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Abstract

We discuss new proofs, and new forms, of a reverse logarithmic Sobolev inequality,

with respect to the standard Gaussian measure, for low-complexity functions, measured

in terms of Gaussian-width. In particular, we provide a dimension-free improvement for

a related result given in [5].

1 A reverse logarithmic Sobolev inequality

The recent work [5] has put forward a reverse logarithmic Sobolev inequality, with respect to the

standard Gaussian measure, for low-complexity functions measured in terms of Gaussian-width.

To briefly recall this inequality, we take again the notation from [5].

Let γ denote the standard Gaussian measure on Rn, and let ν be the probability measure

dν = efdγ where f : Rn → R is twice-differentiable. Let

DKL

(
ν || γ

)
=

∫
Rn

f dν and I(ν) =

∫
Rn

|∇f |2dν

be respectively the Kullback-Leibler divergence (relative entropy) and the Fisher information of

ν with respect to γ, assumed to be finite in the following. In particular ν has a second moment.

The standard logarithmic Sobolev inequality of L. Gross (cf. e.g. [11, 3]) ensures that

DKL

(
ν || γ

)
≤ 1

2
I(ν). (1)
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Let

D(ν) = GW(K) =

∫
Rn

sup
t∈K
〈y, t〉 dγ(y)

be the Gaussian-width of the set K = {∇f(x) ;x ∈ Rn}. Remark that the above expres-

sion is integrable if and only if f is a Lipschitz function, which is the only case in which we

obtain meaningful results; Otherwise, set D(ν) = ∞. The quantity D(ν) is a measure of

the complexity of ν (rather the gradient-complexity of f). The following reverse logarithmic

Sobolev inequality for measures of low-complexity has been established in [5, Theorem 4]. Set

M(ν) = − infx∈Rn ∆f(x), assumed to be finite. Then one has

1

2
I(ν) ≤ DKL(ν || γ) +

1

2
M(ν)+ +D(ν)2/3 I(ν)1/3, (2)

where M(ν)+ = max(M(ν), 0).

Our first theorem gives the following related bound.

Theorem 1. In the preceding notation,

1

2
I(ν) ≤ DKL

(
ν || γ

)
+M(ν) +D(ν).

As discussed in [5], the inequality is sharp on the extremal functions f(x) = 〈α, x〉, x ∈ Rn,

α ∈ Rn, of the logarithmic Sobolev inequality which have complexity M(ν) = D(ν) = 0.

To compare between Theorem 1 and the bound (2), observe that the latter trivially holds

true in the case that I(ν) ≤ D(ν), thus we may generally assume that D(ν) ≤ D(ν)2/3 I(ν)1/3.

Unlike inequality (2), the bound of the theorem has the feature that both sides of the inequality

are additive with respect to taking products and in this sense it is dimension-free. In Section 2

below, we give a slightly different form which improves on (2), and improves on Theorem 1

when, for example, the potential f is convex.

Such a reverse logarithmic Sobolev inequality is of theoretical interest in the study of ap-

proximations of partition functions and of low-complexity Gibbs measures on product spaces

(cf. [5, 1]). An analogous definition of low-complexity for Boolean functions was considered

in [5], where it is shown that a low-complexity condition implies that the measure can be

decomposed as a mixture of approximate product measures.

In fact, it was very recently shown ([7]) that if a measure ν satisfies a reverse logarithmic

Sobolev inequality, then it is close, in transportation distance, to a mixture of translated Gaus-

sian measures. The combination of such a result with Theorem 1 gives a structure theorem for

measures of low-complexity, analogous to the one given in [5], but for the Gaussian setting. We

formulate this as a corollary.

Recall the quadratic Kantorovich metric W2(ν, γ) between ν and γ defined by

W2
2(ν, γ) = inf

∫
Rn×Rn

|x− y|2dπ(x, y)

where the infimum is taken over all couplings π on Rn×Rn with respective marginals ν and γ.

A combination of Theorem 1 with [7, Theorem 5] yields the following statement.
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Corollary 2. In the preceding notation, there exists a probability measure µ such that

W2
2(ν, γ ? µ) ≤ 16n1/3

(
M(ν) +D(ν)

)2/3
.

In particular, the above corollary gives a meaningful result whenever M(ν) +D(ν) = o(n).

It is also conjectured that a dimension-free analogue of [7, Theorem 5] should hold true, which,

combined with our bound would imply the existence of a probability measure µ such that

W2
2(ν, γ ? µ) ≤ C

(
M(ν) +D(ν)

)
,

where C > 0 is a universal constant.

The proof of (2) strongly relies on a construction coming from stochastic control theory, of

an entropy-optimal coupling of the measure ν to a Brownian motion. We will come back to it

in Section 2. In contrast, our proof of Theorem 1 follows a simple and direct approach.

Proof of Theorem 1. Recall that we may assume that f is Lipschitz, since otherwise D(ν) =∞.

Thus we have ∇f(x) dγ
dx
→ 0 uniformly as |x| → ∞ and therefore, by integration by parts with

respect to the Gaussian measure γ,

I(ν) =

∫
Rn

|∇f |2dν =

∫
Rn

|∇f |2efdγ

=

∫
Rn

〈∇(ef ),∇f〉 dγ

= −
∫
Rn

ef Lf dγ = −
∫
Rn

Lf dν

where L = ∆f − 〈x,∇f〉 is the Ornstein-Uhlenbeck operator. Therefore

I(ν) = −
∫
Rn

∆f dν +

∫
Rn

〈x,∇f〉 dν ≤ M(ν) +

∫
Rn

〈x,∇f〉 dν. (3)

Let π be a coupling on Rn × Rn with respective marginals ν and γ. Then,∫
Rn

〈x,∇f(x)〉 dν(x) =

∫
Rn×Rn

〈x,∇f(x)〉 dπ(x, y)

=

∫
Rn×Rn

〈y,∇f(x)〉 dπ(x, y) +

∫
Rn×Rn

〈x− y,∇f(x)〉 dπ(x, y).

Now, on the one hand,∫
Rn×Rn

〈y,∇f(x)〉 dπ(x, y) ≤
∫
Rn×Rn

sup
t∈K
〈y, t〉 dπ(x, y) =

∫
Rn

sup
t∈K
〈y, t〉 dγ(y).

On the other hand, by the standard quadratic inequality,∫
Rn×Rn

〈x− y,∇f(x)〉 dπ(x, y)

≤ 1

2

∫
Rn×Rn

∣∣∇f(x)
∣∣2dπ(x, y) +

1

2

∫
Rn×Rn

|x− y|2dπ(x, y)

=
1

2

∫
Rn

∣∣∇f(x)
∣∣2dν(x) +

1

2

∫
Rn×Rn

|x− y|2dπ(x, y).
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Taking the infimum over all couplings π with respective marginals ν and γ, it holds true that∫
Rn

〈x,∇f〉 dν ≤
∫
Rn

sup
t∈K
〈y, t〉 dγ(y) +

1

2

∫
Rn

∣∣∇f(x)
∣∣2dν(x) +

1

2
W2

2(ν, γ).

Therefore, together with (3),

1

2
I(ν) ≤ M(ν) +D(ν) +

1

2
W2

2(ν, γ). (4)

It remains to recall the quadratic transportation cost inequality by M. Talagrand (cf. [11, 3])

1

2
W2

2(ν, γ) ≤ DKL

(
ν || γ

)
(5)

and the proof is complete.

Together with the logarithmic Sobolev inequality (1) DKL(ν||γ) ≤ 1
2
I(ν), the step (4) of

the preceding proof actually also yields a reverse transportation cost inequality

DKL

(
ν || γ

)
≤ 1

2
W2

2(ν, γ) +M(ν) +D(ν). (6)

Theorem 1 may also be deduced from a classical integrability result for the supremum of a

Gaussian process. Given a bounded set K ⊂ Rn, observe that x 7→ supt∈K〈x, t〉 is integrable

with respect to γ. Setting Z = Z(x) = supt∈K
[
〈x, t〉 − 1

2
|t|2
]
, x ∈ Rn, it holds true that∫

Rn

eZdγ ≤ e
∫
Rn supt∈K〈x,t〉dγ. (7)

This inequality was originally put forward in [10, 12] in the context of concentration properties

of suprema of Gaussian processes. Now, the classical entropic inequality (Gibbs variational

principle) expresses that ∫
Rn

Z dν ≤ DKL

(
ν || γ

)
+ log

∫
Rn

eZdγ.

With K = {∇f(x) ;x ∈ Rn}, it therefore follows that∫
Rn

[
〈x,∇f〉 − 1

2
|∇f |2

]
dν ≤

∫
Rn

Z dν ≤ DKL

(
ν || γ

)
+

∫
Rn

sup
t∈K
〈x, t〉 dγ.

Again, together with (3), this yields the conclusion of the theorem.

At the same time, the integrability inequality (7) may be seen as a consequence of the

transportation cost inequality (5) and the Kantorovich duality. The argument actually works

for any probability µ on the Borel sets of Rn satisfying the transportation cost inequality

1

2C
W2

2(µ
′, µ) ≤ DKL

(
µ′ ||µ

)
(8)
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for some constant C > 0 and every µ′ << µ (C = 1 for µ = γ). Namely, the Kantorovich

duality (cf. [11]) expresses that

1

2
W2

2(µ
′, µ) = sup

[ ∫
Rn

ϕdµ′ +

∫
Rn

ψ dµ

]
where the supremum runs over the set of measurable functions (ϕ, ψ) ∈ L1(µ′)×L1(µ) satisfying

ϕ(x) + ψ(y) ≤ 1

2
|x− y|2 (9)

for dµ′-almost all x ∈ Rn and dµ-almost all y ∈ Rn. Given then a couple of functions

(ϕ, ψ) satisfying (9), the choice in (8) of dµ′

dµ
= eg∫

Rn e
gdµ

where g = 1
C

[ϕ +
∫
Rn ψ dµ] yields

that log
∫
Rn e

gdµ ≤ 0, that is ∫
Rn

e
1
C
ϕdµ ≤ e−

1
C

∫
Rn ψdµ.

For every x, y ∈ Rn, and t ∈ K,

〈x, t〉 − 1

2
|t|2 = 〈y, t〉+ 〈x− y, t〉 − 1

2
|t|2 ≤ 〈y, t〉+

1

2
|x− y|2.

Therefore, if ϕ(x) = supt∈K
[
〈x, t〉 − 1

2
|t|2
]
, x ∈ Rn, then ψ(y) = − supt∈K〈y, t〉 is a valid

candidate for (9). Hence ∫
Rn

e
1
C
Zdµ ≤ e

1
C

∫
Rn supt∈K〈x,t〉dµ

which amounts to (7) when µ = γ.

2 Stochastic calculus and the Föllmer process

As mentioned above, the proof of (2) developed in [5] uses tools from stochastic control theory,

and in particular the so-called Föllmer process [8] to achieve an entropy-optimal coupling of the

measure ν to a Brownian motion. This argument has already been proved useful in the study

of various functional inequalities [4, 9, 6].

To summarize a few facts from [9, 5], let (Bt)t≥0 be standard Brownian motion in Rn

(starting from the origin) adapted to a filtration (Ft)t≥0. Set v(t, x) = ∇ logZ(t, x), t ∈ [0, 1],

x ∈ Rn, where

Z(t, x) = E
(
[ef ](x+B1−t)

)
.

The Föllmer process (Xt)t∈[0,1] solves the stochastic differential equation

X0 = 0, dXt = dBt + vtdt

where vt = v(t,Xt). Amongst its relevant properties, the random variable X1 has distribution

ν, (vt)t∈[0,1] is a martingale, and

E
(∫ 1

0

|vt|2dt
)

= 2 DKL

(
ν || γ

)
.
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The arguments developed in [5] thus make use of these properties towards a proof of the

inequality (2). Now, actually, a small variation in the same spirit allows for the following

inequality.

Theorem 3. In the notation of Section 1, assume that ν has a finite second moment. Then∫
Rn

|x|2dν −
∫
Rn

|x|2dγ ≤ 2 DKL

(
ν || γ

)
+D(ν).

For the sake of intuition, let us consider an equivalent form of the bound provided by this

theorem. Denote

H(ν) = −
∫
Rn

log

(
dν

dx

)
dν,

the differential entropy of ν. It is then straightforward to check that the inequality of Theorem 3

is equivalent to

H(ν)− H(γ) ≤ 1

2
D(ν). (10)

Note that, in the special case that ν has the form log dν
dx

= supt∈K
[
〈x, t〉 − 1

2
|t|2
]

+ const, this

bound becomes somewhat similar to the bound (7).

Proof of Theorem 3. Observe first that by integration by parts∫
Rn

|x|2dν −
∫
Rn

|x|2dγ =

∫
Rn

|x|2dν − n =

∫
Rn

〈x,∇f〉 dν

where the boundary term vanishes due to the legitimate assumption that f is Lipschitz (oth-

erwise D(ν) = ∞ and there is nothing to prove). The inequality of the theorem amounts

to ∫
Rn

〈x,∇f〉 dν ≤ 2 DKL

(
ν || γ

)
+D(ν). (11)

Recall K = {∇f(x) ;x ∈ Rn}. Arguing as for the proof of Theorem 1, for any coupling π

with respective marginals ν and γ,∫
Rn

〈x,∇f〉 dν =

∫
Rn×Rn

〈x,∇f(x)〉 dπ(x, y)

=

∫
Rn×Rn

〈x− y,∇f(x)〉 dπ(x, y) +

∫
Rn×Rn

〈y,∇f(x)〉 dπ(x, y)

≤
∫
Rn×Rn

〈x− y,∇f(x)〉 dπ(x, y) +

∫
Rn×Rn

sup
t∈K
〈y, t〉 dπ(x, y)

=

∫
Rn×Rn

〈x− y,∇f(x)〉 dπ(x, y) +D(ν).

The inequality (11) would then follow if for some coupling π,∫
Rn×Rn

〈x− y,∇f(x)〉 dπ(x, y) ≤ 2 DKL

(
ν || γ

)
.
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But the point is that the Föllmer process actually produces an exact coupling for this identity

to hold. Namely, by the definition and properties of (Xt)t∈[0,1], X1 has law ν, B1 has law γ and

d〈Xt −Bt, vt〉 = |vt|2dt+ 〈Xt −Bt, dvt〉.

Since (vt)t∈[0,1] is a martingale,

E
(
〈X1 −B1, v1〉

)
= E

(∫ 1

0

|vt|2dt
)

= 2 DKL

(
ν || γ

)
from which the claim follows since v1 = ∇f(X1).

It remains to connect Theorem 3, or rather inequality (11), to Theorem 1. By the definition

of the Fisher information (cf. (3))

I(ν) = −
∫
Rn

∆f dν +

∫
Rn

〈x,∇f〉 dν,

so that (11) expresses that

1

2
I(ν) ≤ DKL

(
ν || γ

)
− 1

2

∫
Rn

∆f dν +
1

2
D(ν). (12)

As a first minor observation, note that, according to the discussion following Theorem 1,

the above inequality improves upon (2) with the correct factor 1
2

in front of M(ν)+ (unlike

Theorem 1).

While presented and established with the quantity M(ν) = − infx∈Rn ∆f(x), the proof of

Theorem 1 shows in the same way that

1

2
I(ν) ≤ DKL

(
ν || γ

)
−
∫
Rn

∆f dν +D(ν). (13)

Hence, if D(ν) ≥
∫
Rn ∆f dν (which holds in particular for convex potentials), the inequality

(12) improves upon (13). On the other hand, it does not seem possible to reach (12) as simply

as (13), and in any case, the inequality of Theorem 3, even up to a constant, may not be

deduced from Theorem 1.
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[8] H. Föllmer. An entropy approach to the time reversal of diffusion processes. In Stochastic

differential systems (Marseille-Luminy, 1984), Lecture Notes in Control and Inform. Sci. 69,

156–163 (1985). Springer.

[9] J. Lehec. Representation formula for the entropy and functional inequalities. Ann. Inst.
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