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STEIN’S METHOD, LOGARITHMIC SOBOLEV AND
TRANSPORT INEQUALITIES

Michel Ledoux, Ivan Nourdin and Giovanni Peccati

Abstract. We develop connections between Stein’s approximation method, loga-
rithmic Sobolev and transport inequalities by introducing a new class of functional
inequalities involving the relative entropy, the Stein kernel, the relative Fisher infor-
mation and the Wasserstein distance with respect to a given reference distribution
on R

d. For the Gaussian model, the results improve upon the classical logarithmic
Sobolev inequality and the Talagrand quadratic transportation cost inequality. Fur-
ther examples of illustrations include multidimensional gamma distributions, beta
distributions, as well as families of log-concave densities. As a by-product, the new
inequalities are shown to be relevant towards convergence to equilibrium, concen-
tration inequalities and entropic convergence expressed in terms of the Stein kernel.
The tools rely on semigroup interpolation and bounds, in particular by means of
the iterated gradients of the Markov generator with invariant measure the distrib-
ution under consideration. In a second part, motivated by the recent investigation
by Nourdin, Peccati and Swan on Wiener chaoses, we address the issue of entropic
bounds on multidimensional functionals F with the Stein kernel via a set of data on
F and its gradients rather than on the Fisher information of the density. A natural
framework for this investigation is given by the Markov Triple structure (E,μ,Γ) in
which abstract Malliavin-type arguments may be developed and extend the Wiener
chaos setting.

1 Introduction

The classical logarithmic Sobolev inequality with respect to the standard Gaussian
measure dγ(x) = (2π)−d/2e−|x|2/2dx on R

d indicates that for every probability
dν = hdγ with (smooth) density h : R

d → R+ with respect to γ,
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H
(
ν | γ)

=
∫

Rd

h log h dγ ≤ 1
2

∫

Rd

|∇h|2
h

dγ =
1
2

I
(
ν | γ)

(1.1)

where

H
(
ν | γ)

=
∫

Rd

h log h dγ = Entγ(h)

is the relative entropy of dν = hdγ with respect to γ and

I
(
ν | γ)

=
∫

Rd

|∇h|2
h

dγ = Iγ(h)

is the Fisher information of ν (or h) with respect to γ, see e.g. [BGL14, Chapter II.5]
for a general discussion. (Throughout this work, | · | denotes the Euclidean norm in
R

d.)
Inspired by the recent investigation [NPS13], this work puts forward a new form of

the logarithmic Sobolev inequality (1.1) by considering a further ingredient, namely
the Stein discrepancy given by the Stein kernel of ν. A measurable matrix-valued
map τν on R

d is said to be a Stein kernel for the (centered) probability ν if for every
smooth test function ϕ : R

d → R,
∫

Rd

x · ∇ϕ dν =
∫

Rd

〈
τν , Hess(ϕ)

〉
HS

dν

where Hess(ϕ) stands for the Hessian of ϕ, whereas 〈·, ·〉HS and ‖ · ‖HS denote the
usual Hilbert-Schmidt scalar product and norm, respectively. Note that while Stein
kernels appear implicitly in the literature about Stein’s method (see the original
monograph [Ste86, Lecture VI] of C. Stein, as well as [Ch09,Ch12,GR97,GR05]...),
they gained momentum in recent years, specially in connection with probabilistic
approximations involving random variables living on a Gaussian (Wiener) space (see
the recent monograph [NP12] for an overview of this emerging area). The terminol-
ogy ‘kernel’ with respect to ‘factor’ seems the most appropriate to avoid confusion
with related but different existing notions.

According to the standard Gaussian integration by parts formula from which
τγ = Id, the identity matrix in R

d, the proximity of τν with Id indicates that ν
should be close to the Gaussian distribution γ. Therefore, whenever such a Stein
kernel τν exists, the quantity, called Stein discrepancy (of ν with respect to γ),

S
(
ν | γ)

=
(∫

Rd

‖τν − Id‖2
HS dν

)1/2

becomes relevant as a measure of the proximity of ν and γ. This quantity is actually
at the root of the Stein method [CGS11,NP12]. For example, in dimension one, the
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classical Stein bound expresses that the total variation distance TV(ν, γ) between
a probability measure ν and the standard Gaussian distribution γ is bounded from
above as

TV(ν, γ) ≤ sup
∣
∣
∣
∣

∫

R

ϕ′(x)dν(x) −
∫

R

xϕ(x)dν(x)
∣
∣
∣
∣ (1.2)

where the supremum runs over all continuously differentiable functions ϕ : R → R

such that ‖ϕ‖∞ ≤ √
π
2 and ‖ϕ′‖∞ ≤ 2. In particular, by definition of τν (and

considering ϕ′ instead of ϕ),

TV(ν, γ) ≤ 2
∫

R

|τν − 1|dν ≤ 2 S
(
ν | γ)

justifying therefore the interest in the Stein discrepancy (see also [CPU94]). It is
actually a main challenge addressed in [NPS13] and this work to investigate the
multidimensional setting in which inequalities such as (1.2) are no more available.

With the Stein discrepancy S(ν | γ), we emphasize here the inequality, for every
probability dν = hdγ,

H
(
ν | γ) ≤ 1

2
S2

(
ν | γ)

log
(

1 +
I(ν | γ)
S2(ν | γ)

)
(1.3)

as a new improved form of the logarithmic Sobolev inequality (1.1). In addition, this
inequality (1.3) transforms bounds on the Stein discrepancy into entropic bounds,
hence allowing for entropic approximations (under finiteness of the Fisher informa-
tion). Indeed as is classical, the relative entropy H(ν | γ) is another measure of the
proximity between two probabilities ν and γ (note that H(ν | γ) ≥ 0 and H(ν | γ) = 0
if and only if ν = γ), which is moreover stronger than the total variation distance
by the Pinsker-Csizsár-Kullback inequality

TV(ν, γ) ≤
√

1
2

H
(
ν | γ)

(see, e.g. [V09, Remark 22.12]).
The proof of (1.3) is achieved by the classical interpolation scheme along the

Ornstein–Uhlenbeck semigroup (Pt)t≥0 towards the logarithmic Sobolev inequality,
but modified for time t away from 0 by a further integration by parts involving
the Stein kernel. Indeed, while the exponential decay Iγ(Pth) ≤ e−2t Iγ(h) of the
Fisher information classically produces the logarithmic Sobolev inequality (1.1), the
argument is supplemented by a different control of Iγ(Pth) by the Stein discrepancy
for t > 0.

We call the inequality (1.3) HSI, connecting entropy H, Stein discrepancy S and
Fisher information I, by analogy with the celebrated Otto-Villani HWI inequality
[OV00] relating entropy H, (quadratic) Wasserstein distance W (W2) and Fisher
information I. We actually provide in Section 3 a comparison between the HWI
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and HSI inequalities (suggesting even an HWSI inequality). Moreover, based on the
approach developed in [OV00], we prove that

W2(ν, γ) ≤ S
(
ν | γ)

arccos
(
e
− H(ν | γ)

S2(ν | γ)

)
, (1.4)

an inequality that improves upon the celebrated Talagrand quadratic transportation
cost inequality [T96]

W2
2(ν, γ) ≤ 2 H

(
ν | γ)

(since arccos(e−r) ≤ √
2r for every r ≥ 0). We shall refer to (1.4) as the ‘WSH

inequality’. Note also that W2(ν, γ) ≤ S(ν | γ) so that, as entropy, the Stein dis-
crepancy is a stronger measurement than the Wasserstein metric W2.

The new HSI inequality put forward in this work has a number of significant ap-
plications to exponential convergence to equilibrium and concentration inequalities.
For example, the standard exponential decay of entropy H(νt | γ) ≤ e−2t H(ν0 | γ)
along the flow dνt = Pthdγ, t ≥ 0 (ν0 = ν, ν∞ = γ), which characterizes the loga-
rithmic Sobolev inequality (1.1) may be strengthened under finiteness of the Stein
discrepancy S = S(ν | γ) = S(ν0 | γ) into

H
(
νt | γ) ≤ e−4t

e−2t + 1−e−2t

S2 H(ν0 | γ)
H

(
ν0 | γ) ≤ e−4t

1 − e−2t
S2

(
ν0 | γ)

(1.5)

(see Corollary 2.7 for a precise statement). On the other hand, logarithmic Sobolev
inequalities are classically related to (Gaussian) concentration inequalities by means
of the Herbst argument (cf. e.g. [Le01,BLM13]). Stein’s method has also been used
to this task in [Ch12], going back however to the root of the methodology of ex-
changeable pairs. The basic principle emphasized in this work actually allows us to
directly quantify concentration properties of a probability ν on R

d in terms of its
Stein discrepancy with respect to the standard Gaussian measure. As a result, for
any 1-Lipschitz function u : R

d → R with mean zero, and any p ≥ 2,
(∫

Rd

|u|pdν

)1/p

≤ C
(
Sp

(
ν | γ)

+
√

p +
√

p
√

Sp

(
ν | γ) )

(1.6)

where C > 0 is numerical and

Sp

(
ν | γ)

=
(∫

Rd

‖τν − Id‖p
HS dν

)1/p

.

(When ν = γ, the result fits the standard Gaussian concentration properties.) In
other words, the growth of the Stein discrepancy Sp(ν | γ) in p entails concentration
properties of the measure ν in terms of the growth of its moments. This result is one
very first instance showing how to directly transfer informations on the Stein kernel
into concentration properties. It yields for example that if Tn = 1√

n
(X1 + · · · + Xn)

where X1, . . . , Xn are independent with common distribution ν in R
d with mean
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zero and covariance matrix Id, for any 1-Lipschitz function u : R
d → R such that

E(u(Tn)) = 0,

P
(
u(Tn) ≥ r

) ≤ C e−r2/C

for all 0 ≤ r ≤ rn where rn → ∞ according to the growth of Sp(ν | γ) as p → ∞.
While put forward for the Gaussian measure γ, the question of the validity of (a

form of) the HSI and WSH inequalities for other reference measures should be ad-
dressed. Natural examples exhibiting HSI inequalities may be described as invariant
measures of second order differential operators (on R

d) in order to run the semigroup
interpolation scheme. The prototypical example is of course the Ornstein–Uhlenbeck
operator with the standard Gaussian measure as invariant measure. But gamma or
beta distributions associated to Laguerre or Jacobi operators may be covered in the
same way, as well as families of log-concave measures. It should be mentioned that
the definition of Stein kernel has then to be adapted to the diffusion coefficient of
the underlying differential operator. The use of second order differential operators in
order to study multidimensional probabilistic approximations plays a fundamental
role in the so-called generator approach to Stein’s method, as introduced in the sem-
inal references [Ba90,G91]; see also [R05] for a survey on the subject. A convenient
setting to work out this investigation is the one of Markov Triples (E, μ,Γ) and
semigroups (Pt)t≥0 as emphasized in [BGL14] allowing for the Γ-calculus and the
necessary heat kernel bounds in terms of the iterated gradients Γn. In particular,
while the classical Bakry-Émery Γ2 criterion [BE85,BGL14] ensures the validity of
the logarithmic Sobolev inequality in this context, it is worth mentioning that the
analysis towards the HSI bound makes critical use of the associated Γ3 operator, a
rather new feature in the study of functional inequalities.

As alluded to above, the HSI inequality (1.3) is designed to yield entropic central
limit theorems for sequences of probability measures of the form dνn = hndγ, n ≥ 1,
such that sn = S(νn | γ) → 0 and

log
(

1 +
I(νn | γ)

s2
n

)
= o(s−2

n ), n → ∞.

This is achieved, for instance, when the sequence I(νn | γ), n ≥ 1, is bounded. How-
ever, the principle behind the HSI inequality may actually be used to deduce en-
tropic convergence (with explicit rates) in more delicate situations, including cases
for which I(νn | γ) → ∞. Indeed, it was one main achievement of the work [NPS13]
in the context of Wiener chaoses to set up bounds involving entropy and the Stein
discrepancy without conditions on the Fisher information. Specifically, it was proved
in [NPS13] that the entropy with respect to the Gaussian measure γ of the distri-
bution on R

d of a vector F = (F1, . . . , Fd) of Wiener chaoses may be controlled by
the Stein discrepancy, providing the first multidimensional entropic approximation
results in this context. The key feature underlying the HSI inequality is the con-
trol as t → 0 of the Fisher information Iγ(Pth) along the semigroup (where h the
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density with respect to γ of the law of F ) by the Stein discrepancy. The arguments
in [NPS13] actually provide the suitable small time behavior of Iγ(Pth) relying on
specific properties of the functionals (Wiener chaoses) under investigation and tools
from Malliavin calculus.

In the second part of the work, we therefore develop a general approach to cover
the results of [NPS13] and to include a number of further potential instances of
interest. As before, the setting of a Markov Triple (E, μ,Γ) provides a convenient
abstract framework to achieve this goal in which the Γ-calculus appears as a kind of
substitute to the Malliavin calculus in this context. Let Ψ be the function 1 + log r
on R+ but linearized by r on [0, 1], that is, Ψ(r) = 1 + log r if r ≥ 1 and Ψ(r) = r if
0 ≤ r ≤ 1 (note that Ψ(r) ≤ r for every r ∈ R+). A typical conclusion is a bound of
the type

H
(
νF | γ) ≤ CF S2

(
νF | γ)

Ψ
(

C̃F

S2(νF | γ)

)
(1.7)

of the relative entropy of the distribution νF of a vector F = (F1, . . . , Fd) on (E, μ,Γ)
with respect to γ by the Stein discrepancy S(νF | γ), where CF , C̃F > 0 depend on
integrability properties of F , the carré du champ operators Γ(Fi, Fj), i, j = 1, . . . , d,
and the inverse of the determinant of the matrix (Γ(Fi, Fj))1≤i,j≤d. In particular,
H(νF | γ) → 0 as S(νF | γ) → 0 providing therefore entropic convergence under the
Stein discrepancy. The general results obtained here cover not only normal approx-
imation but also gamma approximation.

The inequality (1.7) thus transfers bounds on the Stein discrepancy to entropic
bounds. The issue of controlling the Stein discrepancy S(νF | γ) itself (in terms of
moment conditions for example) is not addressed here, and has been the subject of
numerous recent studies around the so-called Nualart-Peccati fourth moment the-
orem (cf. [NP12]). This investigation is in particular well adapted to functionals
F = (F1, . . . , Fd) whose coordinates are eigenfunctions of the underlying Markov
generator. See [ACP13,AMMP13,Le12] for several results in this direction and
[NP12, Chapters 5–6] for a detailed discussion of estimates on S(νF | γ) that are
available for random vectors F living on the Wiener space.

The structure of the paper thus consists of two main parts, the first one devoted
to the new HSI and WSH inequalities, the second one to an investigation of entropic
bounds via the Stein discrepancy. Section 2 is devoted to the proof and discussions
of the HSI inequality in the Gaussian case, with a first sample of illustrations and
applications to convergence to equilibrium and measure concentration. In Section 3,
we investigate connections between the Stein discrepancy, Wasserstein distances and
transportation cost inequalities, in particular the HWI inequality, and establish the
WSH inequality. Extensions of the HSI inequality to more general distributions
arising as invariant probability measures of second order differential operators are
addressed in Section 4. The second part consists of Section 5 which develops a
general methodology (in the context of Markov Triples) to reach entropic bounds on
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densities of families of functionals under conditions which do not necessarily involve
the Fisher information.

2 Logarithmic Sobolev Inequality and Stein Discrepancy

Throughout this section, we fix an integer d ≥ 1 and let γ = γd indicate the standard
Gaussian measure on the Borel sets of R

d.

2.1 Stein kernel and discrepancy. Let ν be a probability measure on the
Borel sets of R

d. In view of the forthcoming definitions, we shall always assume
(without loss of generality) that ν is centered, that is,

∫
Rd xj dν(x) = 0, j = 1, . . . , d.

As alluded to in the introduction, a measurable matrix-valued map on R
d

x �→ τν(x) =
{
τ ij
ν (x) : i, j = 1, . . . , d

}

is said to be a Stein kernel for ν if τ ij
ν ∈ L1(ν) for every i, j and, for every smooth

ϕ : R
d → R,

∫

Rd

x · ∇ϕ dν =
∫

Rd

〈
τν , Hess(ϕ)

〉
HS

dν. (2.1)

Observe from (2.1) that, without loss of generality, one may and will assume in
the sequel that τ ij

ν (x) = τ ji
ν (x) ν-a.e., i, j = 1, . . . , d. Also, by choosing ϕ = xi,

i = 1, . . . , d, in (2.1) one sees that, if ν admits a Stein kernel, then ν is necessarily
centered. Moreover, by selecting ϕ = xixj , i, j = 1, . . . , d, and since τ ij

ν = τ ji
ν ,

∫

Rd

xixj dν =
∫

Rd

τ ij
ν dν, i, j = 1, . . . , d

(and in particular ν has finite second moments).

Remark 2.1. (a) Let d = 1 and assume that ν has a density ρ with respect to
the Lebesgue measure on R. In this case, it is easily seen that, whenever it
exists, the Stein kernel τν is uniquely determined (up to sets of zero Lebesgue
measure). Moreover, under standard regularity assumptions on ρ, one deduces
from integration by parts that a version of τν is given by

τν(x) =
1

ρ(x)

∫ ∞

x
yρ(y)dy (2.2)

for x inside the support of ρ.
(b) In dimension d ≥ 2, a Stein kernel τν may not be unique—see [NPS14, Appen-

dix A (available on arXiv)].
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(c) It is important to notice that, in dimension d ≥ 2, the definition (2.1) of
Stein kernel is actually weaker than the one used in [NPS13,NPS14]. Indeed,
in those references a Stein kernel τν is required to satisfy the stronger ‘vector’
[as opposed to the trace identity (2.1)] relation

∫

Rd

x ϕ dν =
∫

Rd

τν∇ϕ dν (2.3)

for every smooth test function ϕ : R
d → R. The definition (2.1) of a Stein

kernel adopted in the present paper allows one to establish more transparent
connections between normal and non-normal approximations, such as the ones
explored in Section 4. Observe that it will be nevertheless necessary to use
Stein kernels in the strong sense (2.3) when dealing with Wasserstein distances
of order = 2 in Section 3.2.

Definition (2.1) is directly inspired by the Gaussian integration by parts formula
according to which

∫

Rd

x · ∇ϕ dγ =
∫

Rd

Δϕ dγ =
∫

Rd

〈
Id, Hess(ϕ)

〉
HS

dν (2.4)

so that the proximity of τν with the identity matrix Id indicates that ν should be
close to γ. In particular, it should be clear that the notion of Stein kernel in the sense
of (2.1) is motivated by normal approximation. Section 4 will introduce analogous
definitions adapted to the target measure in the context of the generator approach to
Stein’s method. Whenever a Stein kernel exists, we consider to this task the quantity,
called Stein discrepancy of ν with respect to γ in the introduction,

S
(
ν | γ)

= ‖τν − Id‖2,ν =
( ∫

Rd

‖τν − Id‖2
HS dν

)1/2

.

(Note that S(ν | γ) may be infinite if one of the τ ij
ν ’s is not in L2(ν).) Whenever

S(ν | γ) = 0, then ν = γ since τν is the identity matrix (see e.g. [NP12, Lemma 4.1.3]).
Observe also that if C denotes the covariance matrix of ν, then

S2
(
ν | γ)

=
d∑

i,j=1

Varν (τ ij
ν ) + ‖C − Id‖2

HS, (2.5)

where Varν indicates the variance under the probability measure ν.

2.2 The Gaussian HSI inequality. As before, write dν = hdγ to indicate a
centered probability measure on R

d which is absolutely continuous with density h
with respect to the standard Gaussian distribution γ. We assume that there exists
a Stein kernel τν for ν as defined in (2.1) of the preceding section.

The following result emphasizes the Gaussian HSI inequality connecting entropy
H, Stein discrepancy S and Fisher information I. In the statement, we use the conven-
tions 0 log(1+ s

0) = 0 and ∞ log(1+ s
∞) = s for every s ∈ [0, ∞], and r log(1+∞

r ) = ∞
for every r ∈ (0, ∞).
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Theorem 2.2 (Gaussian HSI inequality). For any centered probability measure
dν = hdγ on R

d with smooth density h with respect to γ,

H
(
ν | γ) ≤ 1

2
S2

(
ν | γ)

log
(

1 +
I(ν | γ)
S2(ν | γ)

)
. (2.6)

Since r log
(
1 + s

r

) ≤ s for every r > 0, s ≥ 0, the HSI inequality (2.6) improves
upon the standard logarithmic Sobolev inequality (1.1). It may be observed also
that the HSI inequality immediately produces the (classical) equality case in this
logarithmic Sobolev inequality. Indeed, due to the centering hypothesis, equality is
achieved only for the Gaussian measure γ itself (if not, recenter first ν so that the
only extremals of (1.1) have densities em·x−|m|2/2, m ∈ R

d, with respect to γ). To
this task, assume by contradiction that S(ν | γ) > 0. Then, if H(ν | γ) = 1

2 I(ν | γ),
the HSI inequality (2.6) yields

I(ν | γ)
S2(ν | γ)

≤ log
(

1 +
I(ν | γ)
S2(ν | γ)

)

from which I(ν | γ) = 0, and therefore ν = γ, which is in contrast with the assumption
S(ν | γ) > 0. As a consequence, we infer that S(ν | γ) = 0, from which it follows that
ν = γ.

The HSI inequality (2.6) may be extended to the case of a centered Gaussian
distribution on R

d with a general non-degenerate covariance matrix C. We denote
such a measure by γC , so that γ = γId. We also denote by ‖C‖op the operator norm
of C, that is, ‖C‖op is the largest eigenvalue of C.

Corollary 2.3 (Gaussian HSI inequality, general covariance). Let γC be as above
(with C non-singular), and let dν = hdγC be centered with smooth probability
density h with respect to γC . Assume that ν admits a Stein kernel τν in the sense
of (2.1). Then,

H
(
ν | γC

) ≤ 1
2

∥∥C− 1
2 τν C− 1

2 − Id
∥∥2

2,ν
log

(
1 +

‖C‖op I(ν | γC)

‖C− 1
2 τν C− 1

2 − Id‖2
2,ν

)
,

where C− 1
2 denotes the unique symmetric non-singular matrix such that

(C− 1
2 )

2
= C−1.

Corollary 2.3 is easily deduced from Theorem 2.2 and details are left to the
reader. The argument simply uses that if M is the unique non-singular symmetric
matrix such that C = M2, then H(ν | γC) = H(ν0 | γ) where dν0(x) = h(Mx)dγ(x).

2.3 Proof of the Gaussian HSI inequality. According to our conventions, if
either S(ν | γ) or I(ν | γ) is infinite, then (2.6) coincides with the logarithmic Sobolev
inequality (1.1). On the other hand, if S(ν | γ) or I(ν | γ) equals zero, then ν = γ,
and therefore H(ν | γ) = 0. It follows that, in order to prove (2.6), we can assume
without loss of generality that S(ν | γ) and I(ν | γ) are both non-zero and finite.
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The proof of Theorem 2.2 is based on the heat flow interpolation along the
Ornstein–Uhlenbeck semigroup. We recall a few basic facts in this regard, and refer
the reader to e.g. [BGL14, Section 2.7.1] for any unexplained definition or result.
Let thus (Pt)t≥0 be the Ornstein–Uhlenbeck semigroup on R

d with infinitesimal
generator

Lf = Δf − x · ∇f =
d∑

i=1

∂2f

∂x2
i

−
d∑

i=1

xi
∂f

∂xi
(2.7)

(acting on smooth functions f), invariant and symmetric with respect to γ. We shall
often use the fact that the action of Pt on smooth functions f : R

d → R admits the
integral representation (sometimes called Mehler’s formula)

Ptf(x) =
∫

Rd

f
(
e−tx +

√
1 − e−2t y

)
dγ(y), t ≥ 0, x ∈ R.

The semigroup is trivially extended to vector-valued functions f : R
d → R

d. In
particular, if f : R

d → R is smooth enough,

∇Ptf = e−tPt(∇f). (2.8)

One technical important property (part of the much more general Bismut formulas
in a geometric context [Bi84,BGL14]) is the identity, between vectors in R

d,

Pt(∇f)(x) =
1√

1 − e−2t

∫

Rd

y f
(
e−tx +

√
1 − e−2t y

)
dγ(y), (2.9)

owing to a standard integration by parts of the Gaussian density.
The generator L is a diffusion and satisfies the integration by parts formula

∫

Rd

f Lg dγ = −
∫

Rd

∇f · ∇g dγ (2.10)

on smooth functions f, g : R
d → R. In particular, given the smooth probability

density h with respect to γ,

Iγ(h) =
∫

Rd

|∇h|2
h

dγ =
∫

Rd

|∇(log h)|2hdγ = −
∫

Rd

L(log h)hdγ.

As dν = hdγ, setting v = log h,

I
(
ν | γ)

= Iγ(h) =
∫

Rd

|∇v|2dν = −
∫

Rd

Lv dν. (2.11)

(These expressions should actually be considered for h + ε as ε → 0.) Using Pth
instead of h in the previous relations and writing vt = log Pth, one deduces from the
symmetry of Pt that

I
(
νt | γ)

= Iγ(Pth) =
∫

Rd

|∇Pth|2
Pth

dγ = −
∫

Rd

Lvt Pthdγ = −
∫

Rd

LPtvt dν.

(2.12)
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Recall finally that if dνt = Pthdγ, t ≥ 0 (with ν0 = ν and νt → γ), the classical
de Bruijn’s formula (see e.g. [BGL14, Proposition 5.2.2]) indicates that

d

dt
H

(
νt | γ)

= − I
(
νt | γ)

. (2.13)

Theorem 2.2 will follow from the next Proposition 2.4. In this proposition, (i)
corresponds to the integral version of (2.13) whereas (ii) describes the well-known ex-
ponential decay of the Fisher information along the Ornstein–Uhlenbeck semigroup.
This decay actually yields the logarithmic Sobolev inequality (1.1), see [BGL14,
Section 5.7]. The new third point (iii) is a reformulation of [NPS13, Theorem 2.1]
for which we provide a self-contained proof. It describes an alternate bound on the
Fisher information along the semigroup in terms of the Stein discrepancy for values
of t > 0 away from 0. It is the combination of (ii) and (iii) which will produce the
HSI inequality. Point (iv) will be needed in the forthcoming proof of the WSH in-
equality (1.4), as well as in the proof of Proposition 3.1 providing a direct bound of
the Wasserstein distance W2 by the Stein discrepancy.

Proposition 2.4. Under the above notation and assumptions, denote by τν a Stein
kernel of dν = hdγ. For every t > 0, recall dνt = Pth dγ, and write vt = log Pth.
Then,

(i) (Integrated de Bruijn’s formula)

H
(
ν | γ)

= Entγ(h) =
∫ ∞

0
Iγ(Pth)dt. (2.14)

(ii) (Exponential decay of Fisher information) For every t ≥ 0,

I
(
νt | γ)

= Iγ(Pth) ≤ e−2t Iγ(h) = e−2t I
(
ν0 | γ)

. (2.15)

(iii) For every t > 0,

Iγ(Pth) =
e−2t

√
1 − e−2t

∫

Rd

∫

Rd

[(
τν(x) − Id

)
y

· ∇vt

(
e−tx +

√
1 − e−2t y

)]
dν(x)dγ(y). (2.16)

As a consequence, for every t > 0,

I
(
νt | γ)

= Iγ(Pth) ≤ e−4t

1 − e−2t
‖τν − Id‖2,ν =

e−4t

1 − e−2t
S2

(
ν0 | γ)

. (2.17)

(iv) (Exponential decay of Stein discrepancy) For every t ≥ 0,

S
(
νt | γ) ≤ e−2t S

(
ν0 | γ)

. (2.18)
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Proof. In view of the preceding discussion, only the proofs of (iii) and (iv) need to
be detailed. Throughout the various analytical arguments below, it may be assumed
that the density h is regular enough, the final conclusions being then reached by
approximation arguments as e.g. in [OV00,BGL14]. Starting with (iii), use (2.12)
and the definition (2.1) of τν to write, for any t > 0,

Iγ(Pth) = −
∫

Rd

LPtvt dν = −
∫

Rd

[
ΔPtvt − x · ∇Ptvt

]
dν

=
∫

Rd

〈
τν − Id, Hess(Ptvt)

〉
HS

dν.

(2.19)

Now, for all i, j = 1, . . . , d, by (2.8) and (2.9),

∂ijPtvt(x) = e−2tPt(∂ijvt)(x) =
e−2t

√
1 − e−2t

∫

Rd

yi
∂vt

∂xj

(
e−tx +

√
1 − e−2t y

)
dγ(y).

Hence
∫

Rd

〈
τν − Id, Hess(Ptvt)

〉
HS

dν

=
e−2t

√
1 − e−2t

∫

Rd

∫

Rd

[(
τν(x) − Id

)
y · ∇vt

(
e−tx +

√
1 − e−2t y

)]
dν(x)dγ(y)

which is (2.16). To deduce the estimate (2.17), it suffices to apply (twice) the Cauchy-
Schwarz inequality to the right-hand side of (2.16) in such a way that, by integrating
out the y variable,

Iγ(Pth) ≤ e−2t

√
1 − e−2t

∫

Rd

∫

Rd

∣
∣(τν(x) − Id

)
y
∣
∣
∣
∣∇vt

(
e−tx +

√
1 − e−2t y

)∣∣dν(x)dγ(y)

≤ e−2t

√
1 − e−2t

( ∫

Rd

‖τν − Id‖2
HS dν

)1/2(∫

Rd

Pt

(|∇vt|2
)
dν

)1/2

.

Since
∫

Rd

Pt

(|∇vt|2
)
dν =

∫

Rd

Pt

(|∇vt|2
)
hdγ =

∫

Rd

|∇vt|2Pthdγ = Iγ(Pth)

by symmetry of Pt, the proof of (2.17) is complete.
Let us now turn to the proof of (2.18). For any smooth test function ϕ on R

d,
by symmetry of (Pt)t≥0, for any t ≥ 0,

∫

Rd

x · ∇ϕ dνt =
∫

Rd

x · ∇ϕ Pth dγ =
∫

Rd

Pt(x · ∇ϕ)hdγ =
∫

Rd

Pt(x · ∇ϕ)dν.

By the integral representation of Pt,
∫

Rd

Pt(x · ∇ϕ)dν = e−t

∫

Rd

∫

Rd

x · ∇ϕ
(
e−tx +

√
1 − e−2t y

)
dν(x)dγ(y)

+
√

1 − e−2t

∫

Rd

∫

Rd

y · ∇ϕ
(
e−tx +

√
1 − e−2t y

)
dν(x)dγ(y).
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Use now the definition of τν in the x variable and integration by parts in the y
variable to get that
∫

Rd

Pt(x · ∇ϕ)dν = e−2t

∫

Rd

∫

Rd

〈
τν(x),

(
Hess(ϕ)

)(
e−tx+

√
1−e−2t y

)〉
HS

dν(x)dγ(y)

+ (1 − e−2t)
∫

Rd

∫

Rd

Δϕ
(
e−tx +

√
1 − e−2t y

)
dν(x)dγ(y)

= e−2t

∫

Rd

〈
τν , Pt

(
Hess(ϕ)

)〉
HS

dν + (1 − e−2t)
∫

Rd

Pt(Δϕ)dν

= e−2t

∫

Rd

〈
Pt(hτν), Hess(ϕ)

〉
HS

dγ + (1 − e−2t)
∫

Rd

Δϕ Pth dγ.

As a consequence, a Stein kernel for νt is

τνt = e−2t Pt(hτν)
Pth

+ (1 − e−2t) Id. (2.20)

Therefore,
∫

Rd

‖τνt − Id‖2
HS dνt = e−4t

∫

Rd

‖Pt(h(τν − Id))‖2
HS

Pth
dγ.

By the Cauchy-Schwarz inequality along Pt,
∥
∥Pt

(
h(τν − Id)

)∥∥2

HS
≤ Pt

(
h‖τν − Id‖2

HS

)
Pth.

Hence,
∫

Rd

‖τνt − Id‖2
HS dνt ≤ e−4t

∫
Pt

(
h‖τν − Id‖2

HS

)
dγ

= e−4t

∫

Rd

‖τν − Id‖2
HS hdγ = e−4t

∫

Rd

‖τν − Id‖2
HS dν,

that is the announced result (iv). Proposition 2.4 is established. ��

Remark 2.5. For every t > 0, it is easily checked that the mapping x �→ τνt(x)
appearing in (2.20) admits the probabilistic representation

τνt(x) = E
[
e−2tτν(F ) + (1 − e−2t) Id | Ft = x

]
dνt(x)−a.e., (2.21)

where, on some probability space (Ω, F , P), F has distribution ν and
Ft = e−tF +

√
1 − e−2tZ, with Z a d-dimensional vector with distribution γ, in-

dependent of F .

We are now in a position to prove Theorem 2.2.
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Proof of Theorem 2.2. As announced, on the basis of the interpolation (2.14), we
apply (2.15) and (2.17) respectively to bound the Fisher information Iγ(Pth) for t
around 0 and away from 0. We thus get, for every u > 0,

H
(
ν | γ)

=
∫ u

0
Iγ(Pth)dt +

∫ ∞

u
Iγ(Pth)dt

≤ I
(
ν | γ) ∫ u

0
e−2tdt + S2

(
ν | γ) ∫ ∞

u

e−4t

1 − e−2t
dt

≤ 1
2

I
(
ν | γ)

(1 − e−2u) +
1
2

S2
(
ν | γ)( − e−2u − log(1 − e−2u)

)
.

Optimizing in u (set 1 − e−2u = r ∈ (0, 1)) concludes the proof. ��
Remark 2.6. It is worth mentioning that a slight modification of the proof of (iii)
in Proposition 2.4 leads to the improved form of the exponential decay (2.15) of the
Fisher information

I
(
νt | γ) ≤ e−2t S2(ν | γ) I(ν | γ)

S2(ν | γ) + (e2t − 1) I(ν | γ)
. (2.22)

As for the classical logarithmic Sobolev inequality, the inequality (2.22) may be inte-
grated along de Bruijin’s formula (2.13) towards the better, although less tractable,
HSI inequality

H ≤ S2 I
2(S2 − I)

(
1 +

I
S2 − I

log
( I

S2

))

(understood in the limit as S2 = I), where H = H(ν | γ), S = S(ν | γ) and I = I(ν | γ).

Together with the de Bruijn identity (2.13), the classical logarithmic Sobolev
inequality (1.1) ensures the exponential decay in t ≥ 0 of the relative entropy

H
(
νt | γ) ≤ e−2t H

(
ν0 | γ)

(2.23)

along the Ornstein–Uhlenbeck semigroup (cf. e.g. [BGL14, Theorem 5.2.1]). The new
HSI produces a reinforcement of this exponential convergence to equilibrium under
finiteness of the Stein discrepancy.

Corollary 2.7 (Exponential decay of entropy from HSI). Let ν with Stein discrep-
ancy S(ν | γ) = S. For any t ≥ 0,

H
(
νt | γ) ≤ e−4t

e−2t + 1−e−2t

S2 H(ν0 | γ)
H

(
ν0 | γ) ≤ e−4t

1 − e−2t
S2

(
ν0 | γ)

. (2.24)

Proof. Together with (2.18) and since r �→ r log
(
1+ s

r

)
is increasing for any fixed s,

the HSI inequality applied to νt implies that

H
(
νt | γ) ≤ e−4t S2

2
log

(
1 +

e4t I(νt | γ)
S2

)
.
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Set U(t) = e4t

S2 H(νt | γ), t ≥ 0, so that by (2.13), U ′ = 4U − e4t

S2 I(νt | γ). The latter
inequality therefore rewrites as

e2U − 1 − 4U ≤ −U ′. (2.25)

Since er−1−r ≥ r2

2 for r ≥ 0, this inequality may be relaxed into −2U + 2U2 ≤ −U ′.
Setting V (t) = e−2tU(t), t ≥ 0, it follows that 2e2tV 2(t) ≤ −V ′(t) so that, after in-
tegration,

e2t − 1 ≤ 1
V (t)

− 1
V (0)

.

By definition of V , this inequality amounts to the conclusion of Corollary 2.7 and
the proof is complete. ��

2.4 Stein discrepancy and concentration inequalities. This paragraph in-
vestigates another feature of Stein’s discrepancy applied to concentration inequal-
ities. It is of course by now classical that logarithmic Sobolev inequalities may be
used as a robust tool towards (Gaussian) concentration inequalities (cf. e.g. [Le01,
BLM13]). For example, for the standard Gaussian measure γ itself, the Herbst ar-
gument yields that for any 1-Lipschitz function u : R

d → R with mean zero,

γ(u ≥ r) ≤ e−r2/2, r ≥ 0. (2.26)

Equivalently (up to numerical constants) in terms of moment growth,

(∫

Rd

|u|pdγ

)1/p

≤ C
√

p, p ≥ 1. (2.27)

Here, we describe how to directly implement Stein’s discrepancy into such con-
centration inequalities on the basis of the principle leading to the HSI inequality. If
ν is a probability measure on the Borel sets of R

d with Stein kernel τν , set for p ≥ 1,

Sp

(
ν | γ)

=
(∫

Rd

‖τν − Id‖p
HS dν

)1/p

.

Hence S2(ν | γ) = S(ν | γ) is the Stein discrepancy as defined earlier. Recall ‖ · ‖op

the operator norm on the d × d matrices.

Theorem 2.8 (Moment bounds and Stein discrepancy). Let ν have Stein kernel
τν . There exists a numerical constant C > 0 such that for every 1-Lipschitz function
u : R

d → R with
∫

Rd udν = 0, and every p ≥ 2,

(∫

Rd

|u|pdν

)1/p

≤ C

[
Sp

(
ν | γ)

+
√

p

(∫

Rd

‖τν‖p/2
op dν

)1/p]
. (2.28)
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Before turning to the proof of this result, let us comment on its measure concen-
tration content. One first important aspect is that the constant C is dimension free.
When ν = γ, (2.28) exactly fits the Gaussian case (2.27). In general, the moment
growth in p describes various concentration regimes of ν (cf. [Le01, Section 1.3],
[BLM13, Chapter 14]) according to the growth of the p-Stein discrepancy Sp(ν | γ).

In view of the elementary estimate ‖τν‖op ≤ 1 + ‖τν − Id‖HS, the conclusion
(2.28) immediately yields the moment growth (1.6) emphasized in the introduction

( ∫

Rd

|u|pdν

)1/p

≤ C
(
Sp

(
ν | γ)

+
√

p +
√

p
√

Sp

(
ν | γ) )

.

Note that there is already an interest to write this bound for p = 2,

Varν(u) ≤ C
(
1 + S

(
ν | γ)

+ S2
(
ν | γ) )

.

Together with E. Milman’s Lipschitz characterization of Poincaré inequalities for log-
concave measures [M09], it shows that the Stein discrepancy S(ν | γ) with respect to
the standard Gaussian measure is another control of the spectral properties in this
class of measures.

Similar inequalities hold for arbitrary covariances by suitably adapting the Stein
kernel as in Corollary 2.3.

A main example of illustration of Theorem 2.8 concerns sums of independent
random vectors. Consider X a mean zero random variable on a probability space
(Ω, F , P) with values in R

d, and X1, . . . , Xn independent copies of X. Assume that
the law ν of X admits a Stein kernel τν . Setting Tn = 1√

n

∑n
k=1 Xk, it is easily seen

by independence that, as matrices, a Stein kernel τνn
of the law νn of Tn satisfies

τνn
(Tn) = E

[
1
n

n∑

k=1

τν(Xk)
∣∣
∣ Tn

]
.

Hence,

Sp

(
νn | γ) ≤ E

[∥
∥
∥∥

1
n

n∑

k=1

[
τν(Xk) − Id

]
∥
∥
∥∥

p

HS

]1/p

.

By the triangle inequality, the latter is bounded from above by

E
[‖τν(X) − Id‖p

HS

]1/p = Sp

(
ν | γ)

= Sp

which produces a first bound of interest. If it is assumed in addition that the co-
variance matrix of X is the identity, we may use classical inequalities for sums of
independent centered random vectors (in Euclidean space) to the family τν(Xk)−Id,
k = 1, . . . , n. Hence, by for example Rosenthal’s inequality (see e.g. [BLM13,
MJCFT14), for p ≥ 2,

E

[∥∥
∥∥

1
n

n∑

k=1

[
τν(Xk) − Id

]
∥∥
∥∥

p

HS

]1/p

≤ Kp n−1/2 Sp.
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Together with (1.6), it yields a growth control of the moments of u(Tn) for any
Lipschitz function u, and therefore concentration of the law of Tn. More precisely,
and since it is known that Kp = O(p), for any 1-Lipschitz function u : R

d → R such
that E(u(Tn)) = 0,

E
[∣∣u(Tn)

∣
∣p]1/p ≤ C

√
p

(
1 + n−1/2 √

p Sp + n−1/4
√

p Sp

)

for some numerical C > 0. Note that the bound is optimal both for ν = γ and
as n → ∞ describing the standard Gaussian concentration (2.27). By Markov’s
inequality, optimizing in p ≥ 2, one deduces that for some numerical C ′ > 0,

P
(
u(Tn) ≥ r

) ≤ C ′ e−r2/C′
(2.29)

for all 0 ≤ r ≤ rn where rn → ∞ according to the growth of Sp as p → ∞. For
example, if Sp = O(pα) for some α > 0 (see below for such illustrations), then

E
[∣∣u(Tn)

∣∣p]1/p ≤ C
√

p

(for some possibly different numerical C > 0) for every p ≤ n
1

2α+2 . By Markov’s
inequality in this range of p,

P
(∣∣u(Tn)

∣
∣ ≥ r

) ≤
(C

√
p

r

)p
,

and with p ∼ r2

4C2 , the claims follows with rn of the order of n
1

4α+4 .
For the applications of the concentration inequality (2.29), it is therefore useful

to provide a handy set of conditions ensuring a suitable control of (the growth in
p of) Sp = Sp(ν | γ), that is of the moments of the Stein kernel τν(X) of a given
random variable X with law ν. The following remark collects families of examples
in dimension one. Together with this remark, (2.29) therefore produces with the
Stein methodology concentration properties for measures not necessarily satisfying
a logarithmic Sobolev inequality. For example, the conclusion may be applied to a
vector X with independent coordinates in R

d each of them of the Pearson class as
described in (b) of the following Remark 2.9.

Remark 2.9. For concreteness, we describe two classes of one-dimensional distrib-
utions such that the associated Stein kernel has finite moments of all orders. Denote
by X a centered real-valued random variable with law ν and Stein kernel τν . Recall
from (2.2) of Remark 2.1, that if ν has density ρ with respect to the Lebesgue mea-
sure, a version of τν is given by τν(x) = ρ(x)−1

∫ ∞
x yρ(y)dy for x inside the support

of ρ.

(a) Assume that ρ(x) = q(x) e−x2/2√
2π

, x ∈ R, where q is smooth and satisfies the
uniform bounds q(x) ≥ c > 0 et |q′(x)| ≤ C < ∞ for constants c, C > 0.
Therefore,

τν(x) = 1 +
e−x2/2

q(x)

∫ ∞

x
q′(y)e−y2/2dy = 1 − e−x2/2

q(x)

∫ x

−∞
q′(y)e−y2/2dy.
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Studying separately the two cases x > 0 and x < 0, it easily follows that
|τν(x) − 1| ≤

√
2πC
c , and consequently E[|τν(X)|r] < ∞ for every r > 0.

(b) Assume that the support of ρ coincides with an open interval of the type (a, b),
with −∞ ≤ a < b ≤ +∞. Say then that the law ν of X is a (centered) member
of the Pearson family of continuous distributions if the density ρ satisfies the
differential equation

ρ′(x)
ρ(x)

=
a0 + a1x

b0 + b1x + b2x2
, x ∈ (a, b), (2.30)

for some real numbers a0, a1, b0, b1, b2. We refer the reader e.g. to [DZ91, Sec. 5.1]
for an introduction to the Pearson family. It is a well-known fact that there
are basically five families of distributions satisfying (2.30): the centered nor-
mal distributions, centered gamma and beta distributions, and distributions
that are obtained by centering densities of the type ρ(x) = Cx−αe−β/x or
ρ(x) = C(1 + x)−α exp(β arctan(x)) (C being a suitable normalizing constant).
According to [Ste86, Theorem 1, p. 65], if τν satisfies

∫ b

0

y

τν(y)
dy = +∞ and

∫ 0

a

y

τν(y)
dy = −∞, (2.31)

then τν(x) = αx2 + βx + γ, x ∈ (a, b) (with α, β, γ real constants) if and only
if ν is a member of the Pearson family in the sense that ρ satisfies (2.30) for
every x ∈ (a, b) with a0 = β, a1 = 2α + 1, b0 = γ, b1 = β and b2 = α. It follows
that if ν is centered member of the Pearson family such that (2.31) is satisfied
and X has finite moments of all orders, so has τν(X). This includes the case of
Gaussian, gamma and beta distribution for example.

Further illustrations of Theorem 2.8 may be developed in the general context of
eigenfunctions on abstract Markov Triples (E, μ,Γ) as addressed in the forthcoming
Section 5. Indeed, let F : E → R be an eigenfunction of the underlying diffusion
operator L with eigenvalues λ > 0 with distribution ν and normalized such that∫
E F 2dμ = 1. Then, according to Proposition 5.1 below, a version of the Stein

kernel is given by

τν =
1
λ

Eμ

[
Γ(F ) | F ]

so that

Sp
p

(
ν | γ) ≤

∫

E

∣∣
∣∣
Γ(F )

λ
− 1

∣∣
∣∣

p

dμ.

In concrete instances, such as Wiener chaos for example, the latter expression may
be easily controled so to yield concentration properties of the underlying distribu-
tion of F . For example, in the setting of the recent [ACP13], it may be shown by



274 M. LEDOUX, I. NOURDIN AND G. PECCATI GAFA

hypercontractive means that for the Hermite, Laguerre or Jacobi (or mixed ones)
chaos structures, for any p ≥ 2,

Sp
p

(
ν | γ) ≤ Cp,λ

(∫

E
F 4dμ − 3

)p/2

.

According to the respective growth in p of Cp,λ, concentration properties on F may
be achieved.

We turn to the proof of Theorem 2.8.

Proof of Theorem 2.8. We only prove the result for p an even integer, the general
case following similarly with some further technicalities. We may also replace the
assumption

∫
Rd udν = 0 by

∫
Rd udγ = 0 by a simple use of the triangle inequality.

Indeed, by Jensen’s inequality,
∣∣
∣∣

∫

Rd

u dν −
∫

Rd

u dγ

∣∣
∣∣

p

≤
∫

Rd

∣∣
∣∣u −

∫

Rd

u dγ

∣∣
∣∣

p

dν

so that if the conclusion (2.28) holds for u satisfying
∫

Rd udγ = 0, it holds similarly
for u satisfying

∫
Rd udν = 0 with maybe 2C instead of C.

We run as in the preceding section the Ornstein–Uhlenbeck semigroup (Pt)t≥0

with infinitesimal generator L = Δ − x · ∇. Let u : R
d → R be 1-Lipschitz, as-

sumed furthermore to be smooth and bounded after a cut-off argument (cf. [Le01,
Section 1.3] for standard technology in this regard). Let thus q ≥ 1 be an integer,
and set

φ(t) =
∫

Rd

(Ptu)2qdν, t ≥ 0.

Under the centering hypothesis
∫

Rd udγ = 0, φ(∞) = 0. Differentiating along (Pt)t≥0

together with the definition of Stein kernel τν yields

φ′(t) = 2q

∫

Rd

(Ptu)2q−1 LPtu dν

= 2q

∫

Rd

(Ptu)2q−1 ΔPtu dν −
∫

Rd

x · ∇(Ptu)2qdν

= 2q

∫

Rd

(Ptu)2q−1 ΔPtu dν −
∫

Rd

〈
τν , Hess

(
(Ptu)2q

)〉
HS

dν

= 2q

∫

Rd

(Ptu)2q−1
〈
Id − τν , Hess(Ptu)〉HS dν

− 2q(2q − 1)
∫

Rd

(Ptu)2q−2〈τν , ∇Ptu ⊗ ∇Ptu〉HS dν.

As in the proof of Proposition 2.4,
∫

Rd

(
Ptu)2q−1〈τν − Id, Hess(Ptu)

〉
HS

dν

=
e−2t

√
1−e−2t

∫

Rd

∫

Rd

(Ptu)2q−1(x)
(
τν(x)−Id

)
y · ∇u

(
e−tx+

√
1−e−2t y

)
dν(x)dγ(y).
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Using that |∇u| ≤ 1 (since u is 1-Lipschitz) and furthermore

|∇Ptu| ≤ e−tPt

(|∇u|) ≤ e−t,

it easily follows as in the previous section that for every t,

−φ′(t) ≤ e−2t

√
1 − e−2t

∫

Rd

2q|Ptu|2q−1‖τν − Id‖HS dν

+ e−2t

∫

Rd

2q(2q − 1)(Ptu)2q−2‖τν‖op dν.

(2.32)

By the Young-Hölder inequality,

2q|Ptu|2q−1‖τν − Id‖HS ≤ 1
α

‖τν − Id‖α
HS +

1
β

[
2q|Ptu|(2q−1)

]β

where α = 2q and (2q − 1)β = 2q, and

2q(2q − 1)(Ptu)2q−2‖τν‖op ≤ 1
α′

[
(2q − 1)‖τν‖op

]α′
+

1
β′

[
2q(Ptu)(2q−2)

]β′

where α′ = q and (2q − 2)β′ = 2q. Therefore (2.32) implies that, for every t,

−φ′(t) ≤ C(t)φ (t) + D(t)

where

C(t) =
e−2t

√
1 − e−2t

(2q)β + e−2t (2q)β′

and

D(t) =
e−2t

√
1 − e−2t

∫

Rd

‖τν − Id‖2q
HS dν + e−2t

∫

Rd

[
(2q − 1)‖τν‖op

]q
dν.

Integrating this differential inequality yields that

φ(t) ≤ eC̃(t)

∫ ∞

t
e−C̃(s)D(s)ds

where C̃(t) =
∫ ∞
t C(s)ds, t ≥ 0. It follows that φ(0) ≤ eC̃(0)

∫ ∞
0 D(s)ds and therefore

∫

Rd

|u|2qdν = φ(0) ≤ eC̃(0)

( ∫

Rd

‖τν − Id‖2q
HS dν +

∫

Rd

[
(2q − 1)‖τν‖op

]q
dν

)
.

Since C̃(0) is bounded above by Cq for some numerical C > 0, the announced claim
follows. The proof of Theorem 2.8 is therefore complete. ��
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2.5 On the rate of convergence in the entropic central limit theorem.
In this last paragraph, we provide a brief and simple application of the HSI inequality
to (yet non optimal) rates in the entropic central limit theorem. Let X be a real-
valued random variable on a probability space (Ω, F , P) with mean zero and variance
one. Let also X1, . . . , Xn be independent copies of X and set

T =
n∑

k=1

akXk

where
∑n

k=1 a2
k = 1.

Assume that the law ν of X has a density h with respect to the standard Gaussian
measure γ on R with (finite) Fisher information I(ν | γ) and a Stein kernel τν with
discrepancy S(ν | γ). Let νT be the law of T . The classical Blachman-Stam inequality
(cf. [Sta59,Bl65,V09]) indicates that

I
(
νT | γ) ≤ I

(
ν | γ)

.

On the other hand, as in the previous paragraph,

τνT
(T ) = E

[ n∑

k=1

a2
kτν(Xk)

∣∣
∣ T

]

so that

S2
(
νT | γ) ≤ α(a) S2

(
ν | γ)

where α(a) =
∑n

i=1 a4
i .

As a consequence therefore of the HSI inequality of Theorem 2.2,

H
(
νT | γ) ≤ 1

2
α(a) S2

(
ν | γ)

log
(

1 +
I(ν | γ)

α(a) S2(ν | γ)

)
. (2.33)

This result has to be compared with the works [ABBN04] and [BJ04] (cf. [J04])
which produce the bound

H
(
νT | γ) ≤ α(a)

c/2 + (1 − c/2)α(a)
H

(
ν | γ)

(2.34)

under the hypothesis that ν satisfies a Poincaré inequality with constant c > 0.
For the classical average Tn = 1√

n

∑n
k=1 Xk, (2.34) yields a rate O( 1

n) in the en-

tropic central limit theorem while (2.33) only produces O( log n
n ), however at a cheap

expense and under potentially different conditions as described in Remark 2.9. For
this classical average, the recent works [BCG13,BCG14a] actually provide a com-
plete picture with rate O( 1

n) under a fourth-moment condition on X based on local
central limit theorems and Edgeworth expansions. General sums T =

∑n
k=1 akXk

are studied in [BCG14b] as a particular case of sums of independent non-identically
distributed random variables. Vector-valued random variables may be considered
similarly.
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3 Transport Distances and Stein Discrepancy

In this section, we develop further inequalities involving the Stein discrepancy, this
time in relation with Wasserstein distances. A new improved form of the Talagrand
quadratic transportation cost inequality, called WSH, is emphasized, and comparison
between the HSI inequality and the Talagrand and Otto-Villani HWI inequalities is
provided. Let again γ = γd denote the standard Gaussian measure on R

d.
Fix p ≥ 1. Given two probability measures ν and μ on the Borel sets of R

d whose
marginals have finite absolute moments of order p, define the Wasserstein distance
(of order p) between ν and μ as the quantity

Wp(ν, μ) = inf
π

(∫

Rd×Rd

|x − y|pdπ(x, y)
)1/p

where the infimum runs over all probability measures π on R
d × R

d with marginals
ν and μ. Relevant information about Wasserstein (or Kantorovich) distances can be
found, e.g. in [V09, Section I.6].

We shall subdivide the analysis into two parts. In Section 3.1, we deal with the
special case of the quadratic Wasserstein distance W2, for which we use the definition
(2.1) of a Stein kernel. In Section 3.2, we deal with general Wasserstein distances Wp

possibly of order p = 2, for which it seems necessary to use the stronger definition
(2.3) adopted in [NPS13,NPS14].

3.1 The case of the Wasserstein distance W2. We provide here a dimension-
free estimate on the Wasserstein W2 distance expressed in terms of the Stein dis-
crepancy. In the forthcoming statement, denote by ν a centered probability measure
on R

d admitting a Stein kernel τν (that is, τν verifies (2.1) for every smooth test
function ϕ). It is not assumed that ν admits a density with respect to the Lebesgue
measure on R

d (in particular, ν can have atoms). As already observed, the existence
of a Stein kernel for ν implies that ν has finite moments of order 2.

Proposition 3.1 (Wasserstein distance and Stein discrepancy). For every centered
probability measure ν on R

d,

W2(ν, γ) ≤ S
(
ν | γ)

. (3.1)

Proof. Assume first that dν = hdγ where h is a smooth density with respect to
the standard Gaussian measure γ on R

d. As in Section 2, write vt = log Pth and
dνt = Pthdγ. We shall rely on the estimate, borrowed from [OV00, Lemma 2] (cf. also
[V09, Theorem 24.2(iv)]),

d+

dt
W2(ν, νt) ≤

(∫

Rd

|∇vt|2 dνt

)1/2

. (3.2)
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Note that (3.2) is actually the central argument in the Otto-Villani theorem [OV00]
asserting that a logarithmic Sobolev inequality implies a Talagrand transport in-
equality. Here, by making use of (3.2) and then (2.17) we get that

W2(ν, γ) ≤
∫ ∞

0

( ∫

Rd

|∇vt|2dνt

)1/2

dt ≤ S
(
ν | γ) ∫ ∞

0

e−2t

√
1 − e−2t

dt

which is the result in this case.
The general case is obtained by a simple regularization procedure which is best

presented in probabilistic terms. Fix ε > 0 and introduce the auxiliary random
variable Fε = e−εF +

√
1 − e−2εZ where F and Z are independent with respective

laws ν and γ. It is immediately checked that: (a) the distribution of Fε, denoted by
νε, admits a smooth density hε with respect to γ (of course, this density coincides
with Pεh whenever the distribution of F admits a density h with respect to γ as in
the first part of the proof); (b) a Stein kernel for νε is given by

τνε(x) = E
[
e−2ετν(F ) + (1 − e−2ε) Id | Fε = x

]
dνε(x)−a.e.

[consistent with (2.21)]; (c) S(νε | γ) ≤ e−2ε S(ν | γ); (d) as ε → 0, Fε converges to F
in L2, so that, in particular, W2(νε, γ) → W2(ν, γ). One therefore infers that

W2(ν, γ) = lim
ε→0

W2(νε, γ) ≤ lim sup
ε→0

S
(
νε | γ) ≤ S

(
ν | γ)

,

and the proof is concluded. ��

The inequality (3.1) may of course be compared to the Talagrand quadratic
transportation cost inequality [T96,V09,BGL14]

W2
2(ν, γ) ≤ 2 H

(
ν | γ)

. (3.3)

As announced in the introduction, one can actually further refine (3.1) in order to
deduce an improvement of (3.3) in the form of a WSH inequality. The refinement
relies on the HSI inequality itself.

Theorem 3.2 (Gaussian WSH inequality). Let dν = hdγ be a centered probabil-
ity measure on R

d with smooth density h with respect to γ. Assume further that
S(ν | γ) and H(ν | γ) are both positive and finite. Then

W2(ν, γ) ≤ S
(
ν | γ)

arccos
(
e
− H(ν|γ)

S2(ν|γ)

)
.

Proof. For any t ≥ 0, recall dνt = Pthdγ (in particular, ν0 = ν and νt → γ as
t → ∞). The HSI inequality (2.6) applied to νt yields that

H
(
νt | γ) ≤ 1

2
S2

(
νt | γ)

log
(

1 +
I(νt | γ)
S2(νt | γ)

)
.
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Now, S2(νt | γ) ≤ S2(ν | γ) by (2.18) and r �→ r log
(
1 + s

r

)
is increasing for any fixed

s from which it follows that

H
(
νt | γ) ≤ 1

2
S2

(
ν | γ)

log
(

1 +
I(νt | γ)
S2(ν | γ)

)
.

By exponentiating both sides, this inequality is equivalent to
√

I
(
νt | γ) ≤ I(νt | γ)

S(ν | γ)
√

e
2H(νt|γ)
S2(ν|γ) − 1

.

Combining with (3.2) and recalling (2.13) leads to

d+

dt
W2(ν, νt) ≤

√
I
(
νt | γ) ≤ −

d
dtH(νt | γ)

S(ν | γ)
√

e
2H(νt|γ)
S2(ν|γ) − 1

= − d

dt

(
S
(
ν | γ)

arccos
(
e
− H(νt|γ)

S2(ν|γ)

))
.

In other words,

d

dt

(
W2(ν, νt) + S

(
ν | γ) arccos

(
e
− H(νt|γ)

S2(ν|γ)

))
≤ 0.

The desired conclusion is achieved by integrating between t = 0 and t = ∞. The
proof of Theorem 3.2 is complete. ��

Proposition 3.1 and Theorem 3.2 raise a number of observations.

Remark 3.3. (a) Since arccos(e−r) ≤ √
2r for every r ≥ 0, the WSH inequality

thus represents an improvement upon the Talagrand inequality (3.3). Moreover,
as for the HSI inequality, the WSH inequality produces the case of equality in
(3.3) since arccos(e−r) ≤ √

2r is an equality only at r = 0.
(b) The Talagrand inequality may combined with the HSI inequality of Theo-

rem 2.2 to yield the bound

W2
2(ν, γ) ≤ S2

(
ν | γ)

log
(

1 +
I(ν | γ)
S2(ν | γ)

)
. (3.4)

(c) (HWI inequality). As described in the introduction, a fundamental estimate
connecting entropy H, Wassertein distance W2 and Fisher information I is
the so-called HWI inequality of Otto and Villani [OV00] stating that, for all
dν = hdγ with density h with respect to γ,

H
(
ν | γ) ≤ W2(ν, γ)

√
I
(
ν | γ) − 1

2
W2

2(ν, γ) (3.5)

(see, e.g. [V09, pp. 529–542] or [BGL14, Section 9.3.1] for a general discus-
sion). Recall that the HWI inequality (3.5) improves upon both the logarith-
mic Sobolev inequality (1.1) and the Talagrand inequality (3.3). It is natural
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to look for a more general inequality, involving all four quantities H, W2, I and
the Stein discrepancy S, and improving both the HSI and HWI inequalities.
One strategy towards this task would be to follow again the heat flow approach
of the proof of Theorem 2.2 and write, for 0 < u ≤ t,

Entγ(h) =
∫ t

0
Iγ(Psh)ds + Entγ(Pth)

≤ Iγ(h)
∫ u

0
e−2sds + S2

(
ν | γ) ∫ t

u

e−4s

1 − e−2s
ds +

e−2t

2(1 − e−2t)
W2

2(ν, γ).

Here, we used (2.15) and (2.17), as well as the known reverse Talagrand
inequality along the semigroup given by

Entγ(Pth) ≤ e−2t

2(1 − e−2t)
W2

2(ν, γ)

(cf. e.g. [BGL14, p. 446]). Setting α = 1 − e−2u ≤ 1 − e−2t = β, the preceding
estimate yields

H
(
ν | γ) ≤ inf

0<α≤β≤1
Φ(α, β)

where

Φ(α, β)=α I
(
ν | γ)

+(α−log α) S2
(
ν | γ)

+
1−β

β
W2

2(ν, γ) + (log β−β) S2
(
ν | γ)

.

However, elementary computations show that, unless the rather unnatural in-
equality 2W2(ν, γ) ≤ S(ν | γ) is verified, the minimum in the above expression
is attained at a point (α, β) such that either α = β (and in this case one re-
covers HWI) or β = 1 (yielding HSI). Hence, at this stage, it seems difficult to
outperform both HWI and HSI estimates with a single ‘HWSI’ inequality. In
the subsequent point (d), we provide an elementary explicit example in which
the HSI estimate performs better than the HWI inequality.

(d) In this item, we thus compare the HWI and HSI inequalities on a specific
example in dimension d = 1. For every n ≥ 1, consider the probability measure
dνn(x) = ρn(x)dx with density

ρn(x) =
1√
2π

[
(1 − an)e−x2/2 + nane−n2x2/2

]
, x ∈ R,

where (an)n≥1 is such that an ∈ [0, 1] for every n ≥ 1, an = o
(

1
log n

)
and

n2/3an → ∞. A direct computation easily shows that H(νn | γ) → 0. Also, since

ρ′
n(x) = − x√

2π

[
(1 − an)e−x2/2 + n3ane−x2n2/2

]
,
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one may show after simple (but a bit lengthy) computations that

I
(
νn | γ)

=
∫

R

ρ′
n(x)2

ρn(x)
dx − 1 ∼ n2an as n → ∞.

We next examine the Stein discrepancy S(νn | γ) and Wassertein distance W2

(νn, γ). Since a Stein kernel τn of νn is given by

τn(x) =
1√

2π ρn

[
(1 − an)e−x2/2 +

an

n
e−n2x2/2

]
,

it is easily seen that

S2
(
νn | γ)

=
∫

R

(
τn(x) − 1

)2
ρn(x)dx ≤ an → 0.

Concerning the Wasserstein distance, from the inequality (3.1), we deduce that
W2(νn, γ) ≤ √

an. On the other hand, by the Lipschitz characterization of W1

(specializing to the Lipschitz function x �→ | cos(x)|), cf. e.g. [V09, Remark
6.5]),

W2(νn, γ) ≥ W1(νn, γ) ≥
∣
∣
∣∣

∫

R

∣
∣ cos(x)

∣
∣dνn(x) −

∫

R

∣
∣ cos(x)

∣
∣dγ(x)

∣
∣
∣∣.

Now, the right-hand side of this inequality multiplied by 1
an

is equal to

∣
∣
∣∣n

∫

R

∣
∣ cos(x)

∣
∣e−n2x2/2 dx√

2π
−

∫

R

∣
∣ cos(x)

∣
∣dγ(x)

∣
∣
∣∣

=
∣∣
∣∣

∫

R

[∣
∣ cos(x

n)
∣
∣ − ∣

∣ cos(x)
∣
∣
]
dγ(x)

∣∣
∣∣

which, by dominated convergence, converges to a non-zero limit. As a conse-
quence, there exists c > 0 such that, for n large enough, W2(νn, γ) ≥ c an.
Summarizing the conclusions, the quantity

W2

(
νn, γ

)√
I
(
νn | γ) − 1

2
W2

2(νn, γ)

is bigger than a sequence of the order of na
3/2
n = (n2/3an)3/2, which (by

construction) diverges to infinity as n → ∞. This fact implies that, in this
specific case, the bound in the HWI inequality diverges to infinity, whereas
H(νn | γ) → 0. On the other hand, the HSI bound converges to zero, since

S2
(
νn | γ)

log
(

1 +
I(νn | γ)
S2(νn | γ)

)
≤ an log(1 + n2) ∼ 2an log n → 0.
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3.2 General Wasserstein distances under a stronger notion of Stein ker-
nel. In this part, we obtain bounds in terms of Stein discrepancies on the Wasser-
stein distance Wp of any order p between a centered probability measure ν on R

d

and the standard Gaussian distribution γ. As in Proposition 3.1, we shall consider
probabilities ν not necessarily admitting a density with respect to γ. However, it will
be assumed that ν has a Stein kernel τν verifying the stronger ‘vector’ relation (2.3).
The reason for this is that, in order to deal with Wasserstein distances of the type
Wp, p = 2, one needs to have access to the explicit expression of the score function
∇(log Pth) along the Ornstein–Uhlenbeck semigroup, as proved in [NPS13, Lemma
2.9] in the framework of Stein kernels verifying (2.3). Recall that the existence of τν

implies that ν has finite moments of order 2.

Proposition 3.4 (Wp distance and Stein discrepancy). Let ν be a centered prob-
ability measure on R

d with Stein kernel τν in the sense of (2.3). For every p ≥ 1,
set

‖τν − Id‖p,ν =
( d∑

i,j=1

∫

Rd

∣
∣τ ij

ν − δij

∣
∣pdν

)1/p

(where δij = 1 if i = j and 0 if not), possibly infinite if τ ij
ν /∈ Lp(ν). In particular,

‖τν − Id‖2,ν = S(ν | γ).

(i) Let p ∈ [1, 2). Then,

Wp(ν, γ) ≤ Cp d1−1/p‖τν − Id‖p,ν (3.6)

where Cp
p =

∫
R

|x|pdγ1(x).
(ii) Let p ∈ [2, ∞). If ν has finite moments of order p, then (with the same Cp as in

(i))

Wp(ν, γ) ≤ Cp d1−2/p ‖τν − Id‖p,ν . (3.7)

In particular, for p = 2 we recover (3.1).

Proof. Owing to an approximation argument analogous to the one rehearsed at end
of the proof of Proposition 3.1, it is sufficient to consider the case dν = h dγ where
h is a smooth density. Write as before vt = log Pth and dνt = Pthdγ. By virtue of
[NPS13, Lemma 2.9], under thus the strengthened assumption (2.3), a version of
∇vt, t > 0, is given by

x �→ ∇vt(x) =
e−2t

√
1 − e−2t

E
[(

τν(F ) − Id
)
Z | Ft = x

]
, x ∈ R

d,

where, as in Remark 2.5, F and Z are independent with respective law ν and γ, and
Ft = e−tF +

√
1 − e−2tZ. Moreover, one can straightforwardly modify the proof of
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[OV00, Lemma 2] (cf. also [V09, Theorem 24.2(iv)]) in order to obtain the general
estimate

d+

dt
Wp(ν, νt) ≤

(∫

Rd

|∇vt|p dνt

)1/p

. (3.8)

It follows that

Wp(ν, γ) ≤
∫ ∞

0

(∫

Rd

|∇vt|pdνt

)1/p

dt

=
∫ ∞

0

e−2t

√
1 − e−2t

E

[( d∑

i=1

E

[ d∑

j=1

(
τ ij
ν (F ) − δij

)
Zj

∣
∣
∣
∣Ft

]2)p/2]1/p

dt.

Now, if 1 ≤ p < 2,

Wp(ν, γ) ≤
∫ ∞

0

e−2t

√
1 − e−2t

dt

( d∑

i=1

E

[∣
∣
∣∣

d∑

j=1

(
τ ij
ν (F ) − δij

)
Zj

∣
∣
∣∣

p])1/p

≤ Cp d1−1/p

( d∑

i,j=1

E
[∣∣τ ij

ν (F ) − δij

∣∣p]
)1/p

yielding (i). On the other hand, if p ≥ 2, then

Wp(ν, γ) ≤
∫ ∞

0

e−2t

√
1 − e−2t

E

[( d∑

i=1

E

[( d∑

j=1

(
τ ij
ν (F ) − δij

)
Zj

)2∣∣∣
∣Ft

])p/2]1/p

dt

≤ d1/2−1/p

( d∑

i=1

E

[∣∣
∣
∣

d∑

j=1

(
τ ij
ν (F ) − δij

)
Zj

∣∣
∣
∣

p])1/p

= Cp d1/2−1/p

( d∑

i=1

( d∑

j=1

E

[(
τ ij
ν (F ) − δij

)2
])p/2)1/p

≤ Cp d1−2/p

( d∑

i,j=1

E
[∣∣τ ij

ν (F ) − δij

∣∣p]
)1/p

which immediately yields (ii). The proof of Proposition 3.4 is complete. ��
Remark 3.5. Specializing (3.6) to the case p = 1 yields the estimate

W1(ν, γ) ≤
√

2
π

‖τν − Id‖1,ν (3.9)

which improves previous dimensional bounds obtained by an application of the mul-
tidimensional Stein method (cf. the proof of [NP12, Theorem 6.1.1]). It is important
to note that, apart from the results obtained in the present paper, there is no other
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version of Stein’s method allowing one to deal with Wasserstein distances of order
p > 1. Observe that coupling results from [Ch12] (that are based on completely dif-
ferent methods) may be used to deduce analogous estimates in the case when d = 1
and the Stein kernel τν is bounded.

4 HSI Inequalities for Further Distributions

On the basis of the Gaussian example of Section 2, we next address the issue of
HSI inequalities for distributions on R

d, d ≥ 1, that are not necessarily Gaussian.
In order to reach the basic semigroup ingredients towards such HSI inequalities put
forward in Proposition 2.4, a convenient family of measures to deal with is the family
of invariant measures of second order differential operators. These include gamma
and beta distributions, as well as families of log-concave measures as illustrations.
As such, the investigation is part of the generator approach to Stein’s method as
developed in [Ba90,G91,R05]. We present it here in the framework of Markov Triples
as developed in [BGL14] and, for simplicity, only consider operators and measures
on R

d.

4.1 A general statement. Let E be a domain of R
d and consider a family of

real-valued C∞-functions aij(x) and bi(x), i, j = 1, . . . , d, defined on E. We assume
that the matrix a(x) = (aij(x))1≤i,j≤d is symmetric and positive definite for any
x ∈ E. For every x ∈ E, we let a

1
2 (x) be the unique symmetric non-singular matrix

such that (a
1
2 (x))2 = a(x). Let A denote the algebra of C∞-functions on E and L

be the second order differential operator given on functions f ∈ A by

Lf =
〈
a, Hess(f)

〉
HS

+ b · ∇f =
d∑

i,j=1

aij ∂2f

∂xi∂xj
+

d∑

i=1

bi ∂f

∂xi
. (4.1)

The operator L satisfies the chain rule formula and defines a diffusion operator. We
assume that L is the generator of a symmetric Markov semigroup (Pt)t≥0, where the
symmetry is with respect to an invariant probability measure μ.

A central object of interest in this context is the carré du champ operator Γ
defined from the generator L by

Γ(f, g) =
1
2
[L(fg) − fLg − gLf

]
=

d∑

i,j=1

aij ∂f

∂xi

∂g

∂xj

for all (f, g) ∈ A × A. Note that Γ is bilinear and symmetric and Γ(f, f) ≥ 0.
Moreover, the integration by parts property for L with respect to the invariant
measure μ is expressed by the fact that, for functions f, g ∈ A,

∫

E
f Lg dμ = −

∫

E
Γ(f, g)dμ.
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The structure (E, μ,Γ) then defines a Markov Triple in the sense of [BGL14] to
which we refer for the necessary background.

The requested semigroup analysis toward HSI inequalities will actually involve in
addition the iterated gradient operators Γn, n ≥ 1, defined inductively for
(f, g) ∈ A × A via the relations Γ0(f, g) = fg and

Γn(f, g) =
1
2
[L Γn−1(f, g) − Γn−1(f,Lg) − Γn−1(g, Lf)

]
, n ≥ 1.

In particular Γ1 = Γ and the operators Γn, n ≥ 1, are similarly symmetric and
bilinear. In what follows, we shall often adopt the shorthand notation Γn(f) instead
of Γn(f, f). The Γ2 operator is part of the famous Bakry-Émery criterion for loga-
rithmic Sobolev inequalities [BE85], [BGL14, Section 5.7]. As a new feature of the
analysis here, the iterated gradient Γ3 will turn essential towards a suitable analogue
of (iii) in Proposition 2.4.

A prototypical example of this setting is of course the Ornstein–Uhlenbeck op-
erator L = Δ − x · ∇ on R

d considered earlier, with the standard Gaussian measure
γ as symmetric and invariant measure. In this case, the carré du champ operator
is simply given by Γ(f) = |∇f |2 on smooth functions f . It is easily seen that, for
example (cf. [L95]),

Γ2(f) =
d∑

i,j=1

(
∂2f

∂xi∂xj

)2

+ Γ(f)

and

Γ3(f) =
d∑

i,j,k=1

(
∂3f

∂xi∂xj∂xk

)2

+ 3 Γ2(f) − 2 Γ(f).

Given thus the preceding Markov Triple (E, μ,Γ) associated to the second order
differential operator L of (4.1), let dν = hdμ where h is a smooth probability density
with respect to μ. As in the Gaussian case, the relative entropy of ν with respect to
μ is the quantity

H
(
ν | μ)

= Entμ(h) =
∫

E
h log h dμ.

Similarly, the Fisher information of ν (or h) with respect to μ is defined as

I
(
ν | μ)

= Iμ(h) =
∫

E

Γ(h)
h

dμ =
∫

E
Γ(log h)hdμ = −

∫

E
L(log h)dν. (4.2)

The (integrated) de Bruijn’s identity (cf. Proposition 5.2.2 in [BGL14]) reads as in
(i) of Proposition 2.4,

H
(
ν | μ)

=
∫ ∞

0
Iμ(Pth)dμ.
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Let Md×d denote the class of d×d matrices with real entries. Analogously to the
definition of Stein kernel of Section 2.1, we shall say that a matrix-valued mapping
τν : R

d → Md×d satisfying τ ij
ν ∈ L1(ν) for every i, j = 1, . . . , d, and

−
∫

E
b · ∇f dν =

∫

E

〈
τν , Hess(f)

〉
HS

dν, f ∈ A, (4.3)

is a Stein kernel for the probability ν on E with respect to the generator of L of (4.1),
where b = (bi(x))1≤i≤d is part of the definition of L. For the Ornstein–Uhlenbeck
operator L = Δ − x · ∇, the definition corresponds to (2.1). Since

∫
E Lf dμ = 0,

observe that a is a Stein kernel for μ. The main result in this section is an HSI
inequality that relates H(ν | μ), I(ν | μ) and the Stein discrepancy of ν with respect
to μ

S
(
ν | μ)

=
(∫

E

∥∥a− 1
2 τνa

− 1
2 − Id

∥∥2

HS
dν

)1/2

(4.4)

that we regard, as in the Gaussian case of Section 2, as a measure of the distance
between ν and μ (since τμ = a). Note that choosing a = C in (4.4), with C non-
singular, yields the quantity arising in Corollary 2.3. It should also be mentioned that
the Stein discrepancy (4.4) is somewhat in contrast with the bounds one customarily
obtains when applying Stein’s method (see e.g. [NP09] for the specific example of
the one-dimensional Gamma distribution, or [R05] for a general reference), which
typically involve quantities of the type

∫
E ‖τν − a‖2

HS dν. The appearance of the
inverse matrices a− 1

2 seems to be inextricably connected with the fact that we deal
with information-theoretical functionals.

The following general statement collects the necessary assumptions on the iter-
ated gradients Γ, Γ2 and Γ3 to achieve the expected HSI inequality by the semigroup
interpolation scheme. The next paragraphs will provide illustrations in various con-
crete instances of interest. In Theorem 4.1 below, (i) amounts to the Bakry-Émery
Γ2 criterion to ensure the logarithmic Sobolev inequality (cf. [BGL14, Section 5.7])
while condition (ii) linking the Γ2 and Γ3 operators will provide [together with (iii)]
the suitable semigroup bound for the time control of I(Pth) away from 0. Recall
Ψ(r) = 1 + log r if r ≥ 1 and Ψ(r) = r if 0 ≤ r ≤ 1.

Theorem 4.1 (General HSI inequality). In the preceding context, let dν = hdμ
where h is a smooth density with Stein kernel τν with respect to μ. Assume that
there exists ρ, κ, σ > 0 such that, for any f ∈ A,

(i) Γ2(f) ≥ ρ Γ(f);
(ii) Γ3(f) ≥ κ Γ2(f);
(iii) Γ2(f) ≥ σ ‖a

1
2 Hess(f) a

1
2 ‖2

HS (with a as in (4.1)).

Then,

H(ν | μ) ≤ 1
2σ

S2
(
ν | μ)

Ψ
(

σ max(ρ, κ) I(ν | μ)
ρκ S2(ν | μ)

)
.
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Note that in the Ornstein–Uhlenbeck example, ρ = κ = σ = 1 from which we
recover the HSI inequality (2.6), however in a slightly weaker formulation.

Proof. It is therefore a classical fact (see e.g. [BGL14, (5.7.4)]) that (i) ensures the
exponential decay of the Fisher information along the semigroup

Iμ(Pth) ≤ e−2ρt Iμ(h) = e−2ρt I
(
μ | ν)

(4.5)

for every t ≥ 0 (and then yields a logarithmic Sobolev inequality for μ.) Now, fix
t > 0 and let f ∈ A. The Γ-calculus as developed in [BGL14], but at the level of the
Γ2 and Γ3 operators, yields on [0, t] (by the very definition of Γ3 from Γ2),

d

ds

(
Ps

(
Γ2(Pt−sf)

)
e−2κs

)
= 2e−2κs

(
Ps

(
Γ3(Pt−sf)

) − κPs

(
Γ2(Pt−sf)

))

= 2e−2κsPs

(
(Γ3 − κ Γ2)(Pt−sf)

)
.

By (ii), the latter is non-negative so that the map s �→ Ps(Γ2(Pt−sf))e−2κs is in-
creasing on [0, t], and thus

Pt

(
Γ(f)

) − Γ
(
Pt(f)

)
= 2

∫ t

0
Ps

(
Γ2(Pt−sf)

)
ds

≥ 2 Γ2(Ptf)
∫ t

0
e2κsds =

1
κ

(e2κt − 1) Γ2(Ptf).

Together with (iii), it then follows that

Pt

(
Γ(f)

) ≥ Pt

(
Γ(f)

) − Γ
(
Pt(f)

) ≥ σ

κ
(e2κt − 1)

∥
∥a

1
2 Hess(Ptf)a

1
2

∥
∥2

HS
. (4.6)

We shall apply (4.6) to vt = log Pth (with h regular enough). First, by symmetry
of μ with respect to (Pt)t≥0,

Iμ(Pth) = −
∫

E
Lvt Pth dμ = −

∫

E
LPtvt hdμ = −

∫

E
LPtvt dν. (4.7)

Hence, by (4.1) and (4.3),

Iμ(Pth) = −
∫

E

〈
a, Hess(Ptvt)

〉
HS

dν −
∫

E
b · ∇Ptvt dν

=
∫

E

〈
τν − a, Hess(Ptvt)

〉
HS

dν.

Now, by the Cauchy-Schwarz inequality,

Iμ(Pth) =
∫

E

〈
a− 1

2 τνa
− 1

2 − Id, a
1
2 Hess(Ptvt)a

1
2
〉
HS

dν

≤
( ∫

E

∥
∥a− 1

2 τνa
− 1

2 − Id
∥
∥2

HS
dν

)1/2(∫

E

∥
∥a

1
2 Hess(Ptvt)a

1
2

∥
∥2

HS
dν

)1/2

≤ S
(
ν | μ)

(
κ

σ(e2κt − 1)

∫

E
Pt

(
Γ(vt))

)
dν

)1/2
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where the last step follows from (4.6). Since
∫

E
Pt

(
Γ(vt)

)
dν =

∫

E
Pt

(
Γ(vt)

)
hdμ =

∫

E
Γ(vt)Pthdμ = Iμ(Pth),

it follows that

Iμ(Pth) ≤ κ

σ(e2κt − 1)
S2

(
ν | μ)

. (4.8)

Finally, using (4.5) for small t and (4.8) for large t, one deduces that, for every
u > 0,

H
(
ν | μ) ≤ I

(
ν | μ) ∫ u

0
e−2ρtdt + S2

(
ν | μ) ∫ ∞

u

κ

σ(e2κt − 1)
dt

=
I(ν | μ)

2ρ
(1 − e−2ρu) − S2(ν | μ)

2σ
log(1 − e−2κu).

Setting r = e−2u,

H
(
ν | μ) ≤ inf

0<r<1

{
I(ν | μ)

2ρ
(1 − rρ) − S2(ν | μ)

2σ
log(1 − rκ)

}
.

Now, using that 1 − rρ ≤ max(1, ρ
κ)(1 − rκ) for r ∈ (0, 1), a simple (non-optimal)

optimization yields the desired conclusion. The proof of Theorem 4.1 is complete. ��
Remark 4.2. It should be pointed out that, on the basis of (4.8), transport in-
equalities as studied in Section 3 may be investigated similarly in the preceding
general context, and with similar illustrations as developed below. For example, as
an analogue of (3.1),

W2(ν, μ) ≤ 2√
κσ

S
(
ν | μ)

.

In order not to expand too much the exposition, we leave the details to the reader.

The next paragraphs present various illustrations of Theorem 4.1.

4.2 Multivariate gamma distribution. As a first example of illustration of
the preceding general result, we consider the case of the multidimensional Laguerre
operator, which is the product on R

d
+ of one-dimensional Laguerre operators of

parameters pi > 0, i = 1, . . . , d, that is,

Lf =
d∑

i=1

xi
∂2f

∂x2
i

+
d∑

i=1

(pi − xi)
∂f

∂xi
.

In particular, a(x) = (xiδij)1≤i,j≤d in (4.1). It is a standard fact that the invariant
measure μ associated with L has a density with respect to the Lebesgue measure
given by the tensor product of d gamma densities of the type Γ(pi)−1xpi−1

i e−xi ,
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xi ∈ R+, i = 1, . . . , d. For reasons that will become clear later on, we assume that
pi ≥ 3

2 , i = 1, . . . , d.
After some easy but cumbersome calculations, it may be checked that, along

suitable smooth functions f ,

Γ(f) =
d∑

i=1

xi

(
∂f

∂xi

)2

Γ2(f) =
d∑

i,j=1

xixj

(
∂2f

∂xi∂xj

)2

+
d∑

i=1

xi
∂f

∂xi

∂2f

∂x2
i

+
1
2

d∑

i=1

(pi + xi)
(

∂f

∂xi

)2

Γ3(f) =
d∑

i,j,k=1

xixjxk

(
∂3f

∂xi∂xj∂xk

)2

+ 3
d∑

i,j=1

xixj
∂2f

∂xi∂xj

∂3f

∂x2
i ∂xj

+
3
2

d∑

i,j=1

(pi + xi)xj

(
∂2f

∂xi∂xj

)2

+
3
2

d∑

i=1

xi

(
∂2f

∂x2
i

)2

+
3
2

d∑

i=1

xi
∂f

∂xi

∂2f

∂x2
i

+
1
4

d∑

i=1

(3pi + xi)
(

∂f

∂xi

)2

.

Note that (recall xi, xj , xk ≥ 0)

d∑

i,j,k=1

xixjxk

(
∂3f

∂xi∂xj ∂xk

)2

+ 3
d∑

i,j=1

xixj
∂2f

∂xi∂xj

∂3f

∂x2
i ∂xj

≥
d∑

i,j=1

x2
i xj

(
∂3f

∂x2
i ∂xj

)2

+ 3
d∑

i,j=1

xixj
∂2f

∂xi∂xj

∂3f

∂x2
i ∂xj

≥ −9
4

d∑

i,j=1

xj

(
∂2f

∂xi∂xj

)2

.

Therefore

Γ3(f) ≥ 3
2

d∑

i,j=1

(
pi − 3

2
+ xi

)
xj

(
∂2f

∂xi∂xj

)2

+
3
2

d∑

i=1

xi

(
∂2f

∂x2
i

)2

+
3
2

d∑

i=1

xi
∂f

∂xi

∂2f

∂x2
i

+
1
4

d∑

i=1

(3pi + xi)
(

∂f

∂xi

)2

.

Since pi ≥ 3
2 , it follows at once that Γ3(f) ≥ 1

2 Γ2(f). Analogous computations lead
to

d∑

i=1

xi
∂f

∂xi

∂2f

∂x2
i

≥ −1
2

d∑

i=1

x2
i

(
∂2f

∂x2
i

)2

− 1
2

d∑

i=1

(
∂f

∂xi

)2

,
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implying that

Γ2(f) ≥ 1
2

d∑

i=1

x2
i

(
∂2f

∂x2
i

)2

+
1
2

d∑

i=1

(pi − 1 + xi)
(

∂f

∂xi

)2

≥ 1
2

Γ(f).

Finally, one has

1
2

∥
∥√

a Hess(f)
√

a
∥
∥2

HS
=

1
2

d∑

i,j=1

xixj

(
∂2f

∂xi∂xj

)2

≤ 1
2

d∑

i,j=1

xixj

(
∂2f

∂xi∂xj

)2

+
1
2

d∑

i=1

(
xi

∂2f

∂x2
i

+
∂f

∂xi

)2

≤ Γ2(f).

As a consequence, Theorem 4.1 applies with ρ = κ = σ = 1
2 to yield the follow-

ing result (the numerical constants there are not sharp). The restrictions pi ≥ 3
2 ,

i = 1, . . . , d, are probably not optimal. For example, it is not difficult to see from
the preceding computations that in the one-dimensional case d = 1, it is actually
enough to assume that p ≥ 1

2 .

Proposition 4.3 (HSI inequality for gamma distribution). Let μ be the product
measure of gamma distributions Γ(pi)−1xpi−1

i e−xidxi on R
d
+ with pi ≥ 3

2 ,
i = 1, . . . , d. Then, for any dν = hdμ where h is a smooth probability density,

H
(
ν | μ) ≤ S2

(
ν | μ)

Ψ
(

I(ν | μ)
S2(ν | μ)

)
.

4.3 One-dimensional uniform distribution on [−1, +1]. In this section,
we examine the case of the one-dimensional Jacobi operator of parameters α=β=1,
that is,

Lf = (1 − x2)f ′′ − 2xf ′,

whose associated invariant measure μ is uniform distribution on [−1, +1]. The gen-
eral family of parameters with the beta distributions as invariant measures
(cf. [BGL14, Section 2.7.4]) may be considered similarly, at the expense however
of tedious computations, as well as multivariate (product) versions. For simplicity,
we only detail this case to better illustrate the conclusion.

Easy calculations lead to, for a smooth function f on [−1, +1],

Γ(f) = (1 − x2)f ′2

Γ2(f) = (1 + x2)f ′2 + (1 − x2)2f ′′2 − 2x(1 − x2)f ′f ′′

Γ3(f) = (1 − x2)3f ′′′2 − 6x(1 − x2)2f ′′f ′′′ − 2(1 − x2)2f ′f ′′′

+3(1 − x2)(1 + 3x2)f ′′2 + 6x(1 − x2)f ′f ′′ + (3 − x2)f ′2.
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Observe that

Γ2(f) = f ′2 +
(
xf ′ − (1 − x2)f ′′)2 ≥ Γ(f).

Furthermore,

Γ3(f) − Γ2(f) = (1 − x2)
[
(1 − x2)2f ′′′2 − 6x(1 − x2)f ′′f ′′′

− 2(1 − x2)f ′f ′′′ + 2(1 + 5x2)f ′′2 + 8xf ′f ′′ + 2f ′2
]

= (1 − x2)
[(

(1 − x2)f ′′′ − 3xf ′′ − f ′)2 +
(
f ′ + xf ′′)2 + 2f ′′2

]
≥ 0

so that Γ3(f) ≥ Γ2(f). Also,

Γ2(f) ≥ (1 + x2)f ′2 + (1 − x2)2f ′′2 − 2x2f ′2 − 1
2
(1 − x2)2f ′′2

= (1 − x2)f ′2 +
1
2
(1 − x2)2f ′′2

≥ 1
2
(1 − x2)2f ′′2.

Hence, Theorem 4.1 applies with ρ = κ = 1 and σ = 1
2 (note that a(x) = 1 − x2) to

yield the following conclusion. Again, the numerical constants are not sharp.

Proposition 4.4 (HSI inequality for the uniform distribution). Let μ be uniform
probability measure on [−1, +1]. Then, for any dν = hdμ where h is a smooth
probability density,

H
(
ν | μ) ≤ S2

(
ν | μ)

Ψ
(

I(ν | μ)
2 S2(ν | μ)

)

4.4 Families of log-concave distributions. We consider here a diffusion op-
erator on the line of the type

Lf = f ′′ − u′f ′

associated with a symmetric invariant probability measure dμ = e−udx, where u is a
smooth potential on R. The Gaussian model corresponds to the quadratic potential
u(x) = x2

2 .
We have, for smooth functions f ,

Γ(f) = f ′2

Γ2(f) = f ′′2 + u′′f ′2

Γ3(f) = f ′′′2 + 3u′′′f ′f ′′ + 3u′′f ′′2 +
1
2

(
u(4) − u′u′′′ + 2u′′2)f ′2.

Assume that there exists c > 0 such that, uniformly, u′′ ≥ c,

u(4) − u′u′′′ + 2u′′2 − 6cu′′ ≥ 0 (4.9)
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and

3u′′′2 ≤ 2(u′′ − c)
(
u(4) − u′u′′′ + 2u′′2 − 6cu′′). (4.10)

Then Γ2(f) ≥ c Γ(f), Γ2(f) ≥ f ′′2 and Γ3(f) ≥ 3c Γ2(f) for every f . Hence, Theo-
rem 4.1 applies with ρ = c, κ = 3c and σ = 1.

Proposition 4.5 (HSI inequality for log-concave distribution). Let dμ = e−udx on
R where u is a smooth potential on R such that for some c > 0, u′′ ≥ c and (4.9)
and (4.10) hold. Then, for any dν = hdμ where h is a smooth probability density,

H
(
ν | μ) ≤ 1

2
S2

(
ν | μ)

Ψ
(

I(ν | μ)
c S2(ν | μ)

)
.

Recall that in this context, the only condition u′′ ≥ c > 0 ensures the loga-
rithmic Sobolev inequality for μ [BGL14, Corollary 5.7.2]. It is not difficult to find
(simple) examples outside the Gaussian model (corresponding to c = 1

3) such that
conditions (4.9) and (4.10) are fulfilled. For example, if u(x) = x2

2 + εx4, it is easily
seen that these hold for c = 1

4 and ε = 1
12 (for instance). In the Gaussian case,

the estimate obtained in this proposition is somewhat worse than the HSI inequal-
ity of Theorem 2.2. At the expenses of more involved conditions (4.9) and (4.10),
multidimensional versions may be considered similarly.

5 Entropy Bounds on Laws of Functionals

As emphasized in the introduction, the new HSI inequalities described in the pre-
ceding sections provide entropic bounds on probability measures ν which may be
used towards convergence in entropy via the Stein discrepancy S(ν | μ). Now, these
bounds assume that the Fisher information Iμ(h) of the density h of ν with respect
to μ is finite (in order to control Iμ(Pth) in small time), which may or may not
hold in specific illustrations. The goal pursued in the second part of this work is
actually to overcome this difficulty and to describe conditions (integrability and tail
behavior) on the initial data itself of a multidimensional functional F = (F1, . . . , Fd)
with distribution ν = νF (on R

d) in order to control the Fisher information Iμ(Pth)
in small time. This investigation was initiated in [NPS13] in Wiener space towards
the first normal approximation results in entropy for Wiener chaos distributions.
Here, we consider distributions of functionals on a Markov Triple structure (E, μ,Γ)
already put forward in the preceding section, and describe how the associated
Γ-calculus may be developed towards normal (as well as gamma) approximations
in the entropic sense.

Referring as before to [BGL14] for a complete account, we thus deal with a
Markov Triple (E, μ,Γ) on a probability space (E, E , μ), with Markov semigroup
(Pt)t≥0 with symmetric and invariant probability measure μ, infinitesimal genera-
tor L, associated carré du champ operator Γ and underlying algebra of (smooth)
functions A. Integration by parts expresses that
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∫

E
f Lg dμ = −

∫

E
Γ(f, g)dμ (5.1)

for every f, g ∈ A.
The second order differential operators of Section 4 provide instances of this gen-

eral framework. Gaussian and Wiener spaces with associated Ornstein–Uhlenbeck
semigroup and generator are a prototypical example for the illustrations. Note in
particular that Wiener chaoses as investigated in [NPS13] are eigenfunctions of
the Ornstein–Uhlenbeck generator. Eigenfunctions of the underlying operator L
are actually of special interest in the context of the Stein method as illustrated in
Section 5.1.

For d ≥ 1, let F = (F1, . . . , Fd) be a vector defined on (E, E , μ), where each Fi

is centered and square-integrable, and denote by νF the law of F . Common to the
three Sections 5.1–5.3 below, assume that the distribution νF of F admits a density
h with respect to the standard Gaussian distribution γ on R

d (in particular, νF is
absolutely continuous with respect to the Lebesgue measure). In the first part, we
describe the Stein kernel and discrepancy for vectors of eigenfunctions of L. Next,
we address some direct bounds on the Fisher information Iγ(h) in terms of the
data of the functional F and its gradients. Then, we develop the results on entropic
normal approximations, extending the conclusions in [NPS13], by an analysis of the
small time behavior of Iγ(Pth). Finally, we address similar issues in the context of
one-dimensional gamma approximation.

5.1 Stein kernel and discrepancy for eigenfunctions. The first statement
shows that, whenever the vector F is composed of eigenfunctions of L, a Stein kernel
τνF

of νF with respect to γ as defined in (2.1) can be expressed in terms of the carré
du champ operator Γ.

Proposition 5.1 (Stein kernel for eigenfunctions). Let F = (F1, . . . , Fd) on (E, E , μ)
such that, for every i = 1, . . . , d, the random variable Fi is an eigenfunction of
−L, with eigenvalue λi > 0. Assume moreover that Γ(Fi, Fj) ∈ L1(μ) for every
i, j = 1, . . . , d. Then, the matrix-valued map τνF

defined as

τ ij
νF

(x1, . . . , xd) =
1
λi

Eμ

[
Γ(Fi, Fj)

∣∣ F = (x1, . . . , xd)
]
, i, j = 1, . . . , d, (5.2)

is a Stein kernel for νF , that is, it satisfies (2.1). (The right-hand side of (5.2)
indicates a version of the conditional expectation of Γ(Fi, Fj) with respect to F
under the probability measure μ.)

Proof. Use integration by parts with respect to L to get that, for every smooth test
function ϕ on R

d and every i = 1, . . . , d,

λi

∫

E
Fi ϕ(F )dμ = −

∫

E
LFi ϕ(F )dμ =

d∑

j=1

∫

E
Γ(Fi, Fj)

∂ϕ

∂xj
(F )dμ.

The proof is concluded by taking conditional expectations.
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As a consequence, together with (2.5) and Jensen’s inequality,

S2
(
νF | γ) ≤

d∑

i,j=1

1
λ2

i

Varμ

(
Γ(Fi, Fj)

)
+

∥
∥C − Id

∥
∥2

HS
= V2 (5.3)

where C denotes the covariance matrix of νF , providing therefore a tractable way
to control the Stein discrepancy in this case. In addition, combining with the HSI
inequality of Theorem 2.2 immediately yields the following statement.

Corollary 5.2. Under the assumptions and notation of Proposition 5.1,

H
(
νF | γ) ≤ V2 log

(
1 +

I(νF | γ)
V2

)
. (5.4)

Example 5.3. A typical example of a Markov Triple for which the quantity V2

appearing in the above bound can be estimated explicitly corresponds to the case
where (E, E , μ) is a probability space supporting an isonormal Gaussian process
X = {X(h) : h ∈ H} over some real separable Hilbert space H, and L is the
generator of the associated Ornstein–Uhlenbeck semigroup. In this case, Γ(F, G) =
〈DF, DG〉H for smooth functionals F and G, where D stands for the Malliavin
derivative operator, and the eigenspaces of −L are the so-called Wiener chaoses
{Ck : k ≥ 0} of X. For k = 0, 1, 2, . . ., the eigenvalue of Ck is given by k. A
detailed discussion about how to bound a quantity such as V2 in the case of random
vectors with components inside a Wiener chaos can be found in [NP12, Chapter 6].
In particular, if d = 1 and F belongs to Ck, then V2 can be controlled by the second
and fourth moments of F as

V2 =
(
E[F 2] − 1

)2 +
1
k2

Var
(‖DF‖2

H

)

≤ (
E[F 2] − 1

)2 +
k − 1
3k

(
E[F 4] − 3 E[F 2]2

)
.

In particular, such an estimate provides a proof of the famous ‘fourth moment the-
orem’ for chaotic random variables, cf. [NP12, Theorem 5.2.7].

Remark 5.4. While eigenfunctions appear as functionals of particular interest for
the control of the Stein discrepancy itself, the Γ-calculus actually provides a formal
description of Stein kernels of a given functional F on (E, μ,Γ) (in dimension one for
simplicity) as the conditional expectation with respect to F of Γ(F, L−1F ) (where
L−1F =

∫ ∞
0 PtFdt). This observation further expands on the preceding example,

allowing for a rather general analysis.

5.2 Bounds on the Fisher information. When dealing with the upper-
bound (5.4), the Fisher information I(νF | γ) = Iγ(h) of the density h of the law
νF of F cannot always be explicitly deduced from the data concerning the random
vector F . The task of this paragraph is therefore to deduce some useful bounds on
I(νF | γ) in terms of F and its gradients.
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Let F = (F1, . . . , Fd) be general vector of centered and square-integrable ran-
dom variables (that need not necessarily be eigenfunctions of −L). Recall that the
distribution νF of F is assumed to admit a (smooth) density h with respect to the
standard Gaussian distribution γ on R

d. It is furthermore implicitly assumed that
all the Fi’s are in A (or some extended algebra in the sense of [BGL14]) allowing for
the formal computations developed next. These assumptions should then be verified
on the concrete examples of interest (such as Wiener chaoses).

Let φ : R
d → R be smooth enough. By integration by parts (5.1) with respect to

L, for every w ∈ A, and every i, j = 1, . . . , d,

d∑

k=1

∫

E
w Γ(Fi, Fk)

∂2φ

∂xk∂xj
(F )dμ = −

∫

E
LFi w

∂φ

∂xj
(F )dμ −

∫

E
Γ(Fi, w)

∂φ

∂xj
(F )dμ.

Let Γ̃ be the symmetric matrix with entries Γ(Fi, Fj), i, j = 1, . . . , d. Applying
the latter to w = wij , symmetric in i, j, yields

∫

E
Tr

(
W Γ̃ Hess(φ)(F )

)
dμ

= −
d∑

i,j=1

∫

E
LFi wij

∂φ

∂xj
(F )dμ −

d∑

i,j=1

∫

E
Γ(Fi, wij)

∂φ

∂xj
(F )dμ

(5.5)

where W = (wij)1≤i,j≤d. Provided it exists, set W = Γ̃−1, so that the left-hand
side in the previous identity is just

∫
E Δφ(F )dμ. Recalling from (2.7) the Ornstein–

Uhlenbeck generator L = Δ − x · ∇ associated with the standard Gaussian distrib-
ution γ on R

d, it follows that

−
∫

E
Lφ(F )dμ =

d∑

i,j=1

∫

E
LFi (Γ̃−1)ij

∂φ

∂xj
(F )dμ

+
d∑

i,j=1

∫

E
Γ
(
Fi, (Γ̃−1)ij

) ∂φ

∂xj
(F )dμ +

d∑

j=1

∫

E
Fj

∂φ

∂xj
(F )dμ.

In more compact notation, if

V =
( d∑

i=1

Γ
(
Fi, (Γ̃−1)ij

))

1≤j≤d

and U = Γ̃−1LF + V + F,

then

−
∫

E
Lφ(F )dμ =

∫

E
U · ∇φ(F )dμ.

Applied to φ = v = log h, by the Cauchy-Schwarz inequality and (4.2),

Iγ(h) ≤
∫

E
|U |2dμ.
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The consequences of the previous computations are gathered together in the next
statement, where we point out a set of sufficient conditions on F and its gradients
Γ(Fi, Fj) ensuring that the random variable U is indeed square-integrable.

Proposition 5.5 (Bound on the Fisher information). Let F = (F1, . . . , Fd) be
a vector of elements of A on (E, μ,Γ). Assume that all the Fi, LFi, Γ(Fi, Fj),
i, j = 1, . . . , d, and 1

det(Γ̃)
are in Lp(μ) for every p ≥ 1. Then,

∫
E |U |2dμ < ∞

and

I
(
νF | γ) ≤

∫

E
|U |2dμ. (5.6)

The condition on 1
det(Γ̃)

in Proposition 5.5 has some similarity with basic assump-

tions in Malliavin calculus (cf. [N06,NP12]).

Example 5.6. One may of course wonder whether the bound (5.6) is of any interest.
Here is a simple example showing that there are instances where Iγ(h) might be quite
intricate to handle directly on the density h of the distribution of F while U has
a clear description. On E = R

2n with the standard Gaussian measure μ = γ and
Γ(f) = |∇f |2 the standard carré du champ operator, let

F (x) = x1x2 + x3x4 + · · · + x2n−1x2n, x = (x1, . . . , x2n) ∈ R
2n.

It is classical that the distribution of the product of two independent standard
normal has a density (with respect to the Lebesgue measure on R) given by a Bessel
function. The density h of the distribution of F is thus rather involved. On the other
hand, it is easily seen that

LF = −2F and Γ(F ) = x2
1 + · · · + x2

2n = R2

so that

U = F

(
− 2

R2
− 4

R4
+ 1

)
.

By using polar coordinates, it is immediately seen that
∫

R2n U2dμ < ∞ as soon as
n ≥ 5.

5.3 Fisher information growth and normal approximation. One evident
drawback of Proposition 5.5 of the previous paragraph is that, since the quantity
|U | is singular as the determinant of Γ̃ is close to 0, one is forced to assume that

1
det(Γ̃)

is in all Lp(μ) spaces (or at least for some p large enough depending on d).
This assumption is in general too strong, and very difficult to check in concrete situ-
ations. The idea developed in this section (which generalizes the approach initiated
in [NPS13]) is that, under weaker moment assumptions, while the Fisher information
Iγ(h) might be infinite, it is nevertheless possible to control the growth as t → 0 of
Iγ(Pth). Together with the control in terms of the Stein discrepancy for large time
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achieved in Section 2, one may then reach entropic bounds which can be handled
in concrete examples (such as those of random vectors whose components belong to
some Wiener chaos).

As before, let F = (F1, . . . , Fd) be a general vector of centered and square-
integrable random variables (in the algebra A or some natural extension), with
distribution dνF = hdγ. As a crucial assumption, νF has a Stein kernel τνF

with
respect to γ as defined in (2.1) (see also Proposition 5.1 and Remark (5.4)). Recall
the matrix Γ̃ with entries Γ(Fi, Fj), i, j = 1, . . . , d. Also, in what follows we use the
convention that, if Γ̃ is singular, then the matrix det(Γ̃) Γ̃−1 must be understood
as the transpose of usual adjugate matrix operator of Γ̃ (both quantities being of
course equal for non-singular matrices).

With the notation of the preceding section, given ε > 0, write first, again for a
smooth function φ on R

d and L the Ornstein–Uhlenbeck operator in R
d,

∫

E
Lφ(F )dμ =

∫

E
Δφ(F )dμ −

∫

E
F · ∇φ(F )dμ

=
∫

E

det(Γ̃)

det(Γ̃) + ε
Δφ(F )dμ +

∫

E

ε

det(Γ̃) + ε
Δφ(F )dμ−

∫

E
F · ∇φ(F )dμ.

Choose W = det(Γ̃) Γ̃−1

det(Γ̃)+ε
in (5.5), so that

∫

E

det(Γ̃)

det(Γ̃) + ε
Δφ(F )dμ = −

∫

E

(
det(Γ̃) Γ̃−1LF + V1

det(Γ̃) + ε
− V2

(det(Γ̃) + ε)2

)
· ∇φ(F )dμ

where

V1 =
( d∑

i=1

Γ
(
Fi, det(Γ̃)(Γ̃−1)ij

)
)

1≤j≤d

and

V2 =

(
d∑

i=1

det(Γ̃)(Γ̃−1)ij Γ
(
Fi, det(Γ̃)

)
)

1≤j≤d

.

Apply now the preceding to φ = Ptvt, vt = log Pth, t > 0. Since ∇Ptvt(F ) =
e−tPt(∇vt) and

Iγ(Pth) =
∫

E
Pt

(|∇vt|2
)
(F )dμ,
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by the Cauchy-Schwarz inequality, assuming for simplicity that 0 < ε ≤ 1,
∣
∣
∣
∣

∫

E

det(Γ̃)

det(Γ̃) + ε
ΔPtvt(F )dμ −

∫

E
F · ∇Ptvt(F )dμ

∣
∣
∣
∣

≤ e−t

ε2

(∫

E

[ ∣
∣
∣det(Γ̃) Γ̃−1LF

∣
∣ + |V1| + |V2| + |F |

]2
dμ

)1/2

Iγ(Pth)1/2

On the other hand, using the same semigroup computations as in Section 2,

ΔPtvt(F ) =
e−2t

√
1 − e−2t

∫

Rd

y · ∇vt

(
e−tF +

√
1 − e−2t y

)
dγ(y)

so that
∣∣
∣
∣

∫

E

ε

det(Γ̃) + ε
ΔPtvt(F )dμ

∣∣
∣
∣ ≤

√
d ε e−2t

√
1 − e−2t

(∫

E

1

(det(Γ̃) + ε)2
dμ

)1/2

Iγ(Pth)1/2.

Assume now that
∫

E

[∣
∣det(Γ̃) Γ̃−1LF

∣
∣ + |V1| + |V2| + |F |

]2
dμ = AF < ∞ (5.7)

and that
∫

E

1

(det(Γ̃) + ε)2
dμ ≤ δ(ε). (5.8)

Collecting the preceding bounds and recalling from (4.7) that
∫

E
LPtvt(F )dμ =

∫

E
LPtvt hdμ = − Iγ(Pth)

yields that, for t > 0 and 0 < ε ≤ 1,

Iγ(Pth) ≤ 2e−2t

(
AF

ε4
+

d ε2δ(ε)
1 − e−2t

)
. (5.9)

In the following statement, we determine a handy set of sufficient conditions on
F and its gradients ensuring that, for some choice of ε = ε(t) > 0, the function on
the right-hand side of (5.9) is integrable for the small values of t > 0. Combined
with (2.19) for the large values of t > 0, a control of the entropy of νF in terms of
the Stein discrepancy S(νF | γ) may then be produced. Recall the function Ψ on R+

given by Ψ(r) = 1 + log r if r ≥ 1 and Ψ(r) = r if 0 ≤ r ≤ 1.

Theorem 5.7 (Normal entropic approximation via Stein discrepancy). Let
F = (F1, . . . , Fd) be a vector of centered elements of A on (E, μ,Γ). Assume that
all the Fi, LFi, Γ(Fi, Fj), Γ(Γ(Fi, Fj), Fk), i, j, k = 1, . . . , d, are in Lp(μ) for every
p ≥ 1, and that

BF =
∫

E

1

det(Γ̃)α
dμ < ∞ (5.10)
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for some α > 0. Then, AF < ∞ (as defined in (5.7)) and

H
(
νF | γ) ≤ S2(νF | γ)

2(1 − 4κ)
Ψ

(
2(AF + d(BF + 1))

S2(νF | γ)

)
(5.11)

where κ = 2+α
2(4+3α) (< 1

4 ).

Proof. First of all, we have that the parameter AF is finite, since the expressions
det(Γ̃)Γ̃−1LF , V1 and V2 only involve products of Fi, LFi and Γ(Fi, Fj), Γ(Γ(Fi, Fj),
Fk), i, j, k = 1, . . . , d.

Now, for every ε > 0 and r > 0,
∫

E

1

(det(Γ̃) + ε)2
dμ ≤ 1

ε2
μ
(
det(Γ̃) ≤ r

)
+

1
r2

≤ BF rα

ε2
+

1
r2

. (5.12)

The choice of r = ε
2

α+2 yields (5.8) with δ(ε) = (BF + 1)ε− 4
2+α . Let then ε = ε(t) =

(1 − e−2t)κ, t ≥ 0, for κ = 2+α
2(4+3α) (< 1

4). Then

AF

ε4
+

dε2δ(ε)
1 − e−2t

≤ AF + d(BF + 1)
(1 − e−2t)4κ

from which, as a consequence of (5.9), for every t > 0,

Iγ(Pth) ≤ 2
[
AF + d(BF + 1)

] e−2t

(1 − e−2t)4κ
. (5.13)

To conclude, recall, as in the proof of Theorem 2.2, the decomposition for every
u > 0,

H
(
νF | γ) ≤

∫ u

0
Iγ(Pth)dt + S2

(
νF | γ) ∫ ∞

u

e−4t

1 − e−2t
dt.

Therefore, by (5.13),

H
(
νF | γ) ≤ AF + d(BF + 1)

1 − 4κ
(1 − e−2u)1−4κ

+
1
2

S2
(
νF | γ)( − e−2u − log(1 − e−2u)

)

≤ AF + d(BF + 1)
1 − 4κ

(1 − e−2u)1−4κ − 1
2

S2
(
νF | γ)

log(1 − e−2u),

and the bound (5.11) in the statement follows by optimizing in u > 0 (set
(1 − e−2u)1−4κ = r ∈ (0, 1).) Theorem 5.7 is established. ��

Since Ψ(r) ≤ r for every r ∈ R+, observe from (5.11) that

H
(
νF | γ) ≤ AF + d(BF + 1)

(1 − 4κ)
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so that, under the assumptions of Theorem 5.7, one also has that H(νF | γ) < ∞, a
conclusion of independent interest.

The quantity AF of (5.7) involves integrability conditions on F and its gradients
(they may actually be weakened according to the precise expression of AF ). On the
other hand, BF of (5.10) is rather concerned with a small ball behavior. For a vector
F = (F1, . . . , Fd) of eigenvectors of the underlying Markov generator L, Theorem
5.7 may be combined with (5.3) to fully control the relative entropy in terms of F
and its gradients as now illustrated in some instances.

Typically, consider Fn = (F1,n, . . . , Fd,n), n ∈ N, a sequence of vectors of centered
elements of A on (E, μ,Γ) such that

(C1) Fi,n, LFi,n, Γ(Fi,n, Fj,n), Γ(Γ(Fi,n, Fj,n), Fk,n), i, j, k = 1, . . . , d, n ∈ N, are
uniformly bounded in Lp(μ) for every p ≥ 1;

(C2) supn∈N

∫
E det(Γ̃n)−α dμ < ∞ for some α > 0.

Since (C1) implies that supn∈N AFn
< ∞ and (C2) that supn∈N BFn

< ∞, it follows
from Theorem 5.7 that H(νFn

|γ) → 0 provided that S(νFn
|γ) → 0.

Example 5.8. We describe, in part following [NPS13], how this setting may be
applied to concrete examples of interest.

(a) In the Wiener space framework of Example 5.3, fix some integers k1, . . . , kd ≥ 1
and, for any i = 1, . . . , d, assume that the sequence (Fi,n)n∈N

belongs to the
Wiener chaos Cki

. In particular, Γ̃n = (Γ(Fi,n, Fj,n))1≤i,j≤d = (〈DFi,n,
DFj,n〉H)1≤i,j≤d. Assume furthermore that the distribution of Fn converges to
γ as n → ∞. From [NR14, Lemma 2.1], it follows that supn∈N E[F 2

i,n] < ∞
for every i. Since inside a Wiener chaos all the Lp-norms are equivalent (see
e.g. [NP12, Corollary 2.8.14]), the condition (C1) is satisfied. Turning to (C2),
as a consequence of the main result in [NO08], Γ̃n → Id in L2 as n → ∞.
Again using that inside a Wiener chaos all the Lp-norms are equivalent, it fol-
lows that E[det(Γ̃n)] → 1 as n → ∞. In particular, for n large enough (n ≥ n0

say), E[det(Γ̃n)] ≥ 1
2 . Now, as a consequence of the Carbery-Wright inequality

[CW01] (see [NPS13]), for some universal constant c > 0 and every r > 0 and
n ≥ n0,

P
(
det(Γ̃n) ≤ r

) ≤ cNr1/N
E
[
det(Γ̃n)

]−1/N ≤ cN(2r)1/N , (5.14)

where N ≥ 1 is an integer related to the degrees of the Fi’s (cf. [NPS13,
Lemma 4.3] for further details). With the preceding, condition (C2) then clearly
holds for any α < 1

N .
(b) It may be observed that the same bounds (5.14) hold true when the Fi’s are

polynomials under a log-concave measure dμ = e−udx on R
n, at least when

u is a polynomial or such that |∇u| ∈ Lp(μ) for every p ≥ 1. Indeed, the
determinant det(Γ̃) is then also of this form, and the seminal result from [CW01]
applies similarly. This observation allows for an extension of the conclusions of
Theorem 5.7 far away the Gaussian framework.
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5.4 Fisher information growth and gamma approximation. This final
section develops the analogous investigation towards gamma approximation, for sim-
plicity one-dimensional. Denote by γp the gamma distribution (on the positive real
line) with parameter p > 0, invariant measure of the Laguerre operator

Lpf = xf ′′ + (p − x)f ′. (5.15)

Consider a random variable F ≥ 0 with law dνF = hdγp absolutely continuous with
respect to γp. Assume that νF admits a Stein kernel τνF

with respect to γp, that is,
according to (4.3) (taking into account the diffusion coefficient a(x) = x in (5.15)),
τνF

is a mapping on R+ verifying
∫

R+

(x − p)ϕ dνF =
∫

R+

τνF
ϕ′ dνF

for every smooth test function ϕ. In particular,
∫
E Fdμ = p. Note that, in this case,

S2
(
νF | γp

)
=

∫

E

(
τνF

(F )
F

− 1
)2

dμ.

From the study of Gaussian chaoses for example, and as already mentioned ear-
lier, it appears that the latter S(νF | γp) might not always be the relevant quantity
of interest (cf. [NP09,R05]). Indeed, for an eigenfunction F with eigenvalue −λ,
λ > 0, the Stein kernel τν(F ) may be identified with the conditional expectation of
λ−1Γ(F ) knowing F . Now, for such a functional, moment conditions on F may be
used to rather control the variance of λ−1Γ(F ) − F , and similarly higher moments
(cf. [ACP13,AMMP13,Le12]). Of course, by Hölder’s inequality,

(∫

E

(
Γ(F )
λF

− 1
)2

dμ

)1/2

≤
(∫

E
F−2rdμ

)1/r(∫

F

∣∣
∣∣
Γ(F )

λ
− F

∣∣
∣∣

2s

dμ

)1/s

for r > 1, 1
r + 1

s = 1. Provided it may be ensured that
∫
E F−2rdμ < ∞ for some

r > 1, the results here are nevertheless still of interest.
We assume below that p ≥ 1

2 so that the estimates (4.6) and (4.8) are verified,
with the choice of parameters d = 1 and ρ = κ = σ = 1

2 (see the comment preceding
Proposition 4.3). The proof of the following statement will follow the one developed
for Theorem 5.7.

Theorem 5.9 (Gamma entropic approximation via Stein discrepancy). On
(E, μ,Γ), let F ≥ 0 in A. Assume that F , LF , Γ(F ) and Γ(F, Γ(F )) are in Lq(μ) for
every q ≥ 1 and that

BF =
∫

E

1
Γ(F )α

dμ < ∞

for some α > 0. Then

AF =
∫

E

1
F

[
F |LF | + Γ(F ) + F

∣∣Γ
(
F, Γ(F )

)∣∣ + p + F
]2

dμ < ∞



302 M. LEDOUX, I. NOURDIN AND G. PECCATI GAFA

and

H
(
νF | γp

) ≤ S2(νF | γp)
2(1 − 4κ)

Ψ
(

2(AF + BF + 1)
S2(νF | γp)

)

where κ = 2+α
2(4+3α) (< 1

4 ).

Proof. Denoting by (Pt)t≥0 the semigroup with infinitesimal generator Lp, we have
as in (4.7),

Iγp
(Pth) = −

∫

R+

LpPtvt hdγp = −
∫

E
LpPtvt(F )dμ

where vt = log Pth. Now, for every ε > 0,
∫

E
LpPtvt(F )dμ =

∫

E
F (Ptvt)′′(F )dμ +

∫

E
(p − F )(Ptvt)′(F )dμ

=
∫

E
F (Ptvt)′′(F )

Γ(F )
Γ(F ) + ε

dμ +
∫

E
F (Ptvt)′′(F )

ε

Γ(F ) + ε
dμ

+
∫

E
(p − F )(Ptvt)′(F )dγp.

By integration by parts,
∫

E
F (Ptvt)′′(F )

Γ(F )
Γ(F ) + ε

dμ =
∫

E
(Ptvt)′(F )

[
F (−LF )
Γ(F ) + ε

− Γ
(

F,
F

Γ(F ) + ε

)]
dμ.

Using that

Γ
(

F,
F

ε + Γ(F )

)
=

Γ(F )
Γ(F ) + ε

− F Γ(F, Γ(F ))
(Γ(F ) + ε)2

it follows that
∫

E
LpPtvt(F )dμ =

∫

E

√
F (Ptvt)′(F )Wε(F )dμ +

∫

E
F (Ptvt)′′(F )

ε

Γ(F ) + ε
dμ

with

Wε(F ) =
√

F (−LF )
Γ(F ) + ε

− Γ(F )√
F (Γ(F ) + ε)

+
√

F
Γ(F, Γ(F ))
(Γ(F ) + ε)2

+
p√
F

−
√

F .

Now, for every 0 < ε ≤ 1,

∣
∣Wε(F )

∣
∣ ≤ 1

ε2
√

F

[
F |LF | + Γ(F ) + F

∣
∣Γ

(
F, Γ(F )

)∣∣ + p + F
]
.

As a consequence, with the notation introduced in the statement,
∫

E
W 2

ε (F )dμ ≤ AF

ε4
.
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By the Cauchy-Schwarz inequality,

∣
∣
∣
∣

∫

E

√
F (Ptvt)′(F )Wε(F )dγp

∣
∣
∣
∣ ≤

( ∫

E
W 2

ε (F )dμ

)1/2( ∫

E
F (Ptvt)′2(F )dμ

)1/2

=
( ∫

E
W 2

ε (F )dμ

)1/2( ∫

R+

Γ(Ptvt)hdγp

)1/2

.

Since Γ(Ptvt) ≤ e−tPt(Γ(vt)) (Theorem 3.2.4 in [B-G-L]),

∣
∣
∣
∣

∫

E

√
F (Ptvt)′(F )Wε(F )dγp

∣
∣
∣
∣ ≤ e−t/2

(∫

E
W 2

ε (F )dμ

)1/2(∫

R+

Pt

(
Γ(vt)

)
hdγp

)1/2

≤ e−t/2

ε2
A

1/2
F Iγp

(Pth)1/2.

On the other hand, the estimate (4.6) yields the bound
∫

E
F 2(Ptvt)′′(F )2dμ =

∫

R+

x2(Ptvt)′′2hdγp

≤ 1
et − 1

∫

R+

Pt

(
Γ(vt)

)
hdγp

=
1

et − 1

∫

R+

Γ(vt)Pthdγp =
1

et − 1
Iγp

(Pth).

This in turn implies that

∣
∣
∣∣

∫

E
F (Ptvt)′′(F )

ε

Γ(F ) + ε
dμ

∣
∣
∣∣ ≤ 1√

et − 1
Iγp

(Pth)1/2

(∫

E

(
ε

Γ(F ) + ε

)2

dμ

)1/2

.

Gathering together all the previous estimates, we deduce that, for every 0 < ε ≤ 1
and t > 0,

Iγp
(Pth) ≤ 2e−tAF

ε4
+

2
et − 1

∫

E

(
ε

Γ(F ) + ε

)2

dμ.

On the basis of this estimate, we then conclude exactly as in the proof of
Theorem 5.7. ��
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