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Abstract

We discuss a fluctuation result in a dual Sobolev norm for the optimal matching

problem. The principle is based on the heat kernel regularization procedure put forward by

L. Ambrosio, F. Stra and D. Trevisan in the proof of the exact limit in the two-dimensional

matching problem, and is coherent with the known one-dimensional case. The arguments

are based on the classical central limit theorem in Hilbert space together with heat kernel

bounds, and the limiting distribution is identified as the suitable renormalization of a

time-space Gaussian Free Field.

1 Introduction and main results

The purpose of this paper is to study some fluctuation results in the optimal matching problem

in the dual Sobolev norm, linearization of the Monge-Kantorovich metric W2.

The quadratic Monge-Kantorovich distance (cf. e.g. [11]) between two probability measures

ν and µ on the Borel sets of a metric space (M,ρ) with a finite second moment is defined by

W2(ν, µ) =

(∫
M×M

ρ(x, y)2dπ(x, y)

)1/2

where the infimum is taken over all couplings π on M ×M with respective marginals ν and µ.

When M is a smooth compact Riemannian manifold with its Riemannian metric ρ and

normalized Riemannian volume element µ, it is a classical result from optimal transport (cf.

e.g. [11], p. 588) that for dνε = fdµ where f = 1 + εg,

lim
ε→0

1

ε2
W2

2(νε, µ) = ‖g‖2
H−1(µ) (1)
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where

‖g‖H−1(µ) =

(∫
M

∣∣∇((−∆)−1g)
∣∣2 dµ)1/2

(2)

is the dual Sobolev norm of g (provided it is well-defined – see below for further details on

this definition). With some abuse, we write ‖ν − µ‖H−1(µ) = ‖f − 1‖H−1(µ) whenever dν = fdµ.

The Sobolev norm ‖ · ‖H−1(µ) thus appears as a linearization of the Monge-Kantorovich metric

W2
2. In addition to the infinitesimal behaviour (1), it also holds true that

W2
2(ν, µ) ≤ 4 ‖ν − µ‖2

H−1(µ) (3)

for every ν << µ (cf. [9]).

Our interest in the dual Sobolev norm H−1(µ) is motivated by one illustration in optimal

matching. In the following, µ is the Riemannian measure on a smooth closed d-dimensional

Riemannian manifold M with volume one (the statements are invariant under rescaling of the

measure). Given X1, . . . , Xn, n ≥ 1, independent random variables with common distribution

µ, let µn = 1
n

∑n
i=1 δXi be the associated empirical measure. It has been shown by L. Ambrosio,

F. Stra and D. Trevisan [1], that in dimension d = 2,

lim
n→∞

n

log n
E
(
W2

2(µn, µ)
)

=
1

4π
. (4)

This result answers a conjecture by S. Caracciolo, C. Lucibello, G. Parisi and G. Sicuro [6],

who expect moreover that

lim
n→∞

(
n

log n
E
(
W2

2(µn, µ)
)
− 1

4π

)
log n = ξ (5)

for some ξ ∈ R (a value is conjectured in [6]).

A further conjecture in this framework would be that

n
[
W2

2(µn, µ)− E
(
W2

2(µn, µ)
)]
→ χ (6)

in distribution where χ is some centered random variable with an explicit distribution. Provided

that the conjecture (5) holds true,

n
[
W2

2(µn, µ)− 1

4π
log n

]
→ ξ + χ

in distribution, which would be the ultimate description of the limiting behaviour of W2
2(µn, µ)

(provided the limiting value ξ is identified). For the matter of comparison, it may be mentioned

that in dimension d = 1, for µ the Lebesgue measure on [0, 1], E(W2
2(µn, µ)) = 1

6n
while

nW2
2(µn, µ) converges in law to

∫ 1

0
B(t)2dt with B a Brownian bridge on [0, 1] (in particular

E
( ∫ 1

0
B(t)2dt

)
= 1

6
) [3].

The conjectures in [6] are based on a very appealing pde ansatz which however ignores

some necessary regularization effect since the empirical measures µn are of course discrete. To

address this issue, L. Ambrosio, F. Stra and D. Trevisan [1] propose a regularization procedure
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by the heat kernel pt(x, y), t > 0, x, y ∈ M , on the manifold, replacing µn by the probability

measure µtn with density

f tn =
1

n

n∑
i=1

pt(Xi, ·)

with respect to µ. By the law of large numbers, the random densities f tn are close to 1 as

n→∞ so that the approximation (1) may be used to identify the limit (4). More accurately,

by the central limit theorem,

f tn =
1

n

n∑
i=1

pt(Xi, ·) ∼ 1 +
G(t)√
n

where G(t) = {G(t, y); y ∈M} is a Gaussian process with covariance

E
(
G(t, y)G(t, y′)

)
= E

([
pt(X1, y)− 1

][
pt(X1, y

′)− 1
])

=

∫
M

[
pt(x, y)− 1

][
pt(x, y

′)− 1
]
dµ(x)

= p2t(y, y
′)− 1, y, y′ ∈M,

thereby suggesting a fluctuation result at the level of the W2
2 metric. The delicate issue is how-

ever to balance the regularization in t→ 0 with the limit in n by a suitable choice t = t(n)→ 0.

In particular, the validity of this procedure in dimension d ≥ 3 is still conjectural.

To somewhat turn around this difficulty, we suggest here, as a further ansatz, to replace the

Monge-Kantorovich metric W2
2 by the norm in the dual Sobolev space H−1(µ). To this task,

note that simple computations developed in Section 3 show that

E
(
‖µtn − µ‖

2

H−1(µ)

)
=

1

n
γ(t)

where

γ(t) = 2

∫ ∞
0

∫
M

[
p2(t+s)(x, x)− 1

]
dµ(x) ds.

Unless d = 1, it is not possible to make sense of ‖µn − µ‖2
H−1(µ) as the limit as t → 0 of

‖µtn − µ‖
2
H−1(µ) since γ(t) → ∞ as t → 0. However, whenever d ≤ 3, for each n ≥ 1, the

renormalization

n ‖µtn − µ‖
2

H−1(µ) − γ(t) (7)

may be shown to converge in probability as t→ 0 to a random variable χn.

In a sense, the random variable χn would play the role of the left-hand side of (6) in the

dual Sobolev norm, for which we establish the following fluctuation theorem. Set

χ = 2

∫ ∞
0

[ ∫
M

G(s, y)2dµ(y)−
∫
M

E
(
G(s, y)2

)
dµ(y)

]
ds.

It will be part of the result that χ is a well-defined random variable.

Theorem 1. Let d ≤ 3. Under the preceding notation, χn → χ in distribution.
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The proof of Theorem 1 is based on the central limit theorem in Hilbert space, together with

appropriate equicontinuity properties derived from the heat kernel behaviour. In particular,

these are only relevant for d ≤ 3. The random variable χ may be formally understood in the

following way. The quantity ∫ ∞
0

∫
M

G(s, y)2dµ(y)ds

may be interpreted, in distribution, as the H−1(µ)-norm of the Gaussian noise G(0) which,

although not making sense as a function on M , may be described as the Gaussian field indexed

by L2(µ) such that for any φ, ψ ∈ L2(µ),

E
(
〈φ,G(0)〉〈ψ,G(0)〉

)
= 〈φ, ψ〉 − 〈φ〉〈ψ〉

where 〈·, ·〉 is the scalar product in L2(µ) and 〈φ〉 = 〈φ,1〉. The time-space process G(t) =

{G(t, y); y ∈M} is the heat kernel regularization of G(0) and its H−1(µ)-norm is given by∫ ∞
0

∫
M

G(t+ s, y)2dµ(y)ds

which is well-defined for any t > 0. Unless d = 1 (see below), it is not possible to let t → 0,

and χ is then obtained by renormalization by centering as in (7).

The drawback of Theorem 1 is of course that it is not expressed in terms of the Monge-

Kantorovich metric W2. Recent developments of [2, 8] allow for some approximate statements.

Namely, it is shown there that there exist sequences t = t(n) → 0 such that if µ̂tn is the

push-forward of µ by the exponential map exp(∇((−∆)−1(f tn − 1))), then

W2
2(µ̂tn, µ) = ‖µtn − µ‖

2

H−1(µ)

with high probability. Furthermore, as developed in [2], provided that t = t(n) ≥ (logn)κ

n1/(d−1) for

some κ > 0 large enough (t = t(n) ≥ (logn)κ

n2 if d = 1),

E
(∣∣W2

2(µtn, µ)
)
−W2

2(µ̂tn, µ)
)∣∣) ≤ 1

n2
.

It is thus an easy task to deduce the following consequence to Theorem 1.

Corollary 2. Let d ≤ 3. There are sequences t = t(n)→ 0 such that

n
[
W2

2(µtn, µ)− E
(
W2

2(µtn, µ)
)]
→ χ

in distribution as n→∞.

The difficulty is then to replace W2
2(µtn, µ) by W2

2(µn, µ), but unfortunately the known reg-

ularization results do not allow for such a conclusion for the admissible sequences t = t(n)→ 0.

They are indeed unable to control the difference

E
(∣∣W2

2(µn, µ)
)
−W2

2(µtn, µ)
)∣∣)
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which is typically of order t.

The conclusion is however good enough in dimension d = 1, more specifically for the

Lebesgue measure µ on [0, 1], since then the admissible sequence t = t(n) ≥ (logn)κ

n2 decays

faster than 1
n
. Hence

n
[
W2

2(µn, µ)− E
(
W2

2(µn, µ)
)]
→ χ

weakly. Now, in this setting, on the one hand,

γ(t) = 2

∫ ∞
0

∫
M

E
(
G(t+ s, y)2

)
dµ(y)ds → γ(0) =

1

6
,

while on the other

2

∫ ∞
0

∫
M

G(s, y)2dµ(y)ds

may be seen to have the same distribution as
∫ 1

0
B(t)2dt where B is a Brownian bridge on [0, 1].

Therefore χ has the distribution of
∫ 1

0
B(t)2dt− 1

6
, and since E(nW2

2(µn, µ)) = 1
6

(cf. e.g. [5]),

we recover that

nW2
2(µn, µ) →

∫ 1

0

B(t)2dt (8)

in distribution, showing the coherence of Theorem 1 and Corollary 2 with the conjecture (6).

But of course, the whole investigation here is only a minor step towards (6).

In the next Section 2, we give a brief account on the time-space Gaussian field G =

{G(s, y); s > 0, y ∈ M}. Then, in Section 3, we prove Theorem 1 on the basis of the clas-

sical central limit theorem in Hilbert space. We work throughout this work with a closed

manifold M to safely use the classical heat kernel asymptotics, although the case with bound-

ary should be handled similarly (and we actually perform some comparison with the example

of [0, 1], assuming implicitly the validity of the conclusion in this case).

2 A space-time Gaussian Free Field

This section provides a description of the Gaussian field G = {G(s, y); s > 0, y ∈M} presented

in the introduction, and of some of its properties. Recall first the heat kernel pt(x, y), t > 0,

x, y ∈M , on the closed d-dimensional Riemannian manifold M , and the associated semigroup

(Pt)t≥0, invariant and symmetric with respect to µ, defined, on any φ ∈ L2(µ), by

Ptφ(x) =

∫
M

φ(y)pt(x, y)dµ(y).

Recall also the convolution and symmetry properties of the heat kernel in the form of∫
M

pt(x, z)pt′(z, y)dµ(z) = pt+t′(x, y) = pt+t′(y, x)

for all t, t′ > 0, x, y ∈M .
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If σ(−∆) denotes the (countable) spectrum of the (inverse) Laplace operator −∆, with the

eigenvalues counted with their multiplicities,

pt(x, y) =
∑

λ∈σ(−∆)

e−λtuλ(x)uλ(y) (9)

where {uλ}λ∈σ(−∆) is an L2(µ) orthonormal basis of eigenvectors of −∆.

The semigroup (Pt)t≥0 may be used in a simplified description of the dual Sobolev norm

‖g‖2
H−1(µ) =

∫
M

∣∣∇((−∆)−1g)
∣∣2 dµ

where g : M → R has mean zero and belongs to the suitable domain. Namely, by integration

by parts, ∫
M

∣∣∇((−∆)−1g)
∣∣2 dµ =

∫
M

g(−∆)−1g dµ.

By the spectral representation (−∆)−1 =
∫∞

0
Psds and symmetry,

‖g‖2
H−1(µ) = 2

∫ ∞
0

∫
M

(Psg)2dµ ds. (10)

For any t > 0, G(t) = {G(t, y); y ∈ M} is therefore the Gaussian process indexed by M

with covariance

E
(
G(t, y)G(t, y′)

)
= p2t(y, y

′)− 1, y, y′ ∈M.

According to the eigenfunction expansion (9), G(t) may be represented as

G(t, y) =
∑

λ∈σ(−∆)\{0}

e−λthλuλ(y) (11)

where {hλ}λ∈σ(−∆) is a family of independent standard normal variables. In particular Ps
(
G(t)

)
=

G(t+ s) for all s > 0.

We may observe that, for every t > 0, the map G(t) : y 7→ G(t, y) belongs almost surely to

H−1(µ). To this task, note first that
∫
M
G(t)dµ = 0 almost surely by the expansion (11). Next,

in the formulation (10),

‖G(t)‖2
H−1(µ) = 2

∫ ∞
0

∫
M

Ps
(
G(t)

)2
dµ ds = 2

∫ ∞
0

∫
M

G(t+ s)2dµ ds.

Hence

E
(
‖G(t)‖2

H−1(µ)

)
= 2

∫ ∞
0

∫
M

[
p2(t+s)(x, x)− 1

]
dµ(x)ds.

On a compact d-dimensional Riemannian manifold, it holds true that (see (17) below)

sup
x,y∈M

ps(x, y) ≤ C

sd/2
, 0 < s ≤ 1, (12)
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which takes care of the small time heat kernel behaviour. On the other hand, the spectral gap

λ1 > 0 ensures an exponential decay of convergence to equilibrium in the sense that for any

ϕ : M → R with mean zero and any u > 0,∫
M

(Puϕ)2dµ ≤ e−2λ1u

∫
M

ϕ2dµ.

Apply this to ϕ(y) = pv(x, y) − 1, v > 0, y ∈ M , for x ∈ M fixed. Since then Puϕ(y) =

pv+u(x, y)− 1, ∫
M

[
pv+u(x, y)− 1

]2
dµ(y) ≤ e−2λ1u

(∫
M

[
pv(x, y)− 1

]2
dµ(y)

)
.

By heat kernel convolution,

p2(v+u)(x, x)− 1 ≤ e−2λ1u
[
p2v(x, x)− 1

]
, (13)

for any x ∈M and v, u > 0, which is useful for the long time behaviour estimates.

As a consequence therefore of (13),

E
(
‖G(t)‖2

H−1(µ)

)
= 2

∫ ∞
0

∫
M

[
p2(t+s)(x, x)− 1

]
dµ(x)ds = γ(t) < ∞ (14)

for every t > 0, so that the Gaussian process G(t) = {G(t, y); y ∈ M} indeed belongs almost

surely to the dual Sobolev space H−1(µ).

Unless d = 1, it follows from the heat kernel behaviour (17) at t → 0 that γ(t) → ∞ as

t→ 0, and therefore the H−1(µ)-norm of G(0) does not make sense. However, it may be shown

that

‖G(t)‖2
H−1(µ) − γ(t)

converges as t → 0 to a well-defined random variable, and this for every d ≤ 3. To reach this

claim, we start with the following elementary lemma.

Lemma 3. Let U be a real square integrable random variable. Then

E
(
|U2 − E(U2)|

)
≤ 2
√

2
(
Var(U)

)1/2(E(U2)
)1/2

.

Proof. If V is an independent copy of U , by independence and Jensen’s inequality

E
(
|U2 − E(U2)|

)
≤ E

(
|U2 − V 2|

)
.

Now, from the Cauchy-Schwarz inequality,

E
(
|U2 − V 2|

)
≤ E

(
|U − V |2

)1/2 E
(
|U + V |2

)1/2

from which the conclusion immediately follows.
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Denote by ‖G(t)‖2 =
∫
M
G(t, y)2dµ(y) the L2(µ)-norm of G(t). The preceding lemma may

be combined with the concentration properties of norms of Gaussian vectors (see [10]) which

express in particular that

Var
(
‖G(t)‖

)
≤ σ2

where

σ2 = σ2
(
G(t)

)
= sup E

(
〈φ,G(t)〉2

)
the supremum being running over all unit vectors φ in L2(µ). Now, again by (11),

E
(
〈φ,G(t)〉2

)
=

∑
λ∈σ(−∆)\ 0}

e−2λt〈φ, uλ〉2 ≤ ‖φ‖2
L2(µ).

Hence σ2(G(t)) ≤ 1 and, by the lemma,

E
(∣∣‖G(t)‖2 − E

(
‖G(t)‖2

)∣∣) ≤ 2
√

2E
(∥∥G(t)

∥∥2)1/2

On the other hand,

E
(
‖G(t)‖2

)
=

∫
M

E
(
G(t, y)2

)
dµ(y) =

∫
M

[
p2t(y, y)− 1

]
dµ(y)

which, as discussed above in (13) and (12), decreases exponentially as t → ∞ while of order

t−2/d as t→ 0. Therefore ∫ ∞
0

E
(∣∣‖G(t)‖2 − E

(
‖G(t)‖2

)∣∣)dt < ∞
as soon as d ≤ 3.

For the further purposes, observe in addition that∫ t

0

E
(∣∣‖G(s)‖2 − E

(
‖G(s)‖2

)∣∣)ds ≤ C t1−(d/4), 0 < t ≤ 1

2
. (15)

The following statement summarizes the prior analysis.

Proposition 4. In the preceding notation, when d ≤ 3, the random variable

χ = 2

∫ ∞
0

[
‖G(s)‖2 − E

(
‖G(s)‖2

)]
ds

is well-defined.

Although formally we prefer to work on closed manifolds, we may check the coincidence in

law in dimension one of
∫ 1

0
B(t)2dt where B is a Brownian bridge on [0, 1] and of the L2-norm

‖G(0)‖2
H−1(λ) = 2

∫ ∞
0

∫
[0,1]

G(s, y)2dµ(y)ds
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where µ is Lebesgue measure on [0, 1]. The comparison is actually exact on the circle, but the

one-dimensional optimal matching problem is classically studied and formulated on the interval

[0, 1]. Following the discussion in the introduction, the random variable χ of Proposition 4 thus

has the distribution of
∫ 1

0
B(t)2dt − 1

6
. To this task, recall first that the Brownian bridge on

[0, 1] may be represented by the series expansion

B(t) =
√

2
∞∑
k=1

hk
sin(kπt)

kπ
, t ∈ [0, 1],

where the hk’s are independent standard normal variables. In particular,∫ 1

0

B(t)2dt =
∞∑
k=1

h2
k

k2π2
.

On the other hand, since

G(s, y) =
∞∑
k=1

e−k
2π2shkuk(y), t > 0,

where uk are the eigenfunctions orthonormal for the Lebesgue measure on [0, 1],∫
[0,1]

G(s, y)2dλ(y) =
∞∑
k=1

e−2k2π2sh2
k

from which the claim follows after integration in s ∈ (0,∞).

3 Proof of Theorem 1

Recall X1, . . . , Xn, n ≥ 1, independent random variables with common distribution µ, and

µn = 1
n

∑n
i=1 δXi the associated empirical measure. For each t > 0, the random measure

dµtn = f tndµ where f tn = 1
n

∑n
i=1 pt(Xi, ·) is obtained by regularization with the heat kernel.

To start with, according to (10),

‖µtn − µ‖
2

H−1(µ) = ‖f tn − 1‖2

H−1(µ) = 2

∫ ∞
0

∫
M

[Psf
t
n − 1]2dµ ds

= 2

∫ ∞
0

∫
M

[
1

n

n∑
i=1

[
pt+s(Xi, ·)− 1

]]2

dµ ds.

Averaging over the sample (X1, . . . , Xn), by independence and identical distribution,

E
(
‖µtn − µ‖

2

H−1(µ)

)
=

2

n

∫ ∞
0

∫
M

E
([
pt+s(Xi, ·)− 1

]2)
dµ ds

=
2

n

∫ ∞
0

∫
M

[
p2(t+s)(x, x)− 1

]
dµ(x)ds =

1

n
γ(t)
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since, for each y ∈M ,

E
([
pt+s(Xi, y)− 1

]2)
=

∫
M

[
pt+s(x, y)− 1

]2
dµ(x) = p2(t+s)(y, y)− 1

by the convolution properties of the heat kernel.

Next, we develop tools from the study of the central limit theorem in Hilbert space towards

the goal. For each fixed t > 0, and i ≥ 1, introduce the independent identically distributed,

centered, random vectors

Zi = Zi(t+ s, y) = pt+s(Xi, y)− 1, s ≥ t, y ∈M,

with values in the Hilbert space L2(ds ⊗ µ) = L2((0,∞) × M,ds ⊗ µ). Denoting also (for

simplicity) by 〈·, ·〉 and ‖ · ‖ the scalar product and norm in L2(ds⊗ µ),

χtn = n ‖µtn − µ‖
2

H−1(µ) − γ(t) = 2

(∥∥∥∥ 1√
n

n∑
i=1

Zi

∥∥∥∥2

− E
(∥∥∥∥ 1√

n

n∑
i=1

Zi

∥∥∥∥2))
. (16)

It holds that

E
(
‖Zi‖2

)
=

∫ ∞
0

∫
M

E
([
pt+s(Xi, y)− 1

]2)
dµ(y)ds =

1

2
γ(t).

Since γ(t) <∞, by the classical central limit theorem in Hilbert space (cf. [10]), the sequence

1√
n

n∑
i=1

Zi, n ≥ 1,

converges in distribution in L2(ds⊗µ) to the Gaussian vector Gt = {G(t+ s, y); s > 0, y ∈M}.

In addition, it may also be noted that

E
(∥∥∥∥ n∑

i=1

Zi

∥∥∥∥4)
=

n∑
i,j,k,`=1

E
(
〈Zi, Zj〉〈Zk, Z`〉

)
= nE

(
‖Z1‖4

)
+ n(n− 1)E

(
‖Z1‖2

)2
+ 2n(n− 1)E

(
〈Z1, Z2〉2

)
since by independence and centering, only the indices such that i = j = k = `, i = j 6= k = ` or

i = k 6= j = `, i = ` 6= j = k are contributing to the sum. Now, by the heat kernel convolution

properties,

E
(
‖Z1‖4

)
=

∫
M

(∫ ∞
0

[
p2(t+s)(x, x)− 1

]
ds

)2

dµ(x),

E
(
‖Z1‖2

)2
=

(∫ ∞
0

∫
M

[
p2(t+s)(x, x)− 1

]
dµ(x)ds

)2

and

E
(
〈Z1, Z2〉2

)
=

∫ ∞
0

∫
M

∫ ∞
0

∫
M

E
(
Z1(t+ s, y)Z1(t+ s′, y′)

)2
dsds′dµ(y)dµ(y′)

=

∫ ∞
0

∫
M

∫ ∞
0

∫
M

[
p2t+s+s′(y, y

′)− 1
]2
dsds′dµ(y)dµ(y′)

=

∫ ∞
0

∫ ∞
0

∫
M

[
p2(2t+s+s′)(x, x)− 1

]
dµ(x)dsds′.
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Together with (13) for, it therefore follows that

sup
n≥1

E
(∥∥∥∥ 1√

n

n∑
i=1

Zi

∥∥∥∥4)
< ∞.

Hence, by convergence of moments, we also have that

lim
n→∞

E
(∥∥∥∥ 1√

n

n∑
i=1

Zi

∥∥∥∥2)
= E

(
‖Gt‖2

)
.

We may summarize this analysis in the following statement. Define χt = 2(‖Gt‖2−E(‖Gt‖2))

where

‖Gt‖2 =

∫ ∞
0

∫
M

G(t+ s, x)2dµ(x)ds

which is well defined for any t > 0.

Proposition 5. For every t > 0, as n→∞,

χtn = n ‖µtn − µ‖
2

H−1(µ) − γ(t) → χt

in distribution.

The next step investigates the behaviour of χtn as t→ 0 (for each fixed n). The same Hilbert

space computations as above actually show that for each fixed s > 0,

Var

(∥∥∥∥ 1√
n

n∑
i=1

Zi(s)

∥∥∥∥2)
=

1

n
E
(∥∥Z1(s)

∥∥4)− 1

n
E
(∥∥Z1(s)

∥∥2)2

+ 2
(

1− 1

n

)
E
(
〈Z1(s), Z2(s)〉2

)
.

Here, the independent and identically distributed random variables Zi(s) = {ps(Xi, y)− 1; y ∈M},
i = 1, . . . , n, take their values in the Hilbert space L2(µ), and the scalar product and norm are

understood in this space. Again by the heat kernel properties,

E
(∥∥Z1(s)

∥∥4)
=

∫
M

[
p2s(x, x)− 1

]2
dµ(x),

E
(∥∥Z1(s)

∥∥2)2
=

(∫
M

[
p2s(x, x)− 1

]
dµ(x)

)2

and

E
(
〈Z1(s), Z2(s)〉2

)
=

∫
M

[
p4s(x, x)− 1

]
dµ(x).

The classical Minakshisundaram-Pleijel formula in Riemannian geometry (cf. e.g. [4, 7])

ensures that the heat kernel pu(x, x) admits, at each x ∈M , a complete asymptotic expansion

pu(x, x) ∼ u−d/2
(
a0(x) + a1(x)u+ a2(x)u2 + · · ·

)
, u→ 0, (17)
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where the functions aj(x) are smooth and determined by the metric and its derivatives at x.

In particular, a0 is constant equal to 1
(4π)d/2

. The asymptotic expansion (17) holds uniformly

in x, so that one can integrate it over x ∈M , and together with the spectral representation of

pu(x, y) and under the normalization of the volume element,∫
M

[
pu(x, x)− 1

]
dµ(x) ∼ u−d/2

(
α0 + α1u+ α2u

2 + · · ·
)
, u→ 0. (18)

Now, since (cf. (16))

χtn = 2

∫ ∞
t

[∥∥∥∥ 1√
n

n∑
i=1

Zi(s)

∥∥∥∥2

− E
(∥∥∥∥ 1√

n

n∑
i=1

Zi(s)

∥∥∥∥2)]
ds,

for 0 < t < t′,

χtn − χt
′

n = 2

∫ t′

t

[∥∥∥∥ 1√
n

n∑
i=1

Zi(s)

∥∥∥∥2

− E
(∥∥∥∥ 1√

n

n∑
i=1

Zi(s)

∥∥∥∥2)]
ds.

By the previous variance expansion,

E
(
|χtn − χt

′

n |
)
≤ 2√

n

∫ t′

t

(∫
M

[
p2s(x, x)−

∫
M

p2s(y, y)dµ(y)

]2

dµ(x)

)1/2

ds

+ 2
√

2

∫ t′

t

(∫
M

[
p4s(x, x)− 1

]
dµ(x)

)1/2

ds

Making use of (17), (18) and (12), for every ε > 0 there exists t0 = t0(ε) > 0 such that, for

0 < t < t′ < t0,

E
(
|χtn − χt

′

n |
)
≤ ε+

∫ t′

t

√
C

sd/4
ds ≤ 2ε

uniformly in n ≥ 1 (since d ≤ 3). By a Cauchy-type argument, we may therefore define, for

each n ≥ 1, the random variable χn = limt→0 χ
t
n, such that, moreover, for every 0 < t < t0,

sup
n≥1

E
(
|χtn − χn|

)
≤ 2ε. (19)

We conclude the proof of Theorem 1 and show the weak convergence of the sequence χn,

n ≥ 1, to the random variable χ of Proposition 4. Let ψ : R → R be a bounded 1-Lipschitz

function. By the triangle inequality, for each n ≥ 1 and t > 0,∣∣E(ψ(χn)
)
− E

(
ψ(χ)

)∣∣ ≤ ∣∣E(ψ(χn)
)
− E

(
ψ(χtn)

)∣∣+
∣∣E(ψ(χtn)

)
− E

(
ψ(χt)

)∣∣
+
∣∣E(ψ(χt)

)
− E

(
ψ(χ)

)∣∣
≤ E

(∣∣χn − χtn)
∣∣)+

∣∣E(ψ(χtn)
)
− E

(
ψ(χt)

)∣∣
+ E

(∣∣χt − χ)
∣∣).

Given ε > 0, choose 0 < t < t0(ε) small enough so that, by (15) and (19), E(|χt− χ)|) ≤ ε and

E(|χn − χtn)|) ≤ 2ε uniformly in n ≥ 1. It remains to apply Proposition 5 to this value of t.

The proof of Theorem 1 is therefore complete.
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