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Abstract

We discuss some variations and improvements on certain families of transportation cost

inequalities. Relying on two distinct interpolation schemes along the Kantorovich dual

description of the Monge-Kantorovich metrics, we emphasize in particular an improved

form of the Otto-Villani theorem, from a logarithmic Sobolev inequality to a quadratic

transportation cost inequality, under only a polynomial decay of entropy along the flow.

An analogous statement under a Poincaré inequality is also simplified. One illustration is

addressed in the context of Coulomb transport inequalities.

1 Introduction

Given p ≥ 1, the Monge-Kantorovich distance (cf. [20] e.g.) between two probability measures

ν and µ on the Borel sets of a metric space (M,d) with a finite p-th moment is defined by

Wp(ν, µ) =

(∫
M×M

d(x, y)pdπ(x, y)

)1/p

where the infimum is taken over all couplings π on M ×M with respective marginals ν and µ.

On the other hand, consider the Rényi-Tsallis entropies or divergences between two proba-

bility measures ν and µ on M with ν << µ defined by

Tα

(
ν |µ

)
=

1

α− 1

(∫
M

fαdµ− 1

)
where f = dν

dµ
is the Radon-Nikodym derivative and α > 0. The most important indices are

α = 1
2

(Hellinger distance), α = 1 (Kullback-Leibler distance or relative entropy)

T1

(
ν |µ

)
= H

(
ν |µ

)
=

∫
M

f log f dµ,
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and α = 2 (quadratic Rényi-Tsallis divergence)

T2

(
ν |µ

)
= Varµ(f).

The functional Tα is non-decreasing in α, so, for growing indices the distances are strengthening.

In the range 0 < α < 1, all Tα are comparable to each other and are metrically equivalent to

the total variation distance.

The transportation cost inequalities discussed in this note are inequalities comparing Wp(ν, µ)

and Tα(ν |µ) in the form of

Wp
p(ν, µ) ≤ C Tα

(
ν |µ

)
for some constant C > 0 and all ν << µ.

We review a few known results, mostly refereing to [20, 2] as general references. In order to

present them, it will be convenient to deal with a metric space arising from a (smooth, complete)

Riemannian manifold (M, g), denoting by d the Riemannian distance and by dx the Riemannian

volume element. Actually, to both deal with compact Riemannian manifolds, in which case the

Riemannian volume element will be assumed to be normalized to a probability measure, and

probability measures on Rn, we will consider weighted probability measures dµ = e−V dx on

(M, g), where V : M → R is some smooth potential. A typical example is of course simply

the standard Gaussian measure dµ(x) = e−|x|
2/2 dx

(2π)n/2
on Rn. If (M, g) is compact, we then

still denote by µ the normalized Riemannian measure. An abstract framework covering these

examples is the setting of Markov triples (E, µ,Γ) of [2] in which most of the conclusions here

may be transferred.

On Rn, for the standard Gaussian measure dµ(x) = e−|x|
2/2 dx

(2π)n/2
, the quadractic trans-

portation cost inequality, known as Talagrand’s inequality,

W2
2(ν, µ) ≤ 2C T1

(
ν |µ

)
(1)

holds true for every ν << µ, with C = 1. The inequality holds similarly, with C = 1
κ
, if

dµ = e−V dx with V (x)− κ
2
|x|2 convex for some κ > 0.

The preceding result is actually implied by the Otto-Villani theorem [17] ensuring that if µ

satisfies a logarithmic Sobolev inequality in the sense that

T1

(
ν |µ

)
≤ CLS

2
I
(
ν |µ

)
(2)

for every ν << µ, with I(ν |µ) =
∫
M
|∇f |2
f
dµ the Fisher information, then (1) holds with constant

C = CLS.

As another result in this framework, it has been shown recently by Y. Ding [8] that if µ

satisfies a Poincaré inequality in the sense that

Varµ(f) ≤ CP

∫
M

|∇f |2dµ (3)

for some CP > 0 and every smooth f on M , then for every α > 1 and every ν << µ,

W2
2(ν, µ) ≤ C(α,CP) Tα

(
ν |µ

)
(4)
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where C = C(α,CP) > 0. (For a prior result on R with α = 2, see [13].) Since the logarithmic

Sobolev inequality (2) implies the Poincaré inequality (with CP = CLS), this result might be

thought of as an analogue of the Otto-Villani theorem at the level of the Poincaré inequality

(3). It is not possible to reach α = 1 in (4) under only (3) in general.

Conversely, if µ satisfies the preceding transportation cost inequality (4) for some α ≥ 1,

C > 0 and all ν << µ, it satisfies a Poincaré inequality (3) (with constant CP = αC
2

). The

claim may be deduced in various ways (cf. e.g. [17, 3, 20, 2]). In particular, it may be seen

to follow from a standard result in optimal transport (cf. [17], [20, p. 588]) indicating that if

dνε = (1 + εg)dµ as ε→ 0, then

lim
ε→0

1

ε2
W2

2(νε, µ) = ‖g‖2H−1,2(µ) (5)

where

‖g‖H−1,2(µ) =

(∫
M

∣∣∇((−L)−1g)
∣∣2 dµ)1/2

is the dual Sobolev norm (for g : M → R with
∫
M
gdµ = 0 in the suitable domain, and

L = ∆−∇V · ∇ the diffusion operator with invariant measure µ – see Section 2). By a Taylor

expansion on (4), it then follows that∫
M

∣∣∇((−L)−1g)
∣∣2 dµ ≤ αC

2

∫
M

g2dµ

from which the assertion follows (by the formal change g = (−L)1/2h).

The purpose of this work is to discuss some variations and improvements on the preceding

statements, together with some simplified arguments. To this task, we rely on two distinct

interpolation schemes, the linear interpolation and the classical semigroup interpolation, on the

Kantorovich dual description of the metrics Wp. The linear interpolation gives rise to bounds

on the Monge-Kantorovich metrics by Sobolev-type norms which quantify the limit (5), already

emphasized in [15] following [1]. This is presented in Section 2, while Section 3 illustrates the

conclusion in the context of Coulomb transport inequalities, improving in a specific case a result

of [6] and [10]. Using the semigroup interpolation, we provide, in Section 4, a stronger version of

the Otto-Villani theorem under a polynomial, rather than exponential, decay of entropy along

the heat flow. We also emphasize a direct simple proof of (4). The final Section 5 outlines

yet another approach to the Otto-Villani theorem in the context of the Schrödinger variational

principle following the recent development [7].

2 Linear interpolation

This section presents a simple linear interpolation argument in the study of transportation cost

inequalities. It is mainly based on the Kantorovich dual description of the metric Wp(ν, µ) as

W1(ν, µ) = sup

(∫
M

ϕdν −
∫
M

ϕdµ

)
(6)
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where the supremum runs over all 1-Lipschitz maps ϕ : M → R, and for p > 1,

1

p
Wp

p(ν, µ) = sup

(∫
M

Q1ϕdν −
∫
M

ϕdµ

)
(7)

where the supremum is taken over all bounded continuous functions ϕ : M → R and where

Qsϕ(x) = inf
y∈M

[
ϕ(y) +

d(x, y)p

psp−1

]
, s > 0, x ∈M,

is the infimum-convolution Hopf-Lax semigroup. It is classical (cf. e.g. [9]) that Qsϕ(x), s > 0,

x ∈M , solves the Halmiton-Jacobi equation

d

ds
Qsϕ = −1

q
|∇Qsϕ|q. (8)

in (0,∞)×M with initial condition ϕ, where 1
p

+ 1
q

= 1.

The first observation below is a control of the Monge-Kantorovich metric Wp(ν, µ) by the

H−1,p-Sobolev norm of the Radon-Nykodim derivative of ν with respect to µ. In the weighted

Riemannian framework, recall the second order differential operator L = ∆−∇V · ∇ for which

the integration by parts formula∫
M

ϕ(−Lψ)dµ =

∫
M

∇ϕ · ∇ψ dµ (9)

holds true for all smooth ϕ, ψ : M → R. Denote by (Pt)t≥0 the Markov semigroup with

infinitesimal generator L [2]. Formally the inverse (−L)−1 of the non-negative operator −L

may be described by

(−L)−1 =

∫ ∞
0

Pt dt

acting on mean zero functions in the suitable domain, a core of which being the set C∞c of C∞

compactly supported functions on M . Whenever the spectrum σ(−L) of −L is discrete, (−L)−1

can be spectrally represented on a suitable function f as

(−L)−1f =
∑

λ∈σ(−L)\{0}

1

λ
fλuλ (10)

where (uλ)λ∈σ(−L) is an L2(µ) orthonormal basis of eigenvectors and fλ = 〈f, uλ〉. Such a

picture occurs on a compact manifold for example. On Rn equipped with the standard Gaussian

measure µ, the family of Hermite polynomials provides an orthonormal basis of eigenvectors of

L2(µ) with eigenvalues λk = k, k ∈ N (counted with mutiplicity).

Define then, for every p ≥ 1, the dual Sobolev norm H−1,p(µ) by

‖g‖H−1,p(µ) =

(∫
M

∣∣∇((−L)−1g)
∣∣p dµ)1/p
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for functions g : M → R with
∫
M
gdµ = 0 for which ∇((−L)−1g) exists and belongs to Lp(µ).

In the particular case p = 2, the integration by parts formula (9) and the symmetry of (Pt)t≥0
yield ∫

M

∣∣∇((−L)−1g)
∣∣2dµ =

∫
M

g(−L)−1g dµ

=

∫ ∞
0

∫
M

gPtg dµ dt

= 2

∫ ∞
0

∫
M

(Ptg)2dµ dt,

(11)

and in particular a simpler description of the admissible functions g.

The following statement is an energy estimate on the Monge-Kantorovich distance Wp(ν, µ)

between two probability measures ν and µ with ν absolutely continuous with respect to µ by

the dual Sobolev norm H−1,p(µ) of the Radon-Nikodym density f = dν
dµ

. It has been emphasized

earlier in [15], following [1]; the proof is reproduced here for completeness. An alternate inde-

pendent proof, based on the Benamou-Brenier formula, is established in [18] (and presented in

[19]).

Proposition 1. For any 1 ≤ p < ∞, and for all dν = fdµ with f − 1 in the domain of the

dual Sobolev norm H−1,p(µ),

Wp(ν, µ) ≤ p ‖f − 1‖H−1,p(µ).

As explained in the introduction, when p = 2, Proposition 1 is closely related to Poincaré-

type inequalities and their connection with transportation cost inequalities via the limit (5). In

view of this asymptotics, the inequality of Proposition 1 is of the correct order for p = 2 up to

a factor 4.

Proof. Let first p > 1. By a standard regularization procedure, it may be assumed that f is

smooth and that f > 0. Set then g = f−1 so that g > −1 and
∫
M
gdµ = 0. Let θ : [0, 1]→ [0, 1]

be increasing, smooth, with θ(0) = 0 and θ(1) = 1. For every bounded continuous ϕ : M → R,

by the Hamilton-Jacobi equation (8),∫
M

Q1ϕdν −
∫
M

ϕdµ =

∫ 1

0

d

ds

∫
M

(
1 + θ(s)g

)
Qsϕdµ ds

=

∫ 1

0

∫
M

[
θ′(s)g Qsϕ−

(
1 + θ(s)g

)1

q
|∇Qsϕ|q

]
dµ ds

=

∫ 1

0

∫
M

[
− θ′(s)∇

(
(−L)−1g

)
· ∇Qsϕ−

(
1 + θ(s)g

)1

q
|∇Qsϕ|q

]
dµ ds

where we used integration by parts (9) in the last step.

By Young’s inequality a · b ≤ |a|p
p

+ |b|q
q

,∫
M

Q1ϕdν −
∫
M

ϕdµ ≤ 1

p

∫ 1

0

θ′(s)p
∫
M

|∇((−L)−1g)|p

[1 + θ(s)g]p−1
dµ ds
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and since g > −1,∫
M

Q1ϕdν −
∫
M

ϕdµ ≤ 1

p

∫ 1

0

θ′(s)p

[1− θ(s)]p−1
ds

∫
M

∣∣∇((−L)−1g)
∣∣p dµ.

Therefore, by the Kantorovich duality formula (7),

Wp
p(ν, µ) ≤

∫ 1

0

θ′(s)p

[1− θ(s)]p−1
ds

∫
M

∣∣∇((−L)−1g)
∣∣p dµ.

The optimal choice of θ is provided by θ(s) = 1− (1− s)p for which
∫ 1

0
θ′(s)p

[1−θ(s)]p−1 ds = pp. The

proof is thereby completed by the Kantorovich duality formula (7). The conclusion extends (or

by a direct argument) to p = 1. Proposition 1 is established.

Note that under a Poincaré inequality (3) for µ, the semigroup (Pt)t≥0 decays exponentially

in L2(µ), that is, whenever g : M → R is in L2(µ) with mean zero,∫
M

(Ptg)2 dµ ≤ e−2t/CP

∫
M

g2dµ.

Hence, from Proposition 1 and (11), for every ν with f = dν
dµ

,

W2
2(ν, µ) ≤ 8

∫ ∞
0

∫
M

[Ptf − 1]2dµ ≤ 4CP Varµ(f) = 4CP T2

(
ν |µ

)
.

This is of course much improved by (4).

3 Coulomb transport inequality

In this section, we illustrate Proposition 1 of the preceding section in the context of Coulomb

gas transport inequalities as recently emphasized in [6]. The context and notation are taken

from this article.

The n-dimensional (n ≥ 2) Coulomb kernel k is defined as usual by x ∈ Rn 7→ k(x) = 1
|x|n−2

if n ≥ 3 and x ∈ Rn 7→ k(x) = log 1
|x| if n = 2. Given a probability measure µ on the Borel sets

of Rn, its Coulomb energy, with values in R ∪ {+∞}, is defined by

E(µ) =

∫
Rn×Rn

k(x− y)dµ(x)dµ(y).

For any ν, µ, probability measures on Rn, with compact support and finite Coulomb energy,

the quantity E(ν − µ) is well defined, finite, non-negative, and vanishes if and only if ν = µ,

and its square root defines a metric (on the subspace of such measures).

It has been shown in [6] that, for every compact subset D ⊂ Rn, there exists a constant

CD > 0 such that for every probability measures ν, µ supported in D with finite Coulomb

energy,

W1(ν, µ)2 ≤ CD E(ν − µ). (12)
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As a consequence of Proposition 1, when µ is the uniform measure on a compact subset D

in Rn, the result may be improved to the W2 metric.

Proposition 2. If µ is the uniform normalized measure on a compact non-empty subset D ⊂ Rn,

for any probability measure ν supported in D,

W2
2(ν, µ) ≤ 4|D|2

cn
E(ν − µ)

where |D| is the volume of D and cn = 2π if n = 2 and cn = n(n− 2)|B|, with B the unit ball

in Rn.

Proof. Assume that ν has a smooth density f with respect to µ, and set

U(x) =

∫
Rn
k(x− y)g(y)dµ(y), x ∈ Rn,

where g = f−1. The Poisson equation expresses that, in the sense of distributions, ∆k = −cnδ0.
Hence ∆U = − cn

|D| g. Now Proposition 1 (with p = q = 2) expresses that

W2
2(ν, µ) ≤ 4

∫
Rn

∣∣∇((−∆)−1g)
∣∣2dµ.

As in [6], in order to freely use integration by parts in the proof of this inequality, it is worthwhile

mentioning that for ϕ : M → R, non-negative, bounded and continuous, there exists 0 ≤ ϕ̃ ≤ ϕ

with compact support such that ϕ̃ = ϕ on D and∫
M

Q1ϕdν −
∫
M

ϕdµ =

∫
M

Q1ϕ̃ dν −
∫
M

ϕ̃ dµ.

Next, since (−∆)−1g = |D|
cn
U , it follows that

W2
2(ν, µ) ≤ 4|D|2

c2n

∫
Rn
|∇U |2dµ.

Finally, by integration by parts,∫
Rn
|∇U |2dx = −

∫
Rn
U∆Udx =

cn
|D|

∫
Rn
U(x)g(x)dx = cn E(η).

This is the conclusion of the proposition when the density f is smooth. The technical smoothing

properties to reach arbitrary distributions are developed in [6].

Conclusions similar to the ones developed in [6] have been recently considered on compact

Riemannian manifods in [10]. Proposition 2 admits an analogue in this setting. Namely,

whenever M is a compact Riemannian manifold, without boundary, we let as usual µ denote

the normalized volume element. If G : M ×M → (−∞,+∞] is the Green’s function for the

Laplace-Beltrami operator ∆ such that
∫
M
Gxdµ = 0 for every x ∈M , then ∆Gx = −δx + 1 in
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the distributional sense (here Gx(y) = G(x, y), y ∈M). If ρ is signed measure on M such that∫
M×M G(x, y)d|ρ|(x)d|ρ|(y) <∞, define

E(ρ) =

∫
M×M

G(x, y)dρ(x)dρ(y).

Arging exactly as for Proposition 2, it may then be established that for any ν << µ such that

E(ν) <∞,

W2
2(ν, µ) ≤ 4 E(ν − µ).

4 Semigroup interpolation

In this section, we replace the linear interpolation by a semigroup interpolation. This approach

was developed by K. Kuwada [14] (see also [2]), and we simply refine here the argument by an

additional parameter.

We start again from the Kantotovich dual description (7), with p > 1 and q the dual

exponent. Given dν = fdµ with a smooth positive density f , for any (bounded continuous)

ϕ : M → R, ∫
M

Q1ϕdν −
∫
M

ϕdµ = −
∫ ∞
0

d

dt

∫
M

Qλ(t)ϕPtfdµ dt

where λ(t) > 0, λ smooth, decreasing, λ(0) = 1 and λ(∞) = 0. Therefore∫
M

Q1ϕdν −
∫
M

ϕdµ =

∫ ∞
0

∫
M

[λ′(t)
q
|∇Qλ(t)ϕ|q Ptf −Qλ(t)ϕLPtf

]
dµ dt

=

∫ ∞
0

∫
M

[λ′(t)
q
|∇Qλ(t)ϕ|q Ptf +∇Qλ(t)ϕ · ∇Ptf

]
dµ dt.

By Young’s inequality,∫
M

Q1ϕdν −
∫
M

ϕdµ ≤
∫ ∞
0

1

−pλ′(t)

∫
M

(Ptf)−1|∇Ptf |p dµ dt.

As a consequence, with the notation Ip(t) =
∫
Rd(Ptf)−1|∇Ptf |p dµ, t ≥ 0, for the p-Fisher

information along the semigroup,

Wp
p(ν, µ) ≤

∫ ∞
0

Ip(t)

−λ′(t)
dt. (13)

When p = q = 2, a first choice of interest is

λ(t) =
1

c

∫ ∞
t

√
I2(s) ds, t ≥ 0,

where c =
∫∞
0

√
I2(s) ds (assumed to be finite). Then −λ′(t) = −1

c

√
I2(t) so that

W2
2(ν, µ) ≤ c

∫ ∞
0

√
I2(t) dt,
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that is

W2(ν, µ) ≤
∫ ∞
0

√
I2(t) dt.

We recover in this way an inequality emphasized in [17, 20].

To illustrate other possibilities, still with p = q = 2, let

T1(t) =

∫
M

Ptf logPtfdµ, t ≥ 0,

be the relative entropy along the semigroup (Pt)t≥0. Since T′1(t) = −I2(t), by integration by

parts,

W2
2(ν, µ) ≤ T1(0)

−λ′(0)
+

∫ ∞
0

λ′′(t)

λ′(t)2
T1(t)dt. (14)

It remains to appropriately choose the function λ. A first instance of interest is the Otto-

Villani theorem. A logarithmic Sobolev inequality (2) for µ, with constant CLS > 0, is equivalent

to the exponential decay of entropy

T1(t) ≤ e−2t/CLS T1(0), t ≥ 0, (15)

along the flow ([2]). Choose then λ(t) = e−t/CLS to get that

W2
2(ν, µ) ≤ 2CLS T1(0) = 2CLS T1

(
ν |µ

)
which amounts to the quadratic transportation cost inequality (1). We therefore recover here

the Otto-Villani theorem from a logarithmic Sobolev inequality to a quadratic transportation

cost inequality.

But actually, rather than the exponential decay (15), only a relatively soft, polynomial,

decay of entropy along the flow allows for such a quadratic transportation cost inequality. We

have for example the following result.

Proposition 3. In the preceding notation, given dν = fdµ, assume that

T1(t) ≤
C

(1 + t)β
T1(0), t ≥ 0,

for some β > 1 and C > 0. Then

W2
2(ν, µ) ≤ C ′T1

(
ν |µ

)
for some C ′ > 0 (only depending on C and β).

The proposition follows from the choice of λ(t) = (1 + t)−β, t ≥ 0, with 0 < β < α− 1.

It should be mentioned that, under a curvature lower bound (in the sense of weighted mani-

folds [2]), P. Cattiaux and A. Guillin showed in [5, Lemma 4.10] that any decay of entropy yields

the transportation cost inequality, actually the logarithmic Sobolev inequality itself. One may

wonder for the minimal decay of entropy ensuring the quadratic transportation cost inequality.
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Let us now use (14) in a somewhat different direction. Since T1 ≤ Tα, α ≥ 1,

W2
2(ν, µ) ≤ Tα(0)

−λ′(0)
+

∫ ∞
0

λ′′(t)

λ′(t)2
Tα(t)dt

with the corresponding notation Tα(t) = Tα(Ptf), t ≥ 0. It holds that

d

dt
Tα(t) = −α

∫
M

(Ptf)α−2|∇Ptf |2dµ.

Consider now, for α ∈ [1, 2], the Beckner inequality for µ,

1

1− 1
α

[ ∫
M

h2dµ−
(∫

M

|h|2/αdµ
)α ]

≤ C

∫
M

|∇h|2dµ (16)

for some C > 0 and all smooth h : M → R. Note that if µ satisfies a logarithmic Sobolev

inequality, then it satisfies all the Beckner inequalities, and conversely if it satisfies a Poincaré

inequality, it satisfies the Beckner inequalities for α ∈ (1, 2] (cf. [2]).

Assume then that µ satisfies the Beckner inequality (16) for α ∈ (1, 2]. As explained in [5]

and is easy to check, by Jensen’s inequality, the application of (16) to h = (Ptf)α/2 implies that

Tα(t) ≤ −C
4

d

dt
Tα(t).

Therefore t 7→ e4t/CTα(t) is non-increasing, that is

Tα(t) ≤ e−4t/C Tα(0)

for every t ≥ 0. Choose then λ(t) = e−8t/C , t ≥ 0, to reach the following statement.

Proposition 4. Assume that µ satisfies the Beckner inequality (16) for α ∈ (1, 2]. Then, for

every ν << µ,

W2
2(ν, µ) ≤

(
1 +

C

8

)
Tα

(
ν |µ

)
.

Since a Poincaré inequality implies a Beckner inequality for α ∈ (1, 2], the result amounts

to the main conclusion of [8]. For the specific value α = 2, alternate arguments have been

developed recently in [16], producing in particular a sharper constant in the latter together

with further characterizations of the Poincaré inequality.

5 Entropic transportation cost inequality

This short section is yet another approach to the Otto-Villani theorem via recent developments

[11, 12, 7] on the Schrödinger problem. It is actually another way to interpret the reverse

hypercontractivity argument already emphasized in [3]. The setting is the one of the preceding

sections.
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Let ε > 0 and set, for ν probability measure on M ,

1

2
W2

2,ε(ν, µ) = sup

(∫
M

vε1(ϕ)dν −
∫
M

ϕdµ

)
where the supremum is over all bounded continuous ϕ : M → R and where

vε = vεt (ϕ) = −2ε logPεt(e
−ϕ/2ε), t > 0,

is the viscous Hamilton-Jacobi solution of ∂tv
ε + 1

2
|∇vε|2 − εLvε = 0 with initial condition ϕ.

As ε→ 0, vεt → Qtϕ (in a sense to be made precise).

We consider here an inequality of the form

W2
2,ε(ν, µ) ≤ 2C ′T1

(
ν |µ

)
(17)

holding for any ν << µ. The Kantorovich duality transforms equivalently (cf. [4, 3, 2]) this

inequality into ∫
M

e
1
C′ v

ε
1(ϕ)dµ ≤ e

1
C′

∫
M ϕdµ

holding for any ϕ : M → R (bounded continuous). This is achieved in the standard way with

ψ = 1
C′

[vε1(ϕ) −
∫
M
ϕdµ] and the choice of f = dν

dµ
= eψ∫

M eψdµ
. (When ε = 0, this is the usual

dual description of the quadratic transportation cost inequality.)

Next, with φ = e−ϕ/2ε, the latter amounts to

‖Pεφ‖−2ε/C′ ≥ ‖φ‖0 = e
∫
M log φdµ (18)

holding for every non-negative φ.

Recall that the logarithmic Sobolev inequality for µ, with constant C > 0,

H
(
ν |µ

)
≤ 1

2C

∫
M

|∇f |2

f
dµ

for every dν = fdµ, is equivalent to hypercontractivity, and also to reverse hypercontractivity

in the form of

‖Ptf‖q ≥ ‖f‖p
for every non-negative f and some (any) −∞ < q < p < 1 such that e2t/C = q−1

p−1 . In particular

therefore, the inequality (17) holds with

C ′ =
2ε

e2ε/C − 1
< C.

This is the constant put forward in [7]. It is optimal as checked on the example of the Ornstein-

Uhlenbeck semigroup (with C = 1) and for the test function φ = eλx−λ
2/2. It yields that

Now, as ε → 0, the inequality amounts the quadratic transportation cost inequality (1),

providing another approach to the Otto-Villani theorem.
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[11] I. Gentil, C. Léonard, L. Ripani. About the analogy between optimal transport and minimal

entropy. Ann. Fac. Sci. Toulouse Math. 26, 569–601 (2017).
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