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In the line of investigation of the works by D. Bakry and M. Emery (Lecture 
Notes in Math., Vol. 1123, pp. 175206, Springer-Verlag, New York/Berlin, 1985) 
and 0. S. Rothaus (J. Funct. Anal. 42 (1981), 102-109; J. Funct. Anal. 65 (1986), 
358-367), we study an integral inequality behind the “f, criterion” of D. Bakry and 
M. Emery (see previous reference) and its applications to hypercontractivity of 
diffusion semigroups. With, in particular, a short proof of the hypercontractivity 
property of the Ornstein-Uhlenbeck semigroup, our exposition unifies in a simple 
way several previous results, interpolating smoothly from the spectral gap 
inequalities to logarithmic Sobolev inequalities and even true Sobolev inequalities. 
We examine simultaneously the extremal functions for hypercontractivity and 
logarithmic Sobolev inequalities of the Ornstein-Uhlenbeck semigroup and heat 
semigroup on spheres. 0 1992 Academic Press, Inc. 

To introduce to this paper, we would like to start with a short and 
simple proof of the hypercontractivity property of the Ornstein-Uhlenbeck 
semigroup. This proof is inspired from the work [B-El ] by D. Bakry and 
M. Emery and the present paper may actually be considered as a 
re-reading of [B-El]. On Rk, let p be the canonical Gaussian measure with 
density with respect to Lebesgue measure (27~)~‘~ exp( - [x1*/2), where 
lx/* = Cr= 1 xf for x = (x,, . . . . xk) a generic point in Rk. For fin L’(p), and 
t 2 0, set 

which ‘thus defines a Markovian semigroup of positive contractions in all 
Lp(p) (1 <p < 03) with p as the invariant and symmetric measure (i.e., 
JPtg 4 = s gP,fh), k nown as the Ornstein-Uhlenbeck semigroup, or 
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Hermite semigroup with respect to a Gaussian measure. Its generator L 
acts on each smooth functionfon Rk as 

Lftx)z,$, $$(xlpi$l xig (X)=Af(x)-x.Vf(x) 
I I 

(and is therefore sometimes abbreviated as L = A - x. V). It is a Dirichlet 
form for the squared gradient with respect to p (integration by parts) in the 
sense that for all smooth functions f, 

lrc-Lf)&=j lVfl% 

It has been shown by E. Nelson [N] that the Ornstein-Uhlenbeck semi- 
group (PLO satisfies the following (dimension free) hypercontractiuif~ 
property: whenever 1 <p < q < a and t > 0 satisfy 

e,> q-1 
-(a> 

I’* 
-1 ’ 

then, for all functions f in Lp(p). 

IPtf II4 Q Ilf II/? 

(where I/ .IIP is the norm in LP(p)). In other words, P, maps Lp in Ly with 
norm one. Furthermore, the exponential functions f(x) = exp(a . x), a E W, 
are easily seen to be extremal functions, that is they satisfy the equality 
llPlflly=llfllp for all triples (P,q,t) with l<p<q<oo,t>O, and 
e’= ((q- l)/(p- l))‘/*. 

This hypercontractivity property has been shown by L. Gross [G] to be 
equivalent to logarithmic Soboleu inequalities. Namely, for all smooth 
functions f on (Rk, p) (for example, such that their gradients are in L’(p)), 
we have 

Actually, by a change of variables, this inequality involves a whole family 
of logarithmic Sobolev inequalities: replacing f (positive) by fp’2, p 2 1, we 
get equivalently 

P 
<2(p- 1) i fp-l(-Lf)dp=;[fPp2 IVf12dp (1) 

((l/2) j ( - Lf) log f dp when p = 1). This equivalence between hypercon- 
tractivity and logarithmic Sobolev inequalities, thus due to L. Gross [G], 
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holds in rather a general setting as will be used implicitly in the rest of the 
paper. To briefly recall its proof [G, B-El, D-Sl], let p > 1 and let f be 
smooth and positive. Consider then the function in ta 0, Q(t) = ljPrfI/,(,, 
where q(t) = 1 + (p - 1 )e2t. Under the hypercontractivity property, 
Q(t) Q @p(O) fo.r every t 20; hence W(O) < 0 and, by performing this 
differentiation, this relation is exactly (1). Conversely, (1) applied to P, f 
shows that W(t) < 0 for every t; therefore @ is decreasing and @(t) < @(O) 
which is hypercontractivity, at least for f smooth, but actually for all f by 
a standard approximation. The case p = 1 may be obtained in the limit (or 
directly). 

To announce a parallel that will be constant throughout this work, let 
us note that this differentiation argument is similar to the one used for 
the spectral gap property. In this Gaussian example, it is simply the 
equivalence between 

llP,f l12Ge-’ Ilf II2 

for all t 20 and all f in L2(p) with mean zero, and the Poincare type 
inequality 

for all smooth f with mean zero. Accordingly, the proof simply uses 
differentiation of the function !P( t) = e’ I( P, f 11 2. 

To verify the hypercontractivity property, it is usually easier to work 
with the logarithmic Sobolev inequalities (1). The following simple 
and short argument is inspired from the work [B-El] (see also 
CD-Sl, p. 2671). Let f be a positive2 (or even, to start with, such that 
0 < a <f < b < cc for some constants a, b) smooth function on [Wk. The 
semigroup properties and integration by parts allow us to write that 

=- 

m  
=- 

J (J 

LP,f log P,f dp dt 
0 > 

= VP,f,V(log P,f)d,u dt 
> 

* We agree in this paper that positive (for a functionf) means strictly positive (i.e., fz 0). 
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Now, if F(t) = j (l/P,f) IVP,fl’ &, the integral representation of P, and 
the Cauchy-Schwarz inequality on this representation show that, for every 
t 2 0, 

Combining with the preceding identity, this already yields (1) (for p = 1 ), 
and hypercontractivity is thus established in this way. 

As an alternate argument, which will be the key argument in the more 
abstract setting next, one can also note from an elementary computation 
that F’(t)= -2&‘(t)-2ep4’K(t) where 

which is in particular always positive. Hence 

jOm F(t)dt= --ij: F’(t)dt-j: ep4’K(t)dt, 

that is, 

jfhf&- jfW,(jf,) 

The preceding simple argument has an interesting consequence to 
extremal functions for hypercontractivity and logarithmic Sobolev 
inequalities. Let us agree that a (positive) function f is an extremal or 
saturating function for hypercontractivity of the Ornstein-Uhlenbeck semi- 
group (pt),,o if there exists a triple (p, q, t) with 1 <p < q < co, t > 0, and 
e’ = ((q - 1 )/(p - 1))‘j2 for which 11 P, f II y = II f lip. Constants are of course 
extremal and, as we have seen, exponential functions are extremal (and for 
ail admissible triples (p, q, t)). As a result, we observe that these are 
actually the only (smooth) ones. Indeed, coming back to the equivalence 
between hypercontractivity and logarithmic Sobolev inequalities, if f 
is a positive smooth extremal function for (p, q, t), the function 
@P(s) = IIPsf llqw is constant for s < t. Thus, differentiating at s = 0, f 
satisfies the equality in the logarithmic Sobolev inequality (1) (for the 
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corresponding value of p > 1). By a change of variables, h = f “P satisfies the 
equality in (1) for p = 1, that is, 

For this function h, we can write as before 

where H(t) = j (l/P, h) IVP, hi2 &. Then, the previous argument shows 
that, for almost every t, we must have equality in the Cauchy-Schwarz 
inequalities 

(P,~~<P,hP,(~($~). i=l,..., n. 

Therefore, if h is, for example, C’, 

ah 
-=aih axi 

for some real numbers ai, i= 1, . . . . n, and h is an exponential function. 
Alternatively, the error term j; ee4’K(t) dt in (2) only vanishes on 
exponential functions (see also [Cl). 

As we have seen, an extremal function for hypercontractivity saturates 
the corresponding logarithmic Sobolev inequality. However, there is a 
priori no reason that the converse need be true in general. Now, exponen- 
tial functions saturate the Gaussian hypercontractivity inequalities so that 
we actually identified in the same way (smooth) extremal functions for 
hypercontractivity. That exponential functions are the saturating functions 
for hypercontractivity in Gauss space was established (and with no 
smoothness restriction) by H. J. Brascamp and E. H. Lieb [B-L] (see also 
[L2]). That they are the saturating functions for the logarithmic Sobolev 
inequality was shown by E. Carlen [C] who proved a sharpened version of 
this inequality with an error term vanishing only on exponential functions. 

Summarizing the conclusions of the previous elementary arguments, we 
may state the following. 

THEOREM 1. The Ornstein-Uhlenbeck semigroup with respect to the 
Gaussian measure ,u on Rk is hypercontractive, and a positive C’ function f 
on Rk whose gradient is in L2(p) satisfies the equality in the logarithmic 
Sobolev inequality 
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if and only if it is of the form f (x) = c exp(a . x) for some positive c and some 
a in [Wk. 

In the first section of this paper, we bring out from this introduction an 
inequality for the Ornstein-Uhlenbeck operator A - x .V which inter- 
polates smoothly the Poincare inequality and the logarithmic Sobolev 
inequality. We then apply in the second section the idea of this integral 
criterion to the heat semigroup on the sphere and we determine with it the 
extremal functions for the logarithmic Sobolev inequality. Finally, we 
include our investigation in the abstract diffusion setting of [B-El ] using 
their notion of curvature and dimension of a semigroup. In the Appendix, 
some recent developments of [Ba] are considered. 

1. AN INEQUALITY FOR THE OPERATOR A-x. V 

The preceding approach to hypercontractivity seems to contain in its 
body a simple inequality (actually a family of inequalities), of possible 
further interest, which expresses in an unified way several properties of the 
Ornstein-Uhlenbeck semigroup (P,), 2 0 and its generator L = A - x V. 
This inequality is a consequence of the “Tz principle” of [B-El] as will be 
seen in Section 3. It is given by the following theorem. As above, p is the 
canonical Gaussian measure on Rk. 

THEOREM 2. For s = 0 and s = 1 (and thus for every s in [0, 1 I), andfbr 
every positive smooth function f on [Wk, 

It is not possible that s > 1 in this inequality (even with the left hand side 
replaced by r j IVf I2 d,a for some T) as can be seen from the example of 
exponential functions. 

Proof It is elementary and is based on the identity 

whose verification is immediate (start in dimension one). In particular 
therefore (see Section 3 for the relation to r,), 



450 M. LEDOUX 

that, after integration, already yields the inequality of the theorem for s = 0. 
To reach the case s = 1, and actually every s in [0, 1 ] in the same way, 
simply apply (3) to q(f) where cp on R, is such that q’(u) = a-“, u > 0. 
After simplification by f -“, we get 

Integrating by parts, 

an inequality stronger than the one of the theorem. The proof is complete. 

The interesting point of this inequality is that it kind of interpolates 
between the Poincare inequality (corresponding to s =0) and the 
logarithmic Sobolev inequality (corresponding to s = 1). To explain this, 
we need simply repeat the argument developed in the introduction 
following [B-El]. Let $ on R, be such that $“(u)=z/, u>O, where 
r = - 2s/( 1 + S) (0 i s < 1). Let further f be positive and smooth on Rk. We 
can write as before by the semigroup properties and integration by parts 

where 

The derivative F’ of F is given by 

If we change f into f (’ +r)/2 = f ‘I(’ + ‘) in Theorem 2, and apply it to P, f for 
every t, we see that it exactly expresses that F’(t) < -2F(t) for every t. 
Hence 

s 
mF(t)dt< -;[mF’(f)dr=;F(0), 

0 0 

and therefore 
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This is already PoincarC’s inequality for r = 0 (s= 0) and one of the 
equivalent logarithmic Sobolev inequalities (1) for Y = - 1 (s = 1). 
Changing back f into f2’(2+r) =f’+’ if one wishes it, we also get the 
inequalities, 0 < s < 1, 

(4) 

as well as the limiting case as s approaches 1, 

These inequalities (4) have been obtained recently by W. Beckner [Be1 ] 
and follow here rather easily from Theorem 2. 

Actually, these inequalities may be given an even simpler proof following 
the approach of the introduction. Indeed, and letting k= 1 to simplify the 
notations and the idea, 

f’(t) = !” (p,f )’ IVP,f I* dp = e -” 1 (P,f)‘(P,f’)* dp. 

By the Cauchy-Schwarz inequality and concavity (0 < -r < l), 

(P,f’)2 = (P,(f”‘f’ .f -“*))* < P,(f’f’*) P,(f -‘) < P,(f -‘f”)(P,f)-’ 

SO that F(t) < e-*‘F(O) for every t which immediately gives the result. 

2. THE HEAT SEMIGROUP ON A COMPACT RIEMANNIAN MANIFOLD 

A second basic example in the study of hypercontractivity (and Sobolev 
inequalities) is the heat semigroup on spheres. As is well known and 
familiar, this example is closely related and similar to the Ornstein-Uhlen- 
beck semigroup with respect to a Gaussian measure. To present this case, 
it is convenient to widen the investigation and to deal with the heat semi- 
group on a compact Riemannian manifold. Thus, let E be here a compact 
connected Riemannian manifold of dimension n, p be the normalized 
Riemannian measure, and A be the Laplace-Beltrami operator on E. 
Consider then the heat semigroup P, = eprd, t 2 0. O.S. Rothaus [Rl] 
showed that the heat semigroup is hypercontractive; i.e., there exists p > 0 
such that whenever 1 <p < q < cc and t > 0 satisfy 

ep’> q-1 I’* / 
k-1 -1 ’ 
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then, for all functions f in Lp&), 

IIPtf Ilq d Ilf lip 

(where I( . lip is the norm in Lp(p)). The best possible value p0 for p is called 
the hypercontractive constant of the semigroup (P,),rO or of its generator 
A. Rothaus’ proof uses extremals; a simple alternate proof (see [D-Sl]) 
may be given using the classical Sobolev inequality and the spectral gap 
(see below). 

As for the first non-trivial eigenvalue 1, of the Laplacian, the main 
question lies in interesting minorations of its hypercontractive constant pO. 
The first eigenvalue or spectral gap 1, of the Laplacian is characterized by 
the Poincare type inequality 

holding for all smooth functions f on E, as well as equivalently (see below) 
by 

It is actually on the idea of this dual description of I, that several of the 
analogous developments for p0 and Sobolev inequalities are based 
(Definition 3). From the general equivalence between hypercontractivity 
and logarithmic Sobolev inequalities sketched in the introduction, p0 is 
characterized by the logarithmic Sobolev inequality 

~o[[f~log Ifl L-lf2d~log(If2d~)“2]~l IVfl’dp 

holding for all smooth functions f on E (or only positive ones) where V is 
the gradient on E, as well as, after a change of variables, by the equivalent 
forms (1) (with p. as a multiplicative constant on the left). It might be 
interesting to already recall at this stage that we always have that p. < 1, 
as can be shown by applying the preceding logarithmic Sobolev inequality 
to 1 + .sf where f has mean zero and by letting E go to 0 (cf. [Rl I). In the 
case E is the Euclidean sphere SF of dimension n and radius r > 0, it has 
been shown in [M-W] that p. =n/r2 = A1. As we will see, this result has 
been extended in [B-El, R2] to compact Riemannian manifolds with 
non-negative Ricci curvature. 

We will try to investigate this setting along the idea just alluded to 
through the inequality of Theorem 2. 
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DEFINITION 3. For any real number s, let t(s) be the largest T such that 

T (5) 

for all positive smooth functions f on E (T(S) = --og if no such r exists). 

We will be interested in this definition in values of s >,O for which 
z(s) > 0. Starting with some elementary properties, let us first note that 
z(O) can be identified with 1, (see below) and that z(s) <t(O) = I, for every 
s as can be seen by applying (5) to 1 +&f and by letting E tend to zero. 
Furthermore, as an infimum on affrne functionals, z( .) is easily seen to be 
a concaue function. Besides r(0) = IL1, we will see that t( 1) 6 PO. The range 
of interest for the values of s seems actually to be the interval 
[0,2n/(n-2)-l] for na3, and every s>,O for n=l, 2, the value 
2n/(n - 2) being of course the best exponent in the Sobolev imbedding 
theorem in Riemannian manifolds [A]. These observations are clearly 
drawn from the following proposition whose proof simply reproduces, in 
this framework, the argument developed from Theorem 2 at the end of the 
preceding section. 

PROPOSITION 4. For all s and all positive smooth functions f on E, 

~[~f2dp-(jf1+sdp)2i’+s]<\,Vf12dp (6) 

and 

jf210gf+j-f2Wog jf2dC1 ( )'"]+?f12d~ 

when s= 1. 

Proof. We need simply sketch it. Given f positive and smooth on E, 
and $ on [w + is such that e”(u) = z./, u > 0, where r = - 2s/( 1 + s), we can 
write 

where F(t) = j (P, f )’ IVP, f 1 2 dp. After a change of variables, (5) indicates 
that, for every t, F’(t) < -2$s) F(t) and hence 

that yields the conclusion after another change of variables. 
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We see from this proposition how Definition 3 smoothly interpolates 
between a Poincart type inequality (s= 0), a logarithmic Sobolev 
inequality (s = 1 ), and a true Sobolev inequality (s > 1). As will be seen 
below with the example of the sphere, this approach further yields optimal 
constants in these inequalities. As announced, r( 1) Q pO, and, after a simple 
change of variables, t( 1) is actually easily seen to be identical to the 
criterion put forward in [B-El, Corollaire 11. When the dimension n is 
larger than 3, inequality (5) with r(s) >O cannot be satisfied with 
1 + s > 2n/(n - 2) since if not (6) would contradict the Sobolev imbedding 
theorem. 

Simple lower bounds for the hypercontractive constant p0 of the heat 
semigroup on a compact Riemanmian manifold E, as well as Sobolev 
inequalities, may thus be easily drawn from the inequalities (4). Of course, 
the main question now lies in finding efficient lower bounds for z(s) for as 
many as possible values of s, hopefully for all s of the interval 
[O, 2n/(n - 2) - 11. However, while logarithmic Sobolev inequalities and 
Sobolev inequalities exist in any compact Riemannian manifold, it is not 
known whether the inequalities (5) are satisfied with r(s) >O for the 
appropriate values of s. One may ask, for example, whether the Sobolev 
inequalities conversely imply these inequalities. In particular, it is an open 
question (raised in [B-El]) to know whether r(l) = p,,. This is in contrast 
with the corresponding property for A, for which one easily verifies that 
r(0) = A1 : Proposition 4 shows that r(0) <I,, while conversely one may 
simply invoke the Cauchy-Schwarz inequality to see that 

j Ivft2dp= jft-df)h= j(f-b+4(-df)dp 
G If- sS&l 2 dp )1’2(jW-~2dll)“2 

< ~(jlVf”d”)“2(j(dl)‘d~)1’2 

< + j (Af)* dp. 
1 

As a very partial answer to these questions, we have only been able so 
far, following [B-El, R2], to show (5) for some values of s under curvature 
assumptions on the manifold, with however in this case sharp lower 
bounds on r(s). Even under these hypotheses, we moreover do not reach 
the full interval of interest. Recently, D. Bakry [Ba] developed an 
approach to reach this full interval via weak Sobolev inequalities which 
share the same dimension in the sense of [D, V] as the Sobolev 
inequalities (see the Appendix). 
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Denote by R the infimum of the Ricci curvature tensor over all unit 
tangent vectors. Recall that Bochner’s formula (cf. [B-G-M]) implies that 
for all smooth functions f on E, 

; d(lVfl’) -Vf.V(Af) 2 RlYfI’ +; (df)2. (7) 

We will agree that when n = 1, then R = 0 (the torus). To exploit this rela- 
tion towards the inequalities (5), we may follow [R2] and the preceding 
section and apply it to cp(f) where f is smooth and positive on E and 
where cp on R + is such that p’(u) = u-~, u > 0, q real. After simplification 
byf -- 2y, we get 

--Zq$If ,Vfl’- 1-A 
( > 

n 42,; l?fl", 

hence, by integration by parts, 

Inspecting the values of q for which q[ 1 - q( 1 - l/n)] >/ 0 we deduce the 
following consequence. 

PROPOSITION 5. Let E be a compact Riemannian marCfold of dimension 
n and Ricci curvature R > 0. Then, in Definition 3, 

R 
t(s) 2 - 

1 - l/n 
>o 

for every s in the interval [0, (1 + 2/n)/( 1 - l/n)‘]. 

For s = 0, the minoration of this proposition is simply the celebrated 
Lichnerowicz minoration of 2, [B-G-M]. Provided with this result, it 
would have been of course enough, by concavity, to prove the minoration 
of Proposition 5 for s = (1 + 2/n)/( 1 - l/n)2. It turned out that it was just as 
easy to work with an arbitrary S. 

If E=S;, it is known (cf. [B-G-M]) that R = (n- 1)/r’ and 
2, = R/( 1 - l/n) = n/r’. Hence, since z(s) <z(O) = I,, we conclude 
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for every s in the interval of the statement. In particular, since 
r( 1) < p0 < Al, p0 = I, = n/r’. It might be worthwhile noting that Proposi- 
tion 5 further implies the analogue of Obata’s theorem (cf. [B-G-M]) for 
the hypercontractive constant pO. Indeed, let E be a compact Riemannian 
manifold of dimension n and positive Ricci curvature R such that 
p0 = R/(1 - l/n). By Proposition 5, r(s) > p0 on an interval [0, 1 + E] for 
some E > 0 and r(l) = pO. By concavity of r( .), it is then constant and equal 
to p,, = R/( 1 - l/n) on this interval. In particular, I, = R/( 1 - l/n) and E is 
therefore isometric to a sphere by Obata’s theorem. Concerning the case 
n = 1, we agreed that R = 0 and (8) (with q = 1, for example) then shows 
that J (l/f) df (V’l’ dp > 0, something that may of course be shown 
directly by a simple integration by parts. In this case therefore, 
T(S) = t(0) = 1i for every s > 0, and in particular p0 = I, [E-Y]. 

As a consequence of this discussion, and Proposition 4, if E = S:, we 
established that for f positive and smooth on E, 

for every s in the interval [l, (1 + 2/n)/(l- l/n)‘] (every s> 1 if n = 1). 
W. Beckner [Be21 recently showed, using Lieb’s calculation of the best 
constant for a fractional integral inequality on IR” [Ll], that this inequality 
holds up to s < 2n/(n - 2) - 1 (n 2 3). One might conjecture that this is 
thus also the case for the inequalities (5) with r(s) = n/r’ which would yield 
similarly best constants in this Sobolev inequality (cf. [A, p. 503). 

To conclude this section, let us come back to the question of extremal 
functions for hypercontractivity in this setting. As in Gauss space, a 
saturating function for the hypercontractive inequalities satisfies the 
equality in the corresponding logarithmic Sobolev inequality. 0. S. Rothaus 
[Rl] has shown that for every p >po, there exists a positive smooth 
non-constant function f on E such that 

~f2~ogf+j-f2Wx ff2& ( )‘“I=/ lVf12&. 

Moreover, when p. < 1,) there exists such an extremal non-constant 
function even for p = po. His argument however does not cover examples 
where p. = 1, as spheres, and, as a result, we will actually observe that on 
a sphere SF the infimum 
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over all positive smooth non-constant functions f with jf” dp = 1 is not 
attained. On the sphere S:, we know indeed that p0 = n/r’ = R/( 1 - l/n) = 
z( 1). Then, consider a positive smooth, for example, C*, function f which 
saturates the logarithmic Sobolev inequality for p0 in the sense that 

jflogfh- jfWw(jfd~)=$ jflYfl*&- 
0 

If we recall F(t) = j (l/P, f) IVP, f 1* dp, t 2 0, we know that the left hand 
side of the preceding equality is precisely l: F(t) dt and that 
F’(t) d - 2~( 1) F(t). Since p. = r(l), it follows in particular that 
F’(0) = - 22( 1) F(0) and, going back to the expression of F and F’ (see the 
first section) and letting h = f *, we must have that h satisfy (5) for s = 1 as 
an equality, i.e., 

But if we compare this equality with (8) for the value of q for which 
q(1+2/n)=(l-l/n) (which satisfies q[(l-q(l--l/n)]>O), it follows 
necessarily that 

and h =f* is thus constant. Summarizing some of our conclusions, we may 
state the following. 

THEOREM 6. The heat semigroup on S: is hypercontractive with 
p. = n/r*, and a positive C* function on SF which satisfies the equality in the 
logarithmic Sobolev inequality 

; .f’W4-jf*Wog jf & ( * )‘;‘I< jlVfl*h 

can only be constant. 

3. A GENERAL FRAMEWORK AND THE r2 CRITERION 

In this final part, we adopt the general diffusion semigroup setting 
developed by D. Bakry and M. Emery [B-El] to focus on the “r2 
criterion” behind the integral inequalities studied in the previous sections. 
It will help us to interpret some of the conclusions we obtained so far. On 
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extremality in particular, we will see how the concept of “dimension” 
of a semigroup influences the nature of the extremal functions, the 
Ornstein-Uhlenbeck semigroup being considered as infinite dimensional. To 
briefly recall the setting of [B-El], let (P,),,, be a Markovian semigroup 
on a probability space (E, 6, p) with generator L. The semigroup (P,),,O 
is assumed to be symmetric, invariant, and ergodic with respect to p and 
L to be a diffusion; i.e., there exists an algebra S? of bounded functions in 
the domain of L, stable by L and by the action of C” functions cp such 
that ~(0) = 0, and L satisfies the change of variables formula 

Jwf) = rp’(f) Lf+ cp”(f) Wf)~ 

where r(Af) = ( 1/2)(Lf2 - 2fLf). The “squared gradient” r is always 
positive and we have the integration by parts formula 

The main tool in the study by D. Bakry and M. Emery is the “iterated 
squared gradient” r2 defined, for every f in d, by 

r,(Ls) = f LWf) - m Lo. 

We refer to [B-El] for further and more precise details on these 
definitions. 

The reader recognizes in these objects the natural extension of the two 
preceding examples. Namely for the heat semigroup on a compact Rieman- 
nian manifold E, r(f,f) = IV’1 2 and Bochner’s formula (7) reads as 

for all smooth functions f (one might take as d the algebra of C” 
functions on E). In the case of the Ornstein-Uhlenbeck semigroup, we find 
that r(f,S) = lVf12 and 

w-)=w)+i,~l (&j2. 
1 J 

In particular r,(f, f) > r(f, f ), that is the relation leading to Theorem 2. 
According to [B-E2], these examples invite us to set as a definition that, 

in the preceding abstract setting, the diffusion semigroup (Pt)l,O, or its 
generator L, is of dimension n ( > 1) and curvature R if, for every f in &, 

(9) 



HYPERCONTRACTIVITY OF DIFFUSION SEMIGROUPS 459 

Of course, a semigroup of curvature R and dimension y1 is also of curvature 
R’ <R and dimension n’> IZ. The Ornstein-Uhlenbeck semigroup (even 
when k = 1) is thus of dimension n = CC (and nothing better) and curvature 
R = 1. As in the classical case, we will agree that R = 0 if n = 1. We denote 
by 2, the analogue of the first non-trivial eigenvalue of the Laplacian, that 
is, the best constant E, for which 

for every f with mean zero in d. Similarly, the hypercontractive constant 
p0 of the semigroup (P,),,, is characterized (under a density property of 
.d in all LP(p)‘s, see [B-El 1) by the logarithmic Sobolev inequality 

(or the corresponding inequalities (1)). 
We may actually complete these numbers with the set of inequalities of 

Definition 3 and thus denote by z(s), for every s, the largest real number r 
such that 

for all positive functions f in d (z(s) = --CC if no such r exists). This 
definition leads as in the previous sections to the Sobolev inequalities 

~[If2d~-(~f1+~d~)2i’+r]GiJ(f;fid~, (11) 

for f positive in d, as well as for s = 1 to 

In particular, z(O) = I, and z( 1) < po. We also have here that 
r(s) < t(O)= %1 for every s (that t(O)bAi follows as in the previous 
section), and that t( .) is a concave function. 

The study of semigroups of dimension n and curvature R ( >O) is similar 
to what was developed in the examples of the preceding sections. Namely, 
by the change of variables formula (see [B-El I), for f positive in .1;4 and 
cponR+ such that q’(u) = u-9, u > 0, q real, we have 

580/105iZ-16 
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f [ 
f’” r,(cp(f), q(f))--r(q(f), q(f))-;(Lg(f))2]dp 

= r,(f,f)-WAf)+f)’ dp+q I+; j+fr(Lf)C 1 LJ 
-+-q(l-t)] j+Uf)‘dli. 

Since the left hand side of this identity is always positive by (9), and since 
we clearly have that j r,(f, f) dp = s (Lf )’ dp, we may first deduce from 
(12) the analogue of (8), namely 

--4[l-(l-i)] j+-(f;f)‘dlc. 

Thus, we recover in this general setting that r(s) 3 R/( 1 - l/n) for every s 
in the interval [0, (1 + 2/n)/(l- l/n)‘] (for all s B 0 if n = 1). In the 
example of the Ornstein-Uhlenbeck generator, R = 1 and n = co, and the 
function z(s) is therefore constant and equal to 1 on the interval [0, l] and 
equal to -co for s > 1 (a true Sobolev inequality cannot hold for the 
Gauss measure [G]). In finite dimension, we may slightly improve the 
minoration of p0 by use of t(0) = I, and r(s) for some s > 1. Namely, by 
concavity, for every s > 1, 

PoW(l)+(s)+ l-5 r(0) 
( > 

that yields 

1 - l/n 
Po2iqi 

R + AIn - lln2 i 
1 +2/n ’ 

(see also [D-S23). This argument has to be put together with the proof of 
the existence of p. > 0 in a compact Riemannian manifold using the 
Sobolev imbedding and the spectral gap (cf. [D-Sl, p. 2481). The preceding 
minoration is however weaker than the seemingly optimal one 

1 - l/n 4/n 
P”‘(1+l/n)2R+(1+I/n)2A’ 

obtained by 0. S. Rothaus [R2] in compact Riemannian manifolds. His 
argument relies on extremals and perhaps indicates a weakness in the 
approach developed here. 
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We conclude with extremal functions in this setting and their relation to 
the dimension of the semigroup. A semigroup (P,),, 0 of dimension n and 
curvature R is hypercontractive for p = R/( 1 - l/n) (p = E., if n = 1). What 
are the extremal functions of the logarithmic Sobolev inequality for this 
value of p? If f is positive in d and satisfies the equality 

jflogfdlr-jfddog j.f& =; j$U.f,f)& 
( > 

then, as in Section 2, f satisfies (10) with s = 1 and T( 1) = p as an equality 
also. Then, (12) yields 

In finite dimension, we can choose q # 1 such that (1 - l/n) - q( 1 + 2/n) = 0 
and deduce that r(f,f)=O. f is then constant since r(f, Lf)'< 
r(f,f) J’(Lf, Lf) (r is positive) from which one gets r(f, Lf) = 0 and 

0= jr(jiLf)dp= -j(Lf)'&; 

the claim follows by ergodicity. When n = az, we choose q = 1 in (12) 
which then reads as 

so that 
s f * C~,(kL logf) - RWog.L logf )I 4 = 0 

~2bx.L logf) = RWx.f; logf ). 

Applied to the preceding examples of the heat semigroup on spheres and 
the infinite dimensional Ornstein-Uhlenbeck semigroup, these observations 
thus appear as a kind of explanation for the different extremal functions of 
logarithmic Sobolev inequalities in these two examples. 

APPENDIX 

In the abstract diffusion setting of Section 3, D. Bakry [Ba] recently 
showed that the dimension-curvature condition (9) actually implies the 
Sobolev inequality 

(jfpdl()2ip~Ajf2d~+Bj~(.f,f)dli, (14) 
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for constants A, B> 0 and all positive f in aI with best exponent 
p = 2n/(n - 2) (n > 2), and not only what is obtained in (11) together with 
(13). His approach however goes through what he called weak Sobolev 
inequalities. To incorporate these inequalities in our framework, we may 
consider, for p and tl such that l/p = l/2 - l/ncr the family of inequalities 

(jfodll)lm(~f2dlL)I'GAjf2dli+B~~~f,f)~~, (15) 

f positive in d. In other words, for f positive in d with j f 2 dp = 1, 

WP 

<A+B r(f,f)dp. s 

For p = 2n/(n - 2), we recognize the classical Sobolev inequality (14). 
When p = 2, the left hand side of (15) has to be understood in the limit as 

A form of this logarithmic Sobolev type inequality has been studied exten- 
sively in the book by E. B. Davies [D], and is called weak Sobolev 
inequality in [Ba] (as we will see, it is indeed more a Sobolev inequality 
than a logarithmic Sobolev inequality as studied in the previous sections). 
A forerunner of this inequality may be found in [WI. When p = 1, (15) is 
the Nash inequality studied in [C-K-S]. 

The natural interval for the values of p in (15) is the interval 
[ 1,2n/(n - 2)]. It is easy to see that the inequalities (15) are weaker as p 
decreases to 1. In particular, Nash’s inequality seems to be the weakest of 
the family. Actually, these inequalities turn out to be all equivalent 
(possibly changing of course the constants). Indeed, as a result of the 
works [V] (see also [C-SC-V]), [D], [C-K-S] for the respective values 
p = 2n/(n - 2), p = 2, p = 1, these inequalities (15) are all equivalent to the 
behavior of the semigroup (P,),ao as 

IIP,fll'x Q Ct-"'2 llfll1, o<t<1, (16) 

for the same value of n. Therefore (15) has the same meaning for one or all 
p in Cl, 2n/(n - 2)]. 

Now, if we want to investigate one of the inequalities (15) under the 
dimension-curvature assumption (9), we may trivially repeat the arguments 
developed previously. As before, we attempt to reach A = 1, and given f 
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positive in d with Jf’ dp = 1, we would like to establish, taking 
logarithms, that 

Change f into f 'lp and write as in the previous sections 

alog(jfdp)*‘p=c+~)j~F(t)dr=~j~;F(~)dr, (17) 

where 

(2/~)-2 f(P,,f, P,f) d/i. 

One then looks for a criterion so that (17) is estimated by 
log( 1 + Bp-*F(O)) (recall the change of variables). This is the case as soon 
as 

4n 
p F(t) < -( 1 + Bp--*F(t)) -I BP-* F’(t) 

for every t>O. Performing this differentiation, it is easily seen, as in the 
preceding sections, that this will be satisfied as soon as for every positive 
fin & with jf * dp= 1, 

(18) 

for a(p) = 2pJnB. 
These inequalities (18) may of course be compared with the inequalities 

of Definition 3, or rather of (10). We realized in the preceding sections 
the difficult task in establishing (18) for p = 2n/(n - 2) (for which 
p - 2 -2p/n = 0) under the dimension-curvature hypothesis (9). To be 
more specific, we showed under (9) (see (13)) a form of (18) but with n 
replaced by some n’ > n (and all p such that p - 2 - 2p/n’ < 0). The main 
conclusion of [Ba] is that (9) actually implies (18) with the same n, ,for 
p = 2, and with a(p) = R. By the preceding comments, we reach in this way 
the best exponent p = 2n/(n I- 2) in (14). One may wonder which is the 
weakest, or at least the easiest to establish, among the inequalities (18) 
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when p varies between 2n/(n - 2) and 1. While the computations of [Ba] 
are rather tricky, one may hope for some simplifications when another 
value of p (in particular p = 1) is considered. 
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