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Abstract

This paper establishes the log-convexity of Fisher information for scalar random variables along the heat flow, thus resolving
a conjecture posed in [1]. The convexity result can also be interpreted along similar lines as the convexity of H2(p ∗H−1

2 (u))
in u, established in [2], where H2(x) = −x log2(x)− (1− x) log2(1− x) denotes the binary entropy function.

I. INTRODUCTION

A. Motivation

The primary motivation for this work comes from optimization problems of the following type, that occur often times in
evaluation of achievable rate regions or outer bounds to the capacity regions in network information theory settings. Let TY |X
denote a channel that maps input distributions µX into output distributions µY = TµX . If X and Y takes values in a finite
alphabet space, then consider the problem of computing the maximum, over µX , of

Fλ(µX) := λH(µX)−H(TµX),

where H(µX) = −
∑
x∈X µX(x) logµX(x) denotes the Shannon entropy of X; and λ ≥ 0 is a fixed constant. When λ ≥ 1, it

is immediate from the data-processing inequality that the functional Fλ(µX) is concave in µX . However for λ ∈ [0, 1), this is
not necessarily true. In particular for λ = 0, F0(µX) is convex in µX . Therefore, from a optimization perspective, computing
the optimizers of Fλ(µX) becomes a non-convex optimization problem at least for some values of λ in the range [0, 1).

When the channel TY |X is the binary-symmetric-channel (BSC), say with crossover probability p, consider the following
reparameterization of µX , defined by µX(0) = H−12 (u), where H−12 : [0, 1] 7→ [0, 12 ] denotes the inverse binary entropy
function. Under this reparameterization, for BSC(p), observe that

Fλ(µX) = λu−H2(p ∗H−12 (u)).

It was shown in [2] that H2(p∗H−12 (u)) is convex in u and hence λu−H2(p∗H−12 (u)) is a concave function in u for any λ.
Therefore this non-linear parameterization converted the non-convex optimization problem to a convex-optimization problem.
It is also worth remarking that the convexity of H2(p∗H−12 (u)) was developed by Wyner and Ziv in the context of evaluating
the superposition-coding region for a degraded binary symmetric broadcast channel.

Additive White Gaussian Noise channels are in many ways the continuous analogue of Binary Symmetric Channels. Therefore
it is natural to see if there is an analogous result in the additive Gaussian noise setting, where under a suitable parameterization
of µX , h(µX) - the differential entropy - becomes linear in the parameter and h(TGµX) becomes convex in the parameter,
where TG refers to the Markov operator corresponding to the channel with additive Gaussian noise W .

For distributions on binary alphabets, there is only one degree of freedom and hence the parameterization of µX(0) = H−12 (u)
is forced on us, if we wish to make H2(µX) linear. In the continuous world we assume that µX evolves along the heat flow,
i.e. Xt := X +

√
tZ, t > 0, where Z is the standard Gaussian and independent of X . Therefore we seek a parameterization

t = φ(u) such that h(X+
√
φ(u)Z) is linear in u and investigate whether, the output entropy, h(µY ) = h(X+

√
φ(u)Z+W )

is convex in u, where W is some Gaussian independent of X and Z. Let µXt denote the distribution of Xt = X +
√
tZ. A bit

of algebra immediately shows that this question is equivalent to asking whether the Fisher information I(µXt ) is log-convex
in t, for all random variables X (see Remark 2).

A second motivation for this work comes from [1], where the authors study the signs of the higher order derivatives of
gX(t) := h(µXt ). Let g(k)X (t) := ∂k

∂tk
h(µXt ). It had been known earlier that g(1)X (t) ≥ 0, g(2)X (t) ≤ 0; and in [1] the authors

showed that g(3)X (t) ≥ 0, g(4)X (t) ≤ 0 using techniques in [3], which was in turn motivated by calculations of Bakry. The
authors further conjectured that g(k)X (t) ≥ 0, if k is odd and g(k)X (t) ≤ 0 if k is even; or equivalently that I(µXt ) = 2g

(1)
X (t) is a

completely monotone function of t, for all X . Of course, such a conjecture is also implicit in the 1966 paper [4] by McKean.
They also made a weaker conjecture (Conjecture 2 in [1]) that I(µXt ) is log-convex in t, a statement that would follow from
the complete monotonicity of I(µXt ).

The main result of this paper is establishing that I(µXt ) is log-convex in t, thus resolving affirmatively Conjecture 2 in [1].
We do this by extending the ideas developed in [1] and [5].



B. Preliminaries

Given a random variable X on some probability space (Ω,A,P) with values in R, let the cumulative distribution function of
X be F̃ (x) := Pr(X ≤ x), x ∈ R. For Z some independent standard Gaussian random variable with mean zero and variance
one, consider Xt := X +

√
tZ, t > 0, with probability density function ft(x) with respect to the Lebesgue measure on R.

The density ft(x), x ∈ R, can be written as

ft(x) =

∫
R

−z√
2πt

e−
z2

2t F̃ (x− z)dz.

It is well-known in literature, e.g., [6], that the probability density function ft(x) of Xt is always upper bounded by 1 + t,
strictly positive and infinitely differentiable with respect to x ∈ (−∞,∞) and t ∈ (0,∞), and satisfy that

lim
|x|→∞

∂nft(x)

∂xn
= 0,∀n ∈ Z+.

Besides, ft(x) also satisfies the heat equation, see, e.g., [7].

∂

∂t
ft(x) =

1

2

∂2

∂x2
ft(x). (1)

The differential entropy of Xt, h(Xt), t > 0, is defined as

h(Xt) = −
∫
R
ft(x) ln ft(x)dx.

When X has a finite variance P , h(Xt) exists and is maximized by X following a Gaussian distribution with variance P .
The Fisher information of Xt is defined as

I(µXt ) :=

∫
R

(
∂

∂x
ln ft(x)

)2

ft(x)dx.

One can verify that the Fisher information I(µXt ), t > 0, always exists and is infinitively differentiable with respect to
t ∈ (0,∞), see, e.g., [1].

The Fisher information I(µXt ) is closely related to the differential entropy of Xt via the de Bruijin’s identity when X has
a finite variance, see, e.g., [8]

∂

∂t
h(Xt) =

1

2
I(µXt ). (2)

Conjecture 2 in [1] postulates that ln I(µXt ) is convex in t > 0. In this paper, a proof to this conjecture is presented along
the lines of the arguments in [1] and [5].

C. Notations and previous results

For convenience of writing, we will suppress the dependence on t and write v(x) := ln ft(x), t > 0, and vk(x) :=
∂k ln ft(x)

∂xk , k ∈ Z+, i.e., vk(x) is the k-th derivative of v as a function of x ∈ R. Well-definedness of vk(x) for any k ∈ Z+

follows from the known properties of ft(x).

Proposition 1 (Proposition 2 in [1]). For any r,mi, ki ∈ Z+,∫
R

∣∣∣∣∣
r∏
i=1

vmi

ki
(x)

∣∣∣∣∣ ft(x)dx <∞,

and

lim
|x|→∞

∣∣∣∣∣
r∏
i=1

vmi

ki
(x)

∣∣∣∣∣ ft(x) = 0.

We define 〈ϕ〉 :=
∫
R ϕft(x)dx to denote the integration with respect to the probability measure ft(x). Under this notation

I(µXt ) = 〈v21〉. (3)

The following lemma is needed in our proof.



Lemma 1 (Lemma 3 in [5]). For k ≥ 2, let ϕ(x) be some function continuously differentiable with respect to x satisfying
that lim|x|→∞ ϕvk−1ft = 0, then

〈ϕvk + ϕv1vk−1 +
∂ϕ

∂x
vk−1〉 = 0.

One can see that this lemma follows from the basic integration by parts property. We present the short proof here for being
self-contained.

Proof.

〈ϕvk + ϕv1vk−1 +
∂ϕ

∂x
vk−1〉 =

∫
R

(
ϕvkft + ϕvk−1

∂ft
∂x

+
∂ϕ

∂x
vk−1ft

)
dx

(a)
=

∫
R

(
∂

∂x
ϕvk−1ft

)
dx

= ϕvk−1ft|∞−∞
(b)
= 0.

Equality (a) follows from the integration by parts property, and equality (b) follows from the condition that lim|x|→∞ ϕvk−1ft =
0.

Notice that by Proposition 1 we could choose ϕ in Lemma 1 to be in the form of
∏r
i=1 v

mi

ki
(x), where r,mi, ki ∈ Z+.

Lemma 2 ( [1], [5]). Let ϕ(x) be some function continuously differentiable with respect to x satisfying that lim|x|→∞ ϕv1ft = 0.
For k ≥ 0, the following hold:

∂

∂t
vk =

1

2

(
vk+2 +

k∑
i=0

(
k

i

)
vi+1vk−i+1

)
,

∂

∂t
〈ϕ〉 = 〈 ∂

∂t
ϕ− 1

2

∂ϕ

∂x
v1〉.

Proof. The proof idea is to interchange integral and derivatives by Proposition 1 and the Dominated Convergence Theorem,
and the calculations follow from the following observations (for details, see Appendix A in [5]). We present the outline here
for being rather self-contained.

2
∂

∂t
vk = 2

∂

∂t

(
∂k

∂xk
ln ft(x)

)
= 2

∂k

∂xk

(
∂

∂t
ln ft(x)

)
(a)
=

∂k

∂xk

(
∂2

∂x2 ft(x)

ft(x)

)

=
∂k

∂xk
(
v2 + v21

)
(b)
= vk+2 +

k∑
i=0

(
k

i

)
vi+1vk−i+1.

Equality (a) is due to the heat equation (1) and (b) can be established by mathematical induction.
For the second part, observe that

∂

∂t
〈ϕ〉 = 〈 ∂

∂t
ϕ〉+

∫
R
ϕ
∂ft
∂t

dx

(a)
= 〈 ∂

∂t
ϕ〉+

1

2

∫
R
ϕ
∂2ft
∂x2

dx

(b)
= 〈 ∂

∂t
ϕ〉 − 1

2

∫
R

∂ϕ

∂x

∂ft
∂x

dx

= 〈 ∂
∂t
ϕ〉 − 1

2
〈∂ϕ
∂x

v1〉.



Equality (a) is again due to the heat equation (1) and (b) follows from integration by parts and the assumption that lim|x|→∞ ϕv1ft =
0.

One can compute the derivatives of the Fisher information I(µXt ) with respect to t as following, see [9] and [5].

Lemma 3 ( [1], [5]). For t > 0, Fisher information I(µXt ) and its derivatives up to second order can be expressed as:

d

dt
I(µXt ) = −〈v22〉,

d2

dt2
I(µXt ) = 〈v23 + 2v21v

2
2 + 4v1v2v3〉.

Proof. In the interest of being self-contained, we outline the proof via applications of Lemmas 2 and 1. Observe that

d

dt
I(µXt ) =

d

dt
〈v21〉

(a)
= 〈2v1

∂v1
∂t
− v2v21〉

(b)
= 〈v1(v3 + 2v1v2)− v2v21〉
(c)
= −〈v22〉.

Here (a), (b) follow from Lemma 2, and (c) follows from Lemma 1 by setting ϕ = v1 and k = 3. Similarly, note that

d2

dt2
I(µXt ) = − d

dt
〈v22〉

(a)
= 〈−2v2

∂v2
∂t

+ v2v3v1〉
(b)
= 〈−v2(v4 + 2v1v3 + 2v22) + v2v3v1〉
(c)
= 〈v23 − 2v32〉
(d)
= 〈v23 + 2v21v

2
2 + 4v1v2v3〉.

Here (a), (b) follow from Lemma 2, (c) follows from Lemma 1 by setting ϕ = v2 and k = 4, and (d) follows from Lemma
1 by setting ϕ = v22 and k = 2.

Remark 1. There are several equivalent ways of expressing d2

dt2 I(µXt ) using Lemma 2. For instance, [5] expressed it as
〈v23 − 2v32〉. We choose this particular representation, 〈v23 + 2v21v

2
2 + 4v1v2v3〉, as it turns out to be useful to prove the

log-convexity of Fisher information.

II. MAIN RESULT

Theorem 1. Let X be a random variable on some probability space (Ω,A,P) with values in R, and Z some independent
standard Gaussian random variable. Consider Xt := X +

√
tZ, t > 0, with probability density function ft(x) with respect to

the Lebesgue measure on R.
The Fisher information of Xt is log-convex in t, i.e.

ln I(µXt ) = ln

∫
R

(
∂

∂t
ln ft(x)

)2

ft(x)dx

is convex in t.

Proof. Log-convexity of Fisher information is equivalent to showing(
d

dt
I(µXt )

)2

≤ I(µXt )
d2

dt2
I(µXt ).

Using Lemma 3, this is equivalent to showing

〈v22〉2 ≤ 〈v21〉〈v23 + 2v21v
2
2 + 4v1v2v3〉. (4)

In Lemma 1, the choices that k = 2, ϕ = v2 and that k = 2, ϕ = v21 will lead to the following two equalities respectively

〈v22 + v21v2 + v1v3〉 = 0 (5)

〈v41 + 3v21v2〉 = 0. (6)



Consequently, for any α ∈ R we have

〈v22〉 = −〈v1(v3 + αv1v2 −
1− α

3
v31)〉.

The Cauchy-Schwarz inequality yields,

〈v22〉2 ≤ 〈v21〉〈(v3 + αv1v2 −
1− α

3
v31)2〉.

Thus to show inequality (4), it suffices to show that

〈(v3 + αv1v2 −
1− α

3
v31)2〉 ≤ 〈v23 + 2v21v

2
2 + 4v1v2v3〉 (7)

holds for some α ∈ R. Expanding, (7) is equivalent to

〈(2− α2)v21v
2
2 + (4− 2α)v1v2v3 −

1

9
(1− α)2v61 +

2

3
(1− α)v31v3 +

2

3
α(1− α)v41v2〉 ≥ 0.

In Lemma 1, the choices that k = 3, ϕ = v31 and that k = 2, ϕ = v41 will lead to the following two equalities respectively.

〈v31v3 + v2v
4
1 + 3v21v

2
2〉 = 0

〈v61 + 5v41v2〉 = 0.

Thus proving inequality (7) for some α ∈ R is equivalent to proving the following inequality

〈(2− α2)v21v
2
2 + (4− 2α)v1v2v3 −

1

9
(1− α)2v61 +

2

3
(1− α)v31v3 +

2

3
α(1− α)v41v2〉

+β〈v31v3 + v2v
4
1 + 3v21v

2
2〉+ γ〈v61 + 5v41v2〉 ≥ 0

(8)

for some α, β, γ ∈ R.
We successively choose the values α, β, γ to eliminate the terms whose signs are not clear: first set α = 2 to get rid of

〈v1v2v3〉, then β = 2
3 to eliminate 〈v31v3〉, and finally γ = 2

15 to handle 〈v41v2〉. With these choices, the above inequality (8)
reduces to 1

45 〈v
6
1〉 ≥ 0, which holds trivially.

Remark 2. Let φ(u), with φ(0) = 0 and φ(1) = 1, be the uniquely defined increasing function of u such that h(X+
√
φ(u)Z)

is linear in u. Then we have

0 =
d2

du2
h(X +

√
φ(u)Z) =

1

2

(
d2φ(u)

du2
I(µXφ(u)) +

(
dφ(u)

du

)2
d

dφ(u)
I(µXφ(u))

)
.

Now, showing that d2

du2h(X +
√
φ(u)Z +W ) ≥ 0, for W ∼ N (0, σ2) independent of (X,Z), is equivalent to showing that

0 ≤ 1

2

(
d2φ(u)

du2
I(µX+W

φ(u) ) +

(
dφ(u)

du

)2
d

dφ(u)
I(µX+W

φ(u) )

)
.

This can be rewritten using the equality above as requiring
d

dφ(u)I(µX+W
φ(u) )

I(µX+W
φ(u) )

≥
d

dφ(u)I(µXφ(u))

I(µXφ(u))
.

Since I(µX+W
φ(u) ) = I(µXφ(u1)

) for some u1 ≥ u, the above inequality is equivalent to showing that

d
dtI(µXt )

I(µXt )

is increasing in t or equivalently, that log I(µXt ) is convex in t. Thus, the result we showed can be considered as a continuous
analogue of the convexity result for BSC established by Wyner and Ziv.

III. SUMMARY AND FUTURE WORK

We resolved a conjectured about log-convexity of Fisher information stated in [1], in the scalar case. Our investigations
also stemmed from understanding the behaviour of certain non-convex optimization problems arising in network information
theory.



A. Generalization of log-convexity to higher dimensions

One clear question that is definitely worth addressing is to determine whether the log-convexity of Fisher information along
the heat flow also holds for random vectors. In particular we ask, whether(

d3h(X +
√
tZ)

dt3

)(
dh(X +

√
tZ)

dt

)
≥
(
d2h(X +

√
tZ)

dt2

)2

where X and Z(∼ N (0, Id)) are independent random vectors taking values in Rd. If X has independent components, then an
application of the Cauchy-Schwarz inequality immediately implies affirmatively the inequality above.

While the techniques applied in the scalar case do have natural extensions to the vector case, preliminary investigations by
the authors indicate that these extensions seem insufficient to establish the log-convexity for vector valued random variables.

B. Generalization of convexity of the output entropy

Let us consider a channel given by
Y = AX + Z

where A is an l × d (channel-gain) matrix, X is the input, and Z(∼ N (0, Il)) is the additive Gaussian noise. Then one can
ask for flows in the space of input distributions, say characterized by Xt, where h(Xt) is linear in t and h(Yt) is convex in t.

An interesting such flow exists in the space of Gaussian vectors. Let X0 ∼ N (0,K0) and X1 ∼ N (0,K1) be two Gaussian
random vectors with K0,K1 � 0. Define

Kt = K
1
2
0

(
K
− 1

2
0 K1K

− 1
2

0

)t
K

1
2
0 ,

and Xt ∼ N (0,Kt). Note that this is a continuous path that connects the distribution of X0 to that of X1. Further, observe
that h(Xt) is linear in t. It follows from the seminal work in [10], and is well-known, that

h(Yt) = log |AKtA
T + I|

is convex in t.
From the perspective of non-convex optimization problems that arise in the computation of achievable regions or outer bound

in network information theory, it will be very helpful to find similar flows in a more general setting, i.e. outside the space of
Gaussian vectors and more generally for larger class of channels. Such results may also be useful in showing the uniqueness
of local maximizers in such settings as is observed in settings such as the MIMO Gaussian broadcast channels.
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