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Abstract

This note is a wink to two of my mathematical heroes, Dominique Bakry and Michel

Talagrand, linking in an anecdote example their famous Γ2 and γ2.

1 Introduction

My mathematical heroes, and collaborators and friends, Dominique Bakry and Michel Tala-

grand, introduced, in different areas, fundamental notions that they both named Γ2 and γ2.

This note is dedicated to them, with a link between these two most impactful objects which

gave rise to huge developments and applications (illustrated in particular in the monographs

[1] and [8]).

The connection emphasized here is inspired by the works [4, 5] of E. Meckes on projections

of random vectors and [6] of E. Meckes and M. Meckes on bounds on Kantorovich distances for

empirical measures of random matrices. We thank them for this inspiring observation.

The note does not discuss any historical and technical aspects, and refers to the preceding

reference books [1, 8] for details.

2 γ2

The γ2(T, d) functional introduced by M. Talagrand is a measure of the size of a metric space

(T, d) which was developed in the study of boundedness of random processes.

Given a set T , an admissible sequence is an increasing sequence (An)n∈N of partitions of T

such that Card(An) ≤ 22n for every n ≥ 1 (Card(A0) ≤ 1). For every t ∈ T , denote by An(t)
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the element of An which contains t. If d is a distance on T (not necessarily separating points),

the diameter of An(t) with respect to d is denoted by D(An(t)).

Let then

γ2(T, d) = inf sup
t∈T

∑
n∈N

2n/2D
(
An(t)

)
(1)

where the infimum is taken over all admissible sequences.

The γ2(T, d) functional extends and sharpens the earlier notions and tools of metric entropy

and majorizing measures in the study of boundedness and continuity of random processes by

the so-called chaining scheme (cf. [8]). It is actually an equivalent formulation of the majorizing

measure bound introduced by my adviser X. Fernique [2]. On a probability space (Ω,Σ,P), let

X = (Xt)t∈T be a family of real centered random variables (stochastic process), and set

M(X) = supE
(

sup
t∈S

Xt

)
where the supremum runs over all finite subsets S ⊂ T .

Say that X is sub-Gaussian with respect to the metric d if for all s, t ∈ T and u ≥ 0,

P
(
|Xs −Xt| ≥ u

)
≤ C e−c u

2/2d(s,t)2 (2)

for some constants C, c > 0.

One first result in the chaining argument is that, for such a sub-Gaussian process,

M(X) ≤ K√
c
γ2(T, d) (3)

where K = K(C) only depends on C.

This result applies in particular to a (centered) Gaussian process with the L2-metric dX(s, t) =

E(|Xs − Xt|2)1/2, s, t ∈ T , which satisfies (2) (with C = 2 and c = 1). But the remarkable

achievement of M. Talagrand (1985) was actually to show that the upper-bound (3) may be

reversed in this case

M(X) ≥ 1

K
γ2(T, dX) (4)

for some numerical K > 0.

It follows in particular that whenever Y = (Yt)t∈T is a sub-Gaussian process with respect

to the distance d = dX of a Gaussian process X = (Xt)t∈T , then

M(Y ) ≤ K2

√
c
M(X). (5)

(It is of independent interest to find a direct proof of this comparison.)
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3 Γ2

The Γ2 operator was introduced by D. Bakry in the mid-eighties in the study of Riesz trans-

forms on manifolds and, with M. Émery, in the investigation of hypercontractive diffusions and

logarithmic Sobolev inequalities as a functional tool to control the geometry and curvature of

Laplacians and diffusion operators.

A Markov diffusion Triple (E, µ,Γ) in the sense of [1] consists of a state space E equipped

with a diffusion semigroup (Pt)t≥0 with infinitesimal generator L and carré du champ operator

Γ, and invariant and reversible measure µ. The carré du champ operator Γ may be introduced

from the generator L by

Γ(f, g) =
1

2

[
L(fg)− f Lg − g Lf

]
for f, g in a suitable algebraA (of smooth functions), and they are both linked with the invariant

measure µ by the integration by parts formula∫
E

f(−Lg)dµ =

∫
E

Γ(f, g)dµ.

The state space E may be endowed with an intrinsic distance for which Lipschitz functions f

are such that Γ(f) is bounded (µ-almost everywhere), which coincides with the Euclidean and

Riemannian distance for Laplacians on Riemannian manifolds.

The Γ2 operator is then defined by analogy with the carré du champ Γ as

Γ2(f, g) =
1

2

[
L
(
Γ(f, g)

)
− Γ(f,Lg)− Γ(g,Lf)

]
for all f, g ∈ A. We write Γ(f) for Γ(f, f) and similarly for Γ2. A curvature condition CD(ρ,∞)

for some ρ ∈ R amounts to the condition

Γ2(f) ≥ ρΓ(f), f ∈ A. (6)

The Γ2 operator and the associated curvature condition (6) stem from the Bochner identity for

Laplacians on Riemannian manifolds, in which the CD(ρ,∞) condition expresses equivalently

that the Ricci curvature of the manifold is bounded from below by ρ (in the sense of symmetric

matrices). (The “∞” in the CD(ρ,∞) condition refers to an infinite dimension in the class of

curvature-dimension condition CD(ρ, n) not discussed here – see [1].)

The setting covers weighted Riemannian manifolds, and one prototypical example in this

regard is the Gaussian model E = Rn equipped with the Euclidean gradient Γ(f) = |∇f |2 for

smooth functions f : Rn → R and the standard Gaussian measure dν(x) = e−|x|
2/2 dx

(2π)n/2 . Here,

and throughout the note, | · | denotes the Euclidean norm (and the associated metric). The

underlying (Ornstein-Uhlenbeck) diffusion operator L = ∆− x · ∇ for which ν is the invariant

measure gives rise to

Γ2(f) = |∇2f |2 + |∇f |2 ≥ |∇f |2 = Γ(f)

for smooth f : Rn → R. Thus, the Gaussian model is of curvature CD(1,∞). More generally,

if dµ = e−V dx is a centered probability measure on the Borel sets with smooth potential
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V : Rn → R such that V (x) − ρ |x|
2

2
, x ∈ Rn, is convex for some ρ > 0, the associated Markov

Triple E = Rn, dµ = e−V dx, Γ(f) = |∇f |2, has curvature CD(ρ,∞).

One significant application of the curvature CD(ρ,∞) condition is the logarithmic Sobolev

inequality. Let (E, µ,Γ) be a Markov Triple with µ a probability measure satisfying the curva-

ture condition CD(ρ,∞) for some ρ > 0. Then, µ satisfies the logarithmic Sobolev inequality∫
E

f log f dµ ≤ 1

2ρ

∫
E

Γ(f)

f
dµ (7)

for every positive density f (in A) with respect to µ. In particular, this logarithmic Sobolev

inequality holds with constant ρ = 1 for the standard Gaussian measure ν on Rn.

4 A link

Let (E, µ,Γ) be a Markov Triple with µ a probability measure satisfying the curvature condition

CD(ρ,∞) for some ρ > 0.

From the logarithmic Sobolev inequality (7), a standard consequence known as the Herbst

argument (cf. [1]) expresses that Lipschitz functions on (E, µ,Γ) have Gaussian tails. That is,

if F : E → R is Lipschitz with respect to Γ with Lipschitz coefficient ‖F‖Lip = ‖Γ(f)‖∞, then

F is integrable and for any u ≥ 0,

µ
(∣∣F − ∫

E
Fdµ

∣∣ ≥ u
)
≤ 2 e−ρ u

2/2‖F‖2Lip . (8)

Given then a class F of Lipschitz functions on E, consider the (centered) process (on the

probability space (Ω,Σ,P) = (E,B, µ))

XF = F −
∫
E
Fdµ, F ∈ F .

By (8), for any F,G ∈ F ,

µ
(∣∣XF −XG

∣∣ ≥ u
)
≤ 2 e−ρ u

2/2‖F−G‖2Lip , u ≥ 0.

The process (XF )F∈F is thus sub-Gaussian with respect to the Lipschitz metric

dLip(F,G) = ‖F −G‖Lip

on F , and therefore by the upper-bound (3),

MF = E
(

sup
F∈F

XF

)
≤ K
√
ρ
γ2(F , dLip)

where K > 0 is numerical.

As a consequence, it follows that the lower bound ρ > 0 in the Γ2 curvature criterion

CD(ρ,∞) is actually upper-bounded by the γ2 functional of families of Lipschitz functions.
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Theorem. Let (E, µ,Γ) be a Markov Triple with µ a probability measure. Then,

sup
{√

ρ ; (E, µ,Γ) satisfies CD(ρ,∞)
}
≤ K inf

γ2(F , dLip)

MF

where the infimum runs over all classes F of Lipschitz functions on (E, µ,Γ).

5 An example

As emphasized in the introduction, a first application (which inspired this note) has been

developed by E. Meckes and M. Meckes in the study of bounds on Kantorovich distances for

spectral measures of random matrices [6]. We outline here a further, simpler illustration.

Let E be Rn with its Euclidean structure and dµ = e−V dx be centered probability measure

such that V (x)− ρ |x|
2

2
, x ∈ Rn, is convex for some ρ > 0. The associated Markov Triple is thus

of curvature CD(ρ,∞).

Let T be a subset of Rn and let F be the class of functions Ft(x) = 〈t, x〉, x ∈ Rn, t ∈ T .

Clearly, for s, t ∈ T ,

dLip(Fs, Ft) = ‖Fs − Ft‖Lip = |s− t|.

Therefore, as a consequence of the theorem,∫
Rn

sup
t∈T
〈t, x〉dµ(x) ≤ K

√
ρ
γ2
(
T, | · |

)
.

Now, if ν is the standard Gaussian measure on Rn, it is also true from (4) that∫
Rn

sup
t∈T
〈t, x〉dν(x) ≥ 1

K
γ2
(
T, | · |

)
.

As a consequence (cf. (5)),∫
Rn

sup
t∈T
〈t, x〉dµ(x) ≤ K2

√
ρ

∫
Rn

sup
t∈T
〈t, x〉dν(x). (9)

This result applies in particular to T the unit ball of the dual norm of a norm ‖ · ‖ on Rn

so to yield ∫
Rn

‖x‖dµ(x) ≤ K2

√
ρ

∫
Rn

‖x‖dν(x).

The inequality (9) is of course not new, and may be easily deduced, for example, from

Caffarelli’s contraction principle from optimal transport theory (cf. [9]). Namely, there is a

Lipschitz map T : Rn → Rn with ‖T ‖Lip ≤
1√
ρ

pushing forward the Gaussian measure ν onto

µ. Then, following [7], whenever x, y ∈ Rn and xθ = x sin θ + y cos θ,

T (x)− T (y) =

∫ π/2

0

d

dθ
T (xθ)dθ =

∫ π/2

0

T ′(xθ) · x′θ dθ.
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Therefore (with T finite to start with),∫
Rn

∫
Rn

sup
t∈T
〈t, T (x)− T (y)〉dν(x)dν(y) ≤

∫ π/2

0

∫
Rn

∫
Rn

sup
t∈T

〈
t, T ′(xθ) · x′θ

〉
dν(x)dν(y)dθ.

Since the couple (xθ, x
′
θ) has the same distribution as (x, y) under dν(x)dν(y), it follows that∫

Rn

∫
Rn

sup
t∈T
〈t, T (x)− T (y)〉dν(x)dν(y) ≤ π

2

∫
Rn

∫
Rn

sup
t∈T

〈
t, T ′(x) · y

〉
dν(x)dν(y).

Now, for (almost) each x fixed, for every t ∈ Rn,∫
Rn

〈
t, T ′(x) · y

〉2
dν(y) ≤ 1

ρ

∫
Rn

〈t, y〉2dν(y)

by the contraction property. Standard Gaussian comparison properties (cf. [3]) then ensure

that ∫
Rn

sup
t∈T
〈t, T ′(x) · y〉dν(y) ≤ 1

√
ρ

∫
Rn

sup
t∈T
〈t, y〉dν(y).

Finally, since µ is the push-forward of ν and is centered,∫
Rn

sup
t∈T
〈t, T (x)− T (y)〉dν(x)dν(y) =

∫
Rn

∫
Rn

sup
t∈T
〈t, x− y〉dµ(x)dµ(y)

≥
∫
Rn

∫
Rn

sup
t∈T
〈t, x〉dµ(x).

The preceding argument may be applied similarly to spectral norms of matrices. For exam-

ple, the (normalized) Haar measure on the special orthogonal group SO(N) has a lower bound

on the Ricci curvature of order N and thus satisfy a logarithmic Sobolev inequality. Simi-

larly, as discussed in [6], the Haar measure µ on O(N) satisfies by conditioning a logarithmic

Sobolev inequality with constant of order 1
N

(when equipped with the Hilbert-Schmidt metric).

Let therefore F be the class of functions on O(N) given by

Ft(X) = 〈Xt, t〉, t ∈ T,

where T ⊂ Rn, for which, for the Hilbert-Schmidt norm on O(N),

dLip(Fs, Ft) = ‖Fs − Ft‖Lip =

( N∑
i,j=1

|sisj − titj|2
)1/2

, s, t ∈ T.

The theorem then shows that for the standard Gaussian measure ν on Rn2∫
ON

sup
t∈T
〈Xt, t〉dµ(X) ≤ L√

N

∫
Rn2

sup
t∈T
〈xt, t〉dν(x)

for some numerical constant L > 0.

Similar developments take place for (symmetric) random matrices with log-concave densities

leading to spectral comparison properties.
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