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QUANTITATIVE NORMAL APPROXIMATION OF LINEAR
STATISTICS OF β-ENSEMBLES

BY GAULTIER LAMBERT1, MICHEL LEDOUX AND CHRISTIAN WEBB2

Universität Zürich, Université de Toulouse and Aalto University

We present a new approach, inspired by Stein’s method, to prove a central
limit theorem (CLT) for linear statistics of β-ensembles in the one-cut regime.
Compared with the previous proofs, our result requires less regularity on the
potential and provides a rate of convergence in the quadratic Kantorovich or
Wasserstein-2 distance. The rate depends both on the regularity of the poten-
tial and the test functions, and we prove that it is optimal in the case of the
Gaussian Unitary Ensemble (GUE) for certain polynomial test functions.

The method relies on a general normal approximation result of indepen-
dent interest which is valid for a large class of Gibbs-type distributions. In the
context of β-ensembles, this leads to a multi-dimensional CLT for a sequence
of linear statistics which are approximate eigenfunctions of the infinitesimal
generator of Dyson Brownian motion once the various error terms are con-
trolled using the rigidity results of Bourgade, Erdős and Yau.
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1. Introduction and main results. In this article, we study linear statistics of
β-ensembles. By a β-ensemble, we mean a probability measure on R

N of the form

(1.1) P
N
V,β(dλ1, . . . , dλN)= 1

ZNV,β
e−βHNV (λ1,...,λN )

N∏
j=1

dλj ,

where

HNV (λ)=
∑

1≤i<j≤N
log

1

|λi − λj | +N
N∑
j=1

V (λj ).

The parameter β > 0 is interpreted as the inverse temperature, V : R → R is a
suitable function known as the confining potential, and ZNV,β is a normalization
constant, known as the partition function. By a linear statistic, we mean a ran-
dom variable of the form

∑N
j=1 f (λj ), where the configuration (λj )Nj=1 is drawn

from P
N
V,β and f : R → R is a test function. Our goal is to study the asymptotic

fluctuations of these linear statistics in the large N limit.
A general reference about the asymptotic behavior of β-ensembles is [29], Sec-

tion 11. It is a well-known fact that when N is large, a linear statistic is close
to its mean or equilibrium value which is given by N

∫
f (x)μV (dx) where μV ,

the so-called equilibrium measure associated to V , is a probability measure with
compact support on R and can be characterized as being the unique solution of a
certain optimization problem that we recall below; see the discussion around (1.7).
Moreover, under suitable conditions on V and f , it is known that the fluctuations
of

∑N
j=1 f (λj ) around the equilibrium value are of order 1 and described by a cer-

tain Gaussian random variable. This CLT first appeared in the fundamental work of
Johansson [16], Theorem 2.4, valid for suitable polynomial potentials V . The ar-
gument is inspired from statistical physics and based on the asymptotic expansion
of the partition function ZNV,β and relies on the analysis of the first loop equation
by the methods of the perturbation theory. The method was further developed and
simplified in the subsequent papers [17], Theorem 1, [5], Proposition 5.2 and [31],
Theorem 1, but still under the assumption that the potential V is real-analytic in
a neighborhood of the support of the equilibrium measure. We also point out the
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article [4] which appeared nearly simultaneously with this article, and where the
assumption of real-analyticity is relaxed by using a priori estimates from [19]. In
particular, they obtain a CLT which is valid when the potential V ∈ C 5(R) for
test functions f ∈ C 3

c (R), these assumptions being slightly weaker than Assump-
tion 1.1, which covers the assumptions under which we prove our main result,
Theorem 1.2. Their results are also stronger in the sense that they obtain the CLT
by proving convergence of the Laplace transform of the law of a linear statistic
and they also provide sufficient conditions to obtain Gaussian fluctuations in the
multicut setting even when the potential is not regular; that is beyond the context
of our Assumption 1.1. We shall come back to their method and compare it with
ours in Section 1.2. In the special case β = 2, there are also other types of proofs
which rely on the determinantal structure of the ensembles P

N
V,2 and are valid in

greater generality; see, for example, [8] or [18].
Our goal is to offer a new proof for this CLT with an argument inspired by

Stein’s method; see Theorem 1.2. In addition to novelty, the benefits of our ap-
proach are a rate of convergence (in the Kantorovich or Wasserstein distance W2,
see the discussion around (1.6) for a definition) as well as requiring less regularity
of the potential V than the more classical proofs. We also demonstrate that at least
in some special cases (e.g., the GUE with certain polynomial linear statistics), the
rate of convergence is optimal. Compared to the references above, the drawback
of our approach is that we are not able to provide estimates for exponential mo-
ments of linear statistics, or in other words, strong asymptotic estimates for the
partition function of a β-ensemble, although we do get convergence of the first
and second moment of a linear statistic of a nice enough function. This being said,
it does not seem to be obvious how one would obtain our rate of convergence in the
Kantorovich distance from, for example the Laplace transform estimates from [4].

In this section, we will first introduce some key concepts and then state our main
results concerning the precise asymptotic behavior of

∑N
j=1 f (λj ). After this, we

offer a brief comparison of our approach to other approaches to the CLT for linear
statistics of β ensembles, and then conclude this Introduction with an outline of
the rest of the article. Before proceeding, we describe some notation that we will
use repeatedly throughout the article.

Notational conventions and basic concepts. For two sequences (An) and (Bn),
we will write An� Bn if there exists a constant C > 0 independent of n such that
An ≤ CBn for all n. When this constant depends on some further parameter, say ε,
we write An �ε Bn. If An � Bn and Bn � An, we write An � Bn (and �ε if
the constants depend on the parameter ε). We will also use analogous notation for
functions, for example, f � g if there exists a constant C independent of x such
that f (x)≤ Cg(x) for all x. In most of our estimates, these constants will depend
on the parameters β and V in the definition of PNV,β , but as these parameters remain
fixed throughout the article, we shall not emphasize these dependencies and simply
write � instead of �V,β , etc.
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We write N = {0,1, . . .} and for k ∈ N as well as for any open interval I ⊆R,
we write C k(I) for the space of functions which are k-times continuously differ-
entiable on I. If I is a finite closed interval, we also write C k(I) to indicate that
the kth-derivative of the functions have finite limits at the end points of I. For any
k ∈ N, α ∈ (0,1), and interval I ⊂ R, we write C k,α(I) for the space of functions
f ∈ C k(I) which satisfy

(1.2) ‖f ‖C k,α(I) = sup
x,y∈I,x 
=y

|f (k)(x)− f (k)(y)|
|x − y|α <∞.

We also use the notation C k
c (I) for the subspace of C k(I) whose elements have

compact support in I. For a function f :R→R, we also find it convenient to write

(1.3) ‖f ‖∞,I = sup
x∈I

∣∣f (x)∣∣.
We will impose several constraints on the potential V (see Assumption 1.1)—

one being that it is normalized so that the support of the equilibrium measure μV
is [−1,1] (the actual constraint here being that the support is a single interval—
normalizing this interval to be [−1,1] can always be achieved by scaling and trans-
lating space). We thus find it convenient to introduce the following notation: let
J = (−1,1) and Jε = (−1− ε,1+ ε) for any ε > 0. We also introduce notation for
the semicircle law and arcsine law on J:

(1.4) μsc(dx)= 2

π

√
1 − x21J(x) dx and �(dx)= 1J(x)

π
√

1 − x2
dx.

If λ= (λ1, . . . , λN) is a configuration distributed according to (1.1), we define

(1.5) νN(dx)=
N∑
j=1

δλj (dx)−NμV (dx).

This measure corresponds to the centered empirical measure when β = 2 and, in
general, it describes the fluctuation of the configuration λ around equilibrium—we
suppress the dependence on V here.

A further notion that is instrumental in the statement of our main results is the
quadratic Kantorovich or Wasserstein-2 distance between two probability distribu-
tions. For μ and ν probability distributions on R

d with finite second moment (so∫
Rd

|x|2μ(dx) <∞ and similarly for ν), we write

(1.6) W2(μ, ν)= inf
π

(∫
Rd×Rd

|x − y|2π(dx, dy)
) 1

2
,

where the infimum is over all probability measures π on R
d ×R

d with marginals
μ and ν, that is, over all couplings π so that π(dx,R)= μ(dx) and π(R, dy) =
ν(dy). Here, | · | is the Euclidean distance on R

d . A basic fact about the quadratic
Kantorovich distance is that convergence with respect to it implies convergence in
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distribution along with convergence of the second absolute moment. We refer to
[36], Chapter 6, for further information about Kantorovich distances. If μ is the
distribution of a random variable X and ν the distribution of a random variable Y ,
we will occasionally find it convenient to write W2(X,Y ) or W2(X, ν) instead of
W2(μ, ν).

Finally, for any d ≥ 1 we will denote by γd the standard Gaussian law on R
d :

γd(dx)= 1

(2π)
d
2

d∏
j=1

e
− 1

2x
2
j dxj .

1.1. Main results. In addition to smoothness, we will need some further con-
ditions on V . These are slightly indirect as they are statements about the equilib-
rium measure associated to V . We recall that if V is say continuous and grows
sufficiently fast at infinity, its equilibrium measure μV is defined as the unique
minimizer of the energy functional

μ �→ 1

2

∫
R×R

log
1

|x − y|μ(dx)μ(dy)+
∫
R

V (x)μ(dx)

over all probability measures on R. It turns out that μV has compact support and
is characterized by the following two conditions:

• There exists a constant �V , such that for μV -almost every x ∈ supp(μV ),

(1.7) Q(x) := V (x)−
∫
R

log |x − y|μV (dy)= �V .

• Q(x)≥ �V for all x /∈ supp(μV ).

We refer to [1], Section 2.6, for further details.
It is well known that the assumption that the support of μV is a single interval

is necessary to observe Gaussian fluctuations for all test functions. In the multicut
regime, namely when the support consists of several intervals, there is a subspace
of smooth functions where the fluctuations are Gaussian, but for a general smooth
test function the fluctuations can oscillate with the dimension N and there is no
CLT in general. This is due to the possibility of eigenvalues tunnelling from one
component of the support to another. See, for example, [28] for a heuristic de-
scription of this phenomenon, or [31], Theorem 2, and [6], Section 8.3, for precise
results as well as [4] for a description of when one observes Gaussian fluctuations.
When the potential V is sufficiently smooth, the behavior of the equilibrium mea-
sure is well understood. In fact, by [29], Theorem 11.2.4, if one normalizes V so
that supp(μV )= J = [−1,1] (one can check that this is equivalent to the conditions
(11.2.17) in [29], Theorem 11.2.4), we have

(1.8) μV (dx)= S(x)μsc(dx),
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where S : J →[0,∞] is given by

(1.9) S(x)= 1

2

∫
J

V ′(x)− V ′(y)
x − y �(dy).

Note that this formula can be used to define S outside of J. Moreover, one can
check (see, e.g., Lemma A.1 in the Appendix) that this expression shows that if
V ∈ C κ+3(R), then the extension given by (1.9) satisfies S ∈ C κ+1(R) for any
κ ∈N.

Finally, we assume that S(x) > 0 for all x ∈ J̄. In the random matrix theory
literature, this is known as the off-criticality condition. Combining these remarks,
we now state our standing assumptions about V .

ASSUMPTION 1.1. Let V ∈ C κ+3(R) be such that lim infx→±∞ V (x)
log |x| > 1

and infx∈R V ′′(x) >−∞. Moreover, assume that the support of the measure μV is
J = [−1,1] and S(x) > 0 for all x ∈ J.

There is a rather large class of potentials which satisfy these assumptions. For
instance, any function V that is sufficiently convex on R. A concrete example being
V (x) = x2, for which (1.1) is the so-called Gaussian or Hermite β-ensemble. In
particular, it is a well-known fact that PN

x2,2 is the distribution of the eigenvalues of
a N ×N GUE random matrix.

As a final step before stating our main result, we introduce some notation con-
cerning the limiting mean and variance of a linear statistic. Let f ∈ C 1

c (R) and
define

m(f )= 1

2

(
f (1)+ f (−1)

) − ∫
J
f (x)�(dx)

− 1

2

∫
J

S′(x)
S(x)

[∫
J

f (x)− f (y)
x − y �(dy)

]
μsc(dx)

(1.10)

and

(1.11) �(f )= 1

4

∫∫
J×J

(
f (x)− f (y)
x − y

)2
(1 − xy)�(dx)�(dy),

where the measures μsc and � are as in (1.4). As we see below, N
∫

J f dμV +
(1

2 − 1
β
)m(f ) describes the mean of a linear statistic (a fact first noted in [31]) and

2
β
�(f ) its variance. There are different possible expressions for the variance �.

For example, one can check that for f ∈ C 1
c (R),

(1.12) �(f )= 1

4

∞∑
k=1

kf 2
k ,

where fk , k ≥ 1, denote the Fourier–Chebyshev coefficients of the function f ,
see (4.9). We also refer to (4.15) for yet another formula for �(f ). We wish to
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emphasize here the fact (well known since [16]) that while μV and m(f ) depend
on V , the variance �(f ) is independent of V , or in other words, the fluctuations
of the linear statistics are universal.

We now turn to the statement of our main result.

THEOREM 1.2. Let V :R→R satisfy Assumption 1.1 with κ ≥ 5 and let f ∈
C κ+4
c (R) be a given function which is nonconstant on J. Moreover, let (λ1, . . . , λN)

be distributed according to (1.1) and

XN(f ) :=
√

β

2�(f )

(∫
R

f (x)νN(dx)−
(

1

2
− 1

β

)
m(f )

)

=
√

β

2�(f )

(
N∑
j=1

f (λj )−N
∫

J
f (x)μV (dx)−

(
1

2
− 1

β

)
m(f )

)
.

(1.13)

Then the W2-distance between the law of the random variable XN(f ) and the
standard Gaussian measure on R satisfies for any ε > 0,

W2
(
XN(f ), γ1

) �f N
−θ+ε,

where θ = min{ 2κ−9
2κ+11 ,

2
3}. In particular, as N → ∞,

∑N
j=1 f (λj ) − N

∫
J f dμV

converges in law to a Gaussian random variable with mean (1
2 − 1

β
)m(f ) and

variance 2
β
�(f ).

REMARK 1.3. The function θ(κ) is nondecreasing in κ and positive if κ ≥ 5.
This means that the rate of convergence in Theorem 1.2 is improving with the
regularity of the potential V as well as the regularity of the test function f . More-
over, we point out that the condition θ ≤ 2

3 comes only from the fluctuations of
the eigenvalues near the edges of the spectrum. For instance, we deduce from the
proof of Theorem 1.2 (see Section 6.3) that if f ∈ C ∞

c (J), then we could take
θ = 1 which, according to Theorem 1.4 below, leads to the optimal rate (at least
for such test functions f ) up to a factor of Nε for an arbitrary ε > 0.

One interpretation of Theorem 1.2 is that, if centered and normalized to have a
β-independent covariance, the empirical measure

∑N
j=1 δλj , viewed as a random

generalized function, converges say in the sense of finite dimensional distributions
to a mean-zero Gaussian process X which is an element of a suitable space of
generalized functions and has the covariance structure

E
[
X (f )X (g)

] = �(f, g) := 1

4

∑
k≥1

kfkgk.

In fact, one can understand X as being the (distributional) derivative of the random
generalized function

Y(x)=
∞∑
k=0

1√
k+ 1

XkUk(x)
2

π

√
1 − x2,
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where Xk are i.i.d. standard Gaussians, x ∈ J = (−1,1), Uk are Chebyshev poly-
nomials of the second kind (see the Appendix for their definition) and the interpre-
tation is that one should consider this as a random element of a suitable space of
generalized functions. With some work (we omit the details), one can then check
that the covariance kernel of the process Y is given by

E
[
Y(x)Y(y)

] =− 4

π2 log
( |x − y|

1 − xy +√
1 − x2

√
1 − y2

)
, x, y ∈ J.

We also point out that one can check formally (say using Lemma A.3) that the
Hilbert transform of the process Y is a centered Gaussian process whose covari-
ance kernel is proportional to − log 2|x − y| on J × J—which is the covariance
kernel of the 2d-Gaussian free field restricted to J.

Returning to the statement of Theorem 1.2, we note that the assumption of f
having compact support is not essential. In view of the large deviation principle for
the extreme values of the configuration (λj )Nj=1 (see, e.g., [5], Proposition 2.1, or
[1], Section 2.6.2), one could easily replace compact support by polynomial growth
rate at infinity and the assumption of f being smooth on R by f being smooth on
(−1− ε,1+ ε) for some ε > 0 and some very mild regularity assumptions outside
of this interval. We choose not to focus on these classical generalizations here and
be satisfied with the assumption that f is smooth and compactly supported.

We also wish to point out a variant of Theorem 1.2 for polynomial linear statis-
tics of the GUE to emphasize that our approach can yield, at least in some cases,
an optimal rate for normal approximation in the W2-metric.

THEOREM 1.4. Let f : R → R be a nonconstant polynomial (independent
of N) and νN be as in (1.5) where (λ1, . . . , λN) is distributed according to the
ensemble P

N
x2,2. Then, as N →∞,

W2

(
1√

�(f )

∫
R

f (x)νN(dx), γ1

)
�f

1

N
.

Moreover, if f (x)= x2, the result is sharp:

W2

(
1√

�(f )

∫
R

x2νN(dx), γ1

)
� 1

N
.

Our method of proof of Theorem 1.2 (and Theorem 1.4) is to first use a Stein’s
method type argument to prove a general normal approximation result of inde-
pendent interest—Proposition 2.1—giving a bound on the W2-distance between
the law of an essentially arbitrary function of some collection of random variables
and a standard Gaussian distribution. As this bound is true in such generality, it
is naturally not a very useful one in most cases. What is of utmost importance to
our approach is that if this function is chosen to be an approximate eigenfunc-
tion of a certain differential operator associated to the distribution of the random
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variables (e.g., in the setting of the Gaussian β-ensembles, this operator is the
infinitesimal generator of Dyson–Ornstein–Uhlenbeck process), then this bound
on the W2-distance becomes quite precise. We then proceed to prove that in the
setting of the β-ensembles, there are many such approximate eigenfunctions—in
fact, enough that linear statistics of nice enough functions can be approximated
in terms of linear combinations of these approximate eigenfunctions and a mul-
tidimensional CLT for the approximate eigenfunctions implies a CLT for linear
statistics of smooth enough functions.

Related reasoning has appeared elsewhere in the literature as well. For exam-
ple, in [20], a normal approximation result was found for functions that are exact
eigenfunctions of the relevant differential operator. Also, we wish to point out that
our normal approximation result can be viewed as a W2-version of the multivariate
normal approximation in the Kantorovich metric W1 developed by Meckes in [24]
and relying on exchangeable pairs. For the application to linear statistics associ-
ated to classical compact groups and circular β-ensembles, studied in [11–13, 37],
the pairs are created through circular Dyson–Brownian motion. Moreover, while
this is not explicitly emphasized in these works, the CLT is actually proven for
certain approximate eigenfunctions of the infinitesimal generator of the circular
Dyson–Brownian motion.

These functions and the multidimensional CLT for the corresponding linear
statistics are of such central importance to our proof of Theorem 1.2 that despite
their properties being slightly technical we wish to formulate general results about
them in this introduction.

THEOREM 1.5. Let V be as in Assumption 1.1 and η > 4(κ+1)
2κ−1 . For small

enough δ > 0 depending only on V , there exists a sequence of functions (φn)∞n=1
such that for εn = δn−η, φn ∈ C κ

c (J2εn) for all n≥ 1, and they satisfy

(1.14) V ′(x)φ′
n(x)−

∫
J

φ′
n(x)− φ′

n(y)

x − y μV (dy)= σnφn(x)

on Jεn , where σn = 1
2�(φn)

> 0. Moreover, we have the estimate σn � n and the
bounds for any 0 ≤ k < κ ,

(1.15)
∥∥φ(k)n ∥∥∞,R � nkη.

Finally, restricted to J, the functions φn form an orthonormal basis of HμV

(see the discussion around (4.1) for its definition) and for any f in C κ+4(R),
we can expand f (x) = f̂0 + ∑∞

n=1 f̂nφn(x) for all x ∈ J, where the Fourier-φ
coefficients, given by f̂0 = ∫

J f d� and f̂n = 〈f,φn〉μV (see (4.2) for a definition),

satisfy |f̂n| �f n
− κ+3

2 .

The proof of this theorem begins by noting that equation (1.14) can be inverted
on J yielding an eigenvalue equation for a suitable operator which turns out to be
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self-adjoint, compact, and positive on a suitable weighted Sobolev space that we
call HμV . This provides the existence of the functions φn on J, which are then
continued outside of J by (1.14), which becomes an ODE outside of J.

The fact that the functions φn satisfy (1.14) turns out to imply that functions of
the form

∑N
j=1 φn(λj ) are approximate eigenfunctions of the operator

L = LNV,β =
N∑
j=1

∂2

∂λ2
j

− βN
N∑
j=1

V ′(λj )
∂

∂λj
+ β∑

i 
=j

1

λj − λi
∂

∂λj

in the sense that the random variable

(1.16) L
(
XN(φn)

) + βNσnXN(φn)
turns out to be small compared to the eigenvalue βNσn. Here and elsewhere in this
article, we use a slight abuse of notation and write, for example, L(

∑N
i=1 φ(λi))

for the random variable which is obtained by first calculating L(
∑N
j=1 φ(λi)) with

deterministic λ, and then evaluating this function at a random λ drawn from (1.1).
This approximate eigenfunction property is precisely what allows us making use
of the normal approximation result Proposition 2.1. This leads to the following
multidimensional CLT.

PROPOSITION 1.6. Using the notation of Theorem 1.5 and (1.13), we have,
for any ε > 0,

W2
((
XN(φn)

)d
n=1, γd

) � d
16(κ+1)

2κ−1 N−1+ε.

Our proof of Theorem 1.2 then proceeds by approximating a general function
f by a linear combination of the φn’s in [−1,1], arguing that essentially what
happens outside of this interval is irrelevant, and then using the CLT for the φn.
Actually, the proof of Theorem 1.4 is quite a bit simpler due to the fact that the
functions φn are explicit in this case: they are just suitably normalized Chebyshev
polynomials of the first kind and much of the effort going into the proof of Theo-
rem 1.5 is not needed.

Besides the existence of these eigenfunctions, another fundamental property
that is required to control the error term coming from Proposition 2.1 is a kind of
rigidity of the random configuration (λj )Nj=1. In particular, in the proof of Proposi-
tion 1.6 and Theorem 1.2, we will make use of the following strong rigidity result
of Bourgade, Erdős and Yau.

THEOREM 1.7 ([7], Theorem 2.4). Let V be as in Assumption 1.1, ρ0 =−1,
and for any j ∈ {1, . . . ,N}, define the classical locations ρj ∈ [−1,1] by

(1.17)
∫ ρj

ρ0

μV (dx)= j

N
.
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Moreover, write ĵ = min(j,N − j + 1), assume that the eigenvalues are ordered
λ1 ≤ λ2 ≤ · · · ≤ λN , and consider the event

(1.18) Bε = {∀j ∈ {1, . . . ,N} : |λj − ρj | ≤ ĵ− 1
3N− 2

3+ε}.
Then, for any ε > 0 there exist cε,Nε > 0 such that for all N ≥Nε ,

P
N
V,β

(
R
N \Bε) ≤ e−Ncε .

1.2. Connection with the literature. First, we point out that the operator L also
plays an important role in many other approaches to the CLT for linear statistics
as the first loop equation can be written as E

N
V,β[L(XN(f ))] = 0. In particular, if

(1.16) is asymptotically small compared to βNσn in a strong enough sense, the
first loop equation implies that ENV,β[XN(φn)] → 0 as N → ∞ so that the mean

of the linear statistic
∑N
j=1 f (λj ) behaves like N

∫
R
f (x)μV (dx)+ (1

2 − 1
β
)m(f )

for large N . Moreover, the eigenequation (1.14) also plays a role in the analysis of
the loop equations as well as for the transport map approach that we briefly present
below. The starting point of the methods of the previous works [5, 6, 16, 31, 32]
and [4] consists of expressing the Laplace transform of the law of a linear statistic
as

(1.19) E
N
V,β

[
e
s

∑N
j=1 f (λj )

] = ZNVt ,β

ZNV0,β

, t =− s

βN
,

where one defines the deformed potential Vt(x) = V (x) + tf (x) for any t ∈ R.
In order to obtain the asymptotics this ratio of partition functions, the idea from
transport theory introduced in [3, 32] (to establish local universality) and used in
[4] (to obtain a CLT) consists of making a change of variables λj ← ϑt(λj ) for all
j = 1, . . . ,N in the integral

ZNVt ,β =
∫
RN
e
−βHNVt (λ1,...,λN )

N∏
j=1

dλj

=
∫
RN
e
−βHNVt (ϑt (λ1),...,ϑt (λN ))+∑N

j=1 logϑ ′
t (λj )

N∏
j=1

dλj .

This implies that

(1.20)
ZNVt ,β

ZNV0,β

= E
N
V,β

[
e
−β(HNVt (ϑt (λ1),...,ϑt (λN ))−HNV0

(λ1,...,λN ))+∑N
j=1 logϑ ′

t (λj )
]
.

Then it turns out that to obtain the CLT, it suffices to consider a simple diffeormor-
phism of the form ϑt(x)= x + tψ(x) where ψ is a solution of the equation

(1.21) �Vx (ψ)=−V ′(x)ψ(x)+
∫

J

ψ(x)−ψ(y)
x − y μV (dy)= f (x)+ cf
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for some suitably chosen constant cf ∈ R. This equation is important because if
we expand the exponent on the RHS of (1.20) up to order t2, we can check that

−β[
HNVt

(
ϑt(λ1), . . . , ϑt (λN)

) −HNV0
(λ1, . . . , λN)

] + N∑
j=1

logϑ ′
t (λj )

=−βtN2
∫
f (x)μV (dx)− βtN

∫ (
f (x)−�Vx (ψ)

)
νN(dx)

+ βN2t2�(f )+
(
β

2
− 1

)
tNm(f )+ εN,t +ON→∞

(
Nt2

)
,

where the error term is deterministic, εN,t is a small random quantity and we have

(1.22) m(f )=−
∫
ψ ′(x)μV (dx) and �(f )=−1

2

∫
f ′(x)ψ(x)μV (dx).

These formulae are those of the asymptotic mean and variance of the random vari-
able

∫
f (x)νN given in [4], Theorem 1. Therefore, since βNt = −s, combining

these asymptotics with (1.19) and (1.20), we obtain

(1.23) E
N
V,β

[
es

∫
f (x)νN (dx)

] = es( 1
2− 1

β
)m(f )+ s2

β
�(f )+ON→∞(N−1)

E
N
V,β

[
eεN,t

]
.

To complete the proof of the CLT, most of the technical challenges consist of
showing that the Laplace transform on the RHS of (1.23) converges to 1 as N →
∞—in particular that the so-called anisotropy term contained in εN,t is small.
This step is performed by using the regularity of the function ψ and some a priori
estimates on the partition function ZNVt ,β from [19] that we will not detail here. The
bottom line is that the CLT holds for all test functions f for which equation (1.21)
has a sufficiently smooth solution. This leads to sufficient conditions on the test
function f (see (1.14) and (1.15) in [4]), valid in the multicut and certain critical
situations under which the asymptotics

E
N
V,β

[
es

∫
f (x)νN (dx)

] = es( 1
2− 1

β
)m(f )+ s2

β
�(f )+oN→∞(1)

hold. Note that the operator �V is related to the operator (4.5) in the following
way:

�μV (f )=−�V
(
f ′) on J.

Thus, in order to solve the eigenequation (4.6) which is fundamental to our proof
of Theorem 1.5, it suffices to prove that the operator R given by

R(φ)′ = (−�V
)−1
(φ)

is compact when acting on a suitable space F of functions φ : J →R. Then taking
into account the conditions [4] (1.14) and (1.15), in the definition of F , one should
be able—by adapting the arguments of Section 4—to generalize Theorem 1.5 to



CLT FOR β-ENSEMBLES 2631

the multicut and critical situations treated in [4]. Hence, it should be possible to
generalize Theorem 1.2 and to obtain a rate of convergence in the Kantorovich dis-
tance in these cases as well (with a rate of convergence depending on the regularity
of the potential V and the equilibrium measure μV ). Finally, let us comment that
if f ∈ H (see (4.1)) we may use the eigenbasis (φn)∞n=1 of Theorem 1.5 to solve
equation (1.21). Namely, according to equation (1.14), we have

�V
(
φ′
n

) =−σnφn
and, if we expand f = f̂0 + ∑∞

n=1 f̂nφn, then the function ψ = −∑∞
n=1

f̂n
σn
φ′
n

solves (1.21) with cf = −f̂0 (note that ψ ∈ L2(μV )). Then we deduce from the
formulae (1.22) that

m(f )=
∫
ψ ′(x)μV (dx)=

∞∑
n=1

f̂n

σn

∫
φ′′
n(x)μV (dx),

and since the functions (φ′
n)

∞
n=1 are orthonormal with respect to L2(μV ),

�(f )=−1

2

∫
f ′(x)ψ(x)μV (dx)=

∞∑
n=1

f̂ 2
n

2σn
.

Using (5.5) and Lemma 6.1 below, we conclude that, if f is sufficiently smooth,
the formulae (1.22) from [4], Theorem 1, are consistent with (1.10) and (1.11).

1.3. Outline of the article. We now describe the structure of the rest of the ar-
ticle. In Section 2, we prove Proposition 2.1—our general normal approximation
result. After this, in Section 3 we apply it to the GUE in order to prove Theo-
rem 1.4. We next move on to Section 4, where we prove the existence and basic
regularity properties of the functions φn, namely Theorem 1.5. Armed with this in-
formation about the functions φn, we prove Proposition 1.6 in Section 5 and then
in Section 6 we apply Proposition 1.6 to prove Theorem 1.2. Finally in the Ap-
pendix, we recall some basic properties of Chebyshev polynomials and the Hilbert
transform which will play a critical role in our analysis.

2. A general normal approximation result. In this section, we describe and
prove some general normal approximation results for functions of random vari-
ables drawn from probability distributions of the form μ(dx) = 1

Z
e−H(x) dx on

R
N , where H : RN → R is a nice enough function and Z a normalization con-

stant. These approximation results will of course be useful (in the sense that they
say that this function of random variables is close to a Gaussian random variable in
the N →∞ limit) only for very special functions of these random variables. Nev-
ertheless, we will be able to apply these approximation results to a suitably large
class of linear statistics of measures of this form with the choice of H = βHNV
from (1.1). While our main interest is linear statistics of β-ensembles, we choose
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to keep the discussion on a more general level as such normal approximation re-
sults might be of use in other settings as well. Keeping this in mind, we offer some
further discussion about the approximation results, and even touching on some
facts and approaches that may not be of use in our application to linear statistics
of β-ensembles.

Before going into the statement and proof of the approximation results, we in-
troduce some notation. An object that is of critical importance to our approach is
a second-order differential operator which is symmetric with respect to the inner
product of L2(μ). More precisely, we write for smooth f :RN →R,

(2.1) Lf =�f −∇H · ∇f =
N∑
i=1

∂iif −
N∑
i=1

∂iH∂if.

We point out for later reference that for β-ensembles, one has

(2.2) L = LNV,β =
N∑
j=1

∂2
λj

−Nβ
N∑
j=1

V ′(λj )∂λj + β
∑
i 
=j

1

λj − λi ∂λj

which is just the infinitesimal generator of the diffusion with invariant measure
P
N
V,β which we refer as Dyson–Brownian motion.
As mentioned above, we will make use of the fact that L is symmetric with

respect to the inner product of L2(μ). More precisely, if we assume sufficient
regularity of H (say that it is smooth) then integrating by parts shows that for say
smooth f,g :RN →R with nice enough behavior at infinity,

(2.3)
∫
RN
f (−Lg)dμ=

∫
RN

∇f · ∇g dμ=:
∫
RN
�(f,g) dμ,

where we thus write �(f,g) for ∇f · ∇g. To ease notation, we also write �(f ) :=
�(f,f ) = |∇f |2. Note that in the setting of β-ensembles, H is not smooth, and
when considering the integral

∫
RN
f (−L)g dμ, one encounters singularities of the

form 1
λj−λk ∂jg(λ)

∏
i<j |λi − λj |β . As β > 0, this is an integrable singularity, so

integration by parts is justified and (2.3) is still true. Our argument will implicitly
impose several regularity assumptions on H and we will not be explicit about what
precisely one should assume about H. Nevertheless, when there are issues of this
type, we will point out why there are no problems in the setting of linear statistics
of β-ensembles.

Below in Section 2.1, we state our general normal approximation results and
offer some further discussion about them in some particular cases. Then in Sec-
tion 2.2, we prove the approximation results.

2.1. Statement and discussion of the normal approximation results. To sim-
plify the statement of our approximation results, we fix some further notation.
Let X = (X1, . . . ,XN) be a random vector in R

N with distribution μ and let
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F = (F1, . . . ,Fd) : RN → R
d be a smooth function. What we mean by a normal

approximation result is that we wish to estimate the Kantorovich distance W2 (and
in case d = 1 also in the total variation distance) between the law of F(X) and that
of the standard Gaussian measure γd on R

d . Bounds on these distances will be
stated in terms of the function F and its differentials; more precisely, in the nota-
tion introduced above, the bounds will be expressed in terms of (the vector-valued
versions of) LF and �(F).

For positive numbers κk > 0, k = 1, . . . , d , denote by K the diagonal matrix
K = diag(κ1, . . . , κd). Given F = (F1, . . . ,Fd), let �(F) = (�(Fk,F�))1≤k,�≤d
and introduce the quantities A and B by

(2.4) A=
(∫

RN

∣∣F +K−1LF
∣∣2 dμ) 1

2

and

(2.5) B =
(∫

RN

∣∣Id −K−1�(F)
∣∣2 dμ) 1

2
,

the norms | · | being understood in the Euclidean space Rd and in the space of d×d
matrices (Hilbert–Schmidt norm). The expressions A and B thus depend on F and
on κk > 0, k = 1, . . . , d . In this notation, our first approximation result reads as
follows.

PROPOSITION 2.1. Let F : RN → R
d be of class C 2 and in L2(μ), and de-

note by μ ◦ F−1 the law of F under μ (that is the law of F(X) on R
d). Then, for

any choice of κk > 0, k = 1, . . . , d ,

W2
(
μ ◦ F−1, γd

) ≤A+B,
where again γd is the law of a standard d-dimensional Gaussian.

We postpone the proof of Proposition 2.1 (as well as the forthcoming Proposi-
tion 2.2) to Section 2.2.

Before discussing further normal approximation results, we point out that for
Proposition 2.1 to be of any use, one of course will want F +K−1LF and Id −
K−1�(F) to be in L2(μ) and small in some sense. This typically will not be true
for arbitrary F and K , but only for very special choices of F and K . We return to
the choice of F and K later on.

We next mention that Proposition 2.1 is already of interest in dimension one
(i.e., when d = 1) in which case we also get a bound in the total variation distance∥∥ν − ν′∥∥TV = sup

E∈B(R)
[
ν(E)− ν′(E)] = 1

2
sup

[∫
R

ϕ dν −
∫
R

ϕ dν′
]
,

where the supremum is taken over all bounded measurable ϕ : R → R with
‖ϕ‖∞ ≤ 1. The normal approximation result is the following.
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PROPOSITION 2.2. Let F :RN →R be of class C 2 and in L2(μ), and denote
by μ ◦ F−1 the law of F under μ (that is the law of F(X) on R). Then, for any
κ > 0, ‖μ ◦ F−1 − γ1‖TV ≤ 2A+ 2B , that is,

∥∥μ ◦ F−1 − γ1
∥∥

TV ≤ 2
(∫

RN

[
F + 1

κ
LF

]2
dμ

) 1
2

+ 2
(∫

RN

[
1 − 1

κ
�(F )

]2
dμ

) 1
2
.

(2.6)

Moreover, if F = (F1, . . . ,Fd) and G= ∑d
k=1 θkFk where

∑d
k=1 θ

2
k = 1, then

(2.7)
∥∥μ ◦G−1 − γ1

∥∥
TV ≤ 2A+ 2B

and

(2.8) W2
(
μ ◦G−1, γ1

) ≤A+B.

REMARK 2.3. To underline the difference between Proposition 2.1 and
Proposition 2.2, we mention here that the proof of Proposition 2.2 is a rather clas-
sical one-dimensional Stein’s method argument, relying on Stein’s lemma. In this
setting, the natural metric in which one obtains approximation results is the total
variation metric. The situation in Proposition 2.1 is slightly different. While there
are generalizations of Stein’s method to multivariate normal approximation (see,
e.g., [24]), these typically yield approximation results in the metric W1. Using
these results, one could indeed prove a (weaker) version of Theorem 1.2. While
philosophically very similar to classical Stein’s method arguments, our proof of
Proposition 2.1 relies instead on semigroup interpolation techniques, partly follow-
ing [21], which allow upgrading convergence in the W1-metric to the W2-metric.

To widen the spectrum of Propositions 2.1 and 2.2, it is sometimes convenient
to deal with a random vector X given as an image X = U(Y ) of another random
vector Y on R

m (typically Gaussian) where U :Rm→R
N . Depending on specific

properties of the derivatives of U , Proposition 2.1 may be used to also control the
distance between the law of F(X) and γd . This follows from the description of A
and B for the new map G= F ◦U .

In the same way, after a (linear) change of variables, the previous statements
may be formulated with the target distribution being that of the Gaussian distri-
bution γm,� on R

d with mean m and invertible covariance matrix � =MtM . For
example, one has the following.

COROLLARY 2.4. Let F :RN →R
d be of class C 2 and in L2(μ), and denote

by μ ◦ F−1 the law of F under μ (i.e., the law of F(X) on R
d). Then

W2
(
μ ◦ F−1, γm,�

) ≤Am +Bm,�,
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where

Am =
(∫

RN

∣∣F −m+K−1LF
∣∣2 dμ) 1

2

and

Bm,� = ‖M‖
(∫

RN

∣∣Id − (KM)−1�(F)
∣∣2 dμ) 1

2

with ‖M‖ being the operator norm of M .

This is a direct application of Proposition 2.1 and we skip the proof. Let us
now turn to the choice of the coefficients κk . In applications, the choice of the co-
efficients κk might depend on the context to some degree, but we point out that
for B from (2.5) to be small, one should at least expect Id − K−1 ∫

�(F)dμ to
be small as well (say in the Hilbert–Schmidt norm). This would suggest that one
natural choice, where the diagonal entries of this matrix vanish, would be that
κk = ∫

RN
�(Fk) dμ, k = 1, . . . , d (these are strictly positive if ∇Fk is not μ-almost

surely zero). This is essentially the choice we make in our application of the nor-
mal approximation results to linear statistics of β-ensembles; this choice would
correspond to E[∑N

j=1 f
′(λj )2] while our choice will be N

∫
f ′(x)2μV (dx).

Let us consider some consequences of this choice of K . First of all, we point
out that in this case a direct calculation shows that

(2.9) B2 =
d∑
k=1

1

κ2
k

Varμ
(
�(Fk)

) + ∑
k 
=�

∫
RN

1

κ2
k

�(Fk,F�)
2 dμ.

Here, Varμ(f ) = Var(f (X)) is the variance of f : RN → R with respect to μ,
equivalently the variance of the random variable f (X). Note that if d = 1, B2 =
1
κ2

1
Varμ(�(F1)).

To simplify the expression of A2, we recall some notation and facts from [2]. If
f,g are smooth functions on R

N , set

�2(f, g)= Hess(f ) · Hess(g)+ Hess(H)∇f · ∇g

=
N∑

i,j=1

∂ijf ∂ij g +
N∑

i,j=1

∂ijH∂jf ∂ig.

As for �, write below �2(f )= �2(f, f ). By integration by parts (again assuming,
e.g., that H is smooth), for smooth functions f,g :RN →R,∫

RN
LfLg dμ=

∫
RN
�2(f, g) dμ.
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Therefore, in this notation, another simple calculation using our particular choice
of κk shows that

(2.10) A2 =
d∑
k=1

∫
RN

[
1

κ2
k

�2(Fk)+ F 2
k − 2

]
dμ.

We point out here that it is not obvious that this type of argument is valid
for β-ensembles. Indeed, a priori, LfLg and ∂ijH will have terms of the form
(λi − λj )−2 and if we assume just that β > 0, this could result in a noninte-
grable singularity. Nevertheless, we note that if we are interested in linear statistics,
namely we have f (λ) = ∑N

j=1 u(λj ) and g(λ) = ∑N
j=1 v(λj ) for some smooth

bounded functions u, v :R→R, then by symmetry, one has, for example,

Lf (λ)=
N∑
j=1

u′′(λj )−Nβ
N∑
j=1

V ′(λj )u′(λj )+ β
∑
i 
=j

1

λj − λi u
′(λj )

=
N∑
j=1

u′′(λj )−Nβ
N∑
j=1

V ′(λj )u′(λj )+ β

2

∑
i 
=j

u′(λj )− u′(λi)
λj − λi ,

which no longer has singularities. Similarly, one has in this case

N∑
i,j=1

∂ij
(
βHNV (λ)

)
∂if (λ)∂jg(λ)

=Nβ
N∑
i=1

V ′′(λi)u′(λi)v′(λi)+ β
∑
i 
=j

u′(λi)v′(λi)− u′(λi)v′(λj )
(λi − λj )2 ,

which has only singularities of type 1
λi−λj so as we are integrating against∏

i<j |λi−λj |β with β > 0, we have only integrable singularities. Thus integration
by parts is again justified in the setting we are considering.

Turning back to more general H, we mention some further simplifications or
bounds one can make use of in some special cases. Let us still assume that κk =∫
RN
�(Fk) dμ, k = 1, . . . , d . In case the measure μ satisfies a Poincaré inequality

in the sense that for any (smooth) function f :RN →R,

(2.11) Varμ(f )≤ C
∫
RN
�(f )dμ,

(e.g., C = 1 for μ= γN , cf. [2], Chapter 4), the quantity B , rather B2 from (2.9),
is advantageously upper bounded by

(2.12) B ′2 =
d∑
k=1

C

κ2
k

∫
RN
�

(
�(Fk)

)
dμ+ ∑

k 
=�

∫
RN

1

κ2
k

�(Fk,F�)
2 dμ.
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In particular, in the setting of Proposition 2.2,

∥∥μ ◦ F−1 − γ1
∥∥

TV ≤ 2
(∫

RN

[
F + 1

κ
LF

]2
dμ

) 1
2

+ 2

κ

(
C

∫
RN
�

(
�(F)

)
dμ

) 1
2
.

Before turning to the proofs, we mention that Propositions 2.1 and 2.2 are re-
lated to several earlier and parallel investigations. They may first be viewed as
a W2-version of the multivariate normal approximation in the Kantorovich met-
ric W1 developed by Meckes in [24] and relying on exchangeable pairs. For the
application to linear statistics of random matrices, the pairs are created through
Dyson–Brownian motion, and also in this setting, the operator L appears naturally
and plays an important role.

The quantities A and B arising in Propositions 2.1 and 2.2 are also connected
to earlier bounds in the literature. As a first instance, assume that F : RN → R is
an eigenvector of L in the sense that −LF = κF , normalized in L2(μ) so that∫

RN
�(F )dμ=

∫
RN
F (−LF)dμ= κ.

In this case, the inequality of Proposition 2.2 amounts to∥∥μ ◦ F−1 − γ1
∥∥

TV ≤ 2

κ
Varμ

(
�(F)

) 1
2 ,

a result already put forward in [20]. As such, Propositions 2.1 and 2.2 suggest a
similar result provided that F is approximately an eigenvector in the sense that A
is small. This indeed is a central theme in our approach to proving the CLT for
linear statistics of β-ensembles, and the motivation for our choice of the function
F in later sections.

Another source of comparison is the works [10] and [26]. To emphasize the
comparison, let us deal with the one-dimensional case F : RN → R correspond-
ing to Proposition 2.2. In the present notation, provided that

∫
RN
F 2 dμ = 1, the

methodology of [10, 26] develops toward the inequality∥∥μ ◦ F−1 − γ1
∥∥

TV ≤ Varμ(T ),

where T = �((−L)−1F,F ) and (−L)−1 is the formal inverse of the positive op-
erator −L (−L being positive because of the integration by parts formula (2.3)).
Then, provided the measure μ satisfies a Poincaré inequality, the preceding vari-
ance is bounded from above by moments of differentials of F , as in A and B of
Propositions 2.1 and 2.2.

An alternative point of view on the latter results may be expressed in terms of
the Stein discrepancy and the inequality

(2.13) W2
(
μ ◦ F−1, γd

) ≤ S2
(
μ ◦ F−1|γd)
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emphasized in [21] where

S2
(
μ ◦ F−1|γd) = (∫

Rd
|τμ◦F−1 − Id|2 dμ ◦ F−1

) 1
2

with τμ◦F−1 a so-called Stein kernel of the distribution μ ◦ F−1. In dimension
d = 1, this Stein kernel is characterized by∫

RN
Fϕ(F )dμ=

∫
R

xϕ dμ ◦ F−1 =
∫
R

τμ◦F−1ϕ
′ dμ ◦ F−1

=
∫
RN
τμ◦F−1(F )ϕ

′(F )dμ

for every smooth ϕ : R → R. In the previous notation, the kernel τμ◦F−1 may be
described as the conditional expectation of T = �((−L)−1F,F ) given F , so that,
again under the normalization

∫
RN
F 2 dμ= 1,

W2
(
μ ◦ F−1, γ1

)2 ≤ S2
(
μ ◦ F−1|γ1

)2 ≤ Varμ(T ).

With respect to the analysis of these prior contributions [10, 21, 26], the ap-
proach developed in Propositions 2.1 and 2.2 is additive rather than multiplicative,
and concentrates directly on the generator L rather than its (possibly cumbersome)
inverse. The formulation of Propositions 2.1 and 2.2 allows us to recover, some-
times at a cheaper price, several of the conclusions and illustrations developed
in [10].

2.2. Proof of Proposition 2.1 and Proposition 2.2. The main argument of the
proof relies on standard semigroup interpolation (cf. [2]) together with steps from
[21]. Denote by (Pt )t≥0 the Ornstein–Uhlenbeck semigroup on R

d , with invari-
ant measure γd the standard Gaussian measure on R

d and associated infinitesimal
generator Ld =�− x · ∇ . The operator Pt admits the classical integral represen-
tation

(2.14) Ptf (x)=
∫
Rd
f

(
e−t x +

√
1 − e−2t y

)
γd(dy), t ≥ 0, x ∈R

d .

A basic property of this operator we shall make use of is that it is symmetric
with respect to the inner product of L2(γd) in the sense that for, say, bounded
continuous functions f,g :Rd →R,

∫
Rd
f Ptg dγd = ∫

Rd
gPtf dγd for each t > 0

(cf. [2], Chapter 2, Section 2.7).
We start with the first approximation result.

PROOF OF PROPOSITION 2.1. Assume first that F :RN →R
d is smooth and

such that the law μ◦F−1 of F admits a smooth and positive density h with respect
to γd . Denote then by

I(Pth)=
∫
Rd

|∇Pth|2
Pth

dγd, t ≥ 0,
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the Fisher information of the density Pth with respect to γd , which is assumed to
be finite. It is also assumed throughout the proof that A and B are finite otherwise
there is nothing to show. With vt = logPth, t ≥ 0, after integration by parts and
symmetry of Pt with respect to γd (cf. the analysis in [21]),

I(Pth)=
∫
Rd

|∇Pth|2
Pth

dγd =−
∫
Rd

Ld [vt ]Pthdγd =−
∫
Rd

Ld [Ptvt ]dμ ◦ F−1.

Now, for any t > 0, and any κk > 0, k = 1, . . . , d ,

I(Pth)=−
∫
RN

Ld [Ptvt ](F )dμ

=−
∫
RN

[
d∑
k=1

∂kkPtvt (F )−
d∑
k=1

Fk∂kPtvt (F )

]
dμ

=
∫
RN

d∑
k=1

[
Fk + 1

κk
LFk

]
∂kPtvt (F ) dμ

+
∫
RN

d∑
k,�=1

[
1

κk
�(Fk,F�)− δk�

]
∂k�Ptvt (F ) dμ,

where the last step follows by adding and subtracting 1
κk

L[Fk]∂kPtvt (F ) and inte-
grating by parts with respect to L, that is, formula (2.3).

Next, by the Cauchy–Schwarz inequality,

∫
RN

d∑
k=1

[
Fk + 1

κk
LFk

]
∂kPtvt (F ) dμ≤A

(∫
RN

∣∣∇Ptvt (F )∣∣2 dμ) 1
2

and ∫
RN

∣∣∇Ptvt (F )∣∣2 dμ=
∫
Rd

|∇Ptvt |2 dμ ◦ F−1

≤ e−2t
∫
Rd
Pt

(|∇vt |2)
dμ ◦ F−1

= e−2t I(Pth).

Now, for every k, � = 1, . . . , d , ∂k�Ptvt = e−2tPt (∂k�vt ) and, by integration by
parts in the integral representation of Pt ,

∂k�Ptvt (x)= e−2t
√

1 − e−2t

∫
Rd
yk∂�vt

(
e−t x +

√
1 − e−2t y

)
γd(dy).
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Then, by another application of the Cauchy–Schwarz inequality,∫
RN

d∑
k,�=1

[
1

κk
�(Fk,F�)− δk�

]
∂k�Ptvt (F ) dμ

≤ e−2tB√
1 − e−2t

×
(∫

Rd

d∑
k,�=1

[∫
Rd
yk∂�vt

(
e−t x +

√
1 − e−2t y

)
γd(dy)

]2
μ ◦ F−1(dx)

) 1
2

≤ e−2t
√

1 − e−2t
B

×
(∫

Rd

d∑
�=1

∫
Rd

[
∂�vt

(
e−t x +

√
1 − e−2t y

)]2
γd(dy)μ ◦ F−1(dx)

) 1
2

= e−2t
√

1 − e−2t
B

(∫
Rd
Pt

(|∇vt |2)
dμ ◦ F−1

) 1
2

= e−2t
√

1 − e−2t
B

√
I(Pth),

where we used at the second step that for a given function g :Rd →R in L2(γd),

d∑
k=1

(∫
Rd
ykg(y)γd(dy)

)2
≤

∫
Rd
g2 dγd,

which follows from the remark that the operator g �→ ∑d
k=1 xk

∫
ykg(y)γd(dy) is

an orthogonal projection on L2(γd).
Altogether, it follows that for every t > 0,

I(Pth)≤
(
e−tA+ e−2t

√
1 − e−2t

B

)√
I(Pth),

hence √
I(Pth)≤ e−tA+ e−2t

√
1 − e−2t

B.

From [27], Lemma 2 (cf. also [36], Theorem 24.2(iv)), it follows that

W2
(
μ ◦ F−1, γ

) ≤ ∫ ∞
0

√
I(Pth) dt ≤A+B,

which is the announced result in this case.
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The general case is obtained by a regularization procedure which we outline in
dimension d = 1. Let therefore F : RN → R be of class C 2 and in L2(μ). Fix
ε > 0 and consider, on R

N × R, the vector (X,Z) where Z is a standard normal
independent of X and

Fε(x, z)= e−εF (x)+
√

1 − e−2εz, x ∈R
N, z ∈R.

Denote by μFε the distribution of Fε(X,Z), or image of μ ⊗ γ1 under Fε . The
probability measure μFε admits a smooth and positive density hε with respect to
γ1 given by

hε(x)=
∫
R

pε(x, y)μ ◦ F−1(dy), x ∈R,

where pt(x, y), t > 0, x, y ∈ R, is the Mehler kernel of the semigroup represen-
tation (2.14) (and coincides with Pεh whenever μ ◦ F−1 admits a density h with
respect to γ1). Furthermore, by the explicit representation of pε(x, y) (cf., e.g., [2],
(2.7.4)),

h′ε(x)=− e−2ε

1 − e−2ε

∫
R

[
x − eεy]

pε(x, y)μ ◦ F−1(dy),

and from the Cauchy–Schwarz inequality, we obtain for any x ∈R,

h′ε(x)
2

hε(x)
≤

(
e−2ε

1 − e−2ε

)2 ∫
R

[
x − eεy]2

pε(x, y)μ ◦ F−1(dy).

Since F ∈ L2(μ), it follows that
∫
R

h′ε
2

hε
dγ1 <∞ for any ε > 0. Now, for every

t ≥ 0, Pthε = ht+ε , so that the Fisher information I(Pthε), t ≥ 0, are well defined
and finite. The proof we have presented thus far then applies to Fε on the product
space R

N ×R with respect to the generator L ⊕L1. Next Fε → F in L2(μ× γ1)

from which

W2
(
μ ◦ F−1

ε ,μ ◦ F−1)2 ≤
∫
RN×R

|Fε − F |2 dμ× γ1 → 0.

Hence, by the triangle inequality, W2(μ ◦ F−1
ε , γ1)→ W2(μ ◦ F−1, γ1). On the

other hand, the �-calculus of [2], Chapter 3, developed on R
N × R yields the

quantities A and B in the limit as ε→ 0. The proof of Proposition 2.1 is complete.
�

We next turn to our second approximation result which is similar but stays at
the first order on the basis of the standard Stein equation.

PROOF OF PROPOSITION 2.2. The classical Stein lemma states that given a
bounded function ϕ :R→R, the equation

(2.15) ψ ′ − xψ = ϕ −
∫
R

ϕ dγ1
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may be solved with a functionψ , which along with its derivative, is bounded. More
precisely, ψ may be chosen so that ‖ψ‖∞ ≤ √

2π‖ϕ‖∞ and ‖ψ ′‖∞ ≤ 4‖ϕ‖∞.
Stein’s lemma may then be used to provide the basic approximation bound

(2.16) ‖λ− γ1‖TV ≤ sup
∣∣∣∣∫

R

ψ ′(x) dλ(x)−
∫
R

xψ(x)dλ(x)

∣∣∣∣,
where the supremum runs over all continuously differentiable functionsψ :R→R

such that ‖ψ‖∞ ≤
√
π
2 and ‖ψ ′‖∞ ≤ 2.

We thus investigate∫
R

ψ ′(x) dμ ◦ F−1(x)−
∫
R

xψ(x)dμ ◦ F−1(x)

=
∫
RN
ψ ′(F )dμ−

∫
RN
Fψ(F)dμ

and proceed as in the proof of Proposition 2.1. Namely, with κ > 0, by the integra-
tion by parts formula (2.3),∫

RN

[
ψ ′(F )− Fψ(F)]dμ=−

∫
RN
ψ(F )

[
F + 1

κ
LF

]
dμ

+
∫
RN
ψ ′(F )

[
1 − 1

κ
�(F )

]
dμ.

As a consequence,∫
RN

[
ψ ′(F )− Fψ(F)]dμ≤ ‖ψ‖∞

(∫
RN

[
F + 1

κ
LF

]2
dμ

) 1
2

+ ∥∥ψ ′∥∥∞(∫
RN

[
1 − 1

κ
�(F )

]2
dμ

) 1
2
.

By definition of the total variation distance and Stein’s lemma, Proposition 2.2
follows. It remains to briefly analyze (2.7) and (2.8). Arguing as in the proof (2.6),
we find that∫

RN

[
ψ ′(F )− Fψ(F)]dμ=−

∫
RN
ψ(F )

d∑
k=1

θk

[
Fk + 1

κk
LFK

]
dμ

+
∫
RN
ψ ′(F )

d∑
k,�=1

θkθ�

[
δk� − 1

κk
�(Fk,F�)

]
dμ.

(2.7) then follows from the Cauchy–Schwarz inequality and the definition of A
and B . We note that (2.8) also holds as a consequence of Proposition 2.1 since, as
is easily checked,

W2
(
μ ◦G−1, γ1

) ≤ W2
(
μ ◦ F−1, γd

)
.

The proof of Proposition 2.2 is complete. �
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3. The CLT for the GUE—Proof of Theorem 1.4. On the basis of the gen-
eral normal approximation results put forward in Section 2, we address the proof
Theorem 1.4. In this section, we will write simply P and L for PNV,β and LNV,β with

β = 2 and V (x)= x2, as well as E for the expectation with respect to P.

PROOF OF THEOREM 1.4. We proceed in several steps, starting with estab-
lishing the fact that linear statistics of Chebyshev polynomials of the first kind
are approximate eigenvectors (in a sense that will be made precise in the course
of the proof) of the operator L. Then we move on to controlling the error in this
approximate eigenvector property in order to apply Proposition 2.1 to get a joint
CLT for linear statistics of Chebyshev polynomials. Finally, we expand a general
polynomial in terms of Chebyshev polynomials to finish the proof.

Step 1—approximate eigenvector property. Recall that Tk and Uk , k ≥ 0, denote
the degree k Chebyshev polynomial of the first kind, respectively of the second
kind; we refer to the Appendix for further details about the definition and basic
properties of Chebyshev polynomials. See also [9] and [22] for related discussions.

We begin by noting that a direct application of Lemma A.3 shows that when
x ∈ J, k ≥ 0,

(3.1)
∫

J

T ′
k(x)− T ′

k(y)

x − y μsc(dy)= 2xT ′
k(x)− 2kTk(x).

As both sides of this equation are polynomials, this identity is actually valid for
all x ∈ R. We also point out here that this is precisely (1.14) for V (x) = x2 with
σk = 2k. In fact, this part of the proof is completely independent of β , but since
it is much simpler to control the various error terms when β = 2, for simplicity,
we choose to stick to β = 2 throughout the proof. The general case is covered by
Theorem 1.2.

Next, we note that integrating (A.10) with respect to μsc(dx) and making use
of (A.9) along with the facts that T ′

k = kUk−1, 2x = U1(x), and (1 − x2) =
−1

2(T2(x)− T0(x)), we find, for every k ≥ 1,∫∫
J×J

T ′
k(x)− T ′

k(y)

x − y μsc(dx)μsc(dy)

= k
∫

J
U1(x)Uk−1(x)μsc(dx)

+ 2k
∫

J
Tk(x)

(
T2(x)− T0(x)

)
�(dx)

= 2kδk,2

=−4k
∫

J
Tk(x)μsc(dx).

(3.2)
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Applying first (3.1) and then (3.2), we see that

L

(
N∑
j=1

Tk(λj )

)
=

N∑
j=1

T ′′
k (λj )− 4N

N∑
j=1

λjT
′
k(λj )+ 2

∑
i 
=j

T ′
k(λj )

λj − λi

=−4kN
N∑
j=1

Tk(λj )− 2N
N∑
i=1

∫
J

T ′
k(λi)− T ′

k(y)

λi − y μsc(dy)

+
N∑

i,j=1

T ′
k(λi)− T ′

k(λj )

λi − λj

=−4kN

(
N∑
j=1

Tk(λj )−N
∫

J
Tk(x)μsc(dx)

)

+
∫
R×R

T ′
k(x)− T ′

k(y)

x − y νN(dx)νN(dy),

(3.3)

where νN is given by formula (1.5) with the equilibrium measure μV = μsc. We
also used the fact that for all k ∈N, by symmetry,

2
∑
i 
=j

T ′
k(λj )

λj − λi =
N∑

i,j=1

T ′
k(λj )− T ′

k(λi)

λj − λi −
N∑
i=1

T ′′
k (λi)

with the interpretation that the diagonal terms in the double sum are T ′′
k (λi). This

shows that the re-centered linear statistics
∫
Tk(x)νN(dx) are approximate eigen-

functions in the sense that

(3.4) L
(∫

R

Tk(x)νN(dx)

)
=−4kN

∫
R

Tk(x)νN(dx)+ ζk(λ),

where for any configuration λ ∈R
N ,

(3.5) ζk(λ)=
∫
R×R

T ′
k(x)− T ′

k(y)

x − y νN(dx)νN(dy)

is interpreted as an error term. In fact, knowing the CLT for linear statistics, one
can check that for any k ∈ N, ζk converges in law to a finite sum of products of
Gaussian random variables as N → ∞, so that its fluctuations are negligible in
comparison to 4kN (though we make no use of this). In particular, we will choose
the d × d diagonal matrix K =KN appearing in the definition of A and B in (2.4)
and (2.5) to have entries Kkk = 4kN .

Step 2—a priori bound on linear statistics. To apply Proposition 2.1, we will

make use of the fact that
T ′
k(x)−T ′

k(y)

x−y is a polynomial in x and y so that we can
express each ζk as a sum of products of (centered) polynomial linear statistics.
Thus to obtain a bound on A in Proposition 2.1, it will be enough to have some
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bound on the second moment of such statistics. In the case of the GUE, we are
able to apply rather soft arguments for this (as opposed to the fact that we rely on
rigidity estimates for general V and β).

It is known that for any polynomial f , the error term in Wigner’s classi-
cal limit theorem (namely in the statement that limN→∞ 1

N
E[∑N

j=1 f (λj )] =∫
f (x)μsc(dx)) is of order 1

N2 (see, e.g., [25]). That is, we have

(3.6)
∣∣∣∣E[∫

R

f (x)νN(dx)

]∣∣∣∣ �f N
−1.

In addition, it is known that for any p > 0,

(3.7) sup
N≥1

E

∣∣∣∣∫
R

f (x)νN(dx)

∣∣∣∣p <∞.
This property seems part of the folklore (cf. [1, 29]) but we provide here a proof for
completeness. For β = 2 and V (x) = x2, the Hamiltonian βHNV in (1.1) is more
convex than the quadratic potentialN

∑N
j=1 2λ2

j . In particular, the GUE eigenvalue

measure P
N
x2,2 satisfies a logarithmic Sobolev inequality with constant N−1 ([1],

Theorem 4.4.18, p. 290, or Exercise 4.4.33, p. 302, or [2], Corollary 5.7.2) and
by the resulting moment bounds (cf. [2], Proposition 5.4.2), for every smooth g :
R
N →R,

(3.8) E|g −Eg|p ≤ Cp

Np/2
E|∇g|p

for some constant Cp > 0 only depending on p ≥ 2. We thus apply the latter to g =∫
f (x)νN(dx). At this stage, we detail the argument for the value p = 4 (which

will be used below) but the proof is the same for any (integer) p (at the price of
repeating the step). First, we have

E|∇g|4 = E

(
N∑
i=1

f ′(xi)2
)2

= E

(∫
R

f ′(x)2νN(dx)+N
∫

J
f ′(x)2μsc(dx)

)2

and, by (3.8),

E

∣∣∣∣∫
R

f ′(x)2νN(dx)−E

[∫
R

f ′(x)2νN(dx)
]∣∣∣∣2

≤ 4C2

N
E

[
N∑
i=1

f ′′(xi)2f ′(xi)2
]
.

(3.9)

By Wigner’s law, the RHS of (3.9) is uniformly bounded in N and by (3.6), if f is
a polynomial, we obtain by the triangle inequality that

E

∣∣∣∣∫
R

f ′(x)2νN(dx)
∣∣∣∣2 �f 1,
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which implies that E|∇g|4 �f N
2. Then, using the estimate (3.8) once more, we

obtain

E|g −Eg|4 ≤ C4

N2E|∇g|4 �f 1.

By (3.6), we also have that |Eg| �N−1 and the claim (3.7) follows by the triangle
inequality.

Step 3—controlling B . We now move on to applying Proposition 2.1. Noting
that by (1.12), one has �(Tk)= k

4 , we define F = (F1, . . . ,Fd) :RN →R
d by

Fk = 2√
k

∫
Tk(x)νN(dx),

where d is independent of N (in contrast to the proof of Proposition 1.6 in Sec-
tion 5). Then, according to (2.5), we have

B2 = E
∣∣Id −K−1�(F)

∣∣2
=

d∑
i,k=1

E

(
δik − �(Fi,Fk)

4kN

)2

=
d∑
k=1

E

(
1 − �(Fk)

4kN

)2
+ ∑
i 
=k

E�(Fi,Fk)
2

16k2N2 .

(3.10)

By definition of � from (2.3), we have

�(Fk)= 4

k

N∑
j=1

T ′
k(λj )

2 = 4

k

∫
R

T ′
k(x)

2νN(dx)+ 4

k
N

∫
J
T ′
k(x)

2μsc(dx).

Now, recalling that the Chebyshev polynomial of the second kind are orthonormal
with respect to the semicircle law (see formulae (A.8) and (A.9)), we see that

�(Fk)

4kN
= 1

k2N

∫
T ′
k(x)

2νN(dx)+ 1

so that using the estimate (3.7), we obtain

d∑
k=1

E

(
1 − �(Fk)

4kN

)2
�d N

−2.

A similar argument shows that for i 
= k,

�(Fi,Fk)
2 = 4

ik

N∑
j=1

T ′
i (λj )T

′
k(λj )

= 4

ik

∫
R

T ′
i (x)T

′
k(x)νN(dx)
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and ∑
i 
=k

E�(Fi,Fk)
2

16k2N2 �d N
−2.

Combining the two previous estimates, by (3.10), we conclude that B�d N
−1.

Step 4—controlling A. Let us begin by noting that according to (2.4) and the
approximate eigenequation (3.4), we have

(3.11) A2 = E
∣∣F +K−1LF

∣∣2 =
d∑
k=1

E|ζk|2
4k3N2 .

Since we are dealing with polynomials, there exists real coefficients a(k)i,j which are
zero if i + j > k − 2 so that for any k ∈N,

T ′
k(x)− T ′

k(y)

x − y = ∑
i,j≥0

a
(k)
i,j x

iyj .

This implies that the error term (3.5) factorizes:

ζk =
∑
i,j≥0

a
(k)
i,j

∫
R

xiνN(dx)

∫
R

yjνN(dy).

Thus, by (3.7) and Cauchy–Schwarz, we obtain that for any k ∈N,

E|ζk|2 �k 1.

Hence, by (3.11), we conclude that A�d N
−1. Combining this estimate with the

one coming from Step 3, we see that Proposition 2.1 gives, for any fixed d ≥ 1, a
multidimensional CLT for the linear statistics associated to Chebyshev polynomi-
als

(3.12) W2
(
μ ◦ F−1, γd

) �d N
−1,

where μ ◦ F−1 refers to the law of the vector F = ( 2√
k

∫
Tk(x)νN(dx))

d
k=1.

Step 5—extending to general polynomials. Consider now an arbitrary degree d
polynomial f . We can always expand it in the basis of Chebyshev polynomials of
the first kind: f = ∑d

k=0 fkTk . By definition, this implies that

(3.13)
∫
R

f (x)νN(dx)= 1

2

d∑
k=0

√
kfkFk.

Moreover, by formula (1.12), one has �(f )= 1
4

∑d
k=0 kf

2
k . Then, since 1

2
√

�(f )
×∑d

k=0

√
kfkXk ∼ γ1 if the vector X ∼ γd , it follows from the definition of the

Kantorovich distance and the representation (3.13) that

W2
2

(∫
R

f (x)νN(dx),
√

�(f )γ1

)
≤ �(f )W2

2
(
μ ◦ F−1, γd

)
.
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Then the first statement of Theorem 1.4 follows directly, after simplifying by
�(f ) > 0, from the multidimensional CLT (3.12).

Step 6—optimality. We conclude the proof of Theorem 1.4 by verifying the
optimality claim. Consider now f (x)= x2. In this case indeed, the sum

∑N
j=1 λ

2
j

corresponds to the trace of the square of a GUE matrix and is thus equals 1
4N times

a random variable whose law is the χ2-distribution with 1
2N(N + 1) degrees of

freedom. Now, by standard arguments, given X ∼ γd , we have∣∣∣∣∣E sin

(
d∑
k=1

X2
k√
d
−√

d

)
− c√

d

∣∣∣∣∣ � 1

d
,

where c 
= 0. Comparing this to the Kantorovich–Rubinstein representation of the
W1-distance shows that the total variation and all Kantorovich distances Wp (with

p > 1) between the distribution of
∑d
k=1

X2
k√
d
−√

d and the limiting Gaussian dis-

tribution cannot be better than 1√
d

in the d→∞ limit. The optimality claim then
follows from this with a simple argument. �

4. Existence and properties of the functions φn—Proof of Theorem 1.5.
A central object in our construction of the functions φn in Theorem 1.5 is the
following Sobolev space:

(4.1) H =
{
g ∈ L2(�) : g′ ∈ L2(μsc) and

∫
J
g(x)�(dx)= 0

}
,

which is equipped with the inner product

〈f,g〉 =
∫

J
f ′(x)g′(x)μsc(dx).

In the following, we will consider other inner products defined on H which are
given by

(4.2) 〈f,g〉μV =
∫

J
f ′(x)g′(x)μV (dx).

Note that, since we assume that dμV = S dμsc and S > 0 on J̄,

‖g‖ � ‖g‖μV
for all g ∈ H . Thus the norms of the Hilbert spaces HμV := (H , 〈·〉μV ) are equiv-
alent to that of H . Recall also that we suppose that V ∈ C κ+3(R) for some κ ∈N

and that the Hilbert transform (see the Appendix for further information and our
conventions for the Hilbert transform) of the equilibrium measure satisfies{

Hx(μV )= V ′(x) if x ∈ J̄,

Hx(μV ) < V ′(x) if x ∈ Jδ \ J̄.
(4.3)
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The aim of this section is to investigate the solutions of the equation

(4.4) V ′(x)φ′(x)−
∫

J

φ′(x)− φ′(t)
x − t μV (dt)= σφ(x),

where σ > 0 is an unknown of the problem. In particular, an important part of the
analysis will be devoted to control the regularity of a solution φ. Let us consider
the operator

(4.5) �μVx (φ)= pv
∫

J

φ′(t)
x − t μV (dt).

This operator is well defined on H and, since the Hilbert transform is bounded on
L2(R) (again, see the Appendix), we have �μV (φ) ∈ L2(R). Moreover, using the
variational condition (4.3), equation (4.4) reduces to the following for all x ∈ J,

(4.6) �μVx (φ)= σφ(x).
Our main goal is to give a proof of Theorem 1.5. The proof is divided into

several parts. In Section 4.1, we present the general setup and give basic facts that
we will need in the remainder of the proof. In Sections 4.2 and 4.3, we analyze
the regularity of a solution of equation (4.4) (or actually, we will find it convenient
to invert the equation (see (4.16)) and consider the regularity of the solutions to
the inverted equation). In Section 4.2, by a bootstrap argument, we show that a
solution φ of equation (4.6) is of class C κ+1,1(J). In particular, note that the κ +
1 first derivatives of the eigenfunctions have finite values at the edge-points ±1.
In Section 4.3, by viewing (4.4) as on ODE on R \ J̄, we show how to extend
the eigenfunctions outside of the cut in such a way that that the eigenfunctions φ
satisfy the following conditions: φ ∈ C κ(R) and φ solves equation (4.4) in a small
neighborhood Jε . We also control uniformly the sup norms on R of the derivatives
φ(k) for all k < κ .

As mentioned, we will actually study an inverted version of (4.4). In Sec-
tions 4.2 and 4.3, we establish the following result for the inverted equation.

PROPOSITION 4.1. Let κ ≥ 1 and η > 4(κ+1)
2κ−1 . Suppose that equation (4.16)

below has a solution φ ∈ H with σ > 0. Then we may extend this solution in such
a way that φ ∈ C κ(R) with compact support and it satisfies equation (4.4) on the
interval Jε where ε = σ−η ∧ δ and for all k < κ ,∥∥φ(k)∥∥∞,R � σηk.

In Section 4.4, we relate equation (4.6) to a Hilbert–Schmidt operator RS acting
on HμV in order to prove the existence of the eigenvalues σn and eigenfunctions
φn. Then, in Section 4.5, we put together the proof of Theorem 1.5 and get an
estimate for the Fourier coefficients f̂n of the decomposition of a smooth function
f on J in the eigenbasis (φn)∞n=1.
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4.1. Properties of the Sobolev spaces HμV . We now review some basic prop-
erties of the spaces HμV along with how suitable variants of the Hilbert transform
act on these spaces. We will find it convenient to formulate many of the basic prop-
erties of the space HμV in terms of Chebyshev polynomials. For definitions and
basic properties, we refer to the Appendix. We begin by pointing out that elements
of HμV are actually Hölder continuous on J and in particular, bounded on J . This
follows from the simple remark that for g ∈ H and x, y ∈ J,

∣∣g(x)− g(y)∣∣ ≤ 2‖g‖
√∫ y

x
�(dt)

= 2‖g‖∣∣arcsin(x)− arcsin(y)
∣∣ 1

2

�‖g‖|x − y| 1
4 .

(4.7)

A basic fact about Chebyshev polynomials of the first kind, that we recall in the
Appendix, is that after a simple normalization, they form an orthonormal basis for
L2(J, �), so in particular, we can also write for g ∈ H ,

(4.8) g = ∑
k≥1

gkTk,

where gk , k ≥ 1, are the Fourier–Chebyshev’s coefficients of g ∈ H (see (A.9)).
On the other hand, since the Chebyshev polynomials of the second kind form an
orthonormal basis for L2(μsc), the normalized Chebyshev polynomials of the first
kind, k−1Tk form an orthonormal basis of H . Combining these remarks, we see
that

(4.9) gk = 1

k

〈
g, k−1Tk

〉 = 2
∫

J
g(x)Tk(x)�(dx).

Thus by Parseval’s formula (applied to the inner product of H ), we also obtain

(4.10) ‖g‖2 = ∑
k≥1

k2g2
k � 1.

From this, one can check that for g ∈ H , we may differentiate formula (4.8) term
by term:

(4.11) g′ = ∑
k≥1

kgkUk−1,

where the sum converges in L2(μsc). We define the finite Hilbert transform U , for
any φ for which ∫

J

∣∣φ(x)∣∣p(
1 − x2)−p

2 dx <∞
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for some p > 1 by

(4.12) Ux(φ)= pv
∫

J

φ(y)

y − x �(dy).

Note that, by boundedness of the Hilbert transform and the fact that elements of
H are Hölder continuous on J so they are bounded, we see that for any p < 2, U
maps H into Lp(R). Moreover, it follows from Lemma A.3 that if g ∈ H , then

(4.13) U(g)= ∑
k≥1

gkUk−1,

where the sum converges in L2(μsc) and uniformly on compact subsets of J. In-

deed, it is well known that |Uk−1(x)| ≤ k ∧ (1 − x2)− 1
2 so that by (4.10) and the

Cauchy–Schwarz inequality, for x ∈ J,∣∣Ux(g)∣∣ � (
1 − |x|)− 1

2
∑
k≥1

|gk| � (
1 − |x|)− 1

2 ‖g‖.

Note that from (4.12), one can check that U is actually a bounded operator from
H to L2(μsc) (and thus also a bounded operator from HμV to L2(μsc)).

Finally, let us note that for any f,g ∈ H , by (4.11) and (4.13), we obtain

(4.14)
∫

J
f ′(x)Ux(g)μsc(dx)=

∫
J
Ux(f )g′(x)μsc(dx)=

∑
k≥1

kgkfk

implying that according to (1.12), we can also write

(4.15) �(g)= 1

4

∫
J
g′(x)Ux(g)μsc(dx).

4.2. Regularity of the eigenfunctions in the cut J. In this section, we begin the
proof of Proposition 4.1. By Tricomi’s inversion formula, Lemma A.4, if φ ∈ H
is a solution of the equation

(4.16) φ′(x)S(x)= σ

2
Ux(φ)

for all x ∈ J, since dμV = S dμsc and �μV (φ)=H(φ′μV ), then φ also solves the
equation (4.6). Hence, for now, we may focus on the properties of equation (4.16).
In particular, by (4.7), we already know that if φ ∈ H , then φ is 1

4 -Hölder contin-
uous on J̄ and we may use (4.16) to improve on the regularity of the eigenfunction
φ by a bootstrap procedure.

PROPOSITION 4.2. Suppose that equation (4.16) has a solution φ belonging
to ∈ C 0,α(J) for some α > 0. If S ∈ C κ+1 and S > 0 in a neighborhood of J, then
φ ∈ C κ+1,1(J).
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The proof of Proposition 4.2 is given below and relies on certain regularity
properties of the finite Hilbert transform U ; see Lemmas 4.3 and 4.4. If f ∈ C k in
a neighborhood of x ∈R, we denote its Taylor polynomial (a polynomial in t) by

�k[f ](x, t)=
k∑
i=0

f (i)(x)
(t − x)i
i! .

Let φ be a solution of equation (4.16) and set for all x, t ∈ J,

(4.17) Fk(x, t)= φ(t)−�k[φ](x, t)
(t − x)k+1

and

(4.18) Ukx (φ)=
∫

J
Fk(x, t)�(dt).

In particular, by (A.4) and Lemma A.1, if φ ∈ C k,α(J) with α > 0, then for almost
all x ∈ J,

(4.19)
1

k!
(
d

dx

)k
Ux(φ)= Ukx (φ).

The following two technical results are our key ingredients in the proof of
Proposition 4.2, and we will present their proofs once we have proven Proposi-
tion 4.2.

LEMMA 4.3. Let, for all x ∈ J,

(4.20) Kα(x)=

⎧⎪⎪⎨⎪⎪⎩
(1 − x)α− 1

2 + (1 + x)α− 1
2 if α 
= 1

2
,

1 + log
(

1

1 − x2

)
if α = 1

2
.

For any k ≥ 0, if f ∈ C k,α(J) with 0< α < 1, then for all x ∈ J,

(4.21)
∣∣Ukx (f )∣∣ �α,f Kα(x).

LEMMA 4.4. For any k ≥ 0, if f ∈ C k,1(J), then Uk(f ) ∈ C 0,α(J) for any
α ≤ 1

2 .

PROOF OF PROPOSITION 4.2. Without loss of generality, we may assume that
σ = 2 in (4.16). Let 0 ≤ k ≤ κ and suppose that φ ∈ C k,α(J) where α > 0 and that
for almost all x ∈ J,

(4.22) Ukx (φ)− S(x)φ(k+1)(x)=
k∑
j=1

(
k

j

)
S(j)(x)φ(k+1−j)(x).
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Note that by our assumptions, these conditions are satisfied when k = 0 in which
case the RHS equals zero. Since φ ∈ C k,α(J), the RHS of (4.22) is uniformly
bounded, so by Lemma 4.3 and since S > 0 on J̄, we see that for all x ∈ J,∣∣φ(k+1)(x)

∣∣ �α Kα(x).

By the definition of Kα , this bound implies that φ(k) ∈ C 0,α′(J) where α′ = (α +
1
2)∧1. By repeating this argument, we obtain that φ ∈ C k,1(J) and, by Lemma 4.4,
this implies that φ(k+1) ∈ C 0,α(J). Then (4.19) shows that we can differentiate
formula (4.22). In particular, this shows that φ(k+2) exists and that for almost all
x ∈ J,

S(x)φ(k+2)(x)= Uk+1
x (φ)−

k+1∑
j=1

(
k + 1

j

)
S(j)(x)φ(k+2−j)(x).

Thus, we obtain (4.22) with k replaced by k+1. Therefore, we can repeat this argu-
ment until k = κ + 1, in which case we have seen that the solution φ ∈ C κ+1,1(J).
Proposition 4.2 is established. �

The remainder of this subsection is devoted to the proof of Lemmas 4.3 and 4.4
as well as bounding norms of derivatives of solutions of (4.16) in terms of σ .

PROOF OF LEMMA 4.3. Let φ ∈ C k,α(J). We claim that for any x, y ∈ J,∣∣φ(t)−�k[φ](x, t)∣∣ �φ |t − x|k+α.
Indeed, this is just the definition of the class C 0,α(J) when k = 0. Moreover, if
k ≥ 1 it can be checked that

φ(t)−�k[φ](x, t)= (t−x)
∫ 1

0

[
φ′(x+ (t−x)u)−�k−1

[
φ′](

x, x+ (t−x)u)]
du

so that the estimate follows directly by induction. According to (4.17)–(4.18), this
implies that

(4.23)
∣∣Fk(x, t)∣∣ �φ |t − x|α−1

and, by splitting the integral,

(4.24)
∣∣Ukx (f )∣∣ �φ

∫ x

−1

(x − t)α−1
√

1 − t2 dt +
∫ 1

x

(t − x)α−1
√

1 − t2 dt.

The RHS of (4.24) is finite for all x ∈ J and, by symmetry, we may assume that
x ≥ 0. Then we have∫ 1

x

(t − x)α−1
√

1 − t2 dt ≤
∫ 1

x

(t − x)α−1
√

1 − t dt

= (1 − x)α− 1
2

∫ 1

0
uα−1(1 − u)− 1

2 dt

�α Kα(x).

(4.25)
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On the other hand, we have∫ x

−1

(x − t)α−1
√

1 − t2 dt ≤
∫ 1

0

tα−1
√

1 − t2 dt +
∫ x

0

(x − t)α−1
√

1 − t dt.

The first integral does not depend on x ≥ 0, and by a change of variable∫ x

−1

(x − t)α−1
√

1 − t2 dt ≤C + (1 − x)α− 1
2

∫ x
1−x

0
uα−1(1 + u)− 1

2 du.

It is easy to verify that

∫ x
1−x

0
uα−1(1 + u)− 1

2 du= O
x→1

⎛⎜⎜⎜⎜⎜⎜⎝
1 if α <

1

2

log
(

1

1 − x
)

if α = 1

2

(1 − x) 1
2−α if α >

1

2

⎞⎟⎟⎟⎟⎟⎟⎠
which shows that

(4.26)
∫ x

−1

(x − t)α−1
√

1 − t2 dt �α Kα(x).

Combining the estimates (4.24)–(4.26), we obtain (4.21). �

To complete the proof of Proposition 4.2, we conclude with the proof of
Lemma 4.4.

PROOF OF LEMMA 4.4. We claim that, if φ ∈ C k,1(J), then the function x �→
Fk−1(x, t) is C 0,1(J). Indeed, by Taylor’s formula, we have

(4.27) Fk−1(x, t)=
∫ 1

0
φ(k)

(
t (1 − u)+ xu) uk−1

(k − 1)! du,

so that ∣∣Fk−1(t, y)− Fk−1(t, x)
∣∣

≤
∫ 1

0

∣∣φ(k)(t (1 − u)+ yu) − φ(k)(t (1 − u)+ xu)∣∣ uk−1

(k − 1)! du

� |y − x|,

(4.28)

where the underlying constant is independent of the parameter t ∈ J. Since

Fk(x, t)= Fk−1(x, t)− 1
k!φ

(k)(x)

t − x ,
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we have that

Fk(y, t)− Fk(x, t)

=
(
Fk−1(y, t)− 1

k!φ
(k)(y)− Fk−1(x, t)

+ 1

k!φ
(k)(x)+ (y − x)Fk(x, t)

)
1

t − y .
Then, using the estimates (4.23) with α = 1 and (4.28), we obtain that uniformly

for all x, t ∈ J̄, ∣∣Fk(t, y)− Fk(t, x)∣∣ � 1 ∧
( |y − x|
|t − y| ∨ |t − x|

)
.

This implies that for all −1< x < y < 1,∣∣Ukx (φ)− Uky (φ)
∣∣ � (y − x)

(∫
t<x

�(dt)

y − t +
∫
y<t

�(dt)

t − x
)
+

∫ y

x
�(dt)

�√
y − x(

1 + θ(x, y)),(4.29)

where

θ(x, y)=√
y − x

(∫
t<x

�(dt)

y − t +
∫
y<t

�(dt)

t − x
)

=√
y − x

√
1 − y2 +√

1 − x2√
1 − y2

√
1 − x2

× log
(1 − xy +√

1 − x2
√

1 − y2

y − x
)
.

(4.30)

Formula (4.30) follows by explicitly evaluating the integrals. This function extends
by continuity to the domain D = {−1< x ≤ y < 1} with θ(x, x)= 0. By (4.29), it
just remains to prove that the function θ is bounded on D. First, it is easy to check
that

lim
y→1

θ(x, y)=√
1 + x and lim

x→−1
θ(x, y)=

√
1 − y.

To study the boundary values of θ around the point (1,1), we make the change of
variables

θ̃ (ε, τ )= θ(√
1 − τ 2ε2,

√
1 − ε2

)
,

where 0 < ε < 1 and 1 < τ < 1
ε
. Then y = √

1 − ε2 �
ε→0

1 − ε2

2 and x =
√

1 − τ 2ε2 �
ε→0

1 − τ 2ε2

2 so that

lim
ε→0

θ̃ (ε, τ )= g(τ )=
√
τ 2 − 1

2

τ + 1

τ
log

(
τ + 1

τ − 1

)
.
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The function g(τ ) is continuous on the interval (1,∞) with boundary values
limτ→1 g(τ )= 0 and limτ→∞ g(τ )=√

2. In particular, this shows that

lim sup
x→1,y→1

θ(x, y)= max
τ≥1

g(τ ) <∞.

A similar analysis in a neighborhood of the point (−1,−1) allows us to conclude
that the function θ is bounded on D. Lemma 4.4 is established. �

We are now in a position to provide some quantitative bounds on solutions to
(4.16). Our implicit assumption is that σ is not small—an assumption that will be
fulfilled in our applications of the results we prove.

PROPOSITION 4.5. Suppose that equation (4.16) has a solution φ ∈ H such
that ‖φ‖∞,J � 1 (this bound does not depend on the parameter σ > 0). Then we
have, for any 0< α < 1

2 and for all k ≤ κ + 1,

(4.31)
∥∥φ(k)∥∥∞,J �α σ

k
α .

PROOF. By (4.7), we already know that φ ∈ C 0, 1
4 (J). Then, by Proposi-

tion 4.2, we obtain that φ ∈ C κ+1,1(J). By our assumptions, we note that the bound
(4.31) holds when k = 0 and we proceed by induction on k ≤ κ to prove the general
case. If we differentiate k times equation (4.16), we obtain

(4.32) S(x)φ(k+1)(x)= σ

2
Ukx (φ)−

k∑
j=1

(
k

j − 1

)
S(k+1−j)(x)φ(j)(x).

By Lemma 4.4, the RHS of (4.32) is continuous for all x ∈ J̄ and, since S > 0 on
J̄, this shows that

(4.33)
∥∥φ(k+1)∥∥∞,J � σ

∥∥Uk(φ)∥∥∞,J + σ
k
α .

Here, we assumed that the estimate (4.32) is valid for all j ≤ k and that
the parameter σ is large. Recall that, according to (4.27), we have the bound
supx,t∈J |Fk−1(t, x)| ≤ ‖φ(k)‖∞,J. Since

Fk(x, t)= Fk−1(x, t)− 1
k!φ

(k)(x)

t − x ,

this shows that for any α ∈ [0,1] and for x, t ∈ J̄,

∣∣Fk(t, x)∣∣ � ‖φ(k+1)‖1−α
∞,J ‖φ(k)‖α∞,J

|x − t |α � σk
‖φ(k+1)‖1−α

∞,J
|x − t |α ,

where we used the estimate (4.31) once more. By (4.18), this shows that for any
α < 1

2 , ∥∥Uk(φ)∥∥∞,J � σk
∥∥φ(k+1)∥∥1−α

∞,J .
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Combining this bound with the estimate (4.33), we conclude that∥∥φ(k+1)∥∥∞,J � σk+1∥∥φ(k+1)∥∥1−α
∞,J + σ k

α .

Then either ‖φ(k+1)‖∞,J � σ
k
α or ‖φ(k+1)‖α∞,J � σk+1, which completes the

proof. �

4.3. Extension of the eigenfunctions on R \ J̄. The aim of this subsection is
to complete the proof of Proposition 4.1 by extending the eigenfunction φ outside
of the cut in such a way that the resulting function, still denoted by φ, satisfies
equation (4.4) in a neighborhood Jε of the cut and that φ ∈ C κ(R). We will focus
on the extension of φ in a neighborhood of the edge-point 1, the construction being
completely analogous in a neighborhood of −1. Suppose that φ ∈ C κ+1,1(J) and
let for all x ∈R,

(4.34) g(x)= pv
∫
φ′(t)
x − t μV (dt).

Note that g is smooth on R\ J̄ and that it does not depend on the values of φ outside
of cut. Thus, we may interpret equation (4.4) as an ODE satisfied by the function
y = φ|R\J̄:

(4.35) Q′y′ = σy − g,

where Q is as in (1.7). The condition (4.3) guarantees that Q′ > 0 and equation
(4.35) is well-posed for all x ∈ Jδ \ J̄. Moreover, by Proposition A.6, since 1

Q′ is
integrable in a neighborhood of 1, equation (4.35) has a unique solution such that
y(1)= κ0 for any κ0 ∈ R. Choosing κ0 = φ(1), in order to extend outside of the
cut the solution φ of equation (4.6) in a smooth way, we need to check that y
satisfies for all 1 ≤ k ≤ κ ,

(4.36) lim
x→1+

y(k)(x)= lim
x→1−

φ(k)(x).

The conditions (4.36) are checked using the following result and Proposition 4.7
below. Again, in our quantitative regularity bounds in terms of σ , we will be as-
suming that σ is large.

PROPOSITION 4.6. Let κ ≥ 1 and suppose that η > 4(κ+1)
2κ−1 . Let G in

C κ+1(1,∞) be such that G(x) = ox→1+(x − 1)κ and let Y be the solution of
the equation

(4.37) Q′Y ′ = σY +G
on the interval (1,∞) with boundary condition Y(1) = 0. Then Y belongs to
C κ+2(1,1 + δ) and satisfies for all k ≤ κ ,

Y (k)(1)= lim
x→1+

Y (k)(x)= 0.
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Moreover, letting ε = σ−η ∧ δ, if we assume that for any 1
η
< α < 1

2 ,

(4.38)
∥∥G(κ−1)∥∥∞,[1,1+ε] �α σ

κ+1
α ,

then we have for all k < κ ,

(4.39)
∥∥Y (k)∥∥∞,[1,1+ε] � σηk.

PROOF. If we let, for all 1 ≤ x < 1 + δ,
h(x)=

∫ x

1

σ

Q′(t)
dt and ϒ(x)=

∫ x

1

G(t)

Q′(t)
e−h(x) dt,(4.40)

then the solution of equation (4.37) for which Y(1)= 0 is given by

(4.41) Y(x)=ϒ(x)eh(x).

Then, ifG ∈ C κ+1(1,∞), we immediately check that Y ∈ C κ+2(1,1+2δ). More-
over, by Proposition A.6, the condition G(x)=Ox→1+(x − 1)κ implies that

(4.42)
∣∣ϒ(x)∣∣ � (x − 1)κ+

1
2 .

Since the function h(x) is continuous on the interval [1,1 + δ] with h(0)= 0, we
conclude that the estimate (4.42) is also satisfied by the solution Y which proves
that it is of class C κ at 1 and that Y (k)(1)= 0 for all k ≤ κ .

Now we turn to the proof of (4.39). By Taylor’s theorem, since G(k)(1)= 0 for
all k ≤ κ ,

G(j)(t)= (t − 1)κ−1−j
∫ 1

0
G(κ−1)(1 − u(1 − t)) uκ−2−j

(κ − 2 − j)! du,
and the estimate (4.38) implies that for all j ≤ κ − 1 and for all 1< x < ε,∣∣G(j)(t)∣∣ � σ

κ+1
α (t − 1)κ−1−j .

On the other hand, by Proposition A.6, for all j ≤ κ ,

dj

dxj

(
1

Q′(x)

)
= O
x→1+

(x − 1)−
1
2−j ,

so that we deduce from (4.40) that for any k < κ and for all 1 ≤ x < 1 + δ,
h(k)(x)� σ(x − 1)

1
2−k∣∣ϒ(k)(x)∣∣ � σ (κ+1)/α(x − 1)κ−

1
2−k.

(4.43)

Combined with (4.41), the estimates (4.43) imply that if ε = σ−η ∧ δ, we have for
all k < κ , ∥∥Y (k)∥∥∞,[1,1+ε] � σ (κ+1)/α−η(κ− 1

2−k).
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Now it is easy to check that if η > 4(κ+1)
2κ−1 , we can choose 1

η
< α < 1

2 so that
κ+1
α

≤ η(κ− 1
2). Hence, we obtain the estimate (4.39), completing the proof of the

proposition. �

The second ingredient of our extension of the eigenfunctions is the following
result.

PROPOSITION 4.7. Suppose that φ ∈ C κ+1,1(J) is a solution of equation
(4.6) on J. For all k ≤ κ + 1, define κk = limx→1− φ

(k)(x), and let  (x) =∑κ+1
i=0 κi

(x−1)i

i! . Then the function g given by (4.34) satisfies

(4.44) g(x)=− ′(x)Q′(x)+ σ (x)+ o
x→1

(x − 1)κ .

Moreover, if for any 0< α < 1
2 , we have ‖φ(k)‖∞,J �α σ

k
α for all k ≤ κ + 1, then

the function G(x) = g(x) + Q′(x) ′(x) − σ (x) satisfies (4.38) (and we can
apply the previous proposition).

PROOF. On the one hand, according to (4.6) and (4.34), we have g(x)= σφ(x)
for all x ∈ J. This shows that g ∈ C κ+1(J̄) and

(4.45) g(x)= σ (x)+ O
x→1−

(x − 1)κ+1.

From the variational condition (4.3), Q′ = V ′ −H(μV )= 0 on J̄, and we see that
(4.44) holds when the limit is taken from the inside of the cut. On the other hand,
we have for all x ∈ J,

(4.46) g(x)= V ′(x)φ′(x)−!(x) where !(x)=
∫

J

φ′(t)− φ′(x)
t − x μV (dt).

By Lemma A.1, since φ ∈ C κ+1,1(J), the function ! ∈ C κ(J̄) and for all k ≤ κ ,

(4.47) !(k)(1)= lim
x→1−

!(k)(x)= k!
∫
φ′(t)−�k[φ′](1, t)

(t − 1)k+1 μV (dt).

Hence, by (4.45) and (4.46), we obtain that

(4.48) !(k)(1)= dk(V ′φ′)
dxk

∣∣∣∣
x=1−

−σκk.
Define for all x ≥ 1,

!̃(x)=
∫
φ′(t)− ′(x)

t − x μV (dt),

so that

(4.49) g(x)=Hx(μV ) ′(x)− !̃(x).



2660 G. LAMBERT, M. LEDOUX AND C. WEBB

It is also easy to check that the function !̃ ∈ C ∞(1,∞) and that for all k ≥ 1 and
x > 1,

(4.50) !̃(k)(x)= k!
∫
φ′(t)−�k[ ′](x, t)

(t − x)k+1 μV (dt).

Since �k[ ′](1, t)=�k[φ′](1, t), by (4.47), we obtain for all k ≤ κ ,

(4.51) lim
x→1+

!̃(k)(x)=!(k)(1).

According to (4.49), this shows that for all x ≥ 1,

G(x)= g(x)+Q′(x) ′(x)− σ (x)
=−!̃(x)+ V ′(x) ′(x)− σ (x).(4.52)

By (4.48) and (4.51), since !(k)(1) = dk(V ′ ′)
dxk

|x=1 − σκk , we see that there is a

cancellation on the RHS of (4.52) so that limx→1+G
(k)(x)= 0 for all k ≤ κ . This

implies that G(x)= ox→1+(x − 1)κ and we obtain the expansion (4.44).
Now we turn to the proof of the estimate (4.38). We let ε = σ−η where η > 1

α

and the parameter σ is assumed to be large. By hypothesis, |κk| �α σ
k
α and it is

easy to verify that for all k ≤ κ + 1,

(4.53)
∥∥ (k)∥∥∞,[1,1+ε] � σ

k
α .

Thus, by (4.52), it suffices to show that

(4.54)
∥∥!̃(κ−1)∥∥∞,[1,1+ε] �α σ

κ+1
α .

Since �κ−1[ ′](1, t)=�κ−1[φ′](1, t), by (4.50), we obtain for all x ≥ 1,∣∣!̃(κ−1)(x)
∣∣

� sup
t∈J

{∣∣∣∣φ′(t)−�κ−1[φ′](1, t)
(1 − t)κ

∣∣∣∣
+

∣∣∣∣�κ−1[ ′](x, t)−�κ−1[ ′](1, t)
(x − t)κ

∣∣∣∣}.
(4.55)

On the one hand, by Taylor’s theorem, we have

sup
t∈J

∣∣∣∣φ′(t)−�κ−1[φ′](1, t)
(1 − t)κ

∣∣∣∣ ≤ ∥∥φ(κ+1)∥∥∞,J � σ
κ+1
α .

On the other hand, if f is a smooth function, for all k ≥ 0,

d�k[f ](x, t)
dx

= f (k+1)(x)

k! (x − t)k+1,
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and by the mean-value theorem, there exists t < ξ < x such that

�k[f ](x, t)−�k[f ](1, t)
(t − x)k+1 = f (k+1)(ξ)

k!
(
ξ − t
t − x

)k+1
.

Therefore, we have for all x > 1,∣∣∣∣�κ−1[ ′](x, t)−�κ−1[ ′](1, t)
(t − x)κ

∣∣∣∣ � ∥∥ (κ+1)∥∥∞ = |κκ+1|,

as we defined,  (x)= ∑κ+1
i=0 κi

(x−1)i

i! . Since |κκ+1| � σ
κ+1
α , we deduce from the

estimate (4.55) that ‖!̃(κ−1)‖∞,[1,∞) �α σ
κ+1
α which obviously implies (4.54)

and completes the proof. �

We are now ready for the proof of Proposition 4.1.

PROOF OF PROPOSITION 4.1. First, if equation (4.16) has a solution φ ∈ H
with σ > 0, by Propositions 4.2 and 4.5, this solution φ ∈ C κ+1,1(J̄) and satisfies,
for all k ≤ κ + 1,

(4.56)
∥∥φ(k)∥∥∞,J �α σ

k
α .

Then, let us write as in Proposition 4.7: κi = limx→1− φ
(i)(x) and  (x) =∑κ+1

i=0 κi
(x−1)i

i! , so that making the change of variable y(x) = Y(x) −  (x) in
(4.35), we obtain

Q′Y ′ = σY +G,
where as before, G(x) = g(x) + Q′(x) ′(x) − σ (x). By Tricomi’s formula,
Lemma A.4, the function φ also solves equation (4.6) and according to Propo-
sition 4.7, G(x)= ox→1+(x − 1)κ and we deduce from Proposition 4.6 that for all
k ≤ κ ,

lim
x→1+

y(k)(1)= lim
x→1

 (k)(x)= κk.

This shows that the conditions (4.36) are satisfied, and that we may extend the
solution φ outside of J by setting φ(x) = y(x) for all x ∈ Jε \ J in such a way
that it satisfies (4.4) on Jε for some ε ≤ δ and φ ∈ C κ(R). Moreover, the esti-
mate (4.56) and Proposition 4.7 imply that the function G satisfies (4.38) so that
‖Y (k)‖∞,[1,1+ε] � σηk for all k < κ , where ε = σ−η ∧ δ and η > 4(κ+1)

2κ−1 . Then,

by choosing the parameter α > 1
η

in the estimates (4.53) and (4.56), we obtain that

‖φ(k)‖∞,[−1,1+ε] � σηk . Moreover, an analogous analysis in the neighborhood of
the other edge-point −1 allows us to conclude that for all k < κ ,

(4.57)
∥∥φ(k)∥∥∞,Jε � σηk.
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Now let χ : R → [0,1] be a smooth even function with compact support in
J = (−1,1) such that χ(0) = 1 and χk(0) = 0 for all 1 < k ≤ κ , and recall that
t �→�κ [φ](x, t) denotes the Taylor polynomial of the function φ of degree κ at x.
Then, if we set for all t ∈R \ Jε ,

φ(t)= χ
(
t − 1 − ε

ε

)
�κ [φ](1 + ε, t)+ χ

(
t + 1 + ε

ε

)
�κ [φ](−1 − ε, t),

then we indeed have φ ∈ C κ(R) and it is easy to check that the estimate (4.57)
remains true for the norms ‖φ(k)‖∞,R and for all k < κ . Finally, note that this ex-
tension procedure guarantees that the function φ has support in J2ε . Proposition 4.1
is proved. �

4.4. Existence of the eigenfunctions. In order to prove that there exists a se-
quence of eigenfunctions φn ∈ H , equation (4.16) suggests to consider the opera-
tor RS(φ)=ψ where ψ is the (weak) solution in H of equation

(4.58) ψ ′S = U(φ).

Note that if φ ∈ H , since U(φ) is continuous on J, there exists a solution and the
condition

∫
Jψ(x)�(dx)= 0 guarantees that it is unique.

THEOREM 4.8. The operator RS is compact, positive, and self-adjoint on
HμV . If we denote by ( 2

σn
)∞n=1 the eigenvalues of RS in nonincreasing order, then

σn � n and the corresponding (normalized) eigenfunctions φn satisfy ‖φn‖∞,J �
1 for all n≥ 1.

PROOF. Since the finite Hilbert transform U : H �→ L2(μsc) is bounded (as
we remarked in Section 4.1) and S > 0 on J̄, by (4.58) we obtain

(4.59)
∥∥RS(φ)∥∥2

μV
=

∫
J
Ux(φ)2

2
√

1 − x2

πS(x)
dx� ∥∥U(φ)∥∥2

L2(μsc)
,

so that RS : HμV �→ HμV is a bounded operator. Moreover, by (4.14), for any
φ,g ∈ H , 〈

RS(φ), g
〉
μV

=
∫

J
Ux(φ)g′(x) dμsc(x)=

∑
k≥1

kφkgk.

This shows that RS is self-adjoint and positive-definite with

(4.60)
〈
RS(φ),φ

〉
μV

= 4�(φ).

To prove compactness, we rely on the results of [30], Section VI.5. Introduce
the operator RS,N : φ �→ ψN where ψN solves the equation ψ ′

NS = UN(φ) and
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UN(φ)= ∑N
k=1 φkUk−1. Plainly, the operators RSN have finite rank for all N ≥ 1

and for any φ ∈ H , we have∥∥(
RS −RS,N

)
(φ)

∥∥
μV

� ∥∥(U − UN)(φ)
∥∥
L2(μsc)

=
√ ∑
k>N

|φk|2 � ‖φ‖√
N
.

The first step is similar to (4.59), for the second step we used that by (4.13),
(U − UN)(φ)= ∑

k>N φkUk−1 and at last, we used the Cauchy–Schwarz inequal-
ity and (4.10). This proves that RS = limN→∞RS,N in operator-norm so that RS
is compact. Therefore, by the spectral theorem, there exists an orthonormal basis
(φn)n≥1 of HμV so that

(4.61) RS(φn)= 2

σn
φn

and σn > 0 for all n≥ 1. Moreover, each eigenvalue has finite multiplicity, and we
may order them so that the sequence σn is nondecreasing and σn→∞ as n→∞.
In fact, by the Min-Max theorem, we have

2

σn
= max

S⊂H
dimS=n

min
φ∈S

〈RSφ,φ〉μV
‖φ‖2

μV

,

where the maximum ranges over all n-dimensional subspaces of the Hilbert space
H . By (4.60), since the quantity �(φ) does not depend on the equilibrium mea-
sure μV and ‖φ‖μV � ‖φ‖, this shows that

(4.62)
2

σn
� max

S⊂H
dimS=n

min
φ∈S

〈R1φ,φ〉
‖φ‖2 .

In the Gaussian case (S = 1), the eigenfunctions of R1 are the Chebyshev polyno-
mials 1

n
Tn and the eigenvalues satisfy σn = 2n, therefore, we deduce from (4.62)

that, in the general case, we also have σn � n.
Finally, to prove that the eigenfunctions are bounded, we may expand φn in

a Fourier–Chebyshev series: φn = ∑∞
k=1 φn,kTk on J. Since ‖Tk‖∞,J = 1 for all

k ≥ 1, by (4.10) and the Cauchy–Schwarz inequality, we obtain

‖φn‖∞,J ≤
∑
k≥1

|φn,k| � ‖φn‖.

Finally, since ‖φn‖ � ‖φn‖μV = 1 for all n ∈ N, we conclude that ‖φn‖∞,J̄ � 1.
�

We split the proof of Theorem 1.5 into two parts—we now focus on existence
and bounds on the functions φn and then in the next section discuss the Fourier
expansion.
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PROOF OF THEOREM 1.5—EXISTENCE AND BOUNDS ON EIGENFUNCTIONS.
By Theorem 4.8, we have RS(φn) = 2

σn
φn and if we differentiate this equation

and use (4.58), we obtain that S(x)φ′
n(x) = σn

2 Ux(φn) for all x ∈ J. Then, by
Lemma A.4, this implies that for all n≥ 1,

(4.63) �μV (φn)= σnφn.
Hence, φn ∈ H and σn � n solve equation (4.6). By Proposition 4.1, this means
that for any n ≥ 1, we can extend the eigenfunction (keeping the notation φn) in
such a way that φn ∈ C κ(R) with compact support and it satisfies equation (4.4)
on the interval Jεn where εn = σ−η

n ∧ δ and that for all k < κ ,∥∥φ(k)n ∥∥∞,R � σηkn .

Finally, combining formulae (4.60) and (4.61), since ‖φn‖μV = 1, we obtain the
identity 2�(φn)= 1

σn
for all n≥ 1. The part of the theorem concerning existence

and bounds on the functions is now proven. �

4.5. Fourier expansion. The proof of Theorem 1.5 will be complete once we
prove the following result.

PROPOSITION 4.9. If f ∈ C κ+4(J̄), we can expand f = ∫
J f (x)�(dx) +∑∞

n=1 f̂nφn where the Fourier coefficients f̂n = 〈f,φn〉μV satisfy

|f̂n| � σ
− κ+3

2
n

for all n≥ 1.

To do this, we prove an integration by parts result.

LEMMA 4.10 (Integration by parts). The operator �μV is symmetric in the
sense that for any function g,f ∈ C 2(R), we have

(4.64)
〈
�μV (f ), g

〉
μV

= 〈
f,�μV (g)

〉
μV
.

PROOF. We let g̃(x) = g′(x) dμV
dx

for all x ∈ R and similarly for f̃ . By as-
sumption g̃ is continuous with support in J̄, it is differentiable and g̃′ ∈ Lp(R) for
any p < 2. Moreover, since �μV (f )=H(f̃ ), using the differentiation properties
of the Hilbert transform, we have d

dx
H(f̃ ) = H(f̃ ′). This proves that under our

assumptions, the function H(f̃ ) is continuous on R. Then an integration by parts
shows that

〈
�μV (f ), g

〉
μV

=
∫

J

dHx(f̃ )
dx

g̃(x) dx =−
∫

J
Hx(f̃ )g̃′(x) dx.
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Note that there is no boundary term because we have just seen that the function
g̃H(f̃ ) is continuous with support in J̄. Using the antiself-adjointness and differ-
entiation properties of the Hilbert transform, this implies that〈

�μV (f ), g
〉
μV

=
∫

J
f̃ (x)Hx

(
g̃′

)
dx =

∫
J
f̃ (x)

dHx(g̃)
dx

dx.

Finally, using that H(g̃)=�μV (g) and f̃ (x) dx = f ′(x)μV (dx), we obtain (4.64)
establishing Lemma 4.10. �

We now turn to the missing ingredient in the proof of Theorem 1.5

PROOF OF PROPOSITION 4.9. First of all, we claim that if φ ∈ C k+2(J̄) for
some k ≤ κ + 2, then the function �μV (φ) ∈ C k(J̄). Indeed, by (4.5) and the vari-
ational condition (4.3), we see that for all x ∈ J,

�μVx (φ)=−
∫

J

φ′(t)− φ′(x)
t − x μV (dt)− V ′(x)φ′(x).

Using Lemma A.1, if φ′ ∈ C k+1(J̄) and the potential V ∈ C κ+3(R), this im-
plies that the function �μVx (φ) ∈ C k(J̄). Let f (0) = f ∈ C κ+4(J̄) and define
f (k+1) =�μV (f (k)) for all 0 ≤ k ≤K (here f (k), is not to be confused with the kth
derivative of f ). The previous observation shows that f (1) ∈ C κ+2(J̄), . . . , f (K) ∈
C κ−2(K−2)(J̄). Thus, choosing K = κ+3

2 , we obtain that f (K) ∈ C 1(J̄). By defini-
tion, we have

f̂n = 〈f,φn〉μV = σ−1
n

〈
f,�μV (φn)

〉
μV

= σ−1
n

〈
f (1), φn

〉
μV

= σ−K
n

〈
f (K),φn

〉
μV
.

At first, we used the eigenequation (4.63). Then we used Lemma 4.10 observing
that the functions f (k) ∈ C 2(J̄) for all 0 ≤ k < K . The last step follows by induc-
tion. Hence, since ‖φn‖μV = 1 for all n≥ 1, we obtain

|f̂n| ≤ σ−K
n

∥∥f (K)∥∥μV � σ−K
n

since the function f (K)′ is uniformly bounded on J̄. Proposition 4.9 is established.
�

5. The CLT for the functions φn—Proof of Proposition 1.6. In this section,
we establish a multidimensional CLT for the linear statistics of the test functions
φn constructed in the previous section, for a general one-cut regular potential V
and β > 0. This will closely parallel the argument for the GUE from Section 3, but
we do encounter some technical difficulties. We point out here that we will find
it convenient to assume that the eigenvalues are ordered, λ1 ≤ · · · ≤ λN , allowing
us to use the rigidity result of Theorem 1.7 to control the behavior of the random
measure νN (see Section 5.2).
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5.1. Step 1—approximate eigenvector property. In this section, we establish
that linear statistics of φn are approximate eigenfunctions of the generator L as
was the case for the Chebyshev polynomials when the potential V is quadratic.

PROPOSITION 5.1. Let (φn)∞n=1 and (σn)∞n=1 be as in Theorem 1.5. If m is
given by (1.10) and L by (2.2), then for any n≥ 1

L

(
N∑
j=1

φn(λj )

)

=−βσnN
(
N∑
j=1

φn(λj )−N
∫

J
φn dμV −

(
1

β
− 1

2

)
m(φn)

)
+ ζn(λ),

(5.1)

where ζn : RN → R satisfies the following two conditions: for any η > 4(κ+1)
2κ−1 ,

|ζn(λ)| �N2n2η for all λ ∈R
N and, if λ1, . . . , λN ∈ [−1 − εn,1 + εn] (where εn

is as in Theorem 1.5), then

ζn(λ)=
(

1 − β
2

) ∫
R

φ′′
n(x)νN(dx)

+ β

2

∫
R×R

φ′
n(x)− φ′

n(t)

x − t νN(dx)νN(dt).

(5.2)

To prove Proposition 5.1, we will need the following lemma.

LEMMA 5.2. Let (φn)∞n=1 and (σn)∞n=1 be as in Theorem 1.5. We have for all
n≥ 1, ∫

J×J

φ′
n(t)− φ′

n(x)

t − x μV (dt)μV (dx)=−2σn

∫
J
φn(x)μV (dx).

PROOF. First of all, let us observe that using the variational condition (4.3),
for any function f ∈ C 1

c (R),∫
J
f (x)V ′(x)μV (dx)=

∫
J
f (x)Hx(μV )μV (dx)=−

∫
J
Hx(fμV )μV (dx),

where we used the antiself-adjointness of the Hilbert transform, (A.3), and the fact
that μV is absolutely continuous with a bounded density function. In fact, one has

Hx(fμV )=−
∫

J

f (t)− f (x)
t − x μV (dt)+ f (x)V ′(x)

and, by symmetry, this implies that

(5.3)
∫

J
f (x)V ′(x)μV (dx)= 1

2

∫
J×J

f (t)− f (x)
t − x μV (dt)μV (dx).
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On the other hand, integrating equation (1.14) with respect to μV , we see that∫
J
V ′(x)φ′

n(x)μV (dx)−
∫

J×J

φ′
n(x)− φ′

n(y)

x − y μV (dx)μV (dy)

= σn
∫

J
φn(u)μV (du),

which, together with (5.3) completes the proof of this lemma. �

PROOF OF PROPOSITION 5.1. Let us first prove the uniform bound for the
error term ζn on R

N . Since the density S = dμV
dμsc

is C 1 and positive on J̄ = [−1,1],
we have (in the notation of (1.3))∣∣m(φn)∣∣ �‖φn‖∞,J +

∥∥φ′
n

∥∥∞,J.
One has

L

(
N∑
j=1

φn(λj )

)
=

N∑
j=1

φ′′
n(λj )− βN

N∑
j=1

V ′(λj )φ′
n(λj )

+ β∑
i 
=j

1

λj − λi φ
′
n(λj )

=
(

1 − β

2

) N∑
j=1

φ′′
n(λj )− βN

N∑
j=1

V ′(λj )φ′
n(λj )

+ β
2

N∑
i,j=1

φ′
n(λj )− φ′

n(λi)

λj − λi .

(5.4)

Hence, we obtain∣∣∣∣∣L
(
N∑
j=1

φn(λj )

)∣∣∣∣∣ �N2(∥∥φ′′
n

∥∥∞,R + ∥∥V ′∥∥∞,J2δ

∥∥φ′
n

∥∥∞,R)
,

where the last bound follows from the fact that, by construction, the functions φn
have compact support in the interval J2δ . Combining these two estimates, using the
upper bound (1.15) and the fact that σn � n from Theorem 1.5, we obtain

∣∣ζn(λ)∣∣ =
∣∣∣∣∣L

(
N∑
j=1

φn(λj )

)
+ βσnN

(
N∑
j=1

φn(λj )−N
∫

J
φn(λ)μV (dλ)− m(φn)

)∣∣∣∣∣
�N2σ 2η

n ,

which yields ‖ζn‖L∞(RN)�N2n2η.
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In order to prove (5.2), observe that
N∑

i,j=1

φ′
n(λj )− φ′

n(λi)

λj − λi = 2N
∫∫

R×J

φ′
n(x)− φ′

n(t)

x − t νN(dx)μV (dt)

+
∫∫

R×R

φ′
n(x)− φ′

n(t)

x − t νN(dx)νN(dt)

+N2
∫∫

J×J

φ′
n(x)− φ′

n(t)

x − t μV (dx)μV (dt).

Thus, if λ1, . . . , λN ∈ Jεn , using equation (1.14), we obtain

N

N∑
j=1

V ′(λj )φ′
n(λj )−

1

2

N∑
i,j=1

φ′
n(λj )− φ′

n(λi)

λj − λi

=Nσn
N∑
j=1

φn(λj )− 1

2

∫∫
R×R

φ′
n(x)− φ′

n(t)

x − t νN(dx)νN(dt)

+ N
2

2

∫∫
J×J

φ′
n(x)− φ′

n(t)

x − t μV (dx)μV (dt)

=Nσn
∫
R

φn(x)νN(dx)− 1

2

∫∫
R×R

φ′
n(x)− φ′

n(t)

x − t νN(dx)νN(dt),

where we used Lemma 5.2 for the last step. According to (5.4) and (5.2), it follows
that

L

(
N∑
j=1

φn(λj )

)

=−βσnN
(∫

R

φn(x)νN(dx)+
(

1

2
− 1

β

)
1

σn

∫
J
φ′′
n(x)μV (dx)

)
+ ζn(λ).

Therefore, to complete the proof, it just remains to check that according to
(1.10), we have for all n≥ 1

(5.5) m(φn)= 1

σn

∫
J
φ′′
n(x)μV (dx).

Since the density S = dμV
dμsc

is C 1 and positive on J̄ = [−1,1], an integration by
parts shows that∫

J
φ′′
n(x)μV (dx)=− 2

π

∫
J
φ′
n(x)S(x)

(
S′(x)
S(x)

√
1 − x2 − x√

1 − x2

)
dx.

Since for any n≥ 1 φn is a solution of equation (4.16), this implies that

1

σn

∫
J
φ′′
n(x)μV (dx)=− 1

π

∫
J
Ux(φn)

(
S′(x)
S(x)

√
1 − x2 − x√

1 − x2

)
dx.
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By Lemma A.5, we may rewrite this formula as

1

σn

∫
J
φ′′
n(x)μV (dx)=

1

2

(
φn(1)+ φn(−1)−

∫
J
Ux(φn)

S′(x)
S(x)

μsc(dx)

)
,

which, according to (A.4), completes the proof of (5.5). The proof of Proposi-
tion 5.1 is thus complete. �

5.2. Step 2—a priori bound on linear statistics. In this section, we use the
rigidity estimates from Theorem 1.7 to establish a result corresponding to (3.7).
The following lemma is a standard consequence of rigidity, but we record it for
completeness.

LEMMA 5.3. Let ε > 0 be fixed and Bε be the event defined in Theorem 1.7.
We have, for any configuration λ ∈ Bε and for any Lipschitz continuous function
f :R→R, ∣∣∣∣∣

N∑
j=1

f (λj )−N
∫

J
f (x)μV (dx)

∣∣∣∣∣ �‖f ‖C 0,1(R)N
ε.

In particular, if f is a bounded Lipschitz function, then for any p > 0,

E

∣∣∣∣∣
N∑
j=1

f (λj )−N
∫

J
f (x)μV (dx)

∣∣∣∣∣
p

�p ‖f ‖p
C 0,1(R)

Npε + ‖f ‖p∞,Re−N
cε
.

PROOF. Recalling the definition of the classical locations ρj from Theo-
rem 1.7, we may write

N∑
j=1

f (λj )−N
∫

J
f (x)μV (dx)=N

N∑
j=1

∫ ρj

ρj−1

(
f (λj )− f (x))μV (dx)

and we see that if λ= (λ1, . . . , λN) ∈ Bε ,∣∣∣∣∣
N∑
j=1

f (λj )−N
∫

J
f (x)μV (dx)

∣∣∣∣∣
≤ ‖f ‖C 0,1(R)

N∑
j=1

max
(|λj − ρj |, |λj − ρj−1|)

�‖f ‖C 0,1(R)

N∑
j=1

{
ĵ−

1
3N− 2

3+ε + (ρj − ρj−1)
}
.

(5.6)

Obviously,
∑N
j=1 ĵ

− 1
3 � N

2
3 and

∑N
j=1(ρj − ρj−1) = ρN − ρ0 = 2 due to the

normalization of the support of the equilibrium measure, so that we have proved
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the first estimate. The second estimate follows directly from the facts that f is
bounded and, by Theorem 1.7, that the probability of the complement of Bε is
exponentially small in some power of N . Lemma 5.3 is established. �

LEMMA 5.4. Let ε > 0 be fixed and f ∈ C 4(R). We have, for any λ ∈ Bε ,∣∣∣∣∫
R×R

f ′(x)− f ′(y)
x − y νN(dx)νN(dy)

∣∣∣∣ � ∥∥f (4)∥∥∞,RN2ε.

PROOF. We begin by pointing out the following fact that is easily checked by
repeatedly performing the integrals: for any f ∈ C 4(R) and s, t, u, v ∈R,

f ′(s)− f ′(t)
s − t + f ′(u)− f ′(v)

u− v − f ′(s)− f ′(v)
s − v − f

′(u)− f ′(t)
u− t

= (s − u)(t − v)
×

∫
[0,1]3

f (4)
(
ac(s − u)+ (1 − a)b(t − v)+ au+ (1 − a)v)

× a(1 − a)da db dc,

(5.7)

where the LHS is interpreted as f ′′ when some of the parameters coincide. Noting
that ∫

R×R

f ′(x)− f ′(y)
x − y νN(dx)νN(dy)

=
N∑

i,j=1

N2
∫ ρi

ρi−1

∫ ρj

ρj−1

[
f ′(λi)− f ′(λj )

λi − λj + f
′(x)− f ′(y)
x − y

− f ′(λi)− f ′(x)
λi − x − f

′(λj )− f ′(y)
λj − y

]
μV (dx)μV (dy),

formula (5.7) implies that∣∣∣∣∫
R×R

f ′(x)− f ′(y)
x − y νN(dx)νN(dy)

∣∣∣∣
≤ ∥∥f (4)∥∥∞,RN2

N∑
i,j=1

∫ ρi

ρi−1

|λi − x|μV (dx)
∫ ρj

ρj−1

|λj − y|μV (dy)

≤ ∥∥f (4)∥∥∞,R
(
N∑
i=1

max
(|λi − ρi |, |λi − ρi−1|)

)2

.

Like in the proof of Lemma 5.3, conditionally on Bε , the previous sum is asymp-
totically of order at most Nε which completes the proof. �
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5.3. Step 3—controlling the error terms A and B . As for the GUE, we now
move on to estimate the “A-term” and “B-term” by using the results of Section 5.2
and Theorem 1.5 in order to apply Proposition 2.1 and deduce the multidimen-
sional CLT in the next subsection.

LEMMA 5.5. Let (φn)∞n=1 and (σn)∞n=1 be given as in Theorem 1.5. Let
F :RN →R

d be defined by

F(λ)= Fn(λ)

= √
βσn

(
N∑
j=1

φn(λj )−N
∫

J
φn(x)μV (dx)−

(
1

β
− 1

2

)
m(φn)

)
,

(5.8)

and let the matrix K = KN,dV,β = βNdiag(σ1, . . . , σd). Then we have, for any η >
4(κ+1)
2κ−1 , any ε > 0, and for any d ≤N 1

2η ,

A2 = E
∥∥F +K−1L(F )

∥∥2 � d8ηN−2+4ε.

PROOF. According to (5.8), we may rewrite (5.1) as

LF =−KF + √
βσnζ,

where we extend the definition of ζ :RN →R
d . Then we have

A2 = 1

βN2E

[
d∑
n=1

ζn(λ)
2

σn

]
.

Since ‖ζn‖L∞(RN)�N2n2η for all n≥ 1 by Theorem 1.7, this implies that∣∣∣∣∣A2 − 1

βN2

d∑
n=1

E[ζn(λ)21Bε ]
σn

∣∣∣∣∣ �N2d4ηe−Nc .

Recall that εd � σ−η
d when d is large, so that for any ε > 0, we have Bε ⊂ [−1 −

εd,1 + εd ]N when the parameter N is sufficiently large. Then, by (5.2),

E
[
ζn(λ)

21Bε
] � E

[
1Bε

(∫
R

φ′′
n(x)νN(dx)

)2]

+E

[
1Bε

(∫
R×R

φ′
n(x)− φ′

n(t)

x − t νN(dx)νN(dt)

)2]
.

By Lemma 5.3, the first term is bounded by ‖φ(3)n ‖2∞,RN2ε , while by Lemma 5.4,

the second term is bounded by ‖φ(4)n ‖2∞,RN4ε . Now, using the estimates of Theo-
rem 1.5, we conclude that

A2 �N−2+4ε
d∑
n=1

σ 8η−1
n �N−2+4εσ

8η
d

which completes the proof. �
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LEMMA 5.6. Let B be given by formula (2.5) where F : RN → R
d and the

matrix K are as in Lemma 5.5. Then we have, for any η > 4(κ+1)
2κ−1 and any ε > 0,

(5.9) B2 = E
∥∥Id −K−1�(F)

∥∥2 � d6η+2N−2+2ε,

as long as the RHS converges to 0 as N →∞. (In particular, this is the case when

d ≤N 1
4η ).

PROOF. By definition, we have

�(Fi,Fj )= β√σiσj
N∑
�=1

φ′
i (λ�)φ

′
j (λ�)

= β√σiσj
(∫

R

φ′
i (x)φ

′
j (x)νN(dx)+Nδi,j

)
since, by Theorem 1.5, (φn)∞n=1 is an orthonormal basis of the Sobolev space HμV .
This implies that, for the Hilbert–Schmidt norm,

∥∥Id −K−1�(F)
∥∥2 = 1

N2

d∑
i,j=1

σj

σi

(∫
R

φ′
i (x)φ

′
j (x)νN(dx)

)2

≤ 2

N2

∑
1≤i≤j≤d

σj

σi

(∫
R

φ′
i (x)φ

′
j (x)νN(dx)

)2
.

Then, by Lemma 5.3, since the functions x �→ φ′
i (x)φ

′
j (x) are uniformly bounded

and Lipschitz continuous on R with norm at most∥∥φ′
j

∥∥
∞,R

∥∥φ′′
i

∥∥∞,R + ∥∥φ′
i

∥∥∞,R∥∥φ′′
j

∥∥
∞,R � σ

η
i σ

2η
j ,

using the estimate (1.15) when i ≤ j , we obtain

B2 �N−2(1−ε) ∑
1≤i≤j≤d

σ
2η−1
i σ

4η+1
j + d2e−Nc

which yields the estimate (5.9) since σj � j and the second term is asymptotically
negligible. �

5.4. Proof of Proposition 1.6. By Theorem 1.5, σn = 1
2�(φn)

, so that according
to (5.8), we have for all n≥ 1

XN(φn)= Fn(λ).
Then, by Proposition 2.1 and using the bounds of Lemmas 5.5 and 5.6, we obtain
for any η > 4(κ+1)

2κ−1 ,

W2
((
XN(φn)

)d
n=1, γd

) ≤A+B� d4ηN−1+2ε.

Here, we used that the main error term is given by A when the parameter d is large.
Optimizing over the parameter η thus completes the proof. �
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6. The CLT for general test functions. In this section, we fix a test function
f ∈ C κ+4

c (R) with κ ≥ 5. Without loss of generality, we may also assume that
f̂0 = ∫

f (x)�(dx) = 0 (otherwise we might consider the function f̃ = f − f̂0

instead and note that by formulae (1.10) and (1.13), we have both m(f̃ )= m(f )
and XN(f̃ )=XN(f )) and we define for any d ≥ 1

(6.1) gd(x)=
d∑
n=1

f̂nφn(x),

where f̂n = 〈f,φn〉μV . Note that if κ ≥ 5, by Theorem 1.5, the sum (6.1) converges
as d→∞ and this defines a function g∞ ∈ C 1

c (R) which satisfies g∞(x)= f (x)
for all x ∈ J. The proof of Theorem 1.2 is divided into two steps. First, we make
use of the multidimensional CLT—Proposition 1.6— to prove a CLT for the func-
tion gd in the regime as d = d(N)→ ∞. Then we establish that along a suitable
sequence d(N) the random variable XN(f ) given by (1.13), is well approximated
with respect the Kantorovich distance by

(6.2) XdN =
√

β

2�(f )

(∫
R

gd(x)νN(dx)−
(

1

2
− 1

β

)
m(f )

)
.

6.1. Consequence of the multidimensional CLT. In this section, we shall use
Proposition 1.6 to establish that, if N is sufficiently large (compared to the param-
eter d), then the law of the random variable XdN is close to the Gaussian measure
γ1. In particular, in order to control the error term with respect to the Kantorovich
metric, we need to express the correction term to the mean m(f ) and the asymp-
totic variance �(f ) of a linear statistics in terms of the Fourier coefficients of the
test function f . This is the goal of the next lemma.

LEMMA 6.1. If f ∈ C κ+4(J̄) and κ ≥ 5, using the notation of Proposition 4.9,
we have

(6.3) �(f )=
∞∑
n=1

f̂ 2
n

2σn

and

(6.4) m(f )=
∞∑
n=1

f̂nm(φn).

PROOF. On the one hand, by (4.15) and (4.58), we have

�(f )= 1

4

∫
J
f ′(x)Ux(f )μsc(dx)= 1

4

〈
f,RS(f )

〉
μV
.
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On the other hand, by linearity and (4.61), we have

RS(f )= ∑
n∈N

f̂nRS(φn)= 2
∑
n∈N

f̂n

σn
φn,

where the sum converges uniformly. Since (φn)n≥1 is an orthonormal basis of
HμV , this yields (6.3). Formula (6.4) follows by linearity of the operator m, (1.10).
Moreover, note that by (5.5),

m(φn)= 1

σn

∫
J
φ′′
n(x)μV (dx)=− 2

πσn

∫
J
φ′
n(x)

d

dx

(
S(x)

√
1 − x2

)
dx,

so that for any η > 4(κ+1)
2κ−1 ,

(6.5)
∣∣m(φn)∣∣ � σ−1

n

∥∥φ′
n

∥∥∞,J � ση−1
n .

Using the estimate of Theorem 1.5, this proves that the series (6.4) converges ab-
solutely as long as η < 3 and κ ≥ 5. �

LEMMA 6.2. Let XdN be as in (6.2) and assume that d
κ+1

2 ≤N . Then, for any
ε > 0,

W2
2
(
XdN,γ1

) � (
d8η∗N−2 + d2η∗−κ−3)

Nε,

where η∗ := 4(κ+1)
2κ−1 .

PROOF. Using the notation (5.8) and by linearity of m, we may rewrite

XdN = 1√
2�(f )

(
d∑
n=1

f̂nFn√
σn

+
(√

β

2
− 1√

β

)
m(gd − f )

)
.

Let Z ∼ γd . It follows from the previous formula and the triangle inequality that

W2
2
(
XdN,γ1

) ≤ 2

�(f )

{
W2

2

(
d∑
n=1

f̂nFn√
2σn

,

d∑
n=1

f̂nZn√
2σn

)

+ W2
2

(
d∑
n=1

f̂nZn√
2σn

+
(√

β

2
− 1√

β

)
m(gd − f ),

√
�(f )γ1

)}
.

(6.6)

Our task is to prove that both term on the RHS of (6.6) converge to 0 as N →∞.
The second term corresponds to the distance between two Gaussian measures on
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R and equals

W2
2

(
d∑
n=1

f̂nZn√
2σn

+
(√

β

2
− 1√

β

)
m(gd − f ),

√
�(f )γ1

)

=
(√

β

2
− 1√

β

)2
m(gd − f )2 +

(√√√√ d∑
n=1

f̂ 2
n

2σn
−

√
�(f )

)2

.

By Lemma 6.1, this implies that

W2
2

(
d∑
n=1

f̂nZn√
2σn

+
(√

β

2
− 1√

β

)
m(gd − f ),

√
�(f )γ1

)

�
(∑
n>d

f̂nm(φn)
)2

+ ∑
n>d

f̂ 2
n

2σn
.

Using the estimate (6.5), we see that both sums converge if κ ≥ 5 and we obtain,
for any ε > 0,

W2
2

(
d∑
n=1

f̂nZn√
2σn

+
(√

β

2
− 1√

β

)
m(gd − f ),

√
�(f )γ1

)

� d2η−κ−3

� d2η∗−κ−3Nε.

(6.7)

On the other hand, by definition of the Kantorovich distance and the Cauchy–
Schwarz inequality, the first term on the RHS of in (6.6) satisfies the bound

W2
2

(
d∑
n=1

f̂nFn√
2σn

,

d∑
n=1

f̂nZn√
2σn

)
≤

(
d∑
n=1

f̂ 2
n

2σn

)
W2

2
(
(Fn)

d
n=1, γd

)
.

By definition, Fn =XN(φn), so that by Proposition 1.6, we obtain

(6.8) W2
2

(
d∑
n=1

f̂nFn√
2σn

,

d∑
n=1

f̂nZn√
2σn

)
� �(f )d8η∗N−2+2ε.

Combining the estimates (6.6), (6.7) and (6.8) completes the proof of the lemma.
�

6.2. Truncation. The goal of this section is to prove that the linear statistic
XN(f ) is asymptotically close to the random variable XdN with respect to the Kan-
torovich distance, as d → ∞ and N → ∞ simultaneously in a suitable way. At
first, we compare the laws of the linear statistics XN(f ) and X∞

N by using rigidity
of the random configurations under the Gibbs measure P

N
V,β . Then we compare

the laws of XdN and X∞
N by using the decay of the Fourier coefficients of the test

function f ; cf. Theorem 1.5.
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LEMMA 6.3. According to the notation (1.13) and (6.2), we have, for any
ε > 0,

W2
2
(
X∞
N ,XN(f )

) �f N
− 4

3+ε.

PROOF. By definition,

XN(f )−X∞
N =

√
β

2�(f )

∫
R

(f − g∞) dνN
so that

W2
2
(
X∞
N ,XN(f )

) ≤ β

2�(f )
E

(∫
R

(f − g∞) dνN
)2
.

Since both f,g∞ ∈ C 1(R), up to an exponentially small error term that we shall
neglect, we see that for any ε > 0,

(6.9) W2
2
(
X∞
N ,XN(f )

) � E

(
1Bε

∫
R

(f − g∞) dνN
)2
.

We claim that it follows from the square-root vanishing of the equilibrium measure
at the edges that for all j ∈ {1, . . . ,N},

(6.10) ρj − ρ0 �
(
j

N

) 2
3

and ρN − ρN−j �
(
j

N

) 2
3
.

This shows that for any λ ∈ Bε , λj ∈ J for all ĵ ≥ N3ε . Since g∞(x) = f (x) for
all x ∈ J, this implies that for any λ ∈ Bε ,∣∣∣∣∫

R

(f − g∞) dνN
∣∣∣∣ ≤ ∑

ĵ≤N3ε

∫ ρj

ρj−1

∣∣(f − g∞)(λj )− (f − g∞)(x)
∣∣μV (dx).

Like in the proof of Lemma 5.3 (see in particular the estimate (5.6)), we obtain∣∣∣∣∫
R

(f − g∞) dνN
∣∣∣∣ � ∥∥f ′ − g′∞

∥∥
L∞(R)

∑
ĵ≤N3ε

{
ĵ−

1
3N− 2

3+ε + (ρj − ρj−1)
}

�f N
− 2

3+4ε + (ρ�N3ε − ρ0)+ (ρN − ρN−"N3ε#).

By (6.10), this error term is of order N− 2
3+5ε and by (6.9), we conclude that

W2
2
(
X∞
N ,XN(f )

) �f N
− 4

3+10ε.

Since the parameter ε > 0 is arbitrary, this completes the proof. �

LEMMA 6.4. If d
κ+1

2 ≤N , then we have, for any ε > 0,

W2
2
(
XdN,X

∞
N

) � d2η∗−κ−1Nε,

where as above η∗ := 4(κ+1)
2κ−1 .
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PROOF. By Theorem 1.5, since
∑
n≥1 |f̂n|<∞ and ‖φn‖∞,R � 1 where the

implied constant is independent of n≥ 1 we have

X∞
N −XdN =

√
β

2�(f )

∑
n>d

f̂n

∫
R

φn(x)νN(dx)

so that

(6.11) W2
2
(
XdN ;X∞

N

) ≤ β

2�(f )
E

(∑
n>d

f̂n

∫
φn(x)νN(dx)

)2
.

Note that by Lemma 5.3 and the estimate (1.15), conditionally on the event Bε , we
have for all n≥ 1 ∣∣∣∣∫ φn(x)νN(dx)∣∣∣∣ �Nεσηn .

This bound turns out to be useful when n� N
1
η , otherwise it is better to use the

trivial bound ∣∣∣∣∫ φn(x)νN(dx)∣∣∣∣ �N.

From these two estimates, we deduce that

E

(∑
n>d

f̂n

∫
φn dνN

)2
�

(
Nε

N
1
η∑

n=d+1

f̂nσ
η
n +N ∑

n>N
1
η

f̂n

)2

,

up to an error term coming from the complement of the event Bε which is expo-

nential in N and that we have neglected. Now, using the fact that |f̂n| � σ
− κ+3

2
n

and σn � n, we obtain

E

(∑
n>d

f̂n

∫
φn dνN

)2
�N2εd2η−κ−1 +N2− κ+1

η .

Note that if d→∞ asN →∞ and η < κ+1
2 , both error terms converge to zero and

the first term is the largest in the regime dη ≤N . Then the claim follows directly
from the estimate (6.11) and the fact that ε > 0 and η∗ = 4(κ+1)

2κ−1 < η < κ+1
2 are

arbitrary (the previous inequalities are possible only if κ ≥ 5). �

6.3. Proof of Theorem 1.2. By the triangle inequality we have, for any d ∈N,

W2
(
XN(f ), γ1

) ≤ W2
(
XN(f ),X∞

N

) + W2
(
XdN(f ),X

∞
N

) + W2
(
XdN(f ), γ1

)
.

Note that by choosing

d = ⌊
N

2
6η∗+κ+1

⌋
,
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the error terms in Lemmas 6.2 and 6.4 match and are of order N−2θ̃+ε for any
ε > 0 where

θ̃ (κ)= κ + 1 − 2η∗
6η∗ + κ + 1

and η∗ = 4(κ+1)
2κ−1 . In particular, we easily check that for any κ ≥ 5, θ̃ (κ)= 2κ−9

2κ+11 >

0. Compared with the error term in Lemma 6.3, coming from the fluctuations of
the particles near the edge of the spectrum, we conclude that

W2
(
XN(f ), γ1

) �N−min{θ̃ , 2
3 }+ε,

which completes the proof. Finally, observe that if supp(f )⊂ J, then g∞ = f so
that W2(XN(f ),X∞

N )= 0 for all N ≥ 1. This means that in this case, the rate of
convergence is given by

W2
(
XN(f ), γ1

) �N−θ̃+ε.
Since limκ→∞ θ̃ (κ) = 1, when f is smooth, this establishes the second claim of
Remark 1.3. The proof of Theorem 1.2 is therefore complete. �

APPENDIX: PROPERTIES OF THE HILBERT TRANSFORM, CHEBYSHEV
POLYNOMIALS AND THE EQUILIBRIUM MEASURE

In this appendix, we recall some basic properties of the standard Hilbert trans-
form on R as well as some basic facts about expanding functions on J in terms of
Chebyshev polynomials. We also discuss some properties related to the equilib-
rium measure μV . We normalize the Hilbert transform of a function f ∈ Lp(R)
for some p > 1 in the following way:

(A.1) (Hxf )= pv
∫
R

f (y)

x − y dy,
where pv means that we consider the integral as a Cauchy principal value integral.
A basic fact about the Hilbert transform is that it is a bounded operator on Lp(R):
for finite p > 1, there exists a finite constant Cp > 0 such that for any f ∈ Lp(R),
Hf ∈ Lp(R) and

(A.2) ‖Hf ‖Lp(R) ≤ Cp‖f ‖Lp(R).
See, for example, [14], Theorem 4.1.7, or [34], Theorem 101, for a proof of this
fact. With some abuse of notation, if μ is a measure whose Radon–Nikodym
derivative with respect to the Lebesgue measure is in Lp(R) for some p > 1, we
write H(μ) for the Hilbert transform of dμ

dx
.

Another basic property of the Hilbert transform that we will make use of is its
antiself-adjointness: if f ∈ Lp(R) and g ∈ Lq(R), where 1

p
+ 1
q
= 1, then

(A.3)
∫
R

f (x)(Hxg) dx =−
∫
R

(Hxf )g(x) dx.

For a proof see, for example, [34], Theorem 102.



CLT FOR β-ENSEMBLES 2679

One of the main objects we study in Section 4 is the (weighted) finite Hilbert
transform

Uxφ =−Hx(φ�).

Since one can check that Hx� = (x2 − 1)− 1
2 1{|x|> 1}, one can actually write for

x ∈ J,

(A.4) Ux(f )=
∫

J

f (t)− f (x)
t − x �(dt).

We will need to consider derivatives of Uxf and other similar functions, and for
this, we record the following simple result.

LEMMA A.1. Let I ⊆R be a closed interval, μ be a probability measure with
compact support, suppμ⊆ I, and φ ∈ C k,α(I) for some 0< α ≤ 1. Then for almost
every x ∈R,

(A.5)
(
d

dx

)k ∫
I
F0(x, t)μ(dt)= k!

∫
I
Fk(x, t)μ(dt),

where Fk(x, t)= φ(t)−�k[φ](x,t)
(t−x)k+1 ; see (4.17). In addition, if α = 1, (A.5) holds for

all x ∈ I and the RHS is continuous.

PROOF. There is nothing to prove when k = 0 and since μ has compact sup-
port the integral exists. By induction, it suffices to show that for almost every x ∈ I,

(A.6)
d

dx

∫
I
Fk−1(x, t)μ(dt)= k

∫
I
Fk(x, t)μ(dt).

Plainly, the function x �→ Fk−1(x, t) is differentiable for any t ∈ I and it is easy
to check that its derivative F ′

k−1(x, t)= kFk(x, t). Note that for any u, v ∈ I with
u < v, the function (t, x) �→ |x − t |α−1 is integrable on R× [u, v] with respect to
μ× dx, so that by (4.23) and Fubini’s theorem,∫ v

u
dx

∫
I
Fk(x, t)μ(dt)= 1

k

∫
I
μ(dt)

∫ v

u
F ′
k−1(x, t) dx

= 1

k

(∫
I
Fk−1(v, t)μ(dt)−

∫
I
Fk−1(u, t)μ(dt)

)
.

By the Lebesgue differentiation theorem, we conclude that (A.6) holds. Finally,
note that when α = 1, supx,t∈I |Fk(x, t)| � 1, so that the function on the RHS of
(A.6) is continuous on R. �

While it might be possible to prove many of the properties of U and RS (see
Section 4.4 for the definition) through properties of H directly, we found it more
convenient to expand elements of HμV in terms of Chebyshev polynomials. We
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recall now the definitions of these. For any k ∈ N, the kth Chebyshev polynomial
of the first kind, Tk(x), and the kth Chebyshev polynomial of the second kind,
Uk(x), are the unique polynomials for which
(A.7)

Tk(cos θ)= cos(kθ) and Uk(cos θ)= sin((k + 1)θ)

sin θ
for θ ∈ [0,2π ].

Note that in particular that T ′
0 = 0 and for k ≥ 1,

(A.8) T ′
k(x)= kUk−1(x).

These satisfy the basic orthogonality relations (easily checked using orthogonality
of Fourier modes):

(A.9)

∫
J
Tk(x)Tl(x)�(dx)=

⎧⎨⎩δk,l, k = 0,
1

2
δk,l, k 
= 0,

and

∫
J
Uk(x)Ul(x)μsc(dx)= δk,l,

where we used the notation of (1.4). We consider now expanding functions in
Lp(J, �) for p > 1 in terms of series of Chebyshev polynomials of the first kind.
We define for f ∈ Lp(J, �),

(A.10) fk =
⎧⎪⎨⎪⎩

∫
J
f (x)�(dx), k = 0,

2
∫

J
f (x)Tk(x)�(dx), k > 0.

The following result is a direct consequence of the standard Lp-theory of Fourier
series; see, for example, [14], Section 3.5, for the basic results about Lp conver-
gence of Fourier series.

LEMMA A.2. Let f ∈ Lp(J, �) for some p > 0. Then as N →∞,
∑N
k=0 fk ×

Tk → f , where the convergence is in Lp(J, �).

We will also need to know how Tk and Uk behave under suitable Hilbert trans-
forms.

LEMMA A.3. For k ≥ 1 and x ∈ J = (−1,1), UxTk = Uk−1(x) and
Hx[Uk−1μsc] = 2Tk .

For a proof see, for example, the discussion around [35], Section 4.3: equation
(22). We also recall a closely related result, namely Tricomi’s formula for inverting
the finite Hilbert transform (i.e., the Hilbert transform of functions on J). As it is in
a slightly different form than the standard one (see [35], Section 4.3), we provide
a proof.
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LEMMA A.4 (Tricomi’s formula). For any φ ∈ H , we have φ = 1
2H(U(φ)×

μsc).

PROOF. Recall that the Hilbert transform of the semicircle law is given by

(A.11) Hx(μsc)= 2
(
x − 1|x|>1

√
x2 − 1

)
.

For any function f ∈Lp(R) and g ∈ Lq(R) with 1
p
+ 1
q
< 1, the Hilbert transform

satisfies the following convolution property:

H
(
fH(g)+H(f )g

) =H(f )H(g)− π2fg;
see [35], formula (14) in Section 4.2. We can apply this formula with f = dμsc

dx

and g = φ d�
dx

when φ ∈ H . Indeed, since φ ∈ C (J̄) (cf., the estimate (4.7)), the
functions f ∈ Lp(R) for any p > 1 and g ∈ Lq(R) for any 1< q < 2. Moreover,
note that both f and g have support on J̄ and that π2fg = 2φ. Now, since H(g)=
−U(φ), by formula (A.11), this implies that for almost every x ∈ J,

(A.12) −Hx
(
f (t)Ut (φ)− 2tg(t)

) = 2xHx(g)− 2φ(x).

Since g = φ d�
dx

where φ ∈ H , we obtain

Hx
(
tg(t)

) = pv
∫

J

tg(t)

x − t dt =−
∫

J
φ(t)�(dt)+ xHx(g)

and the first term of the RHS vanishes by definition of the Sobolev space H . We
conclude that Hx(tg(t))= xHx(g) and deduce from (A.12) that for all x ∈ J,

φ(x)= 1

2
Hx

(
U(φ)μsc

) = pv
∫

J

Ut (φ)
x − t

√
1 − t2
π

dt. �

We will also make use of the following result, whose proof is likely to exist
somewhere in the literature, but we give one for completeness.

LEMMA A.5. For any function f ∈ C 2(J̄) for which
∫

J f (x)�(dx) = 0, we
have

(A.13)
∫

J
xUx(f )�(dx)= f (1)+ f (−1)

2
.

PROOF. We begin by showing that (A.13) holds when f is a Chebyshev poly-
nomial of the first kind. By Lemma A.3, it suffices to show that for any k ≥ 1,

(A.14)
∫

J
xUk−1(x)�(dx)= Tk(1)+ Tk(−1)

2
.

Using the identity, xUk−1(x)=Uk(x)− Tk(x) and (A.9), we obtain for any k ≥ 1,∫
J
xUk−1(x)�(dx)=

∫
J
Uk(x)�(dx).
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Another standard fact about the Chebyshev polynomials of the second kind is that

U2k(x)= 2
k∑
j=0

T2j (x)− 1 and U2k+1(x)= 2
k∑
j=0

T2j+1(x),

which combined with (A.9) implies that
∫

JUk(x)�(dx) = 1
2(1 + (−1)k) =

1
2(Tk(1) + Tk(−1)), concluding the proof of (A.14). The claim in case f is a
Chebyshev polynomial of the first kind.

Now we shall prove that formula (A.13) holds for arbitrary functions f ∈ C 2(J̄)
by approximating U(f ) by UN(f )= ∑N

k=1 fkUk−1. By definition,

fk = 2

π

∫ π

0
f (cos θ) cos(kθ) dθ =− 2

πk2

∫ π

0
f (cos θ)

d2 cos(kθ)

dθ2 dθ

and, an integration by parts shows that |fk| � k−2 where the implied constant
depends only on the function f ∈ C 2(J̄). In particular, this estimate shows that the
series f = ∑

k≥1 fkTk converges uniformly on J̄. Thus, we obtain

lim
N→∞

∫
J
xUNx (f )�(dx)= lim

N→∞

N∑
k=1

fk
Tk(1)+ Tk(−1)

2

= f (1)+ f (−1)

2
.

(A.15)

On the other hand, using the results of Section 4.1 and Section 4.4, we immedi-
ately see that formula (A.13) follows from (A.15) and the dominated convergence
theorem. The lemma is established. �

We conclude this appendix with an estimate concerning the equilibrium mea-
sure (or its Hilbert transform) that we need in Section 5.1. Recall that we denote
by S the density of the equilibrium measure μV with respect to the semicircle law
μsc. Here, we assume that S exists and S(x) > 0 for all x ∈ J̄. Then it is proved, for
example ([29], Theorem 11.2.4) that, if V is sufficiently smooth, then S = 1

2U(V ′),
so that we may extend S to a continuous function which is given by

S(x)= 1

2

∫
J

V ′(t)− V ′(x)
t − x �(dt).

Moreover, if the potential V ∈ C κ+3(R), we obtain by Lemma A.1 that S ∈
C κ+1(R). Observe that by Tricomi’s formula, for all x ∈ J,

Hx(Sμsc)= V ′(x).

This establishes the first of the variational conditions (4.3) and the next proposition
shows that the second condition holds as well.
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PROPOSITION A.6. The function H(μV ) ∈ C κ(R) and

(A.16) Hx(μV )= V ′(x)− 2S(x)Re
(√
x2 − 1

) + o
x→1

(x − 1)κ .

PROOF. We have just seen that H(μV )= V ′ on J so that (A.16) holds (without
the error term) for all x ∈ J. Define for all x ∈R,

#(x)=
∫

J

S(t)− S(x)
t − x dμsc(t)− 2xS(x).

Since dμV = S dμsc, by (A.11), we obtain for all x ∈R,

Hx(μV )=−#(x)− 2 Re
(√
x2 − 1

)
S(x).

Since the density S ∈ C κ+1(R), by Lemma A.1 the function # ∈ C κ(R) and #=
−V ′ on J. By continuity, this implies that

#(x)=−V ′(x)+ o
x→1

(x − 1)κ .

This completes the proof of (A.16). �
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