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Mathématiques de Jussieu (CNRS UMR 7586), Équipe d’Analyse
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This paper builds upon several recent works, where semigroup proofs of Brascamp–Lieb

inequalities are provided in various settings (Euclidean space, spheres, and symmetric

groups). Our aim is two-fold. Firstly, we provide a general, unifying, framework based

on Markov generators, in order to cover a variety of examples of interest going beyond

previous investigations. Secondly, we put forward the combinatorial reasons for which

unexpected exponents occur in these inequalities. Related superadditivity of informa-

tion and entropy inequalities are also studied.

1 Introduction

A celebrated inequality of Brascamp and Lieb [8, 20] asserts that given linear surjective

maps between Euclidean spaces Bi : H → Hi, i = 1, . . . ,m, and given positive coefficients
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2178 F. Barthe et al.

(ci)
m
i=1, the best constant C such that for all non-negative measurable functions fi : Hi →

R it holds

∫
H

m∏
i=1

fi(Bix)
ci dx ≤ C

m∏
i=1

(∫
Hi

fi(y)dy
)ci

can be computed by requiring the inequality on centered Gaussian functions only (i.e.,

of the form fi = e−Qi where Qi is a positive definite quadratic form). The result was

first established in [8] for one-dimensional spaces Hi, later extended in [20] to the multi-

dimensional case. This far-reaching extension of Hölder’s inequality found applications

in harmonic analysis but also in convex geometry. Indeed, a particular case called the

geometric Brascamp–Lieb inequality, put forward by Ball [2] when dim(Hi) = 1, leads to

many precise volume estimates. The general geometric version corresponds to the case

when for all i = 1, . . . ,m, Bi B∗
i = IdHi and

∑
i ci B∗

i Bi = IdH , where B∗
i is the adjoint of Bi.

Under these hypotheses, the optimal constant in the Brascamp–Lieb inequality is C = 1.

More concretely: let E1, . . . , Em be vector subspaces of Rn with its canonical Euclidean

structure. Denoting by PEi the orthogonal projection on to Ei, if
∑

i ci PEi = IdRn then for

all measurable functions fi : Ri → R+ it holds

∫
Rn

m∏
i=1

fi(PEi x)
ci dx ≤

m∏
i=1

(∫
Ei

fi

)ci

.

There exist by now many different proofs of the Brascamp–Lieb theorem:

symmetrization when dim(Hi) = 1 [8], study of Gaussian kernels [20], and optimal trans-

port [3]. Heat flow derivation was presented in the recent works [11] for dim(Hi) = 1 and

[7] in general: the geometric Brascamp–Lieb inequality is established by interpolating

between the left- and right-hand sides of the inequality, thanks to the Heat semigroup.

As developed in these works (see Remark 3), and central to the approach, the case when

optimal Gaussian functions exist follows from the geometric case by a clever change

of variables and turns out to be generic (the non-trivial remaining cases are in a sense

“boundary” cases and can be decomposed into simpler ones). So the geometric case is

also essential from a theoretical viewpoint. The Heat flow proofs required a more pre-

cise study of the structure of the problem, since the finiteness of the constant and the

existence of Gaussian maximizers have to be treated beforehand. They lead to a com-

plete treatment of the equality cases [7, 11, 22]. They were also flexible enough to adapt
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Correlation and Brascamp–Lieb Inequalities 2179

to other ambient spaces, as observed by Carlen, Lieb, and Loss [11] who discovered

the following Young type inequality on the Euclidean sphere Sn−1: for all measurable

functions fi : [−1,1] → R+, it holds

∫
Sn−1

n∏
i=1

fi(xi)dσ(x) ≤
m∏

i=1

(∫
Sn−1

fi(xi)
2dσ(x)

) 1
2

, (1)

where σ is the uniform probability measure on Sn−1. This inequality can be understood

as a correlation inequality: the coordinates of a uniform random vector on the sphere

are not independent, so there is no Fubini equality. Instead, inequality (1) holds and is

a lot better than Hölder’s inequality, which would involve Ln norms of the functions.

In a sense, the exponent 2, which turns out to be optimal, shows that the coordinate

functions are not too far from being independent. The above inequality was extended

to a spherical version of the geometric Brascamp–Lieb inequality in [5]. Carlen, Lieb,

and Loss also proved a similar inequality for the set of permutations of a finite set and

coordinate functions [12].

In this paper, we provide a general framework based on Markov generators that

allows us to unify the existing results, derive extensions, and clarify the conditions that

are required to prove correlation inequalities. Decompositions of the identity as (10) play

an important role. In the case of functions depending on blocks of coordinates, we put

forward a general set of conditions, which is similar to the hypotheses of Finner’s the-

orem for product probability spaces [17], but applies to particular non-product spaces.

See, for example, Propositions 11, 21, and Section 4.2.4.

The structure of the exposition is as follows. The abstract framework is

described in Section 2 where a general condition is stated. The next sections provide

concrete illustrations of Proposition 2. Section 3 deals with the case where our Markov

generator is a diffusion, as it is the case in some classical geometric and probabilistic

situations. In particular, we shall put forward the algebraic content of our condition in

the case of Riemannian Lie groups (with emphasis on the orthogonal group SO(n)) and

their quotients. We study discrete models and their combinatorics in Section 4, and the

case where the generator is a sum of squares in Section 5. The final section is devoted to

related entropy inequalities for the marginals of a probability distribution. Since these

inequalities are dual (and equivalent) to the Brascamp–Lieb (BL) inequalities, it gives a

different way of obtaining the above-mentioned inequalities. The entropic inequalities

are consequences of superadditive inequalities for the associated Fisher information
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2180 F. Barthe et al.

that are directly derived from the general condition for the Markov generator, in both

continuous and discrete situations.

2 The Abstract Argument: Commuting Maps and BL-condition

The basic input is a measurable space E and a Markov semigroup (Pt)t≥0 acting on

functions on E , with generator L. We do not discuss here the various questions related

to the underlying domain of L and its associated carré du champ operator (see below)

as well as the classes of functions under consideration. When a given inequality on

functions is stated, it is always understood relatively to the suitable domains of (Pt)t≥0,

L or �. These are clear in all the continuous or discrete illustrations in this work. We

refer to [1] for an introduction and further details in this respect and to [15] for the

discrete setting.

The general framework of our study is the following. We introduce m≥ 1 measur-

able spaces Ei and maps Ti : E → Ei, i = 1, . . . ,m. We assume that, for each i = 1, . . . ,m,

the map Ti commutes with Pt or L in the sense that for every g : Ei → R, L(g ◦ Ti) factors

through Ti:

L(g ◦ Ti) = g̃ ◦ Ti (2)

for some g̃ : Ei → R. In other words, L (or Pt) leaves invariant the algebra of functions

on E of the form g ◦ Ti. This means that Pt or L may be projected on Ei and there exists

a Markov generator Li on Ei such that

L(g ◦ Ti) = (Lig) ◦ Ti.

We denote below by (P i
t )t≥0 the semigroup with generator Li. It follows that Pt(g ◦ Ti) =

(P i
t g) ◦ Ti.

We aim at understanding how the “geometry” or the “combinatorics” of the Ti’s

and the choice of constants ci > 0 ensure that

Pt

(
m∏

i=1

fci
i ◦ Ti

)
≤

m∏
i=1

(
Pt( fi ◦ Ti)

)ci

for all fi : Ei → R+, i = 1, . . . ,m. Since (Pt(F 1/c))c ≤ (Pt(F 1/d))d for c ≥ d> 0, we would

like to pick the largest possible constants ci’s. Also, for obvious reasons (pick all the fi
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but one to be identically 1), the ci’s will belong to (0,1] and the inequalities we consider

can be rewritten in terms of L pi norms for pi = 1/ci.

This problem is of course reminiscent of the Brascamp–Lieb convolution in-

equalities described in the introduction, and it can as well be interpreted as a corre-

lation problem. This correlation problem has many ramifications, as we shall see.

We will, in this general framework, be dealing with inequalities that are valid

for the measures Pt(.)(x), uniformly on the point x.

Definition 1 (The BL-condition). Let (Pt)t≥0 be a Markov semigroup on E with gen-

erator L. Let ci be non-negative reals and Ti : E → Ei maps commuting with L, for

i = 1, . . . ,m. We say that {ci, Ti} satisfy the BL-condition if: for all functions Fi : E → R,

i = 1, . . . ,m, of the form Fi = gi ◦ Ti, setting H =∑m
i=1 ci Fi, it holds

e−H L(eH ) ≤
m∑

i=1

ci e−Fi L(eFi ). (3)
�

This definition is motivated by following the main equivalence that is implicit in

[11] and [4].

Proposition 2. With the notation of the previous definition, the following statements

are equivalent:

• For all non-negative functions fi : Ei → R, i = 1, . . . ,m, and every t ≥ 0,

Pt

( m∏
i=1

fci
i ◦ Ti

)
≤

m∏
i=1

(
Pt( fi ◦ Ti)

)ci . (4)

• The {ci, Ti} satisfy the BL-condition. �

Proof. Let fi : Ei → R, i = 1, . . . ,m, be bounded positive functions. Let t ≥ 0 and

consider

α(s) = Ps

(
exp

( m∑
i=1

ci log Pt−s( fi ◦ Ti)

))
, 0 ≤ s ≤ t.
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2182 F. Barthe et al.

Set Fi = log Pt−s( fi ◦ Ti), i = 1, . . . ,m, and H =∑m
i=1 ci Fi. Direct calculations give

α′(s) = Ps

(
L(eH )− eH

m∑
i=1

ci e−Fi L(eFi )

)
.

Next, by the commutation property (2), Fi = log Pt−s( fi ◦ Ti) is a function of Ti so that,

under (3), α′(s) ≤ 0 and thus α(0) ≥ α(t). Hence, (4) follows from (3). The converse impli-

cation is obtained by differentiating (4) at t = 0. �

Remark 3. Given maps Ti : E → Ei, i = 1, . . . ,m, one may not always be able to check

the BL-condition (3). It might be necessary to consider further bijective maps R : E → E ,

Ri : Ei → Ei and to deal with T̃i = Ri ◦ Ti ◦ R : E → Ei, i = 1, . . . ,m, (still assumed to

commute with Pt) instead of Ti. This is exemplified by the paper [7] where the Gaussian-

extremizable cases of the Euclidean Brascamp–Lieb inequality are reduced to the

geometric Brascamp–Lieb inequality. Actually, this change of variables is also implicit

in [11] where the functions fi are evolving according to different semigroups. When,

among centered Gaussian functions of integral one, the functional
∫ ∏

( fi ◦ Bi)
ci admits

a maximizer, differentiating around this maximum yields an equality between linear

symmetric maps, which can be used to change variables and reduce to the geometric

situation. �

It is usually of more interest to state Brascamp–Lieb type inequalities with

respect to the invariant measure μ of the semigroup (Pt)t≥0. When (Pt)t≥0 is ergodic

with invariant probability measure μ, we may let t →∞ in the local inequality (4) and

get inequalities of the type

∫ m∏
i=1

fci
i ◦ Ti dμ ≤

m∏
i=1

(∫
fi ◦ Ti dμ

)ci

. (5)

Actually, this can be viewed directly by studying β(t) = ∫ ∏
i Pt( fi ◦ Ti)

ci dμ. Indeed with

the notation in the above proof

β ′(t) =
∫

eH

(
m∑

i=1

ci e−Fi L(eFi )

)
dμ = −

∫ (
L(eH )− eH

m∑
i=1

ci e−Fi L(eFi )

)
dμ.
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Hence integrating from 0 to ∞, the BL-condition (3) yields (5). Note that the condition

β ′(t) ≥ 0 may be rewritten in terms of the Dirichlet form E( f, g) := ∫
f(−Lg)dμ as

m∑
i=1

ci E
(
eH−Fi , eFi

) ≤ 0.

Remark 4. If (Pt)t≥0 has an infinite invariant measure μ, more hypotheses are needed to

get a meaningful limit to the local bounds as t →∞. Assume that (Pt)t≥0 is of dimension

n, and size κ > 0, in the sense that for every μ-integrable function f : E → R, at any

point,

lim
t→∞ tn/2 Pt f = κ

∫
fdμ.

If the semigroups (P i
t )t≥0 have invariant measures μi, dimensions ni, and sizes κi, i =

1, . . . ,m, and if in addition
∑m

i=1 cini = n, we may use Pt( fi ◦ Ti) = P i
t ( fi) ◦ Ti and let t →

∞ in (4) to get

∫ m∏
i=1

fci
i ◦ Ti dμ ≤ κ−1

m∏
i=1

(
κi

∫
fi dμi

)ci

.

�

3 Examples of Diffusion Semigroups

This section is devoted to several examples of illustration of the preceding abstract

scheme in case the generator L satisfies a chain rule formula. Recall that the carré du

champ of the generator L is defined on some suitable algebra of functions by

�( f, g) = 1

2
(L( fg)− f Lg− gL f). (6)

For simplicity, one writes �( f) for �( f, f). If L is a diffusion generator (i.e., a linear

differential operator of order 2 without constant term), then the chain rule yields L(e f ) =
e f
(
L f + �( f)

)
. So for H =∑m

i=1 ci Fi,

e−H L(eH )−
m∑

i=1

ci e−Fi L(eFi ) = �(H)−
m∑

i=1

ci�(Fi).
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Hence, we have:

Fact 5 (BL-condition in the diffusion case). If L is a diffusion operator, then the BL-

condition (3) is equivalent to saying that for every function fi : Ei → R, i = 1, . . . ,m,

�

( m∑
i=1

ci fi ◦ Ti

)
=

m∑
i, j=1

cicj �( fi ◦ Ti, fj ◦ Tj) ≤
m∑

i=1

ci �( fi ◦ Ti). (7)
�

Depending on the structure, this condition may be expressed more intrinsically

in terms of the operators Ti. We investigate several instances below.

3.1 Riemannian manifolds

Let us assume that E is a Riemannian manifold and that �( f) = |∇ f |2. This is in

particular the case if Pt is the Heat equation on E associated to the Riemannian Lapla-

cian �. We also assume that the maps Ti are differentiable. Then Condition (7) amounts

to the fact that for every x ∈ E , and for all smooth functions fi,

∣∣∣ m∑
i=1

ci∇( fi ◦ Ti)(x)
∣∣∣2 ≤ m∑

i=1

ci
∣∣∇( fi ◦ Ti)(x)

∣∣2. (8)

For each x ∈ E , we introduce the subspace of TxE , the tangent space at x,

Ei(x) :=
{∇( fi ◦ Ti)(x); fi : Ei → R

} ⊂ TxE . (9)

This is the orthogonal complement of the kernel of DTi(x), so it is orthogonal to the tan-

gent directions of the level set {y ∈ E; Ti(y) = Ti(x)}. We denote by PEi(x) the orthogonal

projection on Ei(x) in the Euclidean space TxE . We can reformulate (8) using the follow-

ing well-known equivalence, which relies on the fact that a linear map and its adjoint

have the same norm: for E a Euclidean space, Ei, i = 1, . . . ,m, Euclidean subspaces of E
and c1, . . . , cm> 0 we have:

∀vi ∈ Ei,

∣∣∣ m∑
i=1

ci vi

∣∣∣2 ≤ m∑
i=1

ci |vi|2 ⇐⇒ ∀v ∈ E,
m∑

i=1

ci
∣∣PEiv

∣∣2 ≤ |v|2

writing PEi for the orthogonal projection on to Ei. More concisely, denoting the identity

map by IdE , the latter condition rewrites as an inequality between symmetric maps:∑m
i=1 ci PEi ≤ IdE .
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Correlation and Brascamp–Lieb Inequalities 2185

Therefore, we see that BL-condition amounts here to a “moving decomposition

of the identity” inequality in all tangent spaces.

Fact 6 (BL-condition in the Riemannian case). In the setting described above, the BL-

condition (3) is equivalent to saying that for all x ∈ E ,

m∑
i=1

ci PEi(x) ≤ IdTxE . (10)
�

Next, we present instances of such decompositions in the case of model spaces.

Geometric Brascamp–Lieb inequality in Euclidean space. In Rn, let, for i =
1, . . . ,m, Ei be vector subspaces of dimension ni ≥ 1 and let ci ≥ 0, such that

m∑
i=1

ci PEi = IdRn.

We take of course Ti : Rn → Ei such that Ti(x) = PEi x, x ∈ Rn, i = 1, . . . ,m.

If B is a linear map, ∇( f ◦ B)(x) = tB∇ f(Bx) and �( f ◦ B)(x) =
Tr
(
tBHess f(Bx)B

)
. It is then clear that the generator L = �− x · ∇ of the Ornstein–

Uhlenbeck semigroup commutes with the Ti’s. Also for all x ∈ Rn, the spaces Ei(x) are

simply Ei. Hence, (10) is guaranteed by the decomposition of the identity induced by

the Ei’s. Thus, we get a Brascamp–Lieb inequality for the standard Gaussian measure,

which is ergodic for the Ornstein–Uhlenbeck semigroup:

∫
Rn

m∏
i=1

fi(PEi x)
ci e−|x|2/2 dx

(2π)n/2
≤

m∏
i=1

(∫
Rn

fi(PEi x)e
−|x|2/2 dx

(2π)n/2

)ci

=
m∏

i=1

(∫
Ei

fi(y)e
−|y|2/2 dy

(2π)ni/2

)ci

.

The Brascamp–Lieb inequality with a Gaussian measure was already mentioned in

[8, 20]. Note that the decomposition of identity rewrites as
∑m

i=1 ci|PEi x|2 = |x|2. Hence

setting gi(y) = fi(y) exp(−|y|2/2) and using the condition n=∑
cini (take traces in the

decomposition of the identity), we obtain the Euclidean inequality

∫
Rn

m∏
i=1

gi(PEi x)
ci dx ≤

m∏
i=1

(∫
Ei

gi(y)dy
)ci

.
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2186 F. Barthe et al.

Alternatively, we could have used the Heat semigroup (with generator �) to get a local

inequality and pass to the limit using the dimension of this semigroup, as explained in

Remark 4.

Further investigations on the connections between decompositions of the iden-

tity of Rn and functional inequalities (such as Young’s convolution inequality, Shannon’s

inequality, and hypercontractivity of the Ornstein–Uhlenbeck semigroup) can be found

in [14].

Geometric Brascamp–Lieb inequality on the sphere. The first inequality of this

type was established by Carlen, Lieb, and Loss [11] for coordinate functions on the

sphere. It involves an unexpected exponent 2. A natural extension in the spirit of

the latter Euclidean inequality was given in [5]. It reads as follows: if x ∈ Sn−1 ⊂ Rn

(the standard (n− 1)-sphere), set as before Ti(x) = PEi (x), i = 1, . . . ,m, where Ei ⊂ Rn are

subspaces for which we have

m∑
i=1

ci PEi ≤ IdRn.

Then, whenever fi are non-negative measurable functions on the sphere, such that fi

depends only on Ei (i.e., fi(x) = gi(PEi (x)), for the uniform probability measure σ on Sn−1

we have,

∫
Sn−1

m∏
i=1

fci/2
i dσ ≤

m∏
i=1

(∫
Sn−1

fi dσ
)ci/2

.

It is easy to see that the Laplacian on Sn−1 commutes with the operators Ti. The

strategy in [5] is to derive decompositions of the identity in all tangent hyperplanes to

the sphere, thus fulfilling Condition (10). Another approach based on analysis on the

orthogonal group will be given next.

Hyperbolic space. It is natural to ask for an hyperbolic analogue of the previous

statement. Let us explain, in two dimensions, why the method does not give any inter-

esting correlation inequality. The natural functionals Ti to consider are the Busemann

functions (which basically are the coordinates in the direction of a point at infinity),

they commute with the Laplace operator. In the disk model, choose b1, . . . ,bm on the unit

circle and let Ti be the corresponding Busemann functions. At a point x in the disk, the

directions Ei(x) are simply the lines spanned by the gradients of the Ti’s (the tangent to

the geodesic passing through x and going to bi). When x tends to a point at infinity b,

which is not one of the bi’s, it is clear that the lines Ei(x) become asymptotically parallel
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Correlation and Brascamp–Lieb Inequalities 2187

to the line Rb. Hence if a decomposition of the identity exists in all tangent planes, we

get that
∑

ci ≤ 1. But in this case, the decomposition (10) is trivial since PEi(x) ≤ Id, and

the inequality that we get is nothing else than Hölder’s inequality.

3.2 Riemannian Lie groups

In the case of Lie groups (and their quotients), the geometric structure required to have

Brascamp–Lieb type inequalities is very clear and elegant.

The algebraic structure of the problem appears clearly when functions depend-

ing only on some variables are seen as functions invariant under the (right) action of

subgroups of isometries. For instance, a function f(x) on Rn is a function of x1 if and only

if f is invariant under all translation leaving e1 = (1,0, . . . ,0) invariant. Note also that

a function f(x) on the sphere Sn−1 ⊂ Rn is a function of x1 if and only if f is invariant

under all rotations leaving e1 invariant. In this section, we shall extensively use this

point of view in the case of compact Riemannian Lie group.

Let G be a connected compact Riemannian Lie group with unit element denoted

by e. Let G = TeM be the associated Lie algebra; by assumption, G is a Euclidean space.

Let μ be the normalized bi-invariant Haar measure on G. Here we will work with the

Laplace–Beltrami operator � as Markov generator, for which we indeed have that

�( f) = |∇ f |2,

as required in the previous section.

Let Gi be a connected Lie subgroup of G, with Lie algebra Gi ⊂ G. A function

f : G → R is said to be Gi-right invariant if

f(xg) = f(x), ∀g ∈ Gi, ∀x ∈ G.

Equivalently, f is of the form g ◦ Ti where Ti : G → G/Gi is the canonical projection on

to the right quotient, defined by Ti(x) = xGi. In other words, using notation (9), we are

interested in the case where, for x ∈ G,

Ei(x) = {∇ f(x); f : G → R is Gi-right invariant}.

If f is Gi-right invariant, then for all v ∈ Gi and all t ∈ R,

f
(
x exp(tv)

) = f(x), ∀x ∈ G.
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2188 F. Barthe et al.

If f is differentiable, we get that

0 = d

dt

∣∣∣
t=0

f
(
x exp(tv)

) = 〈∇ f(x),d(Lx)ev〉, ∀v ∈ Gi,

where Lx : G → G is the left multiplication by x. Since Lx is an isometry of G, its dif-

ferential at e, d(Lx)e, is an isometry between the Euclidean spaces TeG = G and TxG. In

particular, we will exploit the invariance property in the following form

(d(Lx)e)
−1∇ f(x) ∈ G⊥i , ∀x ∈ G. (11)

Roughly speaking, a Gi-right-invariant function f “depends” only on G⊥i in the sense

that the gradient ∇ f(x) is in the direction G⊥i transported on TxM:

Ei(x) = d(Lx)e Ei,

setting Ei := G⊥i . With this formalism, the condition to have a Brascamp–Lieb inequality

boils down to the existence of a decomposition of the identity in the Lie algebra.

Theorem 7. Let G be a connected compact Riemannian Lie group. Let (Gi)
m
i=1 be con-

nected Lie subgroups and let Ei := G⊥i be the orthogonal complements in the Lie algebra

G of G of their Lie algebras (Gi)
m
i=1. Assume that for given d1, . . . ,dm> 0 the following

inequality holds between symmetric linear maps of G:

m∑
i=1

di PEi ≤ IdG . (12)

Then the BL-condition (3) is satisfied. In particular, if for i = 1, . . . ,m, fi : G → R+ is

Gi-right invariant, it holds

∫
G

m∏
i=1

fdi
i dμ ≤

m∏
i=1

(∫
G

fi dμ
)di

. (13)
�

Proof. We consider the Heat kernel on G. The Laplace–Beltrami operator commutes

with right multiplication by the elements of the group so that the commutation relation

is verified, in particular Pt fi is again Gi invariant. Next let us check Condition (3) in

the form (8) put forward in the beginning of the Riemannian case. If for i ≤ n, hi is a

differentiable Gi-invariant function then, rewriting (11) as

d(Lx−1)e∇hi(x) ∈ Ei
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we get PEi d(Lx−1)e∇hi(x) = d(Lx−1)e∇hi(x). Using the fact that d(Lx−1)e is an isometry

between TxM and G and the decomposition of the identity in G, we see that

∥∥∥∑
i

di ∇hi(x)
∥∥∥2 =

∥∥∥(dLx−1)
(∑

i

di ∇hi(x)
)∥∥∥2 =

∥∥∥∑
i

di (dLx−1)∇hi(x)
∥∥∥2

≤
∑

i

di
∥∥(dLx−1)∇hi(x)

∥∥2 =
∑

i

di
∥∥∇hi(x)

∥∥2
.

The result follows. Equivalently, we could have said that the isometry dLx pushes for-

ward the decomposition (12) from G = TeG to the decomposition (10) on TxG. �

3.2.1 Calculations in SO(n)

We consider subgroups related to the natural action of SO(n) on Rn and study the

relationship between decompositions of the identity of Rn and the ones induced on

An = so(n), the set of antisymmetric n× n matrices, which is the Lie algebra of SO(n).

The Euclidean structure on An is given by the Hilbert–Schmidt norm and the correspond-

ing scalar product 〈A, B〉 = Tr(t AB) = −Tr(AB).

We will consider as before functions on SO(n), which are right invariant with

respect to subgroups. There exists two natural subgroups associated to a subspace E ⊂
Rn: Fix(E) and Stab(E).

Lemma 8. Let E be a vector subspace of Rn. Consider the group

H = Fix(E) := {U ∈ SO(n); U|E = Id}

and let H be its Lie algebra. We have H = {A∈ An; A|E = 0} and if PE : An → An denotes

the orthogonal projection on to E := H⊥, we have that

‖PE (A)‖2 = 2‖PE A‖2 − ‖PE APE‖2, ∀A∈ An.

Moreover a function f : G → R is H-right invariant means that f(U ) is actually a func-

tion of U|E . �

Proof. The equality H = {A∈ An; A|E = 0} is obvious. Let us check that the orthogonal

projection of A∈ An on to H is PE⊥ APE⊥ . Indeed, the latter is clearly antisymmetric
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and vanishes on vectors of E , so it belongs to H. It remains to check the orthogonality

condition: if B ∈ H,

−〈B, A− PE⊥ APE⊥〉 = Tr
(

B
(
A− PE⊥ APE⊥

))
= Tr(B A)− Tr(B PE⊥ APE⊥).

Since B vanishes on E , B = B(PE + PE⊥) = B PE⊥ and taking adjoints PE⊥ B = B. It is then

clear that Tr(B PE⊥ APE⊥) = Tr(B A). The orthogonality follows.

Since E = H⊥ and denoting for shortness P instead of PE , and I instead of IdRn,

we have

PE (A) = A− PE⊥ APE⊥ = A− (I − P )A(I − P ) = P A+ AP − P AP .

Eventually, since PE is a self-adjoint involution

‖PE (A)‖2 = 〈A, PE A〉 = −Tr(A(P A+ AP − P AP ))

= −2Tr(A2 P )+ Tr(AP AP ) = 2‖P A‖2 − ‖P AP‖2.

The statement on H-right-invariant functions is easy. Such a function can be viewed as

a function on SO(n)/H ≈ SO(n)/SO(E⊥), which can be identified to the Stiefel manifold

of orthogonal frames of size dim(E) in Rn. More explicitly, U1 H = U2 H is equivalent to

U−1
2 U1 ∈ H , that is for all x ∈ E , U1(x) = U2(x). Hence, the restriction of U to E charac-

terizes the class of U in the quotient. �

Lemma 9. Let E be a vector subspace of Rn. Consider the group

H = Stab(E) := {U ∈ SO(n); U (E) ⊂ E}

and let H be its Lie algebra. If PE : An → An denotes the orthogonal projection on to H⊥,

it holds

‖PE (A)‖2 = 2‖PE A‖2 − 2‖PE APE‖2, ∀A∈ An.

Moreover a function f : G → R is H-right invariant means that f(U ) is actually a func-

tion of U (E). �
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Proof. The argument is very similar to the one of the previous lemma. First, note that

H = {U ∈ SO(n); U (E) = E} = {U ∈ SO(n); U (E) ⊂ E and U (E⊥) ⊂ E⊥}.

For a H-right-invariant function f , f(U ) depends only on U H . Since U1 H = U2 H is

equivalent to U1(E) = U2(E), the quantity f(U ) depends on U (E). In other words, f fac-

tors through the Grassmann manifold of spaces of dimension dim(E) in Rn.

One easily checks that H = {A∈ An; A(E) ⊂ E and A(E⊥) ⊂ E⊥}. The orthogo-

nal projection for A∈ An on to H is PE APE + PE⊥ APE⊥ . Indeed, this is clearly an

antisymmetric map for which E and E⊥ are stable. Moreover for B ∈ H, it is clear that

B = PE B PE + PE⊥ B PE⊥ . Hence

−〈B, A− PE APE + PE⊥ APE⊥〉 = Tr(B A)− Tr(B PE APE )− Tr(B PE⊥ APE⊥) = 0.

Eventually, since E = H⊥, PE (A) = A− PE APE + PE⊥ APE⊥ . So calculating as in the pre-

vious lemma, we have PE (A) = P A+ AP − 2P AP and

‖PE (A)‖2 = 〈A, PE A〉 = −Tr(A(P A+ AP − 2P AP ))

= −2Tr(A2 P )+ 2Tr(AP AP ) = 2‖P A‖2 − 2‖P AP‖2. �

The connection between decompositions of identity of Rn and of An is explained

next.

Proposition 10. For i = 1, . . . ,m, let ci > 0, Ei be a vector subspace of Rn and let Gi be

either Fix(Ei) or Stab(Ei). Denote by Ei = G⊥i the orthogonal of Gi (the Lie algebra of Gi)

in An. We have

m∑
i=1

ci PEi ≤ IdRn =⇒
m∑

i=1

ci

2
PEi ≤ IdAn.

As a consequence, if
∑m

i=1 ci PEi ≤ IdRn then inequality (13) holds on G = SO(n) (equipped

with its uniform probability measure μ) whenever each fi(U ) is a function of U (Ei) or of

U|Ei , i = 1, . . . ,m. �
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Proof. By Lemma 8 and Lemma 9, for any A∈ An, ‖PEi (A)‖2 ≤ 2‖PEi A‖2. Hence

m∑
i=1

ci

2
‖PEi (A)‖2 ≤

m∑
i=1

ci‖PEi A‖2 =
m∑

i=1

ciTr(t APEi A)

= Tr
(

t A
( m∑

i=1

ci PEi

)
A
)
≤ Tr(t AA) = ‖A‖2.

�

Note that we have not used the full strength of Lemmata 8 and 9, since we have

discarded the terms ‖PEi APEi‖2. However, in the case where the Ei’s are one-dimensional

subspaces of Rn, these terms vanish, since in this particular case we have

PEi APEi = 0.

So, if Ei = Rui where the ui’s are norm 1 vectors satisfying the decomposition of the

identity

m∑
i=1

ci ui ⊗ ui = IdRn (14)

where ui ⊗ ui = PEi , then we have, with the notation of the proposition,

m∑
i=1

ci

2
PEi = IdAn.

We do not loose in the passage to the Lie algebra. A particular case of interest is when

m= n, c1 = . . . = cn = 1 and (u1, . . . ,un) is an orthonormal basis of Rn.

For higher dimensional Ei’s, it is possible, in some specific situations, to recom-

bine the terms ‖PEi APEi‖2 to recover a multiple of ‖A‖2 and to improve the exponents in

the correlation inequality. This is easily seen for coordinate subspaces, that is, spaces

spanned by vectors of the canonical basis (e1, . . . , en) of Rn (or of any given orthonormal

basis, of course). The following proposition puts forward a typical set of conditions in

order that BL-condition (3) is fulfilled. It will appear later in similar forms.

Proposition 11. Let I be a collection of subsets of {1, . . . ,n}. Assume that it is writ-

ten as a disjoint union I = I1 ∪ I2. For each non-empty subset I ∈ I, let cI ≥ 0, EI :=
span(ei; i ∈ I ), and fI : SO(n)→ R+ such that

• if I ∈ I1 then for all U , fI (U ) only depends on U|EI ,

• if I ∈ I2 then for all U , fI (U ) only depends on U (EI ).
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If for all 1 ≤ i, j ≤ n with i �= j it holds:

∑
I∈I1

I∩{i, j}�=∅

cI +
∑
I∈I2

card(I∩{i, j})=1

cI ≤ 1,

then BL-condition(3) is satisfied and in particular

∫
SO(n)

∏
I∈I

fcI
I dμ ≤

∏
I∈I

(∫
SO(n)

fI dμ
)cI

.

�

Proof. Simply note that for A= (ai, j)1≤i, j≤n ∈ An, ‖PEI APEI ‖2 =∑
i, j∈I a2

i, j and

‖PEI A‖2 = Tr(t APEi A) = Tr
(∑

i∈I

Aei ⊗ Aei

)
=
∑
i∈I

‖Aei‖2 =
∑
i∈I

n∑
j=1

a2
i, j .

Let us set λI := 1 if I ∈ I1, λI := 2 if I ∈ I2. Using Lemmata 8 and 9, and the antisymmetry

of A∈ An, we have

∑
I

cI ‖PEI (A)‖2 =
∑

I

cI

(
2‖PEi A‖2 − λI‖PEI APEI ‖2

)

=
∑

I

cI

⎛⎝2
∑
i∈I

n∑
j=1

a2
i, j − λI

∑
i, j∈I

a2
i, j

⎞⎠ =
n∑

i, j=1

a2
i, j

⎛⎝2
∑

I ; i∈I

cI −
∑

I ; i, j∈I

λI cI

⎞⎠
= 2

∑
1≤i< j≤n

a2
i, j

⎛⎝ ∑
I ; i∈I

cI +
∑

I ; j∈I

cI −
∑

I ; i, j∈I

λI cI

⎞⎠ .
The latter is upper bounded by ‖A‖2 as soon as for all i �= j,

∑
I

cI
(
1i∈I + 1 j∈I − λI 1i, j∈I

) ≤ 1,

which is exactly our hypothesis on the coefficients (cI )I∈I . Hence,
∑

I cI PEI ≤ IdAn and

Theorem 7 yields the claim. �
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Let us restate the previous result for the case where all the ci’s are identical.

Proposition 12. Let I be a family of subsets of {1, . . . ,n}, and consider

p := max
1≤i< j≤n

card
{
I ∈ I; I ∩ {i, j} �= ∅},

q := max
1≤i< j≤n

card
{
I ∈ I; card

(
I ∩ {i, j}) = 1

}
,

then for all non-negative functions gI ,hI defined on suitable spaces,

∫ ∏
I∈I

gI (U|EI )dμ(U ) ≤
∏
I∈I

(∫
gI (U|EI )

p dμ(U )
) 1

p

,

∫ ∏
I∈I

hI (U (EI ))dμ(U ) ≤
∏
I∈I

(∫
hI (U (EI ))

q dμ(U )
) 1

q

.

�

Let us put forward two particular cases of application of the previous result:

• Blocks of coordinates: if I is a non-trivial partition of {1, . . . ,n}, then each

pair {i, j} meets at most two sets in the family and we get p= q = 2.

• Loomis–Whitney inequality: if I is the family of all subsets of {1, . . . ,n} of size

k, then any pair meets
(n
k

)− (n−2
k

)
sets. Hence, we have

p=
(

n

k

)
−
(

n− 2

k

)
=
(

n− 1

k− 1

)
+
(

n− 2

k− 1

)
.

However, the number of sets of cardinality k that intersect a given pair in

exactly one point is
(n
k

)− (n−2
k

)− (n−2
k−2

) = 2
(n−2
k−1

)
. So we get a smaller exponent

q = 2
(

n− 2

k− 1

)
.

It is worth noting that a direct application of Proposition 10 would have given worst

estimates (when k≥ 2), in both cases. Indeed, if we denote by P I the projection on to a

subspace spanned by {ei, i ∈ I } for I ⊂ {1, . . .n}, we have

∑
|I |=k

n

k
(n
k

) P I = IdRn

and therefore we would get exponents p and q equal to 2 k
n

(n
k

) = 2
(n−1
k−1

)
.
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Remark 13. One can take advantage of the terms ‖PE APA‖2 in more general situations.

They have to be rather symmetric though. Letting 2 ≤ k≤ n− 1, one instance is given by

the family of all the spaces spanned by any k vertices of a regular simplex in Rn with

center of mass at the origin. �

3.2.2 Passing to quotients

So far, we have taken advantage of right invariances of the functions fi. Plainly, similar

results hold if all the functions are left invariant instead. It would be very interesting

to get better inequalities when the functions fi enjoy left and right invariances together

(this would encompass functions on SO(n) depending on matrices U only through sub-

matrices). Unfortunately, our approach does not give interesting general results in this

direction (nothing better than what one gets by applying first Hölder’s inequality in or-

der to get two integrals; each of these integrals is then upper-bounded by using only

one-sided invariance). In the specific case when the functions have different right in-

variances and a common left invariance, our results can be stated instead on the left

quotient. This is a way to get inequalities for homogeneous spaces corresponding to a

compact Riemannian Lie group.

Let us illustrate this remark for the sphere: if Ei is a subspace of Rn and fi :
Sn−1 → R+ is of the form fi(x) = gi(PEi x), we may introduce Fi : SO(n)→ R+ defined by

Fi(U ) = gi(PEi
tUe1) = gi(

t(U PEi )e1). Then Fi is Fix(Ei)-right invariant and also Fix(Re1)-

left invariant. Applying our results on SO(n) and using the fact that the law of tUe1

under the Haar probability measure on SO(n) is the uniform distribution on the sphere

we recover the main result of [5], which extends inequality (1): if
∑

i ci PEi ≤ IdRn then

∫
Sn−1

∏
i

fci/2
i dσ ≤

∏
i

(∫
Sn−1

fi dσ
)ci/2

.

Moreover, if f : Sn−1 → R+ is of the form f(x) = g
(|PE x|), then the function F : SO(n)→

R+ defined by F (U ) = g
(|PE

tUe1|
)

is Stab(Ei)-right invariant and Fix(Re1)-left invariant.

This allows us to transfer all of our SO(n) results to the sphere.

Actually, a more general route is to note that BL-condition, in the form (12),

passes to quotient.

Lemma 14. Let E be a Riemannian homogeneous space and G a compact Rieman-

nian Lie group of isometries acting transitively on E . Assume we are in the situation

of Theorem 7. A function f : E → R is said Gi invariant if f(g · x) = f(x) for every
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x ∈ E and g ∈ Gi. We can consider the associated T̃i : E → E/Gi or more simply, with

the notation (9),

Ei(x) = {∇ f(x); f : E → R is Gi invariant}.

If Condition (12) holds on G, then the BL-condition holds in E in the equivalent

form (10). �

Proof. Fix x ∈ E and let Gx = {g ∈ G; g · x = x}. Then, if we decompose the algebra

G = TIdG (equipped with its Euclidean structure) as an orthonormal sum G = Gx ⊕ G⊥x
where Gx is the Lie algebra associated to Gx, we have that G⊥x is isometric to TxM by the

isometry map

π = πx : A−→ π(A) = d

dt |t=0
exp(tA) · x.

We see that π(Gi) ⊂ Ei(x)⊥ and therefore Ei(x) ⊂ π(Ei). Note that Gx ⊂ Gi and Ei ⊂ G⊥x .

Since Pπ(Ei) = π PEiπ
−1, we get from (12) that

m∑
i=1

ci PEi(x) ≤ IdTxE . �

It is sometimes necessary to work directly on quotients, in particular for quo-

tients of finite measure with a cover of infinite measure. We briefly discuss the exam-

ple of the flat torus (R/Z)n. We consider for i = 1, . . . ,m, rational vectors ui ∈ Qn. For

each i, let 
i be the largest common divisor of the numbers 〈ui, e1〉, . . . , 〈ui, en〉. In or-

der to define the map x �→ 〈x,ui〉 on the torus, one has to identify 〈ui, ek〉 to 0 for all

k. This amounts to quotient R by
∑m

k=1〈ui, ek〉Z = 
iZ. Let Ti : (R/Z)n → R/
iZ be the

map defined by Ti(x) = 〈x,ui〉 mod 
i. One easily checks that the Laplacian commutes

with Ti (same calculation as in Rn). Since for every x, ∇( fi ◦ Ti)(x) is a multiple of ui, if∑m
i=1 ciui ⊗ ui ≤ IdRn it follows that

∫
(R/Z)n

∏
i

fi(〈x,ui〉)ci dx ≤
m∏

i=1

(∫
(R/Z)n

fi(〈x,ui〉)dx
)ci

=
m∏

i=1

(∫
R/
iZ

fi

)ci

.
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3.3 Dirichlet distributions and their relatives

For x ∈ Rn, we set S(x) = x1 + · · · + xn. Let α ∈ (0,+∞)n, then by definition the Dirichlet

law Dn−1(α) is the distribution of

(X1, . . . , Xn−1)

X1 + · · · + Xn

where X1, . . . , Xn are independent random variables such that for each i, Xi is Gamma(αi)

distributed. More precisely, it is supported on Tn−1 = {y ∈ Rn−1+ ; y1 + · · · + yn−1 ≤ 1} and

Dn−1(α)(dy) = �(S(α))∏
i≤n�(αi)

( ∏
i≤n−1

yαi−1
i

)(
1−

∑
i≤n−1

yi

)αn−1
1Tn−1(y)dy.

In order to get more symmetric results, we prefer to work with another representation:

we consider the law D̃n−1(α) of

(X1, . . . , Xn)

X1 + · · · + Xn
.

It is supported on the regular simplex �n−1 = {y ∈ Rn+; y1 + · · · + yn = 1} and its density

with respect to Lebesgue measure on �n−1 is proportional to y �→∏
i≤n yαi−1

i . Recall that

some Dirichlet distributions are closely related to uniform spherical measures. Indeed

if Gi are independent variables with distribution exp(−t2)dt/
√
π , then the uniform mea-

sure on SN coincides with the law of

(G1, . . . ,GN)√
G2

1 + · · · + G2
N

.

Note that G2
i has distribution Gamma(1/2). Write N = k1 + · · · + kn. It is then clear that

the image of the uniform probability on SN−1 by the map

x �→ (x2
1 + · · · + x2

k1
, x2

k1+1 + · · · + x2
k1+k2

, . . . , x2
k1+···+kn−1+1 + · · · + x2

N).

is D̃n−1(k1/2, . . . ,kn/2). This allows us to transfer some of our spherical results, but only

to Dirichlet laws with half-integer coefficients. In order to deal with general coefficients,

the following direct study is needed.
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2198 F. Barthe et al.

The measure Dn−1(α) is known (see [16, 21]) to be reversible and ergodic for the

following Fleming–Viot operator

Lα f =
∑

i≤n−1

xi∂
2
i,i f −

∑
i, j≤n−1

xixj∂
2
i, j f +

∑
i≤n−1

(
αi − S(α)xi

)
∂i f.

In the symmetric representation associated to D̃n−1(α), it is natural to consider the op-

erator L̃α defined for smooth functions f : Rn → R+ and for x ∈ �n−1 by

L̃α f(x) =
∑
i≤n

xi∂
2
i,i f(x)−

∑
i, j≤n

xixj∂
2
i, j f(x)+

∑
i≤n

(
αi − S(α)xi

)
∂i f(x).

It is not hard to check that L̃α f only depends on the restriction of f to �n−1 (in the

intrinsic formulation ∂ig is to be understood as Dg · PH ei = Dg · (ei − 1/n), where 1 =
(1, . . . ,1) ∈ Rn and H = 1⊥). However, it is convenient to be able to apply L̃α f to functions

f defined on the whole space. For example, if we write f(y) = g(y1, . . . , yn−1), y ∈ �n−1

then it is clear that L̃α f(y) = Lαg(y1, . . . , yn−1); hence the properties of Lα will pass to

L̃α f (in particular D̃n−1(α) is reversible and ergodic for the semigroup generated by L̃α f ).

The carré du champ of L̃α can be expressed in the following convenient form, for

x ∈ �n−1:

�( f) =
∑
i≤n

xi(∂i f)2 −
∑

i, j≤n

xixj∂i f∂ j f

=
∑
i≤n

xi(∂i f)2 −
(∑

i≤n

xi∂i f
)2

= 1

2

∑
i �= j

xixj(∂i f − ∂ j f)2,

where we have noted that �( f) is actually a variance with respect to the probability

measure
∑

xiδi. The last formula comes from the representation Var(X) = (1/2)E((X −
X′)2) where X′ is an independent copy of X. We are ready to establish

Proposition 15. Let I be a collection of subsets of {1, . . . ,n}. Assume that it is written as

a disjoint union I = I1 ∪ I2. For each non-empty subset I ∈ I, let cI ≥ 0, and fI : �n−1 →
R+ such that

• if I ∈ I1 then for all x, fI (x) only depends on (xk)k∈I ,

• if I ∈ I2 then for all x, fI (x) only depends on
∑

k∈I xk.
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If for all 1 ≤ i, j ≤ n with i �= j it holds:

∑
I∈I1

I∩{i, j}�=∅

cI +
∑
I∈I2

card(I∩{i, j})=1

cI ≤ 1,

then the BL-condition (3) is satisfied and if X is D̃n−1(α) distributed

E
(∏

I∈I
fcI
I (X)

)
≤
∏
I∈I

(
E fI (X)

)cI
.

�

Proof. First, we check the commutation relations. Since the coordinates play symmetric

roles, we may assume that I = {1, . . . ,k}. Also, we may extend our functions to Rn+. If for

all x, g(x) = f(x1 + · · · + xn) it is obvious that

∂ig(x) =
{

0 if i > k

f ′(x1 + · · · + xk) if i ≤ k
and ∂2

i, jg(x) =
{

0 if i or j > k

f ′′(x1 + · · · + xk) if i, j ≤ k.

It is then clear that L̃αg(x) is a function of x1 + · · · + xk. Similarly, if g(x) = h(x1, . . . , xk)

then L̃αg(x) is a function of (xi)i≤k.

Next, we have to check the analogue of Condition (7), namely

�
(∑

I

cI fI

)
≤
∑

I

cI�( fI ).

In view of the above expression of �, this amounts to show that for all x ∈ �n−1,

∑
1≤i �= j≤n

xixj

(∑
I

cI ∂i fI −
∑

I

cI ∂ j fI

)2 ≤
∑

I

cI

∑
1≤i �= j≤n

xixj

(
∂i fI − ∂ j fI

)2
.

Hence, it is sufficient to show that for all i �= j, it holds

(∑
I

cI
(
∂i fI − ∂ j fI

))2 ≤
∑

I

cI

(
∂i fI − ∂ j fI

)2
.

If fI (x) only depends on (xk)k∈I , then ∂i fI − ∂ j fI = 0 if {i, j} ∩ I = ∅. Moreover if fI (x) =
g(
∑

k∈I xk), then ∂i fI − ∂ j fI = 0 also if {i, j} ⊂ I . Hence, the summations on I actu-

ally only involve the sets I ∈ I1 such that {i, j} ∩ I �= ∅ and the sets I ∈ I2 such that

card({i, j} ∩ I ) = 1. By hypothesis, the sum of the corresponding coefficients cI is at most
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one, so that the required inequality is a mere consequence of the convexity of the square

function. Hence, Condition (7) holds true and we get the local inequality. By ergodicity,

the inequality passes to the measure D̃n−1(α). �

Let p> 0. Let Bn
p = {x ∈ Rn; ∑i |xi|p ≤ 1} be the unit ball for the 
p norm on Rn.

On the corresponding unit sphere ∂Bn
p = {x ∈ Rn; ∑i |xi|p = 1}, one often considers the

cone measure μn
p defined by μn

p(A) = Voln([0,1].A)/Voln(Bn
p), A⊂ ∂Bn

p. Here [0,1] · A is the

intersection of Bn
p with the cone of apex at the origin spanned by A.

Corollary 16. Let X be a random vector on Rn. Assume that it is either uniformly dis-

tributed on Bn
p or distributed according to the cone measure on ∂Bn

p. Then for all even

functions fi : [−1,1] → R+

E
( n∏

i=1

fi(Xi)
)
≤

n∏
i=1

E
(

fi(Xi)
2
) 1

2
.

�

Proof. This is deduced from a particular case of the previous result on Dirichlet distri-

butions, which ensures that for Y distributed according to D̃n−1(α), and gi : [0,1] → R+,

a similar inequality holds: E
∏

gi(Yi) ≤∏(
Eg2

i (Yi)
)1/2. Indeed, the uniform measure on

Bn
p and the cone measure on ∂Bn

p can be viewed as symmetrized versions of the images of

Dirichlet laws by maps of the form T(x1, . . . , xn) = (T1(x1), . . . , Tn(xn)). Hence if we choose

gi = fi ◦ Ti in the latter inequality, we get the claim. Let us make this strategy explicit in

the case of the cone measure. Let εi, Gi, i = 1, . . . ,n, be independent random variables.

Assume that ε1 is uniform on {−1,1} and Gi distributed according to e−tp
dt/�(1+ 1/p).

Then it is known that the vector

X = (ε1G1, . . . , εnGn)(
G p

1 + · · · + G p
n

) 1
p

is distributed according to the cone measure. Hence, |Xi|p = G p
i /(G

p
1 + · · · + G p

n) where

G p
i is Gamma(1/p) distributed. So applying the Brascamp–Lieb inequality for fi(x) =

gi(x
1/p
i ) yields the claim.

A similar approach is possible for the uniform distribution on Bn
p thanks to the

representation provided in [6]. �
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Remark 17. The cone measure on ∂Bn
2 is simply the uniform measure on Sn−1, for which

a similar inequality holds for general functions fi (i.e., it is not necessary to assume that

they are even). Hence, one may ask whether the symmetry assumption in the previous

corollary is really needed. In order to remove it, one would need a result for symmetrized

Dirichlet laws, namely for measures on ∂Bn
1 with density with respect to Lebesgue mea-

sure proportional to
∏

i |xi|αi−1. At first sight, there does not seem to be any problem

to extend our approach. However, the ergodicity of these measures is a delicate issue.

Indeed, the fact that the density vanishes inside the domain may, in terms of the corre-

sponding random process, create potential barriers that may not be crossed or potential

wells into which the process may get stuck. On the technical level, the domain of the

operator may be too small to contain enough non-symmetric functions. �

Remark 18. Proposition 15 and many results of this work involve two kinds of func-

tions, which depend only on some coordinates (xk)k∈I (some depend on all these coordi-

nates and some depend on them only through their sum). It is possible to consider more

general dependencies. We have not tried to reach the highest generality in this respect.

Let us briefly mention a quite general extension of Proposition 15: we could consider

functions fI where I = (I1, . . . , IK ) is a collection of disjoint subsets of {1, . . . ,n}, such

that fI (x) only depends on

TI (x) :=
⎛⎝∑

i∈I1

xi, . . . ,
∑
i∈IK

xi

⎞⎠ .
One can check that the map TI commutes with the Fleming–Viot operator (this uses the

disjointness of I1, . . . , IK ). If one considers now a collection of functions ( fI )I∈I and

corresponding coefficients ( fI )I∈I , then a Brascamp–Lieb inequality holds provided for

all i �= j in {1, . . . ,n}, ∑I∈Ai, j
cI ≤ 1, where

Ai, j =
{

I ∈ I; ∃
, card(I
 ∩ {i, j}) = 1
}
.

The proof follows the same arguments as the one of Proposition 15. We omit the details.

Note that several results of this paper can be extended in an analogous way. �

4 Discrete Models

In this section, we deal with discrete models, and in particular we have to use the BL-

condition in its brute form (3) since we are no longer working with diffusion generators.
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2202 F. Barthe et al.

We nevertheless provide a simple criterion that can be worked out for a number of dis-

crete models of interest.

4.1 Abstract criterion

Throughout this paragraph, E will thus be a finite or countable state space. Let K

be a Markov kernel on E , that is, K : E × E → [0,∞) is such that for every x ∈ E ,∑
y∈E K(x, y) = 1. If f : E → R is bounded, set K f(x) =∑

y∈E K(x, y) f(y), x ∈ E . As be-

fore, for given maps Ti : E → Ei, i = 1, . . . ,m, we say they commute with K if for any

function f : E → R, K( f ◦ Ti) is a function of Ti. Again, this amounts to the existence

of a Markov kernel Ki on Ei such that K( f ◦ Ti) = Ki( f) ◦ Ti. This definition is of course

equivalent to abstract one of Section 2 in terms of the associated Markov generator

L = K − Id.

The next proposition provides a simple equivalent criterion for the BL-

condition (3) in this context.

Proposition 19 (BL-condition in the discrete case). For distinct x, y ∈ E such that

K(x, y) > 0, set

Ix,y =
{
i ∈ {1, . . . ,m}; Ti(x) �= Ti(y)

}
.

Let ci ≥ 0, i = 1, . . . ,m. Then the BL-condition (3) holds if and only if

∑
i∈Ix,y

ci ≤ 1, for all x �= y in E such that K(x, y) > 0. (15)

Therefore, under this condition, for every non-negative function fi : Ei → R, i = 1, . . . ,m,

and every t ≥ 0,

Pt

( m∏
i=1

fci
i ◦ Ti

)
≤

m∏
i=1

(
Pt( fi ◦ Ti)

)ci .
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In particular, if K has an ergodic invariant probability measure μ and if for

all x, y ∈ E distinct with K(x, y) > 0, it holds card {i = 1, . . . ,m; Ti(x) �= Ti(y)} ≤ p, then

choosing ci = 1
p, i = 1, . . . ,m, we have that

∫ m∏
i=1

fi ◦ Ti dμ ≤
m∏

i=1

(∫
( fi ◦ Ti)

pdμ
) 1

p

.

�

Proof. At fixed x ∈ E , Condition (3) may be written as

∑
y∈E

K(x, y)
(
e
∑m

i=1 ci[ fi◦Ti(y)− fi◦Ti(x)] − 1
) ≤ m∑

i=1

ci

∑
y∈E

K(x, y)
(
e fi◦Ti(y)− fi◦Ti(x) − 1

)
. (16)

The sums over i on both sides only run over i ∈ Ix,y so that the preceding inequality is

equivalent to saying that

∑
y∈E

K(x, y)ϕ
( ∑

i∈Ix,y

ci[ fi ◦ Ti(y)− fi ◦ Ti(x)]
)
≤
∑
y∈E

K(x, y)
∑

i∈Ix,y

ciϕ
(

fi ◦ Ti(y)− fi ◦ Ti(x)
)
,

where ϕ(u) = eu− 1. Since ϕ(0) = 0, we can restrict the previous sum over y ∈ E \ {x}, and

of course we can ask that K(x, y) �= 0. Now, for fixed x, y ∈ E with x �= y and K(x, y) �= 0,

we argue that Condition (15) on the c′is combines with the convexity of ϕ to give (point-

wise) the desired inequality.

Conversely, if (16) holds for all choices of fi, i = 1, . . . ,m, we choose fi(z) =
θ1z�=Ti(x) where θ ∈ R+. Letting θ →+∞ and comparing the orders of the terms in (16)

show that for each y �= x with K(x, y) �= 0, we must have
∑

i∈Ix,y
ci ≤ 1. �

Remark 20 (Extension to non-finite settings). The careful reader has probably no-

ticed that the finiteness (or countability) of E is not central in the argument. All the

argument works as soon as we can express L + I =: K in terms of a Markov kernel. In-

deed, this allows us to reduce the problem to a pointwise inequality. �

We next illustrate instances of the preceding result.
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4.2 Examples

4.2.1 Homomorphisms of finitely generated groups

Let for example G, Gi, i = 1, . . . ,m, be finite or countable groups and Ti : G → Gi be ho-

momorphisms. Let K be a Markov kernel on G. It is clear that each Ti commutes with K.

Assume furthermore that K is left invariant in the sense that K(gx, gy) = K(x, y)

for all x, y, g ∈ G. We may let for example G be finitely generated with generating

set S, and K(x, y) = card (S)−11S(y−1x), x, y ∈ G. Then, Condition (15) of Proposition 19

amounts to

∑
i∈Iz

ci ≤ 1

for every z ∈ S where Iz = {i = 1, . . . ,m; z /∈ Ker (Ti)}.

4.2.2 Coordinates of the symmetric group

Let E be the symmetric group Sn over n elements {1, . . . ,n}, n≥ 2. This set is the discrete

analogue of SO(n). Unlike the continuous setting, there are several possible choices for

the kernel K. However in view of the latter proposition, where each couple (x, y) with

K(x, y) > 0 leads to a linear constraint on the exponents ci, it is natural to take a small

(or even minimal) generating set S and to consider:

K(x, y) = 1

card(S)
if there is τ ∈ S with y= τx.

We choose for S the set of all transpositions. The following calculation will show that it

is the best choice, since it minimizes the size of the support supp(τ ) = { j; τ( j) �= j}.
The normalized counting measure μ is invariant for K. Actually, S being stable

by inverse is also reversible:∫
(K f) g dμ =

∫
1

card(S)

∑
τ∈S

f(τx)g(x)dμ(x)

=
∫

1

card(S)

∑
τ∈S

f(y)g(τ−1y)dμ(y) =
∫
(Kg) f dμ.

Let I be a subset of {1, . . . ,n}. We consider the map TI defined by

TI (x) = x|I = (x(i))i∈I , ∀x ∈ Sn.
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Then TI commutes with K; indeed

K( f ◦ TI )(x) = 2

n(n− 1)

∑
τ∈S

( f ◦ TI )(τx)

and TI (τx) = (τ ◦ x)|I = τ ◦ x|I depends only on TI (x). The result of Proposition 19 in-

volves the condition TI (x) �= TI (y) for K(x, y) > 0. Let us formulate it in a more concrete

manner:

TI (x) �= TI (τx)⇐⇒ ∃ i ∈ I, x(i) �= τx(i)⇐⇒ I ∩ x−1(supp(τ )) �= ∅.

Note that since the proposition involves this condition for all x ∈ Sn, the set x−1(supp(τ ))

can be any set with the size of the support of τ . Choosing transpositions then clearly

appears as the most economical choice.

For I ⊂ {1, . . . ,n}, we may also consider the map RI defined by

RI (x) = x(I ) = {x(i), i ∈ I }, ∀x ∈ Sn.

Then RI also commutes with K and for any x and any transposition τ , RI (x) �= RI (τx)

happens if and only if τ moves one point in x(I ) outside x(I ). Hence

RI (x) �= RI (τx)⇐⇒ card
(
I ∩ x−1(supp(τ ))

) = 1.

Combining these observations with Proposition 19 yields a discrete analogue to

Proposition 11:

Proposition 21. Let I be a collection of subsets of {1, . . . ,n}. Assume that it is written as

a disjoint union I = I1 ∪ I2. For each non-empty subset I ∈ I, let cI ≥ 0 and fI : Sn → R+

such that

• if I ∈ I1 then for all x, fI (x) only depends on x|I ,

• if I ∈ I2 then for all x, fI (x) only depends on x(I ).

If for all 1 ≤ i, j ≤ n with i �= j

∑
I∈I1

I∩{i, j}�=∅

cI +
∑
I∈I2

card(I∩{i, j})=1

cI ≤ 1,
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then the BL-condition(3) is satisfied and

∫
Sn

∏
I∈I

fcI
I dμ ≤

∏
I∈I

(∫
Sn

fI dμ
)cI

.

�

The examples given after Proposition 11 transfer to Sn. For a family I of subsets

of {1, . . . ,n}, introduce the exponents:

p= max
i �= j

card
({I ∈ I; i ∈ I, or j ∈ I }) and q = max

i �= j
card

({I ∈ I; card(I ∩ {i, j}) = 1}).
Then, for functions gI and hI defined on suitable sets, we have

∫
Sn

∏
I∈I

gI (σ|I )dμ(σ) ≤
∏
I∈I

(∫
Sn

gI (σ|I )p dμ(σ)
) 1

p

,

∫
Sn

∏
I∈I

hI (σ (I ))dμ(σ) ≤
∏
I∈I

(∫
Sn

hI (σ (I ))
q dμ(σ)

) 1
q

.

A particular case of interest (where these two cases coincide) is when I = {{1}, . . . , {n}}.
Then, p= q = 2 and we recover the inequality on permanents given in [12].

4.2.3 Slices of the discrete cube and multivariate hypergeometric distributions

For n≥ k≥ 0, let

�n,k =
{
x ∈ {0,1}n; x1 + · · · + xn = k

}
equipped with uniform measure. These sets are discrete analogues of the sphere Sn−1.

Two elements x, y in �n,k are neighbors if and only if they differ by exactly two of the

coordinates, a relation written as x ∼ y. Let K be the nearest neighbor random walk on

�n,k (known as the Bernoulli–Laplace model) defined by

K f(x) = 1

k(n− k)

∑
y∼x

f(y).

It is easy to check that K f(x) only depends on the ith coordinate xi of x if this is the case

for f . Indeed, the number of neighbors y of x such that yi = xi is equal to (k− xi)(n− 1−
k+ xi), whereas when yi = 1− xi, this number is equal to the number of coordinates xj,
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j �= i, such that xj = 1− xi. For the coordinate maps Ti(x) = xi, 1 ≤ i ≤ n, we are thus in

the preceding setting of commuting operators so that Proposition 19 applies with p= 2.

Alternatively, one can use the following observation, which was pointed out to us

by P. Caputo. The uniform probability measure on �n,k is the image of the uniform prob-

ability measure on the permutation group Sn by the map x ∈ Sn �→ (1x(i)≤k)1≤i≤n. Conse-

quently, the correlation inequalities derived on Sn for functions depending on blocks of

coordinates pass to �n,k to yield the same result. Such a reasoning may be extended

in order to encompass more general distributions. Consider integer numbers K ≤ M

and m= (mi)1≤i≤n such that
∑

i mi = M. The multivariate hypergeometric distribution

H(m, K) is defined on Nn by

H(m, K)({(k1, . . . ,kn)}) =
∏m

i=1

(mi
ki

)(M
K

)
if k1 + · · · + kn = K and for all i, ki ≤ mi and H(m, K)({(k1, . . . ,kn)}) = 0 otherwise. Given

an urn containing M balls of n different colors, and more precisely mi of the ith color,

if one draws K balls (uniformly) at random then the n-tuple (X1, . . . , Xn) consisting of

the numbers of balls of each color in the sample is H(m, K) distributed. It is not hard

to check that H(m, K) coincides with the image of the uniform probability law on the

permutation group SM by the map

σ ∈ SM �→ T(σ ) :=
⎛⎝card

{
j ∈

[
1+

∑

≤i−1

m
,
∑

≤i

m


]
; σ( j) ≤ K

}⎞⎠n

i=1

.

This observation can be used to show that Proposition 15 remains valid if one replaces

the Dirichlet laws by multivariate hypergeometric distributions. We only outline the

proof. Starting from functions fI defined on the support of H(m, K), we consider the

functions gI := fI ◦ T . Note that gI (σ ) depends on the images by σ of several intervals of

{1, . . . ,M}. Applying Proposition 21 directly would not give the right result, since it only

deals with simpler forms of dependencies. Hence, we need to go back to Proposition 19,

in the spirit of the proof of Proposition 21 (this is actually related to Remark 18). We

omit the details.

4.2.4 Product spaces and Finner’s theorem

Let us go back to more general distributions (including continuous distributions on

non-finite spaces) but in the context of product structures. The hypotheses in Propo-
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sitions 11, 21 or 19 are reminiscent of Finner’s theorem [17], which expresses that if E =
X1 × · · · × Xn is a product space with product probability measure μ = ν1 ⊗ · · · ⊗ νn, and

if, for i = 1, . . . ,m, Ti : E → Ei is the coordinate projection on the space Ei :=∏
j∈Si

X j de-

termined by Si ⊂ {1, . . . ,n}, then for any non-negative functions fi : Ei → R, i = 1, . . . ,m,

∫ m∏
i=1

fci
i ◦ Ti dμ ≤

m∏
i=1

(∫
fi ◦ Tidμ

)ci

provided that

∑
i;Si j

ci ≤ 1 for every j = 1, . . . ,n.

This statement is actually contained in Proposition 19 for a suitable choice of the kernel

K. Without loss of generality, we may assume that, for each i, Xi is a finite set equipped

with a probability measure νi that charges all points. Consider the kernels Ki on Xi given

by Ki(xi, yi) = νi(yi), and tensorize them to the product space E = X1 × · · · × Xn by

K = 1

n

n∑
i=1

Ĩ ⊗ · · · ⊗ Ĩ ⊗ Ki ⊗ Ĩ ⊗ · · · ⊗ Ĩ

where Ĩ is defined on E j by Ĩ (xj, yj) = 1xj=yj (in other words, the associated Markov oper-

ator is the identity). The commutation property of the projection operators Ti is obvious.

Moreover, for distinct elements x, y in E , K(x, y) > 0 if and only if x = (x1, . . . , xn) and

y= (y1, . . . , yn) differ at exactly one coordinate, say j. Now the set of i’s such that

Ti(x) �= Ti(y) is exactly the set of i’s such that Si  j.

In particular, the preceding kernel provides a proof of the classical Hölder in-

equality on the finite space X equipped with the probability measure ν, and by approxi-

mation on any finite measure space.

5 Sums of Squares

In this short paragraph, we briefly illustrate how the ideas developed in the preceding

discrete setting may also be of interest for classes of diffusion generators. Assume the

generator L is a sum of squares of vector fields on a manifold E ,

L =
∑



X2

 .
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Let for example Ti : E → Rki , i = 1, . . . ,m, be commuting (with L) maps. We interpret X
Ti

coordinate by coordinate. The criterion put forward in Proposition 19 then adapts to this

setting:

Proposition 22. For every 
, let I
 :=
{
i ∈ {1, . . . ,m}; X
Ti �= 0

}
. Let ci ≥ 0, i = 1, . . . ,m, be

such that

∑
i∈I


ci ≤ 1 for every 
.

Then, for every non-negative function fi : Ei → R, i = 1, . . . ,m, and every t ≥ 0,

Pt

( m∏
i=1

fci
i ◦ Ti

)
≤

m∏
i=1

(
Pt( fi ◦ Ti)

)ci .

In particular, if for all 
, card {i = 1, . . . ,m; X
Ti �= 0} ≤ p, we may choose ci = 1
p, i =

1, . . . ,m. �

Proof. Since �( f) =∑

(X
 f)2, according to Fact 1, the BL-condition (3) takes the form

∑



(X
H)2 ≤
m∑

i=1

ci

∑



(
X
( fi ◦ Ti)

)2
, (17)

where we recall that H =∑m
i=1 ci fi ◦ Ti. Hence, we are done if we can prove that for every


,

( m∑
i=1

ci X
( f ◦ Ti)
)2 ≤

m∑
i=1

ci
(
X
( f ◦ Ti)

)2
. (18)

If fi is a function on Rki , then X
( fi ◦ Ti) = 〈X
Ti,∇ fi(Ti)〉 is zero when i �∈ I
. Hence, the

summations in the above inequality only hold on i ∈ I
. Since by hypothesis
∑

i∈I
 ci ≤ 1,

inequality (18) is valid by convexity of the square function. The conclusion follows. �

We illustrate this result in the context of the Loomis–Whitney inequalities on the

sphere. Consider

� = 1

2

∑
k,


X2
k
 =

1

2

∑
k,


[xk∂
 − x
∂k]2
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the Laplace operator on the sphere Sn−1 ⊂ Rn. Let A be a subset of {1, . . . ,n} with d

elements, and consider T : Rn → Rd defined by T(x) = (xi)i∈A. Then Xk
TA = 0 if and only

if {k, 
} ∩ A= ∅. Thus, for every k, 
,

p= card
{

A, |A| = d; Xk,
TA �= 0
}

=
(

n

d

)
−
(

n− 2

d

)
=
(

n− 1

d− 1

)
+
(

n− 2

d− 1

)
.

One instance of application is d= 1 (for which p= 2) from which we recover inequality

(1) involving functions of Ti(x) = xi. The approach here is indeed very close to the one of

Carlen, Lieb, and Loss [11].

Remark 23. This viewpoint best explains the analogy between the results on SO(n)

and Sn. Indeed, the infinitesimal rotation xk∂
 − x
∂k in vect(ek, e
) is the analogue of the

transposition τk,
. �

6 Superadditivity of Information for Markov Generators and Entropy of Marginals

In this section, we investigate, from the abstract Markov operator point of view, de-

scriptions of the Brascamp–Lieb inequalities and entropy inequalities for marginals

following [10, 11]. As in Section 2, we do not make precise the classes of functions

under consideration.

Let (E, μ) be a probability space and Ti : E → Ei be measurable maps. Given a

probability density f on E with respect to μ, denote by fi its conditional expectation

with respect to Ti. In other words, fi is the unique probability density on E with respect

to μ such that, for every bounded measurable ϕ : Ei → R,

∫
f ϕ ◦ Ti dμ =

∫
fi ϕ ◦ Ti dμ. (19)

(Since fi = hi ◦ Ti for some hi : Ei → R, hi may be thought of as the “marginal” of f in

the direction of Ti.) As shown in [11], the Brascamp–Lieb inequality (5) may be used, by

standard arguments, to prove the entropy inequality for the probability density f

m∑
i=1

ci

∫
fi log fidμ ≤

∫
f log fdμ. (20)
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A recent work by Carlen and Cordero-Erausquin [10] shows that there is a full

equivalence:

Proposition 24. The following are equivalent.

(i) For every non-negative function gi : Ei → R, i = 1, . . . ,m,

∫ m∏
i=1

gci
i ◦ Tidμ ≤

m∏
i=1

(∫
gi ◦ Tidμ

)ci

.

(ii) For every probability density f with respect to μ,

∫
f log fdμ ≥

m∑
i=1

ci

∫
fi log fidμ.

�

Since semigroup proofs are available for Brascamp–Lieb inequalities, it is

natural to hope for semigroup proofs of entropy inequalities. Such an approach was

suggested in [5] for spherical measures, on the basis of the corresponding inequality for

the Fisher information.

In the remainder of this section, we discuss the extension of this argument to

the abstract general framework, encompassing both the continuous and the discrete

(non-diffusion) cases.

Let L be a Markov generator on E with semigroup (Pt)t≥0. We require that L be

invariant, symmetric, and ergodic for μ. Denote by � the carré du champ operator of L

as defined in (6). Hence, the Dirichlet form is expressed as follows

E( f, g) =
∫
�( f, g)dμ = −

∫
f Lg dμ = −

∫
g L f dμ.

It is classical that, under suitable domain assumptions,

∫
f log fdμ =

∫ ∞

0
dt
∫
�(Pt f, log Pt f)dμ. (21)

Definition 25. The (Fisher) information associated to (L , μ) of a suitable function f > 0

is defined by

J( f) := E( f, log f) = −
∫

f L(log f)dμ. �
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Here “suitable” means that f, log f belongs to the domain of L in L2(μ). Equality (21)

becomes

∫
f log fdμ =

∫ ∞

0
J(Pt f)dt

and so, in view of the commutation between Ti and L, which ensures that

Pt( fi) = (Pt f)i,

we see that the entropy inequality (20) may be derived from its analogue for the Fisher

information.

The next result shows that such inequality for Fisher information can indeed

be derived directly from the BL-condition in our abstract setting. In view of the pre-

vious discussion, this therefore provides a different route for proving Brascamp–Lieb

inequalities.

Theorem 26 (Superadditivity of Fisher information). Assume that L is a Markov

generator on E , which commutes with the maps Ti and that the BL-condition (3) holds.

Then, for every probability density f on E with respect to μ, under the preceding

notation,

m∑
i=1

ci J( fi) ≤ J( f). (22)
�

Before proving this result in full generality, let us note that in the case where L

is a diffusion, this theorem can be derived easily, following ideas from [5]. Indeed, when

L is a diffusion we have

J( f) =
∫
�( f)

f
dμ.

Using the definition of the conditional density (19) and the chain rule formula for L we

see that, for each i ≤ m,

J( fi) = −
∫

fi L(log fi)dμ = −
∫

f L(log fi)dμ =
∫
�( f, fi)

fi
dμ.
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Using the Cauchy–Schwarz inequality and (19) again, we get

J( fi)
2 ≤

∫
�( f, fi)2

f �( fi)
dμ

∫
�( fi) f

fi2 dμ =
∫
�( f, fi)2

f �( fi)
dμ

∫
�( f, fi)

fi
dμ,

which means that

J( fi) ≤
∫
�( f, fi)2

f �( fi)
dμ.

We conclude to (22) after noticing that Condition (3) (in the form (7)) can be expressed in

dual form as

m∑
i=1

ci
�( f, fi)2

�( fi)
≤ �( f).

Similar strategy however does not work in the non-diffusion case, essentially

because we don’t have a chain rule formula for computing L(log f). This is also what

happens for the similar non-commutative inequalities recently proved by Carlen and

Lieb [13]. (A challenging question is whether the approach we propose below applies to

the non-commutative setting).

We present here a new method that allows us to treat the general case of

a Markov generator. It relies on the following observation, which is of independent

interest.

Lemma 27. Assume L is a Markov generator invariant and symmetric for μ. Then for

functions f > 0 and H of arbitrary sign on E , we have

E( f, H) ≤ E( f, log f)+
∫

fe−H L
(
eH )dμ. (23)

�

In other words, we have the following dual formulation of Fisher information:

J( f) = sup
H

{
E( f, H)−

∫
fe−H L

(
eH )dμ

}
.

Proof. Since E( f, H) = ∫
f(−L H)dμ and Lg = limt→0 t−1[Ptg− g] (for g in the suitable

domain), it is enough to establish the following inequality for P = Pt for every t > 0:∫
f[H − P H ]dμ ≤

∫
f log fdμ−

∫
(P f) log fdμ−

∫
fdμ+

∫
fe−H P (eH )dμ. (24)
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By assumption, P = Pt is Markovian and μ is invariant and symmetric for P . By

symmetry, the left-hand side is equal to
∫ [P ( f H)− H P f]dμ. By Young’s inequality

ab ≤ a log a− a+ eb, a> 0, b ∈ R, we get that for every λ > 0,

P ( f H) = λP
( f

λ
H
)
≤ P ( f log f)− (P f) log λ− P f + λP (eH ).

Hence, choosing λ = fe−H ,

P ( f H)− H P f ≤ P ( f log f)− (P f) log f − P f + fe−H P (eH ).

The desired inequality (24) follows after integration, since for every g we have
∫

Pg dμ =∫
g dμ. �

With the previous lemma in hand, we can easily complete the proof of the

theorem.

Proof of Theorem 26. Note that the conditional expectation property yields, for every

i = 1, . . . ,m,

J( fi) = E( fi, log fi) = −
∫

fi L(log fi)dμ = −
∫

f L(log fi)dμ = E( f, log fi). (25)

Hence

m∑
i=1

ci J( fi) =
m∑

i=1

ci E( f, log fi) = E( f, H),

where H =∑m
i=1 ci log fi. Combining Lemma 27 and BL-condition (3) (written for Fi =

log fi, which is a function of Ti), we get

E( f, H) ≤ E( f, log f)+
∫

fe−H L
(
eH )dμ

≤ J( f)+
∫

f
∑

i

ci
1

fi
L( fi)dμ

= J( f)+
∑

i

ci

∫
L( fi)dμ = J( f),

where we have used in the last step that L( fi)/ fi is a function of Ti and the conditional

expectation property (19). �
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Superadditive inequalities for Fisher information were considered on the sphere

Sn−1 ⊂ Rn in [5] in the case of Ti = PEi with the Ei for subspaces Ei ⊂ Rn satisfying∑
i ci PEi ≤ IdRn. As explained in Section 3.2.2, the BL-condition (3) is verified for di = ci/2

and we recover by the previous proposition the inequality from [5]. For applications of

the superadditivity of information to classical Euclidean convolution and Brascamp–

Lieb inequalities, we refer to [10, 14].

In the discrete case, some examples of superadditive inequalities for Fisher in-

formation were implicitly obtained in the papers [9, 18, 19]. The goal of these papers is

to prove modified log-Sobolev inequalities of the form

∀ f : E → R+ with
∫

f dμ = 1, ρ0

∫
f log f dμ ≤ E( f, log f).

As pointed out to us by Eric Carlen, one can extract from their proofs (which is by

induction) superadditive inequalities for Fisher information, which constitute a central

technical ingredient. The main examples considered in these papers are the symmetric

group and slices of the discrete cube. There, the marginals are considered with respect

to maps Ti, which belong to the family studied in the previous section, for which we

have proved that BL-condition (3) holds, and for which we therefore have the desired

superadditive inequalities.
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