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Abstract

We establish various small deviation inequalities for the extremal (soft edge) eigenvalues in the
β-Hermite and β-Laguerre ensembles. In both settings, upper bounds on the variance of the
largest eigenvalue of the anticipated order follow immediately.
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1 Introduction

In the context of their original discovery, the Tracy-Widom laws describe the fluctuations of
the limiting largest eigenvalues in the Gaussian Orthogonal, Unitary, and Symplectic Ensembles
(G{O/U/S}E) [23; 24]. These are random matrices of real, complex, or quaternion Gaussian en-
tries, of mean zero and mean-square one, independent save for the condition that the matrix is sym-
metric (GOE), Hermitian (GUE), or appropriately self-dual (GSE). The corresponding Tracy-Widom
distribution functions have shape

FTW (t)∼ e
1

24
β t3

as t →−∞, 1− FTW (t)∼ e−
2
3
β t3/2

as t →∞, (1.1)

where β = 1 in the case of GOE, β = 2 for GUE, and β = 4 for GSE.

Since that time, it has become understood that the three Tracy-Widom laws arise in a wide range
of models. First, the assumption of Gaussian entries may be relaxed significantly, see [21], [22]
for instance. Outside of random matrices, these laws also describe the fluctuations in the longest
increasing subsequence of a random permutation [2], the path weight in last passage percolation
[11], and the current in simple exclusion [11; 25], among others.

It is natural to inquire as to the rate of concentration of these various objects about the limiting
Tracy-Widom laws. Back in the random matrix setting, the limit theorem reads: with λmax the
largest eigenvalue in the n× n GOE, GUE or GSE, it is the normalized quantity n1/6(λmax − 2

p
n)

which converges to Tracy-Widom. Thus, one would optimally hope for estimates of the form:

P
�

λmax− 2
p

n≤−ε
p

n
�

≤ Ce−n2ε3/C , P
�

λmax− 2
p

n≥ ε
p

n
�

≤ Ce−nε3/2/C ,

for all n ≥ 1, all ε ∈ (0, 1] say, and C a numerical constant. Such are “small deviation" inequalities,
capturing exactly the finite n scaling and limit distribution shape (compare (1.1)). Taking ε beyond
O(1) in the above yields more typical large deviation behavior and different (Gaussian) tails (see
below).

As discussed in [14; 15], the right-tail inequality for the GUE (as well as for the Laguerre Unitary
Ensemble, again see below) may be shown to follow from results of Johansson [11] for a more gen-
eral invariant model related to the geometric distribution that uses large deviation asymptotics and
sub-additivity arguments. The left-tail inequality for the geometric model of Johansson (and thus
by some suitable limiting procedure for the GUE and the Laguerre Unitary Ensemble) is established
in [3] together with convergence of moments using delicate Riemann-Hilbert methods. We refer to
[15] for a discussion and the relevant references, as well as for similar inequalities in the context
of last passage percolation etc. By the superposition-decimation procedure of [10], the GUE bounds
apply similarly to the GOE (see also [16]).

Our purpose here is to present unified proofs of these bounds which apply to all of the so-called beta
ensembles. These are point-processes on R defined by the n-level joint density: for any β > 0,

P(λ1,λ2, . . . ,λn) =
1

Zn,β

∏

j<k

|λ j −λk|β e−(β/4)
∑n

k=1 λ
2
k . (1.2)

At β = 1,2, 4 this joint density is shared by the eigenvalues of G{O/U/S}E. Furthermore, these
three values give rise to exactly solvable models. Specifically, all finite dimensional correlation
functions may be described explicitly in terms of Hermite polynomials. For this reason, the measure
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(1.2) has come to be referred to the β-Hermite ensemble; we will denote it by Hβ . Importantly,
off of β = 1, 2,4, despite considerable efforts (see [9], Chapter 13 for a comprehensive review),
there appears to be no characterization of the correlation functions amenable to asymptotics. Still,
Ramírez-Rider-Virág [19] have shown the existence of a general β Tracy-Widom law, TWβ , via the
corresponding limit theorem: with self-evident notation,

n1/6�λmax(Hβ)− 2
p

n
�

⇒ TWβ . (1.3)

This result makes essential use of a (tridiagonal) matrix model valid at all beta due to Dumitriu-
Edelman [5], and proves the conjecture of Edelman-Sutton [6]. As to finite n bounds, we have:

Theorem 1. For all n≥ 1, 0< ε ≤ 1 and β ≥ 1:

P
�

λmax(Hβ)≥ 2
p

n(1+ ε)
�

≤ Ce−βnε3/2/C ,

and
P
�

λmax(Hβ)≤ 2
p

n(1− ε)
�

≤ Cβ e−βn2ε3/C ,

where C is a numerical constant.

The restriction to β ≥ 1 is somewhat artificial, though note that bounds of this type cannot remain
meaningful all the way down to β = 0. Our methods do extend, with some caveats, to β < 1.

Theorem 1′. When 0 < β < 1 upper bounds akin to those in Theorem 1 hold as soon as n ≥ 2β−1,
with the right hand sides reading (1− e−β/C)−1e−βnε3/2/C for the right tail and Ce−βn2ε3/C for the left
tail. A right tail upper bound is available without the restriction on n, but with the right hand side
replaced by (1− e−β

2/C)−1e−β
3/2nε3/2/C .

Our remaining results will have like extensions to β < 1. We prefer though to restrict the statements
to β ≥ 1, which covers the cases of classical interest and allows for cleaner, more unified proofs.

At this point we should also mention that for ε beyond O(1), the large-deviation right-tail inequality
takes the form

P
�

λmax(Hβ)≥ 2
p

n(1+ ε)
�

≤ Ce−βnε2/C . (1.4)

For β = 1 and 2 this follows from standard net arguments on the corresponding Gaussian matrices
(see e.g. [15]). For other values of β (this again for β ≥ 1), crude bounds on the tridiagonal models
discussed below immediately yield the claim.

Continuing, those well versed in random matrix theory will know that this style of small deviation
questions are better motivated in the context of “null" Wishart matrices, given their application in
multivariate statistics. Also known as the Laguerre Orthogonal or Unitary Ensembles (L{O/U}E),
these are ensembles of type X X ∗ in which X is an n× κ matrix comprised of i.i.d. real or complex
Gaussians.

By the obvious duality, we may assume here that κ ≥ n. When n → ∞ with the κ/n converging
to a finite constant (necessarily larger than one), the appropriately centered and scaled largest
eigenvalue was shown to converge to the natural Tracy-Widom distribution; first by Johansson [11]
in the complex (β = 2) case, then by Johnstone [12] in the real (β = 1) case. Later, El Karoui [7]
proved the same conclusion allowing κ/n→∞.
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For β = 2 and κ a fixed multiple of n, a small deviation upper bound at the right-tail (as well as the
corresponding statement for the minimal eigenvalue in the “soft-edge" scaling) was known earlier
(see [14; 15]), extended recently to non-Gaussian matrices in [8].

Once again there is a general beta version. Consider a density of the form (1.2) in which the
Gaussian weight w(λ) = e−βλ

2/4 on R is replaced by w(λ) = λ(β/2)(κ−n+1)+1 e−βλ/2, now restricted
to R+. Here κ can be any real number strictly larger than n−1. It is when κ is an integer and β = 1
or 2 that one recovers the eigenvalue law for the real or complex Wishart matrices just described. For
general κ and β > 0 the resulting law on positive points λ1, . . . ,λn is referred to as the β-Laguerre
ensemble, here Lβ for short.

Using a tridiagonal model for Lβ introduced in [5], it is proved in [19]: for κ+ 1 > n → ∞ with
κ/n→ c ≥ 1,

(
p
κn)1/3

(
p
κ+
p

n)4/3

�

λmax(Lβ)− (
p
κ+
p

n)2
�

⇒ TWβ . (1.5)

This covers all previous results for real/complex null Wishart matrices. Comparing (1.3) and (1.5)
one sees that O(n2/3ε) deviations in the Hermite case should correspond to deviations of order
(κn)1/6(

p
κ+
p

n)2/3ε = O(κ1/2n1/6ε) in the Laguerre case. That is, one might expect bounds exactly
of the form found in Theorem 1 with appearances of n in each exponent replaced by κ3/4n1/4. What
we have is the following.

Theorem 2. For all κ+ 1> n≥ 1, 0< ε ≤ 1 and β ≥ 1:

P
�

λmax(Lβ)≥ (
p
κ+
p

n)2(1+ ε)
�

≤ Ce−β
p

nκε3/2( 1p
ε
∧
�

κ
n

�1/4
)/C ,

and
P
�

λmax(Lβ)≤ (
p
κ+
p

n)2(1− ε)
�

≤ Cβ e−βnκε3( 1
ε
∧
�

κ
n

�1/2
)/C .

Again, C is some numerical constant.

The right-tail inequality is extended to non-Gaussian matrices in [8]. The rather cumbersome expo-
nents in Theorem 2 do produce the anticipated decay, though only for ε ≤

p

n/κ. For ε ≥
p

n/κ, the
right and left-tails become linear and quadratic in ε respectively. This is to say that the large devia-
tion regime begins at the order O(

p

n/κ) rather than O(1) as in the β-Hermite case. To understand
this, we recall that, normalized by 1/κ, the counting measure of the Lβ points is asymptotically sup-

ported on the interval with endpoints (1±
p

n/κ)2. This statement is precise with convergent n/κ,

and the limiting measure that of Marčenko-Pastur. Either way,
p

n/κ is identified as the spectral
width, in contrast with the semi-circle law appearing in the β-Hermite case which is of width one
(after similar normalization). Of course, in the more usual set-up when c1n≤ κ≤ c2n (c1 ≥ 1 neces-
sarily) all this is moot: the exponents above may then be replaced with −βnε3/2/C and −βn2ε3/C
for ε in an O(1) range with no loss of accuracy. And again, the large deviation tails were known in
this setting for β = 1,2.

An immediate consequence of the preceding is a finite n (and/or κ) bound on the variance of λmax
in line with the known limit theorems. This simple fact had only previously been available for GUE
and LUE (see the discussion in [15]).
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Corollary 3. Take β ≥ 1. Then,

Var
h

λmax(Hβ)
i

≤ Cβ n−1/3, Var
h

λmax(Lβ)
i

≤ Cβ κn−1/3 (1.6)

with now constant(s) Cβ dependent upon β . (By Theorem 1′, the Hermite bound holds for β < 1 as
well.)

The same computation behind Corollary 3 implies that

lim sup
n→∞

np/6E
�

�λmax(Hβ)− 2
p

n
�

�

p
<∞

for any p, and similarly for λmax(Lβ). Hence, we also conclude that all moments of the (scaled)
maximal Hβ and Lβ eigenvalues converge to those for the TWβ laws (see [3] for β = 2).

Finally, there is the matter of whether any of the above upper bounds are tight. We answer this in
the affirmative in the Hermite setting.

Theorem 4. There is a numerical constant C so that

P
�

λmax(Hβ)≥ 2
p

n(1+ ε)
�

≥ C−β e−Cβnε3/2
,

and
P
�

λmax(Hβ)≤ 2
p

n(1− ε)
�

≥ C−β e−Cβn2ε3
.

The first inequality holds for all n > 1,0 < ε ≤ 1, and β ≥ 1. For the second inequality, the range of ε
must be kept sufficiently small, 0< ε ≤ 1/C say.

Our proof of the right-tail lower bound takes advantage of a certain independence in the β-Hermite
tridiagonals not immediately shared by the Laguerre models, but the basic strategy also works in the
Laguerre case. Contrariwise, our proof of the left-tail lower bound uses a fundamentally Gaussian
argument that is not available in the Laguerre setting.

The next section introduces the tridiagonal matrix models and gives an indication of our approach.
The upper bounds (Theorems 1, 1′, 2 and Corollary 3) are proved in Section 3; the Hβ lower bounds
in Section 4. Section 5 considers the analog of the right-tail upper bound for the minimal eigenvalue
in the β-Laguerre ensemble, this case holding the potential for some novelty granted the existence
of a different class of limit theorems (hard edge) depending on the limiting ratio n/κ. While our
method does produce a bound, the conditions on the various parameters are far from optimal. For
this reason we relegate the statement, along with the proof and further discussion, to a separate
section.

2 Tridiagonals

The results of [19] identify the general β > 0 Tracy-Widom law through a random variational
principle:

TWβ = sup
f ∈L







2
p

β

∫ ∞

0

f 2(x)d b(x)−
∫ ∞

0

�

( f ′(x))2+ x f 2(x)
�

d x







, (2.1)
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in which x 7→ b(x) is a standard Brownian motion and L is the space of functions f which vanish at
the origin and satisfy

∫∞
0

f 2(x)d x = 1,
∫∞

0
[( f ′(x))2+ x f 2(x)]d x <∞. The equality here is in law,

or you may view (2.1) as the definition of TWβ .

This variational point of view also guides the proof of the convergence of the centered and scaled
λmax (of Hβ or Lβ) to TWβ . In particular, given the random tridiagonals which we are about to
introduce, one always has a characterization of λmax through Raleigh-Ritz. In [19], the point is
to show this “discrete" variational problem goes over to the continuum problem (2.1) in a suitable
sense. Furthermore, an analysis of the continuum problem has been shown to give sharp estimates
on the tails of the β Tracy-Widom law (again see [19]). Our idea here is therefore retool those
arguments for the finite n, or discrete, setting.

We start with the Hermite case. Let g1, g2, . . . gn be independent Gaussians with mean 0 and variance
2. Let also χβ , χ2β , . . . , χ(n−1)β be independent χ random variables of the indicated parameter.
Then, re-using notation, [5] proves that the n eigenvalues of the random tridiagonal matrix

Hβ =
1
p

β

















g1 χβ(n−1)
χβ(n−1) g2 χβ(n−2)

. . . . . . . . .
χβ2 gn−1 χβ

χβ gn

















have joint law (1.2).1 Centering appropriately, we define: for v = (v1, . . . , vn) ∈ Rn,

H(v) = vT [Hβ − 2
p

nIn]v (2.2)

=
1
p

β

n
∑

k=1

gkv2
k +

2
p

β

n−1
∑

k=1

χβ(n−k)vkvk+1− 2
p

n
n
∑

k=1

v2
k .

The problem at hand (Theorem 1) then becomes that of estimating

P
�

sup
||v||2=1

H(v)≥
p

nε
�

and P
�

sup
||v||2=1

H(v)≤−
p

nε
�

, (2.3)

where we have introduced the usual Euclidean norm ||v||22 =
∑n

k=1 v2
k . To make the connection

between H(v) and the continuum form (2.1) even more plain we have the following.

Lemma 5. For any c > 0 define

Hc(v) =
1
p

β

n
∑

k=1

gkv2
k +

2
p

β

n−1
∑

k=1

�

χβ(n−k)−E(χβ(n−k))
�

vkvk+1 (2.4)

−c
p

n
n
∑

k=0

(vk+1− vk)
2−

c
p

n

n
∑

k=1

k v2
k

in which it is understood that v0 = vn+1 = 0. There exist numerical constants, a > b > 0, so that

Ha(v)≤ H(v)≤ Hb(v) for all v ∈ Rn, (2.5)

granted β ≥ 1.
1For β = 1 or 2 this can be seen by applying Householder transformation to the “full" GOE or GUE matrices, and

appears to have been used first in a random matrix theory context by Trotter [26].
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We defer the proof until the end of the section, after a description of the allied Lβ set-up. The point
of Lemma 5 should be clear: for an upper bound on the first probability in (2.3) one may replace H
by Hb with any sufficiently small b > 0, and so on. Lemma 5 also marks our first run-in with issues
surrounding β ≥ 1 versus β < 1. An available extension to β < 1 reads:

Lemma 5′. If 0 < β < 1, estimates of type (2.5) with numerical a and b hold whenever n ≥ 2β−1.
This condition on n may be removed in the upper bound at the cost of choosing b = const.β1/2.

The model for Lβ is as follows. For κ > n− 1, introduce the random bidiagonal matrix

Bβ =
1
p

β

















χβκ
eχβ(n−1) χβ(κ−1)

. . . . . .
eχβ2 χβ(κ−n+2)

eχβ χβ(κ−n+1)

















,

with the same definition for the χ ’s and again all variables independent. (The use of eχ is meant to
emphasize this independence between the diagonals.) Now [5] shows that it is the eigenvalues of
Lβ = (Bβ)(Bβ)T which have the required joint density.2 Note that Lβ does not have independent
entries.

Similar to before, we define

p
κL(v) = vT�Lβ − (

p
κ+
p

n)2 In
�

v

=
1

β

n
∑

k=1

χ2
β(κ−k+1)v

2
k +

1

β

n
∑

k=2

eχ2
β(n−k+1)v

2
k

+
2

β

n−1
∑

k=1

χβ(κ−k+1) eχβ(n−k)vkvk+1− (
p
κ+
p

n)2
n
∑

k=1

v2
k .

The added normalization by
p
κ makes for better comparison with the Hermite case. With this, and

since κ > n− 1, to prove Theorem 2 is to establish bounds on the following analogs of (2.3):

P
�

sup
||v||2=1

L(v)≥
p

nε
�

and P
�

sup
||v||2=1

L(v)≤−
p

nε
�

(2.6)

Finally, we state the Laguerre version of Lemma 5. (We prove only the latter as they are much the
same).

Lemma 6. For c > 0 set

Lc(v) =
1
p

β

n
∑

k=1

Zkv2
k +

1
p

β

n
∑

k=2

eZkv2
k +

2
p

β

n−1
∑

k=1

Ykvkvk+1

−c
p

n
n
∑

k=0

(vk+1− vk)
2−

c
p

n

n
∑

k=1

kv2
k ,

2Once again, at β = 1,2 this connection had been noted previously (via Householder), see [20] for example.
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where

Zk =
1

p

βκ

�

χ2
β(κ−k+1)− β(κ− k+ 1)

�

, eZk =
1

p

βκ

�

eχ2
β(n−k+1)− β(n− k+ 1)

�

,

and Yk =
1

p

βκ

�

χβ(κ−k+1) eχβ(n−k)−E[χβ(κ−k+1) eχβ(n−k)]
�

. (2.7)

Then, for all β ≥ 1 there are constants a > b > 0 so that La(v)≤ L(v)≤ Lb(v) for all v ∈ Rn.

Proof of Lemma 5. Writing,

H(v) =
1
p

β

n
∑

k=1

gkv2
k +

2
p

β

n−1
∑

k=1

�

χβ(n−k)−E[χβ(n−k)]
�

vkvk+1

−
n−1
∑

k=1

E[
χβ(n−k)
p

β
](vk+1− vk)

2

−
n−1
∑

k=1

�p
n−E[

χβ(n−k)
p

β
]
�

(v2
k + v2

k+1)−
p

n (v2
1 + v2

n)

shows it is enough to compare, for every v,

I(v) =
p

n
n−1
∑

k=1

(vk+1− vk)
2+

1
p

n

n
∑

k=1

kv2
k

and

J(v) =
n−1
∑

k=1

E[
χβ(n−k)
p

β
](vk+1− vk)

2+
n−1
∑

k=1

�p
n−E[

χβ(n−k)
p

β
]
�

(v2
k + v2

k+1).

(We implicitly assume here that n > 1; for n = 1 there is nothing to do.) For this, there is the
formula Eχr = 21/2 Γ(r/2+1/2)

Γ(r/2) . By Jensen’s inequality we have the upper bound Eχr ≤
p

r for any
r > 0, while

Eχr ≥
p

r − 1/2, for r ≥ 1, (2.8)

see (2.8) of [17].

These bounds easily translate to

k

2
p

n
≤
p

n−
1
p

β
Eχβ(n−k) ≤

2k
p

n
, (2.9)

for all k ≤ n− 1 and β ≥ 1. It is immediate from the second inequality that J(v) ≤ 4I(v) for every
v. Next, if k ≤ n/2, E[χβ(n−k)/

p

β] ≥
p

n/4 while if k ≥ n/2,
p

n−E[χβ(n−k)/
p

β] ≥
p

n/4. By
splitting J(v) accordingly one can also see that J(v)≥ I(v)/16.

Proof of Lemma 5′. The issue is the lower bound (2.8). For r < 1 this may be replaced by

Eχr ≥
r

p
1+ r

, (2.10)

1326



valid for all r > 0 (this is due to Wendel, see now (2.2) of [17]).

In bounding J(v) above, it is the second inequality of (2.9) that is affected for β(n− k)< 1. We still
wish it to hold, with perhaps the 2 replaced by some other constant C . That is, making use of (2.10)
we want a constant C so that

p
n≤ C

p
n+ β(n− k)





1
p

2β
−

C
p

nβ



 ,

and we can take C = 1 if n> 2β−1.

For the lower bound on J(v), note that E[χβ(n−k)/
p

β] ≥
p

n/4 for k ≤ n/2 still holds (i.e. we
can still use (2.8)) when n > 2β−1 and so everything is as before. On the other hand, (2.10)
provides E[χβ(n−k)/

p

β] ≥ (
p

β/2)
p

n on that same range, and so we always have J(v) ≥ bI(v)

with b ∼
p

β .

3 Upper Bounds

Theorems 1 and 2 are proved, first for the β-Hermite case with all details present (and comments
on Theorem 1′ made along the way); a second subsection explains the modifications required for
the β-Laguerre case. The proof of Corollary 3 appears at the end.

3.1 Hermite ensembles

Right-tail. This is the more elaborate of the two. The following is a streamlined version of what is
needed.

Proposition 7. Consider the model quadratic form,

Hb(v, z) =
1
p

β

n
∑

k=1

zkv2
k − b

p
n

n
∑

k=0

(vk+1− vk)
2−

b
p

n

n
∑

k=0

kv2
k , (3.1)

for fixed b > 0 and independent mean-zero random variables {zk}k=1,...,n satisfying the uniform tail
bound E[eλzk]≤ ecλ2

for all λ ∈ R and some c > 0. There is a C = C(b, c) so that

P
�

sup
||v||2=1

Hb(v, z)≥ ε
p

n
�

≤ (1− e−β/C)−1e−βnε3/2/C

for all ε ∈ (0, 1] and n≥ 1.

The proof of the above hinges on the following version of integration by parts (as in fact does the
basic convergence result in [19]).

Lemma 8. Let s1, s2, . . . , sk, . . . be real numbers, and set Sk =
∑k
`=1 s`, S0 = 0. Let further t1, . . . , tn be

real numbers, t0 = tn+1 = 0. Then, for every integer m≥ 1,

n
∑

k=1

sk tk =
1

m

n
∑

k=1

[Sk+m−1− Sk−1]tk +
n
∑

k=0

�

1

m

k+m−1
∑

`=k

[S`− Sk]
�

(tk+1− tk).
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Proof. For any Tk, k = 0,1, . . . , n, write

n
∑

k=1

sk tk =
n
∑

k=1

Sk(tk − tk+1)

=
n
∑

k=0

[Tk − Sk](tk+1− tk)−
n
∑

k=0

Tk(tk+1− tk)

=
n
∑

k=0

[Tk − Sk](tk+1− tk) +
n
∑

k=1

[Tk − Tk−1]tk.

Conclude by choosing Tk =
1
m

∑k+m−1
`=k S`, k = 0, 1, . . . , n.

Proof of Proposition 7. Applying Lemma 8 with sk = zk and tk = v2
k (bearing in mind that v0 =

vn+1 = 0, and we are free to set sk = 0 for k ≥ n+ 1) yields

n
∑

k=1

zkv2
k ≤

1

m

n
∑

k=1

|Sk+m−1− Sk−1|v2
k +

n
∑

k=0

� 1

m

k+m−1
∑

`=k

|S`− Sk|
�

|v2
k+1− v2

k |

≤
1

m

n
∑

k=1

∆m(k− 1)v2
k +

n
∑

k=0

∆m(k)|vk+1+ vk||vk+1− vk|

where
∆m(k) = max

k+1≤`≤k+m
|S`− Sk|, for k = 0, . . . , n. (3.2)

Next, by the Cauchy-Schwarz inequality, for every λ > 0,

1
p

β

n
∑

k=1

zkv2
k ≤

1

m
p

β

n
∑

k=1

∆m(k− 1)v2
k +λ

n
∑

k=0

(vk+1− vk)
2+

1

4λβ

n
∑

k=0

∆m(k)
2(vk+1+ vk)

2.

Choosing λ= b
p

n we obtain

sup
||v||2=1

Hb(z, v)≤ max
1≤k≤n

� 1

m
p

β
∆m(k− 1) +

1

2b
p

nβ

�

∆m(k− 1)2+∆m(k)
2�− b

k
p

n

�

. (3.3)

And since whenever ( j− 1)m+ 1≤ k ≤ jm, 1≤ j ≤ [n/m] + 1, it holds

∆m(k)∨∆m(k− 1)≤ 2∆2m
�

( j− 1)m
�

,

we may recast (3.3) as in

sup
||v||2=1

Hb(z, v)

≤ max
1≤ j≤[n/m]+1

�

2

m
p

β
∆2m

�

( j− 1)m
�

+
4

b
p

nβ
∆2m

�

( j− 1)m
�2− b

( j− 1)m+ 1
p

n

�

.

Continuing requires a tail bound on ∆2m(J) for integer J ≥ 0. By Doob’s maximal inequality and
our assumptions on zk, for every λ > 0 and t > 0,

P
�

max
1≤`≤2m

S` ≥ t
�

≤ e−λt E
�

eλS2m
�

≤ e−λt+2cmλ2
.
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Optimizing in λ, and then applying the same reasoning to the sequence −S` produces

P
�

max
1≤`≤2m

|S`| ≥ t
�

≤ 2 e−t2/8cm.

Hence,
P
�

∆2m(J)≥ t
�

≤ 2 e−t2/8cm, (3.4)

for all integers m≥ 1 and J ≥ 0, and every t > 0.

From (3.4) it follows that

P
�

max
1≤ j≤[n/m]+1

� 2

m
p

β
∆2m

�

( j− 1)m
�

−
[b( j− 1)m+ 1]

2
p

n

�

≥
ε
p

n

2

�

(3.5)

≤
[n/m]+1
∑

j=1

P
� 2

m
p

β
∆2m

�

( j− 1)m
�

≥
b[( j− 1)m+ 1]

2
p

n
+
ε
p

n

2

�

≤ 2
[n/m]+1
∑

j=1

exp
�

−
βm

128c

h b[( j− 1)m+ 1]
p

n
+ ε
p

n
i2
�

,

and similarly

P
�

max
1≤ j≤[n/m]+1

� 4

b
p

nβ
∆2m

�

( j− 1)m
�2−

b[( j− 1)m+ 1]
2
p

n

�

≥
ε
p

n

2

�

(3.6)

≤ 2
[n/m]+1
∑

j=1

exp
�

−
β b
p

n

64cm

h b[( j− 1)m+ 1]
p

n
+ ε
p

n
i

�

.

Combined, this reads

P
�

sup
||v||2=1

Hb(z, v)≥ ε
p

n
�

(3.7)

≤
� 2

1− e−βεbm2/64c

�

e−βmnε2/128c +
� 2

1− e−β b2/64c

�

e−β bεn/64cm,

which we have recorded in full for later use. In any case, the choice m = [ε−1/2] will now produce
the claim.

We may now dispense of the proof of Theorem 1 (Right-Tail). Before turning to the proof, we
remark that if ε > 1, one may run through the above argument and simply choose m= 1 at the end
to produce the classical form of the large deviation inequality (1.4) known previously for β = 1, 2.

We turn to the values 0< ε ≤ 1. The form (2.4) is split into two pieces,

Hb(v) = Hb/2(v, g) + H̃b/2(v,χ),

Proposition 7 applying to each.

The first term on the right is precisely of the form (3.1) with each zk an independent mean-zero
Gaussian of variance 2, which obviously satisfies the tail assumption with c = 1. The second
term, H̃b/2(v,χ), is a bit different, having noise present through the quantity

∑n−1
k=1(χβ(n−k) −

Eχβ(n−k))vkvk+1. But carrying out the integration by parts on tk = vkvk+1 (and sk = χβ(n−k) −
Eχβ(n−k)), will produce a bound identical to (3.4), with an additional factor of 2 before each ap-
pearance of ∆2m. Thus, we will be finished granted the following bound.
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Lemma 9. For χ a χ random variable,

E[eλχ]≤ eλEχ+λ2/2, for all λ ∈ R. (3.8)

Proof. When the parameter r is greater than one, this is a consequence of the Log-Sobolev estimate
for general gamma random variables. The density function f (x) = cr x r−1e−x2/2 on R+ satisfies
(log f (x))′′ ≤ −1 (if r ≥ 1) and so the standard convexity criterion (see e.g. [13]) applies to yield
a Log-Sobolev inequality (with the same constant as in the Gaussian case). Then the well known
Herbst argument gives the bound (3.8).

For r < 1 set φ(λ) = E[eλχ] and first consider λ ≥ 0. Differentiating twice, then integrating by
parts we have that

φ′′(λ) = λφ′(λ) + rφ(λ),

subject to φ(0) = 1, φ′(0) = Eχ := e, for short. Note of course that φ′′(0) = r = Eχ2, and now
integrating twice we also find that: with ψ(λ) = e−λ

2/2φ(λ) and θ = r
1+r

< 1,

ψ(λ) = 1+ eλ+

∫ λ

0

(rλ− (1+ r)t)ψ(t) d t

≤ 1+ eλ+ rθ

∫ λ

0

(λ− t)ψ(θ t) d t.

Next, by the inequality rp
1+r
≤ e already used above (proof of Lemma 5′) we can continue the above

as in ψ(λ)≤ 1+ eλ+ e2
∫ λ

0
(λ− t)ψ(θ t)d t. Iterating, we get a next term which reads

e2

∫ t

0

(t − s)(1+ eθ s)ds ≤ e2

∫ t

0

(t − s)(1+ es)ds = e2(t2/2) + e3(t3/6),

and this easily propagates to complete the proof (which actually works for all r).

To prove (3.8) for λ < 0 set φ(λ) = E[e−λχ] (viewing λ as nonnegative), and the basic differential
equation becomes φ′′(λ) = −λφ′(λ) + rφ(λ). With p(λ) = φ′(λ)/φ(λ) this transforms to p′(λ) =
−p2(λ)−λp(λ) + r. Just using p′(λ)≤−λp(λ) + r we find that

p(λ)≤ p(0) + re−λ
2/2

∫ λ

0

et2/2d t ≤−e+ rλ, or φ(λ)≤ e−eλ+rλ2/2,

which is what we want (when of course r ≤ 1).

Remark. For Theorem 1′ simply examine (3.7) to note the new form of the constants, with b
dependent on β for the second part of the statement.
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Left-Tail. This demonstrates yet another advantage of the variational picture afforded by the tridi-
agonal models. Namely, the bound may be achieved by a suitable choice of test vector since

P
�

sup
||v||2=1

Ha(v)≤−2C
p

nε
�

≤ P
�

Ha(v)≤−2C
p

nε ||v||22
�

for whatever {vk}k=1,...,n on the right hand side. This same idea was used in the large deviation
estimates for TWβ in [19]. (Here have thrown in the additional constant 2C for reasons that will
be clear in a moment.) Simplifying, we write

P
�

Ha(v)≤−2C
p

nε ||v||22
�

(3.9)

≤ P
�

Ha(v, g)≤−C
p

nε ||v||22
�

+P
�

χ(v)≤−C
p

nε ||v||22
�

,

where in Ha(v, g) we borrow the notation of Proposition 7 and

χ(v) =
2
p

β

n−1
∑

k=1

�

χβ(n−k)−Eχβ(n−k)
�

vkvk+1.

Focus on the first term on the right of (3.9), and note that

P
�

Ha(v, g)≤−C
p

nε ||v||22
�

(3.10)

= P
�

� 2

β

n
∑

k=1

v4
k

�1/2
g≥ C

p
nε

n
∑

k=1

v2
k − a

p
n

n
∑

k=0

(vk+1− vk)
2−

a
p

n

n
∑

k=1

kv2
k

�

with g a single standard Gaussian. Our choice of v is motivated as follows. The event in question
asks for a large eigenvalue (think of

p
nε as large for a moment) of an operator which mimics

negative Laplacian plus potential. The easiest way to accomplish this would be for the potential to
remain large on a relatively long interval, with a flat eigenvector taking advantage. We choose

vk =
k

nε
∧
�

1−
k

nε

�

for k ≤ nε and zero otherwise, (3.11)

for which
n
∑

k=1

v2
k ∼

n
∑

k=1

v4
k ∼ nε,

n
∑

k=0

(vk+1− vk)
2 ∼

1

nε
, and

n
∑

k=1

kv2
k ∼ n2ε2. (3.12)

(Here a ∼ b indicates that the ratio a/b is bounded above and below by numerical constants.)
Substitution into (3.10) produces, for choice of C = C(a) large enough inside the probability on the
left,

P
�

Ha(v, g)≤−C
p

nε ||v||22
�

≤ e−βn2ε3/C for nε3/2 ≥ 1.

The restriction of the range of ε stems from the gradient-squared term; it also ensures that εn ≥ 1
which is required for our test vector to be sensible in the first place.

Next, as a consequence of Proposition 9 (see (3.8)) we have the bound: for c > 0,

P
�

χ(v)≤−c2 ||v||22
�

≤ exp
�

− β c
� n
∑

k=1

v2
k

�2�

8
n−1
∑

k=1

v2
k v2

k+1

�

. (3.13)
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With c = C
p

nε and v as in (3.11), this may be further bounded by e−βn2ε3/C . Here too we should
assume that nε3/2 ≥ 1.

Introducing a multiplicative constant of the advertised form Cβ extends the above bounds to the full
range of ε in the most obvious way. Replacing ε with ε/2C throughout completes the proof.

Remark. With the exception of the restriction on n, nothing changes for the related conclusion in
Theorem 1′.

3.2 Laguerre ensembles

Right-Tail. We wish to apply the same ideas from the Hermite case to the Laguerre form Lb(v) (for
small b). Recall:

Lb(v) =
1
p

β

n
∑

k=1

Zkv2
k +

1
p

β

n
∑

k=2

Z̃kv2
k +

2
p

β

n−1
∑

k=1

Ykvk+1vk (3.14)

−b
p

n
n
∑

k=0

(vk+1− vk)
2− b

1
p

n

n
∑

k=1

kv2
k .

Here, Zk, eZk and Yk are as defined in (2.7), and the appropriate versions of the tail conditions for
these variables (in order to apply Proposition 7) are contained in the next two lemmas.

Lemma 10. For χ be a χ random variable of positive parameter,

E[eλχ
2
]≤ eE[χ2](λ+2λ2) for all real λ < 1/4.

Proof. With r = E[χ2]> 0 and λ < 1
2
,

E[eλχ
2
] =
� 1

1− 2λ

�r/2
.

Now, since x ≥ −1
2

implies log(1+ x) ≥ x − x2, for any λ ≤ 1
4

the right hand side of the above is

less er(λ+2λ2) as claimed.

Lemma 11. Let χ and eχ be independent χ random variables. Then, for every λ ∈ R such that |λ|< 1,

E
h

eλ(χ eχ−E[χ eχ])
i

≤
1

p

1−λ2
exp
� λ2

2(1−λ2)
�

E[χ]2+E[eχ]2+ 2λE[χ]E[eχ]
�

�

.

Proof. For |λ|< 1, using inequality (3.8) in the eχ variable,

E[eλχ eχ]≤ E
�

eλE[eχ]χ+λ2χ2/2�=

∫ ∞

−∞
E
�

eλ[E(eχ)+s]χ�dγ(s)

where γ is the standard normal distribution on R. Now, for every s, with (3.8) in the χ variable,

E
�

eλ(E(eχ)+s)χ�≤ eλ(E[eχ]+s)E[χ]+λ2[E[eχ]+s]2/2.

The result follows by integration over s.
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What this means for the present application is that

E[eλZk], E[eλeZk]≤ e2λ2
for all real λ≤

p

βκ/4, (3.15)

and
E[eλYk]≤ 2e12λ2

for all real λ with |λ| ≤
p

βκ/2
p

2. (3.16)

To proceed, we split Lb(v) into three pieces now, isolating each of the noise components, and focus
on the bound for sup||v||2=1 Lb/3(v, Z) (the notation indicating (3.14) with only the Z noise term
present). One must take some care when arriving at the analog of (3.4). In obtaining an inequality of
the form P(∆m(J , Z)> t)≤ Ce−t2/C we must be able to apply (3.15) (and (3.16) when considering
the Y noise term) with λ = O(t/m). But, examining (3.5) and (3.6) shows we only need consider
t ’s of order

p

β(
p

n+
p
κε)m. Thus we easily get by via

P
�

sup
||v||2=1

Lb(v)≥
p
κε
�

≤ C P
�

sup
||v||2=1

Lb/3(v, Z)≥
p
κε/C

�

(3.17)

≤
� C

1− e−βε
p

κ
n m2/C

�

e−βκmε2/C +
� C

1− e−β/C

�

e−β
p
κnε/Cm,

with C = C(b), compare (3.7). Setting m to be the nearest integer to 1p
ε

�

n
κ

�1/4
puts both exponen-

tial factors on the same footing, namely on the order of e−βκ
3/4n1/4ε3/2/C , and removes all ε,κ, and n

dependence on the first prefactor. Certainly the best decay possible, but requires ε ≤
p

n/κ. Oth-

erwise, if ε ≥
p

n/κ, we simply choose m = 1 in which case the second term of (3.17) is the larger

and produces decay e−β
p

nκε/C . Happily, both estimates agree at the common value ε =
p

n/κ.

Remark. That Lemma 11 holds for chi’s of any parameter will allows an extension to β < 1 in the
same spirit as the Hermite case, granted working out a Lemma 6′ standing in the same relationship
as Lemma 5′ does to Lemma 5.

Left-Tail. It is enough to produce the bound for P(La(v, Z) ≤ −C
p
κε||v||22) for large a, given

v ∈ Rn and a C = C(a) as in the Hermite case. Indeed, (3.15) and (3.16) show that La(v, eZ) and
La(v, Y ) will follow suit.

We have the estimate

P
�

La(v, Z)≤−C
p
κε||v||22

�

(3.18)

= P
�

n
∑

k=1

(−Zk)v
2
k ≥

p

β

�

C
p
κε||v||22− a

p
n||∇v||22− (a/

p
n)||
p

kv||22
�
�

≤ exp
�

− β
[C
p
κε||v||22− a

p
n||∇v||22− (a/

p
n)||
p

kv||22]
2

8||v||44

�

.

Here we have introduced the shorthand

||v||44 =
n
∑

k=1

v4
k , ||∇v||22 =

n
∑

k=0

(vk+1− vk)
2, ||
p

kv||22 =
n
∑

k=1

kv2
k , (3.19)

1333



and have also used the fact that (3.15) applies just as well to −Zk. In fact, the sign precludes any
concern over the required choice of λ. For the Y -noise term, care must be taken on this point, but
one may check that all is fine given our selection of v below.

For the small deviation regime, we use a slight modification of the Hermite test vector (3.11), and
set

vk =
� δ

nε
k
�

∧
�

1−
δ

nε
k
�

with δ = (n/κ)1/2

for k ≤ nε/δ and vk = 0 otherwise. This requires ε ≤ δ = (n/κ)1/2 in order to be sensible, and
produces the same appraisals for ||v||22, ||v||44, ||∇||22, and ||

p
kv||22 as in (3.12), with each appearance

of ε replaced by ε/δ. Substitution into (3.18) yields

P
�

La(v, Z)≤−C
p
κε||v||22

�

≤ exp
�

− (β/8)κ3/2n1/2ε3
h

C −O(1∨
1

ε3κ3/2n1/2
)
i2
�

.

For ε >
p

n/κ, notice that the particularly simple choice of a constant v gives

P
�

La(1, Z)≤−C
p
κε||1||22

�

≤ exp
�

−(β/8)κnε2[C − (2a/n)− a]2
�

.

Combined, these two bounds cover the claimed result, provided that κ3/2n1/2ε3 is chosen larger
than one in the former. Extending this to the full range of ε and all remaining considerations are
the same as in the Hermite setting.

3.3 Variances

We provide details for λmax(Hβ), the Laguerre case is quite the same. (Neither is difficult.) Write

Var
�

λmax(Hβ)
�

≤ n

∫ ∞

0

P
�

|λmax(Hβ)− 2
p

n| ≥
p

nε
�

dε2,

and then split the integrand in two according whether λmax ≤ 2
p

n or λmax > 2
p

n.

First note that our upper bound on the probability that λmax(Hβ) − 2
p

n ≤ −
p

nε applies to
any ε = O(1). Further, from the tridiagonal model we see that λmax stochastically dominates
(1/
p

β)max1≤k≤n gk. Hence, for δ > 0 we have the cheap estimate P(λmax(Hβ) ≤ −δ
p

n) ≤
e−βn2δ2

, and thus
P
�

λmax(Hβ)− 2
p

n≤−
p

nε
�

≤ Cβ e−βn2(ε3∧ε2)/C

for all ε > 0. This easily produces
 

∫ 2

0

+

∫ ∞

2

!

P
�

λmax(Hβ)− 2
p

n≤−
p

nε
�

dε2 ≤ Cβ n−4/3.

For the other range, recall that we mentioned at the end of proof for the right-tail upper bound that
the advertised estimate is easily extended to the large deviation regime (cf. (1.4)) to read

P
�

λmax(Hβ)− 2
p

n≥
p

nε
�

≤ Cβ e−βn(ε3/2∨ε2)/C .

This results in
 

∫ 2

0

+

∫ ∞

2

!

P
�

λmax(Hβ)− 2
p

n≥
p

nε
�

dε2 ≤ Cβ n−4/3

and completes the proof.
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4 (Hermite) Lower Bounds

Right-Tail. This follows from another appropriate choice of test vector v. To get started, write

P
�

sup
||v||2=1

H(v)≥
p

nε
�

≥ P
�

Ha(v)≥
p

nε ||v||22
�

(4.1)

≥ P
�

Ha(v, g)≥ 2
p

nε ||v||22
�

P
�

χ(v)<
p

nε ||v||22
�

.

Here, as before, χ(v) = (2/
p

β)
∑n−1

k=1(χβ(n−k)−E[χβ(n−k)])vkvk+1.

Our choice of v is arrived at by examining the first factor above: with, as in the left-tail upper bound,
a standard Gaussian g,

P
�

Ha(v, g)≥ 2ε
p

n ||v||22
�

= P
�

� 2

β

n
∑

k=1

v2
k

�1/2
g≥ 2

p
nε

n
∑

k=1

v2
k + a

p
n

n
∑

k=0

(vk+1− vk)
2+

a
p

n

n
∑

k=1

kv2
k

�

.

Now the intuition is that the eigenvalue (of a discretized −d2/d x2+ potential) is being forced large
positive, so the potential should localize with the eigenvector following suit.

Let then
vk =

p
εk ∧

�

1−
p
εk
�

for k ≤ ε−1/2 and otherwise 0,

where we will assume that n≥ ε−3/2 ≥ ε−1/2. With these choices we have

||v||22 ∼ ||v||
4
4 ∼

1
p
ε

, ||∇v||22 ∼
p
ε, ||

p

kv||22 ∼
1

ε
,

(recall the notation from (3.19)) and thus the existence of a constant C = C(a) so that

P
�

Ha(v, g)≥ 2ε
p

n ||v||22
�

≥
1

C
e−Cβnε3/2

.

Similarly, returning to the second factor on the right hand side of (4.1) and invoking the estimate
(3.13) we also have

P
�

χ(v)≥
p

nε||v||22
�

≤ e−βnε3/2/C

for the same choice of v. And granted nε3/2 ≥ 1, it follows that P(χ(v) <
p

nε||v||22) ≥ 1− e−1/C

throughout this regime. That is,

P
�

sup
||v||2=1

H(v)≥
p

nε
�

≥
1

C
e−Cβnε3/2

whenever nε3/2 ≥ 1.

When nε3/2 ≤ 1, write

P
�

sup
||v||2=1

H(v)≥
p

nε
�

≥ P
�

sup
||v||2=1

H(v)≥
p

nε0

�

≥
1

CeβC
≥

1

CeβC
e−Cβnε3/2

,

where ε0 = n−2/3 ≤ 1 to produce the advertised form of the bound for all n and ε.
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Left-Tail. This relies heavily on the right-tail upper bound. The first step is to reduce to a Gaussian
setting via independence: for whatever b > 0,

P
�

sup
||v||2=1

H2b(v)≤−
p

nε
�

≥ P
�

sup
||v||2=1

Hb(v, g)≤−2
p

nε
�

P
�

sup
||v||2=1

eHb(v,χ)≤
p

nε
�

.

Here we also use the notation of the proof of Theorem 1 (right-tail), from which we know that

P
�

sup
||v||2=1

eHb(v,χ)≥
p

nε
�

≤ Ce−nε3/2/C .

(As β ≥ 1 we are simply dropping it from the exponent on the right at this stage.) Hence, if as we
regularly have start with an assumption like nε3/2 ≥ C2 ≥ 1, it follows that

P
�

sup
||v||2=1

H2b(v)≤−
p

nε
�

≥ (1− e−1)P
�

sup
||v||2=1

Hb(v, g)≤−2
p

nε
�

.

Turning to Hb(v, g) we make yet another decomposition of the noise term. Let L be an integer
(1≤ L ≤ n) to be specified. Set SL =

1
L

∑L
k=1 gk, and

ηk = gk −
1

L
SL for 1≤ k ≤ L, ηk = gk for L < k ≤ n.

Note that the family {ηk}k=1,...,n is independent of SL . If the procedure of Proposition 7 could be

applied to Hb(v,η), we would have an event of probability larger than 1 − Ce−nε3/2/C (again we
simply drop the beta dependence at this intermediate stage) on which

1
p

β

n
∑

k=1

ηkv2
k − b

p
n

n
∑

k=1

(vk+1− vk)
2−

b

2
p

n

n
∑

k=1

kv2
k ≤
p

nε
n
∑

k=1

v2
k . (4.2)

Since we are still working under the condition nε3/2 ≥ C2, this is to say that there is an event of
probability a least 1− 1/e, depending only of the ηk ’s, and on which

Hb(v, g)≤
1
p

β
SL

L
∑

k=1

v2
k −

b

2
p

n

n
∑

k=1

kv2
k +
p

nε
n
∑

k=1

v2
k ,

for every v ∈ Rn. If we now choose L+ 1≥ 6nε/b, we have further

Hb(v, g)≤
1
p

β
SL

L
∑

k=1

v2
k +
p

nε
L
∑

k=1

v2
k − 2

p
nε

n
∑

k=L+1

v2
k

on that same event. Note this choice requires ε ≤ b/6; it is here that the range of valid epsilon gets
cut down in our final statement. In any case, putting the last remarks together we have proved that

P
�

sup
||v||2=1

Hb(v, g)≤−2
p

nε
�

≥ (1− e−1)P
�

SL ≤−3
p

nβ ε
�

and so also

P
�

sup
||v||2=1

H2b(v)≤−
p

nε
�

≥
1

C
e−Cβn2ε3

,
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again under the constrains nε3/2 ≥ C2 and ε ≤ b/6. The last inequality follows as SL is a mean-zero
Gaussian with variance of order (nε)−1.

The range nε3/2 ≤ C2 is handled as before,

P
�

sup
||v||2=1

H2b(v)≤−
p

nε
�

≥ P
�

sup
||v||2=1

H2b(v)≤−
p

nε0

�

≥
1

CeβC5 ≥
1

CeβC5 e−Cβn2ε3
,

where ε0 = (C2/n)2/3. As ε0 must lie under b/6, this last selection requires n ≥ (6/b)3/2C2, but
smaller values of n can now be covered by adjusting the constant.

It remains to go back and verify that P(sup||v||2=1 Hb(v,η) ≥
p

nε) ≤ Ce−nε3/2/C . The only reason
that Proposition 7 cannot be followed verbatim is that the ηk ’s are not independent, the first L
of them being tied together through SL . We need the appropriate Gaussian tail inequality for the
variables

4m(k,η) = max
k<`≤k+m

�

�

�

�

∑̀

j=k

η j

�

�

�

�

,

and, comparing with (3.4), shows that an estimate of type P(4m(k,η) > t) ≤ Ce−t2/Cm suffices.
But

∑̀

j=k

η j =
∑̀

j=k

g j + (`∧ L− k ∧ L)SL ,

and so
P
�

4m(k,η)> t
�

≤ P
�

4m(k, g)> t/2
�

+P(mSL > t/2).

The first term we have already seen to be of the required order, and the second is less than e−Lt2/8m2
.

Since we only apply this bound in the present setting when L = Cnε ≥ Cε−1/2 and m= [ε−1/2] (the
choice made in Proposition 7), we have that P(mSL > t/2)≤ e−t2/Cm, and the proof is complete.

5 Minimal Laguerre Eigenvalue

While not detailed there, the results of [19] will imply that

(
p
κn)1/3

(
p
κ−
p

n)4/3

�

(
p
κ−
p

n)2−λmin(Lβ)
�

⇒ TWβ , (5.1)

whenever κ, n→∞,κ/n→ c > 1. This appraisal was long understood for the minimal eigenvalue of
L{O/U}E, and has recently been extended to non-Gaussian versions of those ensembles in [8]. The
condition κ/n→ c > 1 keeps the limiting spectral density supported away from the origin, resulting
in the same soft-edge behavior that one has for λmax. If instead κ− n remains fixed in the limit,
one has a different scaling and different limit law(s) for λmin, the so-called hard-edge distributions.
Granted the existence of the “hard-to-soft transition" for all β > 0 (see [4] and [18]) it is believed
that (5.1) holds as long as κ−n→∞, but (to the best of our knowledge) this has not been explicitly
worked out in any setting.

We only consider the analogue of the right-tail upper bound for λmin and have the following.
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Theorem 12. Let β ≥ 1 and κ≥ n+ 1. Then,

P
�

λmin(Lβ)≤ (
p
κ−
p

n)2(1− ε)
�

≤ Ce−β(κn)1/4(
p
κ−
p

n)ε3/2/C , (5.2)

for a numerical constant C and all 0< ε ≤
p n
κ
(α14 ∧α2n−2/5) in which α= 1−

p

n/κ.

According to (5.1), the deviations are of the order of (
p
κn)1/3(

p
κ−
p

n)2/3ε, which explains the
exponent in (5.2). Our condition on ε is certainly not very satisfactory, although still sensible to
the fluctuations in (5.1). One would hope for the range of ε to be understandable in terms of
the soft/hard edge picture − what we have here arises from technicalities. On the other hand, if
we place an additional, “soft-edge" type, restriction on κ and n, we obtain a more natural looking
estimate.

Corollary 13. Again take β ≥ 1, but now assume that κ > cn for c > 1. The right hand side of (5.2)
may then be replaced by Ce−βnε3/2/C for a C = C(c), with the resulting bound valid for all 0< ε ≤ 1.

The last statement should be compared with Corollary V.2.1(b) of [8], which applies to classes of
non-Gaussian matrices.

As to the proof, we proceed in a by now familiar way. We first set
p
κL(v) = vT

�

(
p
κ−
p

n)2− Lβ
�

v.

Then, after a rescaling of ε, we will prove the equivalent

P
�

sup
||v||=1

L(v)≥ α4/3pnε
�

≤ Ce−βnε3/2/C for ε ≤min(α44/3,α8/3n−2/5).

Similar to the strategy employed above, a series of algebraic manipulations shows that we can work
instead with the simplified quadratic form

L′(v) =
1
p

β

n
∑

k=1

(−Zk)v
2
k +

1
p

β

n
∑

k=2

(−eZk)v
2
k +

2
p

β

n−1
∑

k=1

(−Yk)vkvk+1 (5.3)

−
n−1
∑

k=1

1

β
p
κ

E[χβ(κ−k+1) eχβ(n−k)](vk+1+ vk)
2−

α2

p
n

n
∑

k=1

kv2
k .

(The condition κ≥ n+ 1 in Theorem 12 is used in passing from L to L′.)

We remark that under the added condition κ > cn for c > 1, α is bounded uniformly from below and
1
β
p
κ

E[χβ(κ−k+1) eχβ(n−k)] is bounded below by a constant multiple of
p

n− k. Hence, the determin-

istic part of L′ is bounded above by a small negative multiple of
p

n
∑n−1

k=1(vk+1+vk)2+
1p
n

∑n
k=1 kv2

k .
The proof of Corollary 13 is then identical to that of the right-tail upper bound for λmax(Lβ).

Back to Theorem 12 and α’s unbounded from below, we begin by rewriting the noise term in L′ as
1p
β

times

n
∑

k=1

(−Zk)v
2
k +

n
∑

k=2

(−eZk)v
2
k + 2

n−1
∑

k=1

(−Yk)vkvk+1

=
n
∑

k=1

(−Uk)v
2
k +

n
∑

k=2

(−eZk)(v
2
k − v2

k−1) +
n−1
∑

k=1

(−Yk)vk(vk+1+ vk),
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in which

Uk =
1

p

βκ

h

(χβ(κ−k+1)− eχβ(n−k))
2−E

�

(χβ(κ−k+1)− eχβ(n−k))
2�
i

, k = 1, . . . , n,

(with the convention that eχ0 = 0). The idea is the following. For moderate k, Var(Uk) = O(α2), and
thus it is this contribution to the noise which balances the drift term α2

p
n

∑n
k=1 kv2

k . Also, one may

check that in the continuum limit the optimal v is such that |vk + vk+1| = o(1), and so the eZ and Y
terms should “wash out".

We complete the argument in two steps. In step one, we simply drop the eZ and Y terms and apply
the method in Proposition 7 to the further simplified form

L(v, U) =
1
p

β

n
∑

k=1

(−Uk)v
2
k −

n−1
∑

k=1

E[χβ(κ−k+1) eχβ(n−k)]

β
p
κ

(vk+1+ vk)
2−

α2

p
n

n
∑

k=1

kv2
k . (5.4)

Even here we loose a fair bit in our estimates (resulting in non-optimal on ε) due to the variable
coefficient in the energy term. Step two shows that, under yet additional restrictions on ε, the eZ
and Y noise terms may be absorbed into L(v, U).

Step 1. We wish to prove P(sup||v||=1 L(v, U) ≥ α4/3pnε) ≤ Ce−βnε3/2/C for some range of ε >
0. (The optimal range being 0 < ε ≤ (κ/n)1/2α2/3.) A first ingredient is a tail bound on the Uk
variables, for which we first bring in the following.

Lemma 14. (Aida, Masuda, Shigekawa [1]) Given a measure η on the line which satisfies a logarithmic
Sobolev inequality with constant C > 0, there is the estimate

∫

eλ(F
2−E[F2])dη≤ 2 e8Cλ2E[F]2 whenever |λ| ≤

1

16C
,

for any 1-Lipschitz function F.

As a consequence, we have that:

Corollary 15. Let χ and eχ be independent χ random variables (each of parameter larger than one)
and set U = (χ − eχ)2 and σ = E[χ − eχ]. There exists a numerical constant C > 0 such that

E[eλ(U−EU)]≤ CeCσ2λ2

for all real λ ∈ (−1/C , 1/C).

Indeed, by the general theory (see Thm. 5.2 of [13] for example) the distribution of the pair (χ, eχ)
on R+×R+ satisfies a logarithmic Sobolev inequality. The lemma then applies with F(x , y) = x− y .
In our setting, we record this bound as

E[eλUk]≤ CeCσ2
kλ

2
for |λ|<

p

βκ/C and σ2
k = E[Uk]

2.

We make no effort to extend matters to χ ’s of parameter less than one as would be needed to
consider β < 1.
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Picking up the thread of Proposition 7, the variable coefficient in the energy term of L(v, U) is dealt
with by applying the Cauchy-Schwarz argument with λ= λk defined by

λk =
E[χβ(κ−k+1) eχβ(n−k)]

β
p
κ

, k = 1, . . . , n− 1, (5.5)

compare (3.3). Schematically, we are left to bound

[n/m]
∑

j=1

P
� 1

m
p

β
∆m( jm, U)∨

1

λ jmβ
∆m( jm, U)2 ≥

α2

p
n

jm+ εα4/3pn
�

(5.6)

for our choice of integer m. The ∆m(·, U) notation stands in analogy to that used in Section 3. Note
we have taken the liberty to drop various constants and shifts of indices in the above display (which
are irrelevant to the upshot).

Here the dependence of σk and λk on the relationship between n and κ comes into play. While at
the top of the form everything works as anticipated, these quantities behave unfavorably for k near
n. For this reason we deal with the sum (5.6) by dividing the range into j ≤ n/2m and j > n/2m
with the help of the appraisals:

σ2
k ≤
¨

Cα2, 1≤ k ≤ n/2,
C , n/2< k ≤ n.

λk ≥
¨ p

n/C , 1≤ k ≤ n/2,
α
C

p
n− k, n/2< k < n.

(5.7)

Restricted to j ≤ n/2m (and hence substituting σ2
jm = Cα2, λ jm =

p
n/C), the sum (5.6) can be

bounded by Ce−βnε3/2/C upon choosing m = [ε−1/2α−2/3]. This holds for all values of ε so long
as the choice of m is sensible, requiring that ε ≥ α−4/3n−2. But this is ensured if κ ≥ n+ 1 and
ε3/2n≥ 1 (the former having been built into the hypotheses and the latter we may always assume).

On the range j ≥ n/2m the ε term on the right hand side within the probabilities is of no help, and
we use, along with σ2

jm ≤ C and λ jm ≤ α
p

n− jm/C , the crude estimates

∑

n/2m≤ j<n/m

P
�

∆m( jm, U)≥
p

βα2m2 j
p

n

�

≤ C
∑

j≥n/2m

e−βm3α4 j2/Cn

≤ Cm−2α−4 e−βmα4n/C ,

and
∑

n/2m≤ j<n/m

P
�

∆m( jm, U)2 ≥ βα2mλ jm
j
p

n

�

≤ C
∑

1≤ j≤n/2m

e−βα
3(n/m)1/2 j1/2/C

≤ C
�

1+ (m/nα6)
�

e−βα
3(n/m)1/2/C .

The choice of m = [ε−1/2α−2/3] being fixed, we can bound each of the above by the desired
Ce−βnε3/2/C only by restricting ε to be sufficiently small. The first estimate requires ε ≤ α20/3,
the second requires in addition that ε ≤ α8/3n−2/5 (and again uses nε3/2 ≥ 1).

In summary

P
�

sup
||v||=1

L(v, U)≥ α4/3pnε
�

≤ Ce−βnε3/2/C if 0< ε ≤min(α20/3,α8/3n−2/5). (5.8)
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It is perhaps worth mentioning here that the bounds on λk and σ2
k for the range k ≥ n/2 introduced

in (5.7) may be improved slightly, though not apparently with great effect on the final result.

Step 2. To absorb the eZ , Y noise terms, we show that L′(v) ≤ L̃(v, U) + E (eZ , Y, v) with a new
form L̃(v, U) comparable to L(v, U), and an “error" term E for which we have P(E ≥ α4/3pnε) ≤
Ce−βnε3/2/C , at least for some range of ε > 0. What follows could almost certainly be improved
upon.

Define, for k = 1, . . . , n− 1:

ak =
1

4
λk for k ≤ α4n, ak =

1

16

α2k
p

n
for k ≥ α4n.

(Recall the definition of λk from (5.5).) Then, an application of the Cauchy-Schwarz inequality
yields: for all v of length one,

1
p

β

n
∑

k=2

(−eZk)(v
2
k − v2

k−1)≤
1

4

n−1
∑

k=1

λk(vk+1+ vk)
2+

α2

4
p

n

n
∑

k=1

kv2
k + max

1≤k≤n−1

eZ2
k+1

βak

A similar estimate applies to
∑n−1

k=1 Ykvk(vk+1− vk). Accordingly,

L′(v)≤ L̃(v, U) + max
1≤k≤n−1

eZ2
k+1

βak
+ max

1≤k≤n−1

Y 2
k

βak

with

L̃(v, U) =
1
p

β

n
∑

k=2

(−Uk)v
2
k −

1

2

n−1
∑

k=1

λk(vk+1+ vk)
2−

α2

2
p

n

n
∑

k=1

kv2
k .

Obviously, the arguments of step 1 apply to L̃(v, U).

Finally, with Wk either eZk+1 or Yk, Lemmas 10 and 11 imply that

P
�

max
1≤k≤n−1

W 2
k

βak
≥ εα4/3pn

�

≤ C
n
∑

k=1

e−βεα
4/3ak/C ,

provided say ε ≤ 1. Since it may be assumed that α < 1/2 (otherwise we are in the easy regime
covered by Corollary 13), we have the bound ak = λk ≤

p
n/C for k ≤ α4n≤ n/2 and so also

n
∑

k=1

e−εα
4/3pnak/C ≤ α4n e−βεα

4/3n/C +
C

εα10/3
e−βεα

22/3n/C ,

by considering the sums over k ≤ α4n and k > α4n separately. If now ε ≤ α44/3 (still keeping in
mind that ε3/2n ≥ 1), the right hand side is less than Ce−βnε3/2/C . Adding this new constraint on ε
to those stated in (5.8) completes the proof.
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