤ pp E

(
‖f tn − 1‖pH−1,p(µ)

)
.

Since

∇(−Ly)
−1(f tn − 1)(y) =

1

n

n∑
i=1

∇y(−Ly)
−1[pt(Xi, y)− 1

]
,

it follows that

E
(
Wp

p(µ
t
n, µ)

)
≤ pp

∫
M

E
(∣∣∣∣ 1n

n∑
i=1

∇y(−Ly)
−1[pt(Xi, y)− 1

]∣∣∣∣p)dµ(y).

10



Together with (20) and the triangle inequality for Wp, we conclude that for any t > 0,

E
(
Wp

p(µn, µ)
)
≤ Cp

(
Dp
t +

∫
M

E
(∣∣∣∣ 1n

n∑
i=1

∇y(−Ly)
−1[pt(Xi, y)− 1

]∣∣∣∣p)dµ(y)

)
(21)

where Cp > 0 only depends on p.

Of course, the preceding formula requires that the density f tn, that is the heat kernels

pt(Xi, ·), belongs to the dual Sobolev space H−1,p(µ). As we have seen, in the particular case

p = 2,

‖f tn − 1‖2H−1,2(µ) = 2

∫ ∞
0

∫
M

[
Ps(f

t
n − 1)

]2
dµ ds

so that by the semigroup property

‖f tn − 1‖2H−1,2(µ) = 2

∫ ∞
t

∫
M

[
1

n

n∑
i=1

[
ps(Xi, y)− 1

]]2
dµ(y)ds.

For each s > 0 and y ∈ M , the random variables ps(Xi, y) − 1, i = 1, . . . , n, are independent,

centered and identically distributed, so that taking expectation E = dµ in the Xi’s,

E
(
W2

2(µ
t
n, µ)

)
≤ 4E

(
‖f tn − 1‖2H−1,2(µ)

)
= 8

∫ ∞
t

∫
M

E
([

1

n

n∑
i=1

[
ps(Xi, y)− 1

]]2)
dµ(y)ds

=
8

n

∫ ∞
t

∫
M

E
([
ps(X1, y)− 1

]2)
dµ(y)ds

=
8

n

∫ ∞
t

∫
M

∫
M

[
ps(x, y)− 1

]2
dµ(x)dµ(y)ds

=
4

n

∫ ∞
2t

∫
M

[
ps(x, x)− 1

]
dµ(x)ds

(22)

where the last step follows from the semigroup property.

Together with (20) and the triangle inequality for W2, we thus end up with the following

general statement for p = 2 which splits the control of E(W2
2(µn, µ)) in terms of the dispersion

factor and the energy functional.

Proposition 3. In the prescribed setting and notation, for every t > 0,

E
(
W2

2(µn, µ)
)
≤ 2D2

t +
8

n

∫ ∞
2t

∫
M

[
ps(x, x)− 1

]
dµ(x)ds. (23)

Note that in presence of a discrete spectrum σ(−L) for −L, the trace formula provides the

useful representation ∫
M

[
ps(x, x)− 1

]
dµ(x) =

∑
λ∈σ(−L)\{0}

e−λs

and thus

E
(
W2

2(µn, µ)
)
≤ 2D2

t +
8

n

∑
λ∈σ(−L)\{0}

1

λ
e−2λt.

11



The task is now to discuss how to control the two terms on the right-hand side of (23) and

to optimize in t > 0.

The control of the energy ∫ ∞
2t

∫
M

[
ps(x, x)− 1

]
dµ(x)ds

may be achieved by splitting between the small time behaviour and the large time one. In large

time, we can make use of a spectral gap or Poincaré inequality hypothesis. Assume thus that

µ satisfies a Poincaré inequality (19) with constant CP > 0. As is classical [6], such a Poincaré

inequality ensures an exponential decay of convergence to equilibrium in the sense that for any

ϕ : M → R with mean zero and any u > 0,∫
M

(Puϕ)2dµ ≤ e−2u/CP

∫
M

ϕ2dµ. (24)

Apply this to ϕ(y) = pv(x, y) − 1, v > 0, y ∈ M , for x ∈ M fixed. Since then Puϕ(y) =

pu+v(x, y)− 1, ∫
M

[
pu+v(x, y)− 1

]2
dµ(y) ≤ e−2u/CP

(∫
M

[
pv(x, y)− 1

]2
dµ(y)

)
.

In the applications, this inequality may be used in two ways. First, by the semigroup property

and the Cauchy-Schwarz inequality,

[
p2(u+v)(x, y)− 1

]2
=

(∫
M

[
pu+v(x, z)− 1

][
pu+v(z, y)− 1

]
dµ(z)

)2

≤
∫
M

[
pu+v(x, z)− 1

]2
dµ(z)

∫
M

[
pu+v(z, y)− 1

]2
dµ(z)

≤ e−4u/CP

∫
M

[
pv(x, z)− 1

]2
dµ(z)

∫
M

[
pv(z, y)− 1

]2
dµ(z).

(25)

On the other hand, after integration in dµ(x) and making use again of the semigroup property,∫
M

[
pu+v(x, x)− 1

]
dµ(x) ≤ e−2u/CP

∫
M

[
pv(x, x)− 1

]
dµ(x). (26)

Next, we assume a uniform small time bound on the heat kernel in the form of the existence

of a constant Cu > 0 such that

ps(x, y) ≤ Cu
sd/2

, 0 < s ≤ 1, x, y ∈M. (27)

As will be clear below and in the next section, this heat kernel behaviour is actually responsible

for the various rates in (7) depending on d.

We then combine the large and small time behaviours in the following way. Together with

the spectral gap bound (26) and the uniform heat kernel bound (27), we get that for every

12



0 < t ≤ 1
2
, ∫ ∞

2t

∫
M

[
ps(x, x)− 1

]
dµ(x)ds =

∫ 1

2t

∫
M

[
ps(x, x)− 1

]
dµ(x)ds

+

∫ ∞
0

∫
M

[
ps+1(x, x)− 1

]
dµ(x)ds

≤
∫ 1

2t

Cu
sd/2

ds+

∫ ∞
0

Cu e
−2s/CP ds

≤ Cd

( Cu
t(d/2)−1

+ CuCP

)
(28)

or Cu log
(
1
t

)
+ CuCP if d = 2, where Cd > 0 only depends on d.

After optimization in t > 0 in (23), we may therefore conclude to the following statement.

Theorem 4. In the preceding setting, assume that the dispersion factor D2
t is linear in small

time, that is D2
t ≤ CDt for every 0 < t ≤ 1, that µ satisfies a Poincaré inequality with constant

CP > 0 and that the uniform heat kernel bound (27) holds true for some Cu > 0. Then

E
(
W2

2(µn, µ)
)
≤

{
C logn

n
if d = 2,

C 1
n2/d if d ≥ 3,

where C = C(d, CD, CP , Cu).

As discussed in [4], the hypotheses of the preceding statement are satisfied for the normal-

ized Riemannian volume element µ on a compact d-dimensional Riemannian manifold (M, g),

with constants depending on the geometry of the manifold via dimension, diameter and Ricci

curvature lower bounds. We discuss here a little more precisely the geometric ingredients under-

lying these conditions in the extended context of weighted Riemannian manifolds (M, g) with

weighted probability measure dµ = e−V dx. We may refer to the monographs [14, 13, 36, 6] for

accounts and references on these standard properties.

The heat kernel bound (27) classically follows from a Sobolev-type inequality(∫
M

|ϕ|qdµ
)2/q

≤ A

∫
M

ϕ2dµ+B

∫
M

|∇ϕ|2dµ (29)

for some A,B > 0 and any smooth ϕ : M → R, where q = 2d
d−2 , d > 2. While the Sobolev

inequalities device requires d > 2, suitable substitutes in terms of Nash-type or logarithmic

Sobolev inequalities may be developed to include d ≥ 1 in the heat kernel bounds (27). All

these results are presented for example in the monograph [6] in the extended setting of Markov

triples (E, µ,Γ) which encompasses the weighted Riemannian manifold framework.

In the weighted Riemannian framework, the Poincaré inequality (19) holds with CP = 1
K
> 0

under the curvature condition CD(K,∞) with K > 0 while the Sobolev inequality (29) holds

under the curvature-dimension condition CD(K, d) for some K > 0 and d > 2. By standard

elliptic theory [13], a spectral gap inequality holds on a compact Riemannian manifold (M, g),

13



and a Sobolev (29) inequality holds with constants depending on dimension, diameter and lower

bound on the extended curvature CD(K, d) [36, 6].

The study of the dispersion factor D2
t is of somewhat different nature, although also con-

nected to curvature bounds. In the non-weighted setting of a compact manifold (M, g) with

Riemannian volume element dµ = dx and Laplace operator ∆, the classical Laplacian compar-

ison principle [13, 36] expresses that for all x, y ∈M ,

∆
(
ρ(x, ·)

)
(y) ≤ (d− 1)ξ

(
ρ(x, y)

)
(30)

where ξ = ζ′

ζ
and

ζ(r) =


r if K = 0,
sin(
√
Kr)√
K

if K > 0,
sinh(

√
−Kr)√
−K if K < 0,

where Ric ≥ K(d− 1) for some K ∈ R. It thus follows that for all fixed x ∈M ,

∆
(
ρ2(x, ·)

)
≤ C

for some C > 0 only depending on d, K and the diameter of M . Therefore,

d

dt
D2
t =

∫
M

∫
M

ρ(x, y)2 ∆ypt(x, y)dµ(x)dµ(y)

=

∫
M

∫
M

∆y

(
ρ(x, y)2

)
pt(x, y)dµ(x)dµ(y) ≤ C.

As a consequence, D2
t ≤ Ct, t > 0, for some C > 0 only depending on the dimension d of the

manifold, the lower bound K on the Ricci curvature, and the diameter of (M, g).

When 1 ≤ p ≤ 2, Jensen’s inequality ensures that Dp
t ≤ Ctp/2. For p ≥ 2, we first show

by induction that for any integer k ≥ 1, D2k
t ≤ Ctk where C = C(k) > 0 depending on the

geometry of M may vary from line to line. To this task, since |∇ρ(x, ·)| ≤ 1,

d

dt
D

2(k+1)
t =

∫
M

∫
M

∆y

(
ρ(x, y)2(k+1)

)
pt(x, y)dµ(x)dµ(y)

≤ 2(k + 1)

∫
M

∫
M

ρ(x, y)2k+1∆yρ(x, y)pt(x, y)dµ(x)dµ(y)

+ 2(k + 1)(2k + 1)D2k
t

and by the Laplacian comparison (30),

d

dt
D

2(k+1)
t ≤ CD2k

t .

By the induction hypothesis, d
dt
D

2(k+1)
t ≤ Ctk and therefore

D
2(k+1)
t ≤

∫ t

0

Cskds ≤ C tk+1.

14



Finally, by Hölder’s inequality, for any 2k < p < 2k + 2,

(Dp
t )

1/p ≤ (D2k
t )θ/2k(D2k+2

t )(1−θ)/(2k+2)

where θ ∈ (0, 1). Hence again (Dp
t )

1/p ≤ Ct1/2, t > 0.

We thus conclude that

Dp
t ≤ Ctp/2 (31)

for all p ≥ 1 and t > 0 where C > 0 depends on the compact manifold (M, g). Extensions may

be provided in weighted manifolds, but for simplicity we only consider one such example, namely

the Gaussian measure setting addressed in the next sections, in which the explicit semigroup

description allows for a simple argument towards the control of the dispersion factor.

4 The Ajtai-Komlós-Túsnady upper bounds for all pa-

rameters

As a consequence of the preceding analysis, Theorem 4 covers the case p = 2 of the Ajtai-

Komlós-Tusnády upper bounds (7) for the (normalized) uniform measure µ on a compact

Riemannian manifold (M, g) by the methodology of [4]. In this section, we address the upper

bounds in the missing range p ≥ d
2
, d ≥ 3, in (7), that is

E
(
Wp

p(µn, µ)
)

=


O
(

1
np/2

)
if d = 1,

O
((

logn
n

)p/2)
if d = 2,

O
(

1
np/d

)
if d ≥ 3.

(32)

(In this setting, lower bounds might followed from the strategy developed in [4] for p = d = 2

but further details are certainly necessary in this regard.) In the compact Riemannian manifold

framework, all the necessary smoothness, curvature and heat kernel bounds are satisfied. In

addition, the Riesz transform bounds (18) may also be used. The provided treatment actually

includes all values of p ≥ 1 and d ≥ 1.

Assume first that d ≥ 3 to simplify some expressions. We start from (21) together therefore

with the Riesz transform bound (18), yielding

E
(
Wp

p(µn, µ)
)
≤ C

(
Dp
t +

∫
M

E
(∣∣∣∣ 1n

n∑
i=1

(−Ly)
−(1/2)[pt(Xi, y)− 1

]∣∣∣∣p)dµ(y)

)
. (33)

Here and below, C > 0 denotes a constant, depending on p and the underlying geometric

structure but not of n, and possibly varying from line to line.

For each y ∈ M , the random variables (−Ly)
−(1/2)[pt(Xi, y)− 1], i = 1, . . . , n, are indepen-
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dent, centered and identically distributed. By Rosenthal’s inequality [28],

E
(∣∣∣∣ 1n

n∑
i=1

(−Ly)
−(1/2)[pt(Xi, y)− 1

]∣∣∣∣p)
≤ Cp

(
1

np−1
E
(∣∣(−Ly)

−(1/2)[pt(X1, y)− 1
]∣∣p)

+
1

np/2
E
([

(−Ly)
−(1/2)[pt(X1, y)− 1

]]2)p/2)
(34)

for some constant Cp > 0 only depending on p ≥ 2. When 1 ≤ p ≤ 2, it is enough to keep the

second piece on the right-hand side.

By spectral analysis,

(−Ly)
−(1/2)[pt(X1, y)− 1

]
=

√
π

2

∫ ∞
0

1√
s

[
pt+s(X1, y)− 1

]
ds.

The uniform bound on the heat kernel (27) ensures that for all x, y ∈M and 0 < t ≤ 1
2
,∣∣∣∣ ∫ 1/2

0

1√
s

[
pt+s(x, y)− 1

]
ds

∣∣∣∣ ≤ √2 +

∫ 1/2

0

1√
s
· C

(t+ s)d/2
ds ≤ C

t(d−1)/2
.

On the other hand,∣∣∣∣ ∫ ∞
1/2

1√
s

[
pt+s(x, y)− 1

]
ds

∣∣∣∣ ≤ √2

∫ ∞
1/2

∣∣pt+s(x, y)− 1
∣∣ds.

By the exponential decay (25), and again (27), uniformly in s ≥ 1
2

and x, y ∈M ,∣∣pt+s(x, y)− 1
∣∣ ≤ C e−s/C .

Summarizing the preceding steps,∣∣(−Ly)
−(1/2)[pt(X1, y)− 1

]∣∣ ≤ C

t(d−1)/2

for every 0 < t ≤ 1
2
. Hence,∫

M

E
(∣∣(−Ly)

−(1/2)[pt(X1, y)− 1
]∣∣p)dµ(y)

≤ C

t(d−1)(p−2)/2

∫
M

E
([

(−Ly)
−(1/2)[pt(X1, y)− 1

]]2)
dµ(y).

Now, by the representation (−L)−1 =
∫∞
0
Psds,∫

M

E
([

(−Ly)
−(1/2)[pt(X1, y)− 1

]]2)
dµ(y)

=

∫
M

∫
M

pt(x, y)(−Ly)
−1pt(x, y)dµ(x)dµ(y)

=

∫ ∞
0

∫
M

∫
M

pt(x, y) pt+s(x, y)dµ(x)dµ(y)ds

=

∫ ∞
2t

∫
M

[
ps(x, x)− 1

]
dµ(x)ds
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which is bounded by C
t(d/2)−1 for every 0 < t ≤ 1

2
by (28). Therefore, in the range 0 < t ≤ 1

2
,∫

M

E
(∣∣(−Ly)

−(1/2)[pt(X1, y)− 1
]∣∣p)dµ(y) ≤ C

t(d−1)(p−2)/2
· C

t(d/2)−1
.

We next investigate the second term on the right-hand of (34). By symmetry, for every y,

E
([

(−Ly)
−(1/2)[pt(X1, y)− 1

]]2)
= E

([
(−Lx)

−(1/2)[pt(X1, y)− 1
]]2)

=

∫ ∞
2t

[
ps(y, y)− 1

]
ds.

An analysis similar to the preceding one for both small and large values of s shows that

E
([

(−Ly)
−(1/2)[pt(X1, y)− 1

]]2) ≤ C

t(d/2)−1

for every 0 < t ≤ 1
2

and y ∈M .

These estimates in Rosenthal’s inequality (34) therefore lead to∫
M

E
(∣∣∣∣ 1n

n∑
i=1

(−Ly)
−(1/2)[pt(Xi, y)− 1

]∣∣∣∣p)dµ(y)

≤ C

(
1

np−1
· 1

t(d−1)(p−2)/2+(d/2)−1 +
1

np/2
· 1

t(p/2)((d/2)−1)

)
for 0 < t ≤ 1

2
. Together with the dispersion rate (31), we thus get that

E
(
Wp

p(µn, µ)
)
≤ C

(
tp/2 +

1

np−1
· 1

t(d−1)(p−2)/2+(d/2)−1 +
1

np/2
· 1

t(p/2)((d/2)−1)

)
for 0 < t ≤ 1

2
. Optimizing in t > 0, namely choosing t ∼ 1

n2/d , thus yields

E
(
Wp

p(µn, µ)
)

= O
( 1

np/d

)
.

This is the announced claim when d ≥ 3. Obvious modifications for d = 1 and 2 yield similarly

the corresponding conclusions, completing the picture in (32).

It could be noted that the dependence in p ≥ 2 in Rosenthal’s inequality (34) is of order(
p

log p

)p
[23]. Following this dependence throughout the various computations shows that, in

case the d = 2 for example,

E
(
Wp

p(µn, µ)
)
≤ Cp

( p

log p

)p( log n

n

)p/2
.

Therefore, by (4), for an independent copy (Y1, . . . , Yn) of the sample (X1, . . . , Xn),

E
(

inf
1

n

n∑
i=1

|Xi − Yσ(i)|p
)
≤ Cp

( p

log p

)p( log n

n

)p/2
17



where we recall that σ runs over all permutations of {1, . . . , n}. Hence

E
(

inf max
1≤i≤n

|Xi − Yσ(i)|
)
≤ n1/pC

p

log p

( log n

n

)1/2
.

Optimizing in p ≥ 2 depending on n (p ∼ log n) shows that

E
(

inf max
1≤i≤n

|Xi − Yσ(i)|
)
≤ C

(log n)3/2√
n

which gets close to the Leighton-Shor theorem [25] (stating the result with (log n)3/4).

Since we only considered, for simplicity, manifolds without boundary, some further details

might be necessary in order to cover the uniform distribution on the unit cube [0, 1]d. We only

detail the argument for d = 2 and p = 2. By the preceding analysis, the result holds true on the

two-dimensional torus. Endowing the latter with the (equivalent) induced Euclidean metric,

the issue is to take care of periodicity. That is, in the Kantorovich dual description (13)

1

2
W2

2(µn, µ) = sup

( n∑
i=1

Q1ϕ(Xi)−
∫
[0,1]2

ϕdx

)
,

the supremum is taken over (continuous, bounded) coordinate-wise periodic functions ϕ :

[0, 1]2 → R for the torus case while it is taken over all ϕ for the cube case. We use a sim-

ple symmetrization trick to operate the comparison.

Divide [−1, 1]2 into the four (disjoint) regions

A1 =
{

(x1, x2); x1 ∈ [0, 1], x2 ∈ [0, 1]
}
,

A2 =
{

(x1, x2); x1 ∈ [0, 1], x2 ∈ [−1, 0)
}
,

A3 =
{

(x1, x2); x1 ∈ [−1, 0), x2 ∈ [−1, 0)
}
,

A4 =
{

(x1, x2); x1 ∈ [−1, 0), x2 ∈ [0, 1]
}
.

Given ϕ : [0, 1]2 → R, define ψ = ψϕ on [−1, 1]2 by

ψ(x1, x2) =


ϕ(x1, x2) if (x1, x2) ∈ A1,

ϕ(x1,−x2) if (x1, x2) ∈ A2,

ϕ(−x1,−x2) if (x1, x2) ∈ A3,

ϕ(−x1, x2) if (x1, x2) ∈ A4.

The point is that ψ is periodic on [−1, 1]2 in the sense that ψ(1, x2) = ψ(−1, x2) and ψ(x1, 1) =

ψ(x1,−1) for all x1, x2 ∈ [−1, 1].

A simple exercise shows that for every (x1, x2) ∈ [−1, 1]2,

Q1ψ(x1, x2) = Q1ϕ(x1, x2)1{(x1,x2)∈A1} +Q1ϕ(x1,−x2)1{(x1,x2)∈A2}

+Q1ϕ(−x1,−x2)1{(x1,x2)∈A3} +Q1ϕ(−x1, x2)1{(x1,x2)∈A4}
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Let Z1, . . . , Zn be independent with common uniform distribution µ̃ on [−1, 1]2. Then, by

symmetry and exchangeability,

E
(

sup
ψϕ

[
1

n

n∑
i=1

Q1ψϕ(Zi)−
1

4

∫
[−1,1]2

ψϕ dx

])
= E

(
sup
ϕ

[
1

n

n∑
i=1

Q1ϕ(Xi)−
∫
[0,1]2

ϕdx

])
.

Therefore, if µ̃n = 1
n

∑n
i=1 δZi

, then

W2(µ̃n, µ̃) ≥ W2(µn, µ).

The upper bounds on the torus thus transfer into bounds for the cube, justifying the claim.

5 The Gaussian case

The aim of this section and the next ones is to investigate the optimal matching problem

for Gaussian samples and to prove Theorem 1. Therefore, X1, . . . , Xn are here independent

with common standard normal distribution dµ(x) = e−|x|
2/2 dx

(2π)d/2
on Rd. Set as before µn =

1
n

∑n
i=1 δXi

. We investigate

E
(
Wp

p(µn, µ)
)

as a function of n, d ≥ 1 and 1 ≤ p <∞.

Before starting the study itself, it is worthwhile mentioning that by a simple comparison,

the rates in this Gaussian setting are at least the ones of the uniform case. Denote indeed by

λ the uniform distribution on [0, 1]d, let U1, . . . , Un be independent and distributed as λ, and

set νn = 1
n

∑n
i=1 δUi

. Now λ is the image of the standard Gaussian distribution µ on Rd by the

map Φ⊗d where

Φ(x) =

∫ x

−∞
e−u

2/2 du√
2π

, x ∈ R,

which satisfies ‖Φ‖Lip ≤
1√
2π
≤ 1. Therefore, if X1, . . . , Xn are independent distributed as µ,

then Φ(X1), . . . ,Φ(Xn) are independent distributed as λ and, given ϕ : Rd → R 1-Lipschitz,

1

n

n∑
i=1

ϕ
(
Φ⊗d(Xi)

)
−
∫
Rd

ϕdλ =
1

n

n∑
i=1

ϕ ◦ Φ⊗d(Xi)−
∫
Rd

ϕ ◦ Φ⊗n dµ.

Since ϕ ◦ Φ⊗d is 1-Lipschitz, it follows from the Kantorovich duality (12) that

E
(
W1(νn, λ)

)
≤ E

(
W1(µn, µ)

)
. (35)

Since for the uniform distribution E(Wp
p(νn, λ)) ≈ [E(W1(νn, λ))]p for any p ≥ 1 (cf. (7)), the

known lower bounds on λ transfer to µ.

Turning to the upper bounds, the one-dimensional study is described by (6), while the

general estimates (9) provide the optimal rate

E
(
Wp

p(µn, µ)
)
≈ 1

np/d
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when 1 < p ≤ d
2
. We will actually be mostly interested in the two-dimensional setting d = 2

for which a satisfactory answer only holds for p = 1 by (8). In the spirit of the Ajtai-Komlós-

Tusnády theorem, the main concern will be p = d = 2.

The study of E(W2
2(µn, µ)) in this Gaussian setting will follow the transportation approach

of [4] presented in Sections 2 and 3. Denote by pt(x, y), t > 0, x, y ∈ Rd, the Mehler kernel on

Rd defined by the integral representation∫
Rd

ϕ(y)pt(x, y)dµ(y) =

∫
Rd

ϕ
(
e−tx+

√
1− e−2t y

)
dµ(y) = Ptϕ(x).

The family (Pt)t≥0 defines the Ornstein-Uhlenbeck semigroup with generator L = ∆ − x · ∇.

The explicit form of pt(x, y) ensures that for t > 0 and x ∈ Rd,

pt(x, x) =
1

(1− e−2t)d/2
exp

( e−t

1 + e−t
|x|2
)
.

Following thus the steps in Sections 2 and 3 and Proposition 3, the dispersion factor satisfies

D2
t =

∫
Rd

∫
Rd

|x− y|2 pt(x, y)dµ(x)dµ(y)

=

∫
Rd

∫
Rd

∣∣x− e−tx+
√

1− e−2t y|2dµ(x)dµ(y) ≤ 2dt

for any 0 < t ≤ 1. On the other hand, for any s > 0,∫
Rd

ps(x, x)dµ(x) =
1

(1− e−s)d
.

Hence, for 0 < t ≤ 1, the energy is controlled as∫ ∞
t

∫
Rd

[
ps(x, x)− 1

]
dµ(x) ≤

∫ ∞
t

d e−s

(1− e−s)d
ds ≤

{
C log

(
1
t

)
if d = 1,

C 1
td−1 if d ≥ 2,

for some C > 0 only depending on d. Together with the dispersion estimate D2
t ≤ 2dt,

Proposition 3 yields after optimization

E
(
W2

2(µn, µ)
)

=

{
O
(
logn
n

)
if d = 1,

O
(

1
n1/d

)
if d ≥ 2.

(36)

According to the known result when d = 1 and to the comparison with the uniform case, these

bounds are not of the expected order. It will be the purpose of the next section to suitably

improve upon this result.

6 The Gaussian case revisited: localization

In order to improve upon the crude estimates (36), we make use of a standard localization

argument (cf. e.g. [10]). For R > 0, let dµR = 1
µ(BR)

1BR
dµ where BR is the Euclidean ball
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centered at 0 with radius R. Define independent random variables XR
i , i = 1, . . . , n, with

common distribution µR by

XR
i =

{
Xi if |Xi| ≤ R,

Zi if |Xi| > R,

where Z1, . . . , Zn are independent with distribution µR, independent of the Xi’s. Setting µRn =
1
n

∑n
i=1 δXR

i
,

W2
2(µn, µ

R
n ) ≤ 1

n

n∑
i=1

|Xi −XR
i |2 ≤

4

n

n∑
i=1

|Xi|2 1{|Xi|>R}.

Therefore, after expectation E = dµ,

E
(
W2

2(µn, µ
R
n )
)
≤ 4

∫
{|x|>R}

|x|2dµ.

As a bound, ∫
{|x|>R}

|x|2dµ = Cd

∫ ∞
R

rd+1e−r
2/2dr

which is of the order of Rde−R
2/2 as R→∞. So a natural choice is R = c

√
log n for some c > 0

large enough so that

E
(
W2

2(µn, µ
R
n )
)

= O
( 1

nc′

)
(37)

for some c′ > 1.

Rather than µn, we now work with µRn following the investigation of Section 3 with the

separate control of the dispersion factor and the energy functional. The short time regularization

is performed similarly. Fix t > 0 and set

f(y) = fR,tn (y) =
1

n

n∑
i=1

pt(X
R
i , y)

and dµR,tn = fR,tn dµ. By convexity,

W2
2(µ

R
n , µ

R,t
n ) ≤ 1

n

n∑
i=1

W2
2

(
δXR

i
, pt(X

R
i , ·)dµ

)
=

1

n

n∑
i=1

∫
Rd

|XR
i − y|2 pt(XR

i , y)dµ(y).

After expectation E = dµR in the iid XR
i ’s,

E
(
W2

2(µ
R
n , µ

R,t
n )
)
≤
∫
Rd

∫
Rd

|x− y|2 pt(x, y)dµR(x)dµ(y)

≤ 1

m(BR)

∫
Rd

∫
Rd

|x− y|2 pt(x, y)dµ(x)dµ(y)

≤ 2d(1− e−t)
µ(BR)

.

In the application R→∞ so that we may assume that µ(BR) ≥ 1
2

and thus

E
(
W2

2(µ
R
n , µ

R,t
n )
)
≤ 4dt. (38)
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We next evaluate E(W2
2(µ

R,t
n , µ)) from Theorem 2. Therefore

E
(
W2

2(µ
R,t
n , µ)

)
≤ 4E

(
‖fR,tn − 1‖2H−1,2(µ)

)
= 8

∫ ∞
0

∫
Rd

E
(
(Psg)2

)
dµ ds (39)

where g = g(y) = fR,tn (y)− 1 = 1
n

∑n
i=1[pt(X

R
i , y)− 1]. To integrate with respect to the XR

i ’s,

it is convenient to center g. To this task, write

g(y) =
1

n

n∑
i=1

[
pt(X

R
i , y)− E

(
pt(X

R
i , y)

)]
+ E

(
pt(X

R
1 , y)

)
− 1 = g̃(y) + φ(y)

so that

E
(
(Psg)2

)
= E

(
(Psg̃)2

)
+ (Psφ)2. (40)

Now

φ(y) = E
(
pt(X

R
1 , y)

)
− 1 =

∫
Rd

pt(x, y)dµR(x)− 1

=
1

µ(BR)

∫
Rd

(
1BR

(x)− µ(BR)
)
pt(x, y)dµ(x)

=
1

µ(BR)
Pt
(
1BR
− µ(BR)

)
(y).

On the other hand, for each y ∈ Rd,

E
(
Psg̃(y)2

)
= E

([
1

n

n∑
i=1

[
pt+s(X

R
i , y)− E

(
pt+s(X

R
i , y)

)]]2)
=

1

n
E
([
pt+s(X

R
1 , y)− E

(
pt+s(X

R
1 , y)

)]2)
=

1

n

[ ∫
Rd

pt+s(x, y)2dµR(x)−
(∫

Rd

pt+s(x, y)dµR(x)

)2 ]
.

After integration in dµ(y), by the heat kernel semigroup property,∫
Rd

E
(
Psg̃(y)2

)
dµ(y) =

1

n

[ ∫
Rd

p2(t+s)(x, x)dµR(x)− 1

µ(BR)2

∫
Rd

(Pt+s1BR
)2dµ

]
=

1

n

∫
Rd

[
p2(t+s)(x, x)− 1

]
dµR(x)− 1

n

∫
Rd

(Psφ)2dµ.

Collecting the preceding steps in (40),∫
Rd

E
(
(Psg)2

)
dµ =

1

n

∫
Rd

[
p2(t+s)(x, x)− 1

]
dµR(x) +

(
1− 1

n

)∫
Rd

(Psφ)2dµ.

Since the Gaussian measure µ satisfies a Poincaré inequality with constant CP = 1, by (24),∫
Rd

(Psφ)2dµ ≤ e−2s
∫
Rd

φ2dµ ≤ e−2s
1− µ(BR)

µ(BR)
.
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As above, if R = c
√

log n for some large c > 0, then 1 − µ(BR) = O
(

1
nc′

)
for some c′ > 1.

Summarizing this step, with R ∼
√

log n,∫ ∞
0

E
(∫

Rd

(Psg)2 dµ

)
ds =

1

2n

∫ ∞
2t

∫
Rd

[
ps(x, x)− 1

]
dµR(x)ds+O

( 1

nc′

)
.

Therefore, together with (37), (38) and (39), we have obtained at this stage that

E
(
W2

2(µn, µ)
)
≤ C

(
1

nc′
+ t+

1

2n

∫ ∞
2t

∫
Rd

[
ps(x, x)− 1

]
dµR(x)ds

)
(41)

for R ∼
√

log n and some C > 0, c′ > 1 only depending on d.

In the following, we evaluate the (non-negative) energy∫
Rd

[
ps(x, x)− 1

]
dµR(x) =

1

µ(BR)

∫
BR

ps(x, x)dµ(x)− 1

of (41) as a function of s and R. First, with a = e−s ∈ (0, 1),

ps(x, x) =
1

(1− a2)d/2
exp

( a

1 + a
|x|2
)

so that ∫
BR

ps(x, x)dµ(x) =
1

(1− a2)d/2 θd
µ(BθR)

where θ =
√

1−a
1+a

. Hence∫
Rd

[
ps(x, x)− 1

]
dµR(x) =

1

(1− a2)d/2 θd
µ(BθR)

µ(BR)
− 1.

We distinguish between two cases. If θR ≤ 1, that is e−s = a ≥ R2−1
R2+1

, s ≤ log
(
R2−1
R2+1

)
∼

2
R2 → 0,

1

(1− a2)d/2 θd
µ(BθR)

µ(BR)
− 1 ≤ Cd θ

dRd

(1− a2)d/2 θd
≤ CdR

d

(1− e−s)d/2
≤ CdR

d

sd/2

with a constant Cd > 0 only depending on d and possibly changing from place to place. On

the other hand, for every s > 0,

1

(1− a2)d/2 θd
µ(BθR)

µ(BR)
− 1 =

µ(BθR)− (1− a)d µ(BR)

(1− a)d µ(BR)

and

µ(BθR)− (1− a)d µ(BR) = µ(BR)
[
1− (1− a)d

]
−
[
µ
(
BR)− µ

(
BθR

)]
≤ µ(BR)

[
1− (1− a)d

]
≤ µ(BR)da.

Hence
1

(1− a2)d/2θd/2
µ(BθR)

µ(BR)
− 1 ≤ 2da

(1− a)d
.
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We use the latter in the range θR ≥ 1, that is e−s = a ≤ R2−1
R2+1

< 1.

Combining the bounds, with T = log
(
R2+1
R2−1

)
∼ 2

R2 → 0, but T >> t,∫ ∞
2t

∫
Rd

[
ps(x, x)− 1

]
dµR(x)ds

=

∫ T

2t

∫
Rd

[
ps(x, x)− 1

]
dµR(x)ds+

∫ ∞
T

∫
Rd

[
ps(x, x)− 1

]
dµR(x)ds

≤
∫ T

2t

CdR
d

sd/2
ds+

∫ ∞
T

2de−s

(1− e−s)d
ds

≤ CdR
d

t(d/2)−1
+ CdR

2(d−1)

when d ≥ 3, while when d = 2 the upper bound reads

C2R
2 log

(1

t

)
+ C2R

2

and when d = 1,

C1R
√
T + C1 log

( 1

T

)
≤ C ′1(1 + logR2).

Collecting these kernel estimates in (41) with R ∼
√

log n,

E
(
W2

2(µn, µ)
)
≤ C

(
1

nc′
+ t+

1

n

(
Rd

t(d/2)−1
+R2(d−1)

))
with the adaptations when d = 1, 2. Optimization in t > 0 then yields

E
(
W2

2(µn, µ)
)

=


O
(
log logn

n

)
if d = 1,

O
( (logn)2

n

)
if d = 2,

O
(
logn
n2/d

)
if d ≥ 3.

(42)

Together with the lower bound (35), we therefore reach Theorem 1 for d = 2. We note

that the technology is refined enough to reach the one-dimensional case (6) but unfortunately

produces an extra log n with respect to (9) when d ≥ 3, and thus probably also when d = 2. As

discussed in the introduction, it may indeed be conjectured that the correct order when d = 2

should be logn
n

.

7 The Gaussian case: bounds for Wp, 1 ≤ p < 2

In this last section, we provide optimal rates for the optimal matching of Gaussian samples in

the Kantorovich metrics Wp, 1 ≤ p < 2, in any dimension d ≥ 1. As in the preceding sections,

X1, . . . , Xn are independent with standard normal distribution on Rd and µn = 1
n

∑n
i=1 δXi

.
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Theorem 5. For every 1 ≤ p < 2,

E
(
Wp

p(µn, µ)
)
≈


1

np/2 if d = 1,(
logn
n

)p/2
if d = 2,

1
np/d if d ≥ 3.

(43)

Proof. The lower bounds follow from the comparison (35) with the uniform distribution. To-

wards the upper bounds, we apply (21) to the Gaussian model with the Mehler kernel pt(x, y).

First, as for p = 2,

Dp
t =

∫
Rd

∫
Rd

|x− y|p pt(x, y)dµ(x)dµ(y)

=

∫
Rd

∫
Rd

∣∣x− e−tx+
√

1− e−2t y|pdµ(x)dµ(y) ≤ C tp/2
(44)

for every 0 < t ≤ 1, where C > 0 only depends on d and p.

Next, for each y fixed, the random vectors ∇y(−Ly)
−1[ps(Xi, y) − 1], i = 1, . . . , n, are

independent, centered and identically distributed. Hence

E
(∣∣∣∣ 1n

n∑
i=1

∇y(−Ly)
−1[pt(Xi, y)− 1

]∣∣∣∣2) =
1

n
E
(∣∣∇y(−Ly)

−1[pt(X1, y)− 1
]∣∣2)

=
1

n

∫
Rd

∣∣∇y(−Ly)
−1[pt(x, y)− 1

]∣∣2dµ(x).

Since (−L)−1 =
∫∞
0
Psds,

∇y(−Ly)
−1[pt(x, y)− 1

]
=

∫ ∞
0

∇y pt+s(x, y)ds =

∫ ∞
t

∇y ps(x, y)ds.

Therefore∫
Rd

∣∣∇y(−Ly)
−1[pt(x, y)− 1

]∣∣2dµ(x) =

∫ ∞
t

∫ ∞
t

∫
Rd

∇y ps(x, y) · ∇y ps′(x, y)dµ(x)dsds′.

It is immediate to check on the explicit expression of ps(x, y) that for each s > 0 and x, y ∈ Rd,

es∇y ps(x, y) = −∇x ps(x, y) + xps(x, y).

Therefore, for each y ∈ Rd,

es+s
′
∫
Rd

∇y ps(x, y) · ∇y ps′(x, y)dµ(x)

=

∫
Rd

∇x ps(x, y) · ∇x ps′(x, y)dµ(x) +

∫
Rd

|x|2ps(x, y)ps′(x, y)dµ(x)

−
∫
Rd

x · ∇x ps(x, y)ps′(x, y)dµ(x)−
∫
Rd

x · ∇x ps′(x, y)ps(x, y)dµ(x)

=

∫
Rd

∇x ps(x, y) · ∇x ps′(x, y)dµ(x) + d

∫
Rd

ps(x, y) ps′(x, y)dµ(x)
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by integration by parts. Next, by the semigroup property

es+s
′
∫
Rd

∇y ps(x, y) · ∇y ps′(x, y)dµ(x)

=

∫
Rd

∇x ps(x, y) · ∇x ps′(x, y)dµ(x) + d ps+s′(y, y).

Now, ∫
Rd

∇x ps(x, y) · ∇x ps′(x, y)dµ(x) = −
∫
Rd

ps(x, y) Lx ps′(x, y)dµ(x)

= −
∫
Rd

ps(x, y)∂s′ps′(x, y)dµ(x)

= − ∂s′
(∫

Rd

ps(x, y)ps′(x, y)dµ(x)

)
= − ∂s′ps+s′(y, y).

Hence we have obtained that∫
Rd

∣∣∇y(−Ly)−1
[
pt(x, y)− 1

]∣∣2dµ(x)

=

∫ ∞
t

∫ ∞
t

e−(s+s
′)
[
− ∂s′ps+s′(y, y) + d ps+s′(y, y)

]
dsds′.

Finally, after integration by parts in s′,∫
Rd

∣∣∇y(−Ly)
−1[pt(x, y)− 1

]∣∣2dµ(x)

=

∫ ∞
t

e−(t+s)pt+s(y, y)ds+

∫ ∞
t

∫ ∞
t

e−(s+s
′)(d− 1)ps+s′(y, y)

]
dsds′

=

∫ ∞
2t

e−s
[
1 + (d− 1)(s− 2t)

]
ps(y, y)ds.

By Jensen’s inequality, we thus conclude from the preceding analysis that∫
Rd

E
(∣∣∣∣ 1n

n∑
i=1

∇y(−Ly)
−1[pt(Xi, y)− 1

]∣∣∣∣p)dµ(y)

≤ 1

np/2

∫
Rd

(∫ ∞
2t

e−s
[
1 + (d− 1)(s− 2t)

]
ps(y, y)ds

)p/2
dµ(y)

and thus, together with (21) and (44),

E
(
Wp

p(µn, µ)
)
≤ C

(
tp/2 +

1

np/2

∫
Rd

(∫ ∞
2t

e−s
[
1 + (d− 1)(s− 2t)

]
ps(y, y)ds

)p/2
dµ(y)

)
where C > 0 only depends on p and d. Now, recall that

ps(y, y) =
1

(1− a2)d/2
exp

( a

1 + a
|y|2
)
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where a = e−s. Note that a
1+a
≤ 1

2
. We examine separately small values and large values of s

(recalling that t→ 0). First∫ 1

2t

e−s
[
1 + (d− 1)(s− 2t)

]
ps(y, y)ds ≤ Cd e

|y|2/2
∫ 1

2t

s−d/2ds.

On the other hand, ∫ ∞
1

e−s
[
1 + (d− 1)(s− 2t)

]
ps(y, y)ds ≤ Cd e

|y|2/2.

Hence ∫ ∞
2t

e−s
[
1 + (d− 1)(s− 2t)

]
ps(y, y)ds ≤ Cd

(
1 +

1

t(d/2)−1

)
e|y|

2/2.

with the last parenthesis replaced by 1 + log(1
t
) when d = 2.

Since p < 2, after integration in dµ(y) in the preceding bound, we finally reach that for

every 0 < t ≤ 1,

E
(
Wp

p(µn,m)
)
≤ Cp,d

(
tp/2 +

1

np/2
· 1

t(d−2)p/4

)
with the last term replaced by (log(1

t
))p/2 when d = 2. Note that Cp,d → ∞ as p → 2.

Optimization in t > 0 then yields the various conclusions as d = 1, d = 2 or d ≥ 3, establishing

Theorem 5.

Acknowledgements. I warmly thank L. Ambrosio for raising the question of the optimal
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