
Curvature-Dimension

Curvature-Dimension conditions (or inequalities, bounds, hypotheses, criterions...) are

widely used today in a large geometric spectrum, including (weighted) Riemannian geome-

try, Markov diffusion operators, metric measure spaces, graphs and discrete spaces etc. While

present in one form or another earlier, the Curvature-Dimension condition has been emphasized

in the pioneering work of D. Bakry and M. Émery in the mid-eighties within the context of

Markov diffusion generators. At the same time, Bakry-Émery’s legacy has a tendency nowadays

(2020) to concentrate on the terminology “Curvature-Dimension”, beyond the mathematical

content itself. It is therefore of some interest to place the invention of the notion within the

mathematical developments, emphasizing in particular the crucial input of coupling together

curvature and dimension, and justifying its use, importance, and applicability. This note only

briefly recounts some main historical steps, without a detailed documented and mathematical

discussion; the bibliography is focused, restricted to some main references and monographs.

Classical Riemannian geometry deals with manifolds M with dimension n ≥ 1, and many

studies, results and inequalities do involve this dimensional parameter. A prototypical illus-

tration is Gromov’s compactness theorem on families of Riemannian manifolds with an upper

bound on the dimension and the diameter and a lower bound on the Ricci curvature (see [11]).

The role of Ricci curvature (lower) bounds is besides an essential feature of these studies, fol-

lowing M. Berger’s quote “la domination universelle de la courbure de Ricci”, discovered by

M. Gromov in the seventies, the dimension of the given manifold appearing as an ambiant

parameter.

A first historical example illustrating quantitatively this picture is the famous Lichnerowicz

lower bound on the first eigenvalue λ1 of the Laplacian ∆ on a positively curved manifold [13].

If (M, g) is a compact connected (smooth) n-dimensional (n ≥ 2) Riemannian manifold with

Ricci curvature bounded from below by ρ > 0, then

λ1 ≥
ρ n

n− 1
. (1)

This is optimal on the unit n-sphere Sn for which ρ = n − 1 and λ1 = n. The proof of this

inequality is based on the Bochner formula
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holding for every smooth function f : M → R, where Ric is the Ricci tensor and ‖Hess(f)‖2

denotes the Hilbert-Schmidt norm of the Hessian of f . Under a lower bound ρ on the Ricci

tensor, and the Cauchy-Schwarz inequality on the Hessian,
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This inequality applied to an eigenfunction of ∆, and integrated with respect to the Riemannian

measure, then easily yields (1). The use of the (Riemannian, invariant) measure is an essential

feature of the argument, also part of the Curvature-Dimension concept as described below.

The Bochner inequality (2) is at the origin of the notion of Curvature-Dimension inequality.

It was introduced by D. Bakry and M. Émery in [4] in the context of diffusion generators L

on some measure space (E, E , µ) (acting on a suitable algebra A of functions on E, typically

smooth compactly supported functions on a manifold), for which both the left-hand side and

right-hand side of (2) may be suitably adapted. That is, the bilinear carré du champ operator

Γ(f, g) =
1

2

[
L(fg)− f Lg − g Lf

]
for f, g ∈ A, is identified with ∇f ·∇g in a Riemannian setting when L = ∆. In particular, the

measure µ being assumed to be invariant and symmetric with respect to L, the integration by

parts formula
∫
E
f Lgdµ = −

∫
E

Γ(f, g)dµ holds true. In this setting, the Bochner inequality

(2) is then reinterpreted into

1

2
L
(
Γ(f, f)

)
− Γ(f,Lf) ≥ ρΓ(f, f) +

1

n
(Lf)2.

The left-hand side has actually the same form as Γ, with the product fg replaced by Γ(f, g),

and is called the iterated carré du champ Γ2(f, f).

On this basis, a Markov generator L is said to satisfy a Curvature-Dimension inequality

CD(ρ,m) with ρ ∈ R and m ∈ [1,∞], if for every f ∈ A,

Γ2(f, f) ≥ ρΓ(f, f) +
1

m
(Lf)2. (3)

This definition is considered as such in the seminal paper [4] by D. Bakry and M. Émery

towards hypercontractivity of Markov diffusion operators, and defined as a Curvature-Dimension

inequality, or condition, in the lectures [3] (with the author’s notation). In the spirit of the

Bochner formula and inequality, the lower bound ρ on the curvature and the dimension m are

considered as a couple defining the Curvature-Dimension inequality CD(ρ,m).

Of course, due to the Bochner inequality (2), the Laplace operator ∆ on an n-dimensional

Riemannian manifold with Ricci curvature bounded from below by ρ ∈ R satisfies CD(ρ, n) (and

the latter is actually equivalent to the lower bound ρ on the Ricci curvature). But the setting

allows for enough flexibility that n need not be the topological dimension of the manifold, and

real values of n, even infinite, may be considered.

Two simple examples are relevant. On the interval (−1,+1), let L be the second order

differential operator acting on smooth functions f as

Lf (x) = (1− x2)f ′′(x)− nxf ′(x)

2



where n > 0. In this example, Γ(f, f) = (1− x2)f ′2 and the invariant (probability) measure is

given by dµ(x) = Γ(n)
2n−1Γ(n

2
)2

(1−x2)
n
2
−1dx on (−1,+1). When n is an integer, L is known as the

ultraspheric generator which is obtained as the projection of the Laplace operator of Sn on a

diameter. It is easily checked that

Γ2(f, f) = (n− 1) Γ(f, f) +
1

n
(Lf)2 +

(
1− 1

n

)
(1− x2)

2
f ′′

2
,

so that L satisfies CD(n − 1, n) for every n ≥ 1 (as the unit n-sphere). But the dimension in

CD(ρ, n) does not refer to any dimension of the underlying state space.

There is a limit of this model, suitably scaled, as n→∞. It is classical (Poincaré’s lemma)

that the uniform measure on the n-sphere with radius
√
n converges to a Gaussian measure.

In this limit, the ultraspheric generators give rise to the operator Lf (x) = f ′′(x)−xf ′(x) on R
with invariant Gaussian measure. By tensorization, the latter may be considered on Rd in the

form

Lf (x) = ∆f(x)− x · ∇f(x).

This is the so-called Ornstein-Uhlenbeck operator, that satisfies a Curvature-Dimension inequal-

ity CD(1,∞) with infinite dimension (and no CD(ρ,m) for some finite m), which is geometri-

cally natural. Its invariant measure is the standard Gaussian measure dµ(x) = 1
(2π)d/2

e−
1
2
|x|2dx.

More generally, the Langevin dynamics associated to a smooth potential V : Rd → R has

generator

Lf (x) = ∆f(x)−∇V (x) · ∇f(x)

with invariant measure dµ = e−V dx, and satisfies CD(ρ,∞) if and only if Hess(V )(x) ≥ ρ Id as

symmetric matrices, uniformly in x ∈ Rd.

The latter example may be extended to weighted Riemannian manifolds, that is manifolds

(M, g) (with topological dimension n) equipped with a weighted measure µ with density e−V

with respect to the Riemannian volume element dx, invariant and symmetric for the second

order differential operator L = ∆−∇V · ∇. The associated Γ2 operator takes the form

Γ2(f, f) = Ric(∇f,∇f) +
∥∥Hess(f)

∥∥2

2
+ Hess(V )∇f · ∇f,

sometimes called the Bakry-Émery-Ricci tensor. A Curvature-Dimension condition CD(ρ,m)

for L may hold with m ≥ n, but there is no longer a best optimal choice for both ρ and m,

except in particular cases. Even negative dimension may be considered [16]. In this framework,

the Bakry-Émery Curvature-Dimension condition is a major tool to investigate the geometry

of weighted Riemannian manifolds, and related geometric and functional inequalities.

The importance and usefulness of the Curvature-Dimension hypothesis for a diffusion oper-

ator have been witnessed in numerous applications and illustrations, a couple of them may be

emphasized (see [5]). One original motivation of the work [4] by D. Bakry and M. Émery was a

proof of hypercontractivity properties of the Markov semigroup (Pt)t≥0 with generator L, and

equivalent logarithmic Sobolev inequalities [12] for the invariant (and symmetric) probability
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measure µ, under a CD(ρ,m) condition, covering in particular the example of the uniform mea-

sure on the sphere. This has been extended later to the full scale of Sobolev inequalities with

sharp constants

ρm

m− 1
· 1

p− 2

[(∫
E

|f |pdµ
)p/2

−
∫
E

f 2dµ

]
≤
∫
E

Γ(f, f)dµ,

where 1 ≤ p ≤ 2m
m−2

, m > 2, the value p = 2m
m−2

being the critical Sobolev exponent, p = 1

corresponding to the spectral gap (Poincaré) inequality and Lichnerowicz’s lower bound, and

p = 2 understood in the limit as a logarithmic Sobolev inequality. These Sobolev inequalities

in turn entail ultracontractive heat kernel bounds.

An important aspect of the Curvature condition CD(ρ,∞) with infinite dimension is the

equivalence with the gradient bound, or commutation,

Γ(Ptf, Ptf) ≤ e−ρtPt
(
Γ(f, f)

)
,

also equivalent to the strengthened form√
Γ(Ptf, Ptf) ≤ e−ρtPt

(√
Γ(f, f)

)
for all f ∈ A, t > 0. These gradient bounds are essential tools towards a number of illustrations,

including Harnack inequalities, Gaussian-type isoperimetric comparison theorem, functional

and concentration inequalities.

General applications of the Curvature-Dimension condition CD(ρ,m) also include Riesz

transforms, diameter bounds, volume comparison theorems, heat kernel and spectral estimates,

topological implications, Brunn–Minkowski-type inequalities etc., cf. e.g. [21, 5] and the refer-

ences therein.

After these early developments for diffusion operators, the concept of Curvature-Dimension

then leached into and impregnated the metric measure space world via optimal transport.

The Bakry-Émery definition is attached to a given differential operator, and uses Hilbertian

calculus. While it remains of interest for discrete models with a Markov kernel, it is not adapted

to spaces much beyond a smooth Riemannian setting, as for example (measured) Gromov-

Hausdorff limits of Riemannian manifolds [11] and other non-Hilbertian singular spaces. In

a parallel development, the theory of optimal transport started, from the mid-nineties, to

elaborate general tools and ideas, following in particular the influential works by Y. Brenier

[6] and F. Otto [17], that progressively led to notions of curvature bounds in metric measure

spaces.

A displacement convexity property of a functional on the space of probability measures

along Wasserstein geodesics was introduced and studied by R. McCann [15], and later [9].

Given a geodesic space (X, d), let P2(X) be the space of Borel probability measures with a

second moment equipped with the L2 Kantorovich-Wasserstein metric

dW (ν, ν ′) = inf
π

(∫
X×X

d(x, y)2dπ(x, y)

)1/2

, (4)
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where the infimum is taken over all couplings π on X × X with respective marginals ν and

ν ′. The infimum is achieved at optimal transference plans. If X = Rn, given two probability

measures ν0 and ν1 in P2(Rn), it holds true that for every geodesic (νt)t∈[0,1] in P2(Rn) joining

ν0 and ν1,

Hdx(νt) ≤ (1− t) Hdx(ν0) + tHdx(ν1), t ∈ [0, 1], (5)

where Hdx(ν) =
∫
Rn log dν

dx
dν is the entropy of ν (with respect to the Lebesgue measure).

On a weighted smooth Riemannian manifold (M, g) with weighted measure dm = e−V dx,

it was shown in [18] that the Bakry-Émery Curvature condition CD(K,∞), K ∈ R, for the

operator L = ∆−∇V ·∇ is equivalent to the displacement convexity with respect to dW in the

sense that for every geodesic (νt)t∈[0,1] in P2(M) joining ν0 and ν1,

Hm(νt) ≤ (1− t) Hm(ν0) + tHm(ν1)− K

2
t(1− t) dW (ν0, ν1)2, t ∈ [0, 1], (6)

with the analogous meaning for the entropy Hm(ν) of ν with respect to m.

The next step was to involve the dimension, but again, after the Bakry-Émery vision,

it appeared necessary to couple curvature and dimension towards a synthetic definition of

curvature lower bounds within this setting. This major step was achieved in the breakthrough

contributions [14, 19, 20] by J. Lott and C. Villani and K.-T. Sturm. For K ∈ R, Ñ ∈ (0,∞],

t ∈ [0, 1], and 0 < θ < DK,Ñ where DK,Ñ = π√
K/Ñ

if K > 0 and Ñ <∞, DK,Ñ =∞ otherwise,

set

σ
(t)

K,Ñ
(θ) =

sin
(
tθ
√

K

Ñ

)
sin
(
θ
√

K

Ñ

) =



sin
(
tθ
√

K

Ñ

)
sin
(
θ
√

K

Ñ

) if K > 0, Ñ <∞,

t if K = 0 or Ñ =∞,

sinh
(
tθ
√

−K

Ñ

)
sinh
(
θ
√

−K

Ñ

) if K < 0, Ñ <∞,

and σ
(0)

K,Ñ
(θ) = t and σ

(t)

K,Ñ
(θ) =∞ for t ≥ DK,Ñ . Next, for K ∈ R and N ∈ (1,∞], define

τ
(t)
K,N(θ) = t

1
N σ

(t)
K,N−1(θ)1− 1

N .

Without going into technical details, and referring to [8] for a complete discussion and compar-

ison of various related notions and definitions, a metric (finite) measure space (X, d,m) is said

to be of Curvature-Dimension CD(K,N) (in the modern notation) if for every couple (ν0, ν1)

of probability measures in P2(X), there exists a geodesic (νt)t∈[0,1] in P2(X) such that

HN
m(νt) ≥

∫
X×X

[
τ 1−t
K,N

(
d(x0, x1)

)
p
− 1

N
0 (x0) + τ tK,N

(
d(x0, x1)

)
p
− 1

N
1 (x1)

]
dπ(x0, x1) (7)

for π an optimal transference plan between ν0 and ν1 such that νi = pim, i = 1, 2, where

HN
m(ν) =

∫
X
p1− 1

N dm with p the density with respect to m of the absolutely continuous com-

ponent of ν, is the N -entropy of ν with respect to m (supposed to be finite in the preceding).

Besides its equivalence with the CD(ρ,m) Curvature-Dimension (with ρ = K, m = N !)

in a smooth (weighted) Riemannian setting, a major feature of this synthetic definition is its
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stability under measured Gromov-Hausdorff convergence of metric measure spaces. In com-

plete analogy with the smooth setting, it also entails various geometric and analytic inequal-

ities relating metric and measure (cf. [21]). A significant illustration is the extension of the

Lévy-Gromov isoperimetric comparison theorem achieved by F. Cavalletti and A. Mondino [7],

showing that the isoperimetric profile of a metric measure space with Curvature-Dimension con-

dition CD(n− 1, n) is bounded from below by the one of the unit n-sphere. Finsler manifolds

and Alexandrov spaces also satisfy the Curvature-Dimension condition.

With respect to the original Bakry-Émery definition, the CD(K,N) condition in metric

measure spaces is delicate to verify, and some aspects are rather close to the smooth Rie-

mannian framework. In an intermediate class of metric measure spaces, the so-called RCD,

Riemannian, or infinitesimally Hilbertian, metric measure spaces, those in which the metric L2

energy
∫
X
|∇f |2dm satisfies the parallelogram identity, the Curvature-Dimension condition has

been shown to coincide, after the suitable definition of a diffusion operator by integration by

parts
∫
X
f Lfdm = −

∫
X
|∇f |2dm, with the Bakry-Émery definition [1, 2, 10].
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