Erratum

The monograph contains several inaccuracies, small mistakes and misprints, which are mostly easily fixable.

Some more serious errors have been identified over the years. The following may be mentioned.

- 1) Page 26, line 10: replace "Theorem 2.3" by "the isoperimetric inequality on \mathbb{S}^n "
- 2) Page 34, Proof of Theorem 2.13, read: ... Clearly, if $q = \theta q_0 + (1 \theta)q_1, q_0, q_1 \in \mathbb{R}$,

$$w_q(\theta x + (1 - \theta)y) \ge u_{q_0}(x)^{\theta} v_{q_1}(y)^{1-\theta}$$

for all $x, y \in \mathbb{R}^{n-1}$. Therefore, by the induction hypothesis,

$$\int_{\mathbb{R}^{n-1}} w_q dx \ge \left(\int_{\mathbb{R}^{n-1}} u_{q_0} dx \right)^{\theta} \left(\int_{\mathbb{R}^{n-1}} v_{q_1} dx \right)^{1-\theta}.$$

- 3) Page 35: the application of Proposition 2.14 to $F: \mathbb{R}^n \to \mathbb{R}$ non-negative, convex and symmetric, requires F to be also homogeneous $(F(rx) = rF(x), r > 0, x \in \mathbb{R}^n)$.
- 4) Page 48, Proof of Theorem 3.1, read: ... and f = -1/b on B). Besides, in the inequalities

$$b \le \frac{1-a}{1+\lambda_1 \varepsilon^2 a} \le \frac{1}{1+\lambda_1 \varepsilon^2 a} \,,$$

the second one is irrelevant and should be deleted.

- 5) Page 50: there is a λ^2 missing on the right-hand side of (3.4).
- 6) Page 51, Proof of Theorem 3.3: in the upper bound on $\mathcal{Q}(e^{\lambda F/2}, e^{\lambda F/2})$, $\frac{\lambda^2}{2}$ may be replaced by $\frac{\lambda^2}{4}$, which improves some of the subsequent numerical constants (in particular in the statement of Theorem 3.3 itself).
- 7) Pages 51-52, (3.5) and Corollary 3.4: the distance d introduced at the bottom of page 51 is not, in general, suitably related to the norm $|||\cdot|||_{\infty}$ so that (3.5) is erroneous. As a consequence, Corollary 3.4 is also incorrect.

- 8) Page 61, after (3.18), read: ... and the ellipsoid, the image of the Euclidean unit ball of \mathbb{R}^k under the isomorphism $e_i \to (1 \varepsilon)(1 + \varepsilon)v_i$, satisfy (3.17).
- 9) Page 121, Proposition 6.3: ν should be ν_i in the inequality

$$W_{\tilde{c}_i}(\mu_i, \nu) \leq H(\nu \mid \mu_i).$$

10) Page 133, (7.1) should be:

$$\sigma = \sup_{t \in T} \left(\mathbb{E}(G_t^2) \right)^{1/2} < \infty.$$

11) Page 162, lines 9-11, read: ... Together with this result, Theorem 8.5 indicates that for every $0 \le r \le \sqrt{n}$,

$$\mathbb{P}(|Z_{\mathcal{T}_n} - m_n| \ge r) \le K \exp\left(-\frac{r^2}{Kn}\right)$$

where m_n is a median of $Z_{\mathcal{T}_n}$.