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Abstract

This note is a short addition to the paper [4]. Given X1, . . . , Xn independent random

variables with common distribution the standard Gaussian measure µ on R2, and µn =
1
n

∑n
i=1 δXi the associated empirical measure, it holds true that

E
(
W2

2(µn, µ)
)
≈ (log n)2

n

where W2 is the quadratic Kantorovich metric. The upper bound has been obtained

in [4] by the pde and mass transportation approach developed by L. Ambrosio, F. Stra

and D. Trevisan in a compact setting, and the lower bound was achieved recently by

M. Talagrand using a scaling argument and ideas from the original Ajtai-Komlós-Tusnády

theorem.

We note here that the pde and mass transportation approach may actually also be

used to reach the lower bound. In addition, we sharpen the limit obtained by L. Ambrosio,

F. Stra and D. Trevisan on a 2-dimensional compact Riemannian manifold in the spirit

of the conjecture of S. Caracciolo, C. Lucibello, G. Parisi and G. Sicuro.

The context and methodology of this note is based on the investigation [1] by L. Ambrosio,

F. Stra and D. Trevisan. The framework and the notation are taken from the reference [4], and

we do not reproduce them here.

The main purpose of the note (achieved in Section 2) is to provide an alternate proof based

on the pde method of [1] of the lower bound

E
(
W2

2(µn, µ)
)
≥ c

(log n)2

n
(1)

which has been established recently in [6]. We will actually deal simultaneously with the one

and two-dimensional cases, and also recover in dimension one the lower bound

E
(
W2

2(µn, µ)
)
≥ c

log log n

n
(2)
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proved in [2] (by specific one-dimensional tools).

To this task, we develop first a two-sided bound on the Kantorovich metric W2 in terms

of Sobolev norms. We then address in Section 2 the lower bound for the Gaussian sample. In

Section 3, we refine the limit of [1] on a 2-dimensional compact Riemannian manifold in the

direction of the conjecture of [3].

1 A two-sided bound on W2

The context here is the one of a weighted Riemannian manifold M with weigthed probability

measure µ, under the curvature condition CD(K,∞) for some K ∈ R as described in [4]. The

following two statements provide general bounds on the Kantorovich metric W2 in terms of a

Sobolev norm. The lower bound is taken from [1].

Theorem 1. Let dν = fdµ and f = 1 + g, and let 0 < c ≤ 1. If g ≥ −c, then

W2
2(ν, µ) ≤ 4

c2
[
1−
√

1− c
]2 ∫

M

g(−L)−1g dµ (3)

(where g is assumed to belong to the suitable domain so that the left-hand side makes sense).

Theorem 2. Assume that the curvature condition CD(0,∞) holds. Let dν = fdµ and f = 1+g.

Then, whenever g and h : M → R belong to the suitable domain and h is such that
∫
M
hdµ = 0

and h ≤ c uniformly for some c > 0,

W2
2(ν, µ) ≥ 2

∫
M

g(−L)−1h dµ− ec − 1

c

∫
M

h(−L)−1h dµ. (4)

In particular, if g ≤ c,

W2
2(ν, µ) ≥

(
2− ec − 1

c

)∫
M

g(−L)−1g dµ. (5)

Recall that by integration by parts∫
M

g(−L)−1g dµ =

∫
M

∣∣∇((−L)−1g)
∣∣2dµ

which is the Sobolev norm alluded to above (see [4]). Note also that as c→ 0,

4

c2
[
1−
√

1− c
]2 ∼ 1 +

c

2
and 2− ec − 1

c
∼ 1− c

2

so that the bounds (3) and (5) are sharp in this regime.

Proof of Theorem 1. It is shown in [4] that for every (smooth) increasing θ : [0, 1]→ [0, 1] with

θ(0) = 0, θ(1) = 1,

W2
2(ν, µ) ≤

∫
M

∣∣∇((−L)−1g)
∣∣2 ∫ 1

0

θ′(s)2

1 + θ(s)g
ds dµ.
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Using that g ≥ −c,

W2
2(ν, µ) ≤

∫ 1

0

θ′(s)2

1− θ(s)c
ds

∫
M

∣∣∇((−L)−1g)
∣∣2dµ.

The claim (3) follows from the (optimal) choice

θ(s) =
1−
√

1− c
c

(
2s−

[
1−
√

1− c
]
s2
)
, s ∈ [0, 1].

Proof of Theorem 2. As announced, we follow [1]. By the Kantorovich dual description, for

any (smooth) ϕ : M → R,

1

2
W2

2(ν, µ) ≥
∫
M

ϕfdµ−
∫
M

Q̂1ϕdµ

=

∫
M

ϕ gdµ−
(∫

M

Q̂1ϕdµ−
∫
M

ϕdµ

)
where Q̂1 is the supremum convolution

Q̂1ϕ(x) = sup
y∈M

[
ϕ(y)− 1

2
d(x, y)2

]
.

Choose then ϕ = (−L)−1h. Now∫
M

Q̂1ϕdµ−
∫
M

ϕdµ =
1

2

∫ 1

0

∫
M

|∇Q̂sϕ|2dµ ds.

It is shown in [1] that since −Lϕ = h ≤ c uniformly, under a CD(0,∞) curvature condition,∫
M

|∇Q̂sϕ|2dµ ≤ ecs
∫
M

|∇ϕ|2dµ, 0 ≤ s ≤ 1.

Therefore ∫
M

Q̂1ϕdµ−
∫
M

ϕdµ ≤ ec − 1

c

∫
M

|∇ϕ|2dµ.

Since ∫
M

|∇ϕ|2dµ =

∫
M

ϕ(−Lϕ)dµ =

∫
R2

h(−L)−1h dµ,

the assertion (4) follows.

We note from [1] that Theorem 2 admits a version under a curvature condition CD(K,∞)

for some K ∈ R, which on a compact manifold essentially leads to similar conclusions. We

freely use this comment in Section 3 below.
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By elementary algebra, the inequality (4) of Theorem 2 immediately leads to

W2
2(ν, µ)

≥ 2

∫
M

g(−L)−1g dµ− 2

∫
M

(g − h)(−L)−1g dµ

− ec − 1

c

(∫
M

g(−L)−1g dµ+

∫
M

(g − h)(−L)−1(g − h) dµ− 2

∫
M

(g − h)(−L)−1g dµ

)
so that, if c ≤ 1 for example,

W2
2(ν, µ) ≥

(
2− ec − 1

c

)∫
M

g(−L)−1g dµ

− 2

∫
M

(g − h)(−L)−1(g − h) dµ− 6

∣∣∣∣ ∫
M

(g − h)(−L)−1g dµ

∣∣∣∣. (6)

The correction terms in (6) are typically handled with a spectral gap hypothesis, with

constant λ > 0. Indeed, since (−L)−1 =
∫∞
0
Psds, by the spectral gap inequality∫

M

(g − h)(−L)−1(g − h)dµ = 2

∫ ∞
0

∥∥Ps(g − h)
∥∥2
2
ds ≤ 1

λ
‖g − h‖22.

In the same way, ∣∣∣∣ ∫
M

(g − h)(−L)−1gdµ

∣∣∣∣ ≤ 1√
λ
‖g‖2‖g − h‖2.

so that we may reformulate (6) as

W2
2(ν, µ) ≥

(
2− ec − 1

c

)∫
M

g(−L)−1g dµ− 2

λ
‖g − h‖22 −

6√
λ
‖g‖2‖g − h‖2. (7)

2 Lower bound for the Gaussian sample

In this section, we deal with the lower bounds (1) and (2) in the Gaussian case, simultaneously

in dimensions d = 1 and d = 2. We make use of the general Theorem 2.

The first step is the Kantorovich contraction property under a CD(0,∞) curvature condi-

tion, which holds in Gauss space for the Mehler kernel pt(x, y),

W2
2(µn, µ) ≥ W2

2(µ
t
n, µ) (8)

where we recall that dµtn = fdµ, f(y) = 1 + g(y), g = g(y) = 1
n

∑n
i=1[pt(Xi, y)− 1], t > 0.

For R > 0, recall dµR = 1
µ(BR)

1BRdµ where BR = B(0, R) is the Euclidean ball centered at

0 with radius R in Rd, and the independent random variables XR
i , i = 1, . . . , n, with common

distribution µR defined by

XR
i =

{
Xi if Xi ∈ BR,

Zi if Xi /∈ BR,
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where Z1, . . . , Zn are independent with distribution µR, independent of the Xi’s. Let

g̃ = g̃(y) =
1

n

n∑
i=1

[
pt(X

R
i , y)− E

(
pt(X

R
i , y)

)]
,

and, for c > 0,

g̃c = (g̃ ∧ c) ∨ (−c)−
∫
Rd

[
(g̃ ∧ c) ∨ (−c)

]
dµ

(so that |g̃c| ≤ 2c and
∫
Rd g̃cdµ = 0).

Now, in (4) of Theorem 2, we choose h = g̃c and perform some minor modifications on (6)

and (7). It holds that∫
Rd
g̃c(−L)−1g̃cdµ =

∫
Rd
g̃(−L)−1g̃dµ+

∫
Rd

(g̃ − g̃c)(−L)−1(g̃ − g̃c)dµ

− 2

∫
Rd

(g̃ − g̃c)(−L)−1g̃dµ.

Therefore, with c ≤ 1
2

for example,

W2
2(µ

n
t , µ) ≥ 2

∫
Rd
g̃(−L)−1gdµ− e2c − 1

2c

∫
Rd
g̃(−L)−1g̃dµ

− 2

∫
Rd

(g̃ − g̃c)(−L)−1gdµ

− 2

∫
Rd

(g̃ − g̃c)(−L)−1(g̃ − g̃c)dµ− 4

∣∣∣∣ ∫
Rd

(g̃ − g̃c)(−L)−1g̃dµ

∣∣∣∣.
(9)

We handle the error terms in (9) by the spectral gap inequality. Namely∫
Rd

(g̃ − g̃c)(−L)−1(g̃ − g̃c)dµ = 2

∫ ∞
0

∥∥Ps(g̃ − g̃c)∥∥22 ds ≤ ‖g̃ − g̃c‖22.
In the same way, ∫

Rd
(g̃ − g̃c)(−L)−1gdµ ≤ ‖g‖2‖g̃ − g̃c‖2.

and ∣∣∣∣ ∫
Rd

(g̃ − g̃c)(−L)−1g̃dµ

∣∣∣∣ ≤ ‖g̃‖2‖g̃ − g̃c‖2.
Putting things together, and since

|g̃ − g̃c| ≤ |g̃|1{|g̃|≥c} +

∫
R2

|g̃|1{|g̃|≥c}dµ,

we deduce from (8) and (9) that for every 0 < c ≤ 1
2
,

W2
2(µ

n, µ) ≥ W2
2(µ

n
t , µ) ≥ 2

∫
Rd
g̃(−L)−1gdµ− e2c − 1

2c

∫
Rd
g̃(−L)−1g̃dµ

− 8

∫
{|g̃|≥c}

|g̃|2dµ− 8
(
‖g‖2 + ‖g̃‖2

)(∫
{|g̃|≥c}

|g̃|2dµ
)1/2

.

(10)
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Next, we integrate over the samples X1, . . . , Xn and XR
1 , . . . , X

R
n the first two terms on the

right-hand side of (10). If we recall the definitions of g and g̃, by independence and identical

distribution,

E
(∫

Rd
g̃(−L)−1gdµ

)
=

1

n

∫ ∞
t

∫
Rd

E
([
pt(X

R
1 , y)− E

(
pt(X

R
1 , y)

)]
ps(X1, y)

)
dµ(y)ds.

By definition of XR
1 ,

E
([
pt(X

R
1 , y)− E

(
pt(X

R
1 , y)

)]
ps(X1, y)

)
= E

(
1{X1∈BR}

[
pt(X1, y)− E

(
pt(X

R
1 , y)

)]
ps(X1, y)

)
+ E

(
1{X1 /∈BR}

[
pt(Z1, y)− E

(
pt(X

R
1 , y)

)]
ps(X1, y)

)
= E

(
1{X1∈BR}

[
pt(X1, y)− E

(
pt(X

R
1 , y)

)]
ps(X1, y)

)
since Z1 is independent of X1 and with the same law as XR

1 . Hence, after integration in dµ(y)

and the semigroup property,

E
(∫

Rd
g̃(−L)−1gdµ

)
=

µ(B)

n

∫ ∞
t

[ ∫
Rd
pt+s(x, x)dµR(x)−

∫
Rd

∫
Rd
pt+s(x, x

′)dµR(x)dµR(x′)

]
ds

=
µ(B)

n

∫ ∞
2t

[ ∫
Rd
ps(x, x)dµR(x)−

∫
Rd

∫
Rd
ps(x, x

′)dµR(x)dµR(x′)

]
ds

In the same way,

E
(∫

Rd
g̃(−L)−1g̃dµ

)
=

1

n

∫ ∞
t

∫
Rd

E
([
pt(X

R
1 , y)− E

(
pt(X

R
1 , y)

)]
ps(X

R
1 , y)

)
dµ(y)ds

=
1

n

∫ ∞
2t

[ ∫
Rd
ps(x, x)dµR(x)−

∫
Rd

∫
Rd
ps(x, x

′)dµR(x)dµR(x′)

]
ds.

As a consequence, given 0 < η < 1, if c > 0 is small enough and if µ(B) is close to 1 (in

terms of η),

E
(

2

∫
Rd
g̃(−L)−1gdµ− e2c − 1

2c

∫
Rd
g̃(−L)−1g̃dµ

)
≥ (1− η)

(
1

n

∫ ∞
2t

[ ∫
Rd
ps(x, x)dµR(x)−

∫
Rd

∫
Rd
ps(x, x

′)dµR(x)dµR(x′)

]
ds

)
.
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Also, by the spectral gap inequality,∫
Rd

∫
Rd
ps(x, x

′)dµR(x)dµR(x′) =
1

µ(BR)2

∫
Rd
1BRPs(1BR)dµ

= 1 +
1

µ(BR)2

∫
Rd
1BRPs

(
1BR − µ(BR)

)
dµ

≤ 1 +
1− µ(BR)

µ(BR)
e−s

≤ 1 + 2 e−s

provided that µ(BR) ≥ 1
2
. As a conclusion at this stage,

E
(
W2

2(µ
n, µ)

)
≥ (1− η)

1

n

∫ ∞
2t

∫
Rd

[
ps(x, x)− 1

]
dµR(x)ds− 2

n

− 8E
(∫

{|g̃|≥c}
|g̃|2dµ

)
− 8E

((
‖g‖2 + ‖g̃‖2

)(∫
{|g̃|≥c}

|g̃|2dµ
)1/2)

.

(11)

The final part of the proof will be to take care of the correction terms on the right-hand

side of the preceding (11). To this task, we develop some (crude) bounds on the Mehler kernel.

Recall the Mehler kernel

pt(x, y) =
1

(1− a2)d/2
exp

(
− a2

2(1− a2)

[
|x|2 + |y|2 − 2

a
x · y

])
where a = e−t, t > 0, x, y ∈ Rd. Consider for each y ∈ Rd and q ≥ 1,∫

BR

pt(x, y)qdµ(x)

After translation and a change of variable,∫
BR

pt(x, y)qdµ(x) =
1

(1− a2)qd/2
e

q(q−1)a2

2(1+(q−1)a2)
|y|2
∫
B(−κy,R)

exp

(
− 1 + (q − 1)a2

2(1− a2)
|x|2
)

dx

(2π)d/2

where κ = qa
1+(q−1)a2 .

Note that
q(q − 1)a2

2(1 + (q − 1)a2)
≤ q

2

and that κ ≥ 1
2
, at least provided that a is close to one which we may assume. Then, if |y| ≥ 4R

and x ∈ B(−κy,R), we have |x| ≥ |y|
4

. Hence, whenever |y| ≥ 4R,∫
BR

pt(x, y)qdµ(x) ≤ 1

(1− a2)(q−1)d/2
e
−
(

1
32(1−a2)

− q
2

)
|y|2
.

Otherwise, that is when |y| ≤ 4R,∫
BR

pt(x, y)qdµ(x) ≤ 1

(1− a2)(q−1)d/2
e
q
2
|y|2 .
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Recall

g̃ = g̃(y) =
1

n

n∑
i=1

[
pt(X

R
i , y)− E

(
pt(X

R
i , y)

)]
.

By Rosenthal’s inequality for sums of independent (identically distributed) random variables

[5], for any q ≥ 2 there exists Cq > 0 only depending on q such that

E
(∣∣g̃(y)

∣∣q) ≤ Cq

(
1

nq−1
E
(
pt(X

R
1 , y)q

)
+

1

nq/2

[
E
(
pt(X

R
1 , y)2

)]q/2)
≤ 2

q
2Cq

(
1

nq−1

∫
BR

pt(x, y)qdµ(x) +
1

nq/2

[ ∫
BR

pt(x, y)2dµ(x)

]q/2)
where we assumed that µ(BR) ≥ 1

2
.

In the following q ≥ 2 is fixed. Then t > 0 may be chosen small enough (in terms of q but

independently of n) such that κ ≥ 1
2

and 1
32(1−a2) −

q
2
≥ 0 (for example). By the previous step,∫

Rd

(∫
BR

pt(x, y)qdµ(x)

)
dµ(y) ≤ 1

(1− a2)(q−1)d/2
(
1 + e8qR

2)
.

In the same way,∫
Rd

(∫
BR

pt(x, y)2dµ(x)

)q/2
dµ(y) ≤ 1

(1− a2)qd/4
(
1 + e4qR

2)
.

For simplicity (in order not to carry the two preceding expressions with q − 1 and q
2
), assume

in the following that (1− a2)d/2n ≥ 1. Therefore, using that q − 1 ≥ q
2
,∫

R2

E
(∣∣g̃(y)

∣∣q)dµ(y) ≤ 2qCq
[(1− a2)d/2n]q/2

(
1 + e8qR

2)
. (12)

We use the preceding bounds to control the error term

E
(∫

{|g̃|≥c}
|g̃|2dµ

)
+ E

((
‖g‖2 + ‖g̃‖2

)(∫
{|g̃|≥c}

|g̃|2dµ
)1/2)

of (11). By repeated use of the Young and Hölder inequalities, the latter is bounded from above

for any δ > 0 and α > 1 by

δ
[
E
(
‖g‖22

)
+ E

(
‖g̃‖22

)]
+

1 + 2δ

2c2(α−1)δ

∫
Rd

E
(∣∣g̃(y)

∣∣2αdµ(y).

Since pt(x, x) = 1
1−a2 e

a
1+a
|x|2 , again with µ(BR) ≥ 1

2
,

E
(
‖g̃‖22

)
=

1

n

∫
Rd

[
E
(
pt(X

R
1 , y)2

)
− E

(
pt(X

R
1 , y)

)2]
dµ(y)

≤ 1

n

∫
Rd
pt(x, x)dµR(x)

≤ 1

nµ(BR)(1− a)d

≤ 2

n(1− a)d
.

8



Similarly

E
(
‖g‖22

)
≤ 1

n

∫
R2

pt(x, x)dµ(x) ≤ 1

n(1− a)d
.

On the other hand, (12) with q = 2α yields∫
Rd

E
(∣∣g̃(y)

∣∣2α)dµ(y) ≤ 4αC2α

[(1− a2)d/2n]α
(
1 + e16αR

2)
.

Hence, for any 0 < δ ≤ 1,

E
(∫

{|g̃|≥c}
|g̃|2dµ

)
+ E

((
‖g‖2 + ‖g̃‖2

)(∫
{|g̃|≥c}

|g̃|2dµ
)1/2)

≤ 3δ

n(1− a)d
+

4α+1C2α

c2(α−1)δ[(1− a2)d/2n]α
(
1 + e16αR

2)
.

(13)

In this last step, we fix the various parameters involved in the previous analysis. Basically,

t ∼ 1
nε

and R ∼ ε
√

log n for some small ε > 0, and α > 1 is chosen large enough. Take for

example t = 1
n1/d and R2 = 1

64
log n. Then, for n large enough, the necessary conditions on

a = e−t or µ(BR) are fulfilled. After some details, the choice of δ = 1
n

and α = 8 in (13) yields

that

E
(∫

{|g̃|≥c}
|g̃|2dµ

)
+ E

((
‖g‖2 + ‖g̃‖2

)(∫
{|g̃|≥c}

|g̃|2dµ
)1/2)

= O
( 1

n

)
.

Collecting this bound with (11) yields

E
(
W2

2(µ
n, µ)

)
≥ (1− η)

1

n

∫ ∞
2t

∫
Rd

[
ps(x, x)− 1

]
dµR(x)ds−O

( 1

n

)
.

From the analysis of the upper bound (cf. [4]), it is known that as t << 1
R2 , for some c > 0,∫ ∞

2t

∫
R2

[
ps(x, x)− 1

]
dµR(x)ds ≥ cR2 log

(1

t

)
when d = 2 and ∫ ∞

2t

∫
R

[
ps(x, x)− 1

]
dµR(x)ds ≥ c log(R2)

when d = 1. For the preceding choices of t and R, this establishes the claims (1) and (2).

3 On the limit in the compact case

It has been shown in [1] that when µ is the normalized Riemannian measure on a compact

(smooth) 2-dimensional Riemannian manifold M without boundary, then

lim
n→∞

n

log n
E
(
W2

2(µn, µ)
)

=
vol(M)

4π
, (14)
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where here µn = 1
n

∑n
i=1 δXi with the Xi’s, i = 1, . . . , n, independent and distributed as µ.

Since the statement is invariant under rescaling of the measure, assume in the following that

vol(M) = 1. The further conjecture from [3] is that

lim
n→∞

(
n

log n
E
(
W2

2(µn, µ)
)
− 1

4π

)
log n = ξ ∈ R. (15)

In this section, we will show that the arguments of [1] might be somewhat tightened so to

yield

lim inf
n→∞

(
n

log n
E
(
W2

2(µn, µ)
)
− 1

4π

)
log n

log log n
> −∞, (16)

and

lim sup
n→∞

(
n

log n
E
(
W2

2(µn, µ)
)
− 1

4π

)
(log n)

1
4

log log n
< ∞. (17)

We start with the proof of the liminf (16) which follows the developments of Section 1.

For simplicity we deal with a manifold with non-negative curvature, but the arguments may

be modified to cover the general case (cf. [1]). Recall first the contraction property under a

CD(0,∞) curvature condition, for any t > 0,

W2
2(µn, µ) ≥ W2

2(µ
t
n, µ)

where dµtn = fdµ, f(y) = 1 + g(y), g = g(y) = 1
n

∑n
i=1[pt(Xi, y) − 1], t > 0. We next apply

Theorem 2 and (7) to

g = g(y) =
1

n

n∑
i=1

[
pt(Xi, y)− 1

]
.

and

h = gc = (g ∧ c) ∨ (−c)−
∫
Rd

[
(g ∧ c) ∨ (−c)

]
dµ

with 0 < c ≤ 1
2
. Therefore, after integration along the sample X1, . . . , Xn,

E
(
W2

2(µn, µ)
)
≥
(

2− e2c − 1

2c

)
E
(∫

M

g(−L)−1g dµ

)
− 4

λ
E
(∫

{|g|≥c}
g2dµ

)
− 12√

λ
E
(
‖g‖22

)1/2 E(∫
{|g|≥c}

g2dµ

)1/2

since

|g − h| = |g − gc| ≤ |g|1{|g|≥c} +

∫
{|g|≥c}

|g|dµ.

For every y ∈M ,

E
(
g(y)2

)
=

1

n
p2t(y, y) ≤ C

nt
.

By standard exponential inequalities for sums of independent (bounded) random variables

(cf. [1]), for every u > 0,

P
(
|g(y)| ≥ u

)
≤ Ce−ntmin(u,u2)/C

10



for some C > 0 possibly varying from line to line. It is then an easy task to show that for

c = 1
logn

and t = (logn)κ

n
where κ > 0 is large enough,

E
(∫

{|g|≥c}
g2dµ

)
= O

( 1

n3

)
.

The trace asymptotics (cf. [1]) shows that as t = tn → 0

E
(∫

M

g(−L)−1g dµ

)
=

1

4π

log 1
tn

n
+O

( 1

n

)
. (18)

After some details, we conclude that

E
(
W2

2(µ
t
n, µ)

)
≥ 1

4π

log n

n
− C log log n

n

which is the announced lower bound (16).

Next we turn to the limsup upper bound (17). The first step is the standard regularization

procedure. For every 0 < α ≤ 1, and t > 0,

E
(
W2

2(µn, µ)
)
≤ (1 + α)E

(
W2

2(µ
t
n, µ)

)
+
Ct

α
.

Then, we slightly modify the proof of Theorem 1. Namely, for every θ : [0, 1]→ [0, 1] increasing,

θ(0) = 0, θ(1) = 1,

W2
2(µ

t
n, µ) ≤

∫
M

∣∣∇((−L)−1g)
∣∣2 ∫ 1

0

θ′(s)2

1 + θ(s)g
ds dµ.

Given 0 < c < 1, choose θ(s) = (1 + c)s if s ∈ [0, 1− c] and θ(s) = 2s− s2 if s ∈ [1− c, 1]. Then∫ 1

0

θ′(s)2

1 + θ(s)g
ds =

∫ 1−c

0

(1 + c)2

1 + (1 + c)sg
ds+ 4

∫ 1

1−c

(1− s)2

1 + (2s− s2)g
ds

≤ 1 + c

g
log
(
1 + (1− c2)g

)
+ 4c

where we used that g ≥ −1 in the last step. Observe next that

1

g
log
(
1 + (1− c2)g

)
≤ 1 + 2|g|

if −1
2
≤ g while

1

g
log
(
1 + (1− c2)g

)
≤ 2 log

1

c2

if g ≤ −1
2

so that in any case

1

g
log
(
1 + (1− c2)g

)
≤ 1 + 2|g|

(
1 + 2 log

1

c2

)
.

11



As a consequence,

W2
2(µ

t
n, µ) ≤ (1 + 5c)

∫
M

∣∣∇((−L)−1g)
∣∣2dµ+ 4

(
1 + log

1

c2

)∫
M

|g|
∣∣∇(−L)−1g

∣∣2dµ.
By the Cauchy-Schwarz inequality,

E
(∫

M

|g|
∣∣∇(−L)−1g

∣∣2dµ) ≤ E
(
‖g‖22

)1/2 E(∫
M

∣∣∇(−L)−1g
∣∣4dµ)1/2

Together with the Riesz transform bounds, it is shown in [1] that

E
(∫

M

∣∣∇(−L)−1g
∣∣4dµ) ≤ C

(
log n

n

)2

.

On the other hand E(‖g‖22) ≤ C
nt

.

At this level, we have thus obtained that

E
(
W2

2(µn, µ)
)
≤ (1 + 5c)(1 + α)E

(∫
M

∣∣∇((−L)−1g)
∣∣2dµ)

+
Ct

α
+ C

(
1 + 2 log

1

c2

) log n

n
√
nt
.

Together with the trace asymptotics (18), take

c =
1

log n
, t =

(log n)
1
4

n
, α =

1

(log n)
1
4

to get that

lim sup
n→∞

(
n

log n
E
(
W2

2(µn, µ)
)
− 1

4π

)
(log n)

1
4

log log n
< ∞.

(With a few more efforts, it is possible to get rid of the log log n factor.)
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Université de Toulouse – Paul-Sabatier, F-31062 Toulouse, France

& Institut Universitaire de France

ledoux@math.univ-toulouse.fr

13


