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ABSTRACT. — This paper is an exposition of some of the semigroup

tools which may be used to investigate the isoperimetric inequality in Eu-

clidean and Gauss space. Inspired by the work of N. Varopoulos in his func-

tional approach to isoperimetric inequalities on groups and manifolds, we

will observe here, in particular, that the classical isoperimetric inequality in

Rn is equivalent to saying that the L2-norm of the heat semigroup acting on

characteristic functions of sets increases under isoperimetric rearrangement.

We then check the corresponding property in Gauss space and, following the

approach of B. Maurey and G. Pisier to the concentration of measure phe-

nomenon, we survey how the various properties of the Ornstein-Uhlenbeck

semigroup such as the commutation property or hypercontractivity can yield

in a simple way both the concentration phenomenon and (a form of) the

isoperimetric inequality itself for Gauss measures.

1. Introduction and the classical isoperimetric inequality in Rn

The classical isoperimetric inequality in Rn (see e.g. [Ha], [Os], [B-Z]) states that among

all subsets A with fixed (finite) volume voln(A) and smooth boundary ∂A, Euclidean balls

minimise the surface measure of the boundary. In other words, whenever voln(A) = voln(B)

where B is a ball with some radius r (and n > 1),

(1.1) voln−1(∂A) ≥ voln−1(∂B).

Now, voln−1(∂B) = nrn−1ωn where ωn is the volume of the ball of radius 1 so that (1.1)

may be expressed equivalently as

(1.2) voln−1(∂A) ≥ nω1/n
n voln(A)(n−1)/n.

The function nω
1/n
n x(n−1)/n on R+ is the isoperimetric function of the classical isoperimetric

problem on Rn. Euclidean balls are the extremal sets and achieve equality in (1.2).



It is well-known that (1.2) may be expressed equivalently on functions by means of the

coarea formula (cf. [Fe], [Maz2], [Os]) : for every C∞ compactly supported function f on

Rn, ∫
|∇f | dx =

∫ ∞
0

voln−1(Cs) ds

where Cs = {x ∈ Rn; |f(x)| = s}, so that (1.2) together with integration by parts yields

(1.3) nω1/n‖f‖n/n−1 ≤
∥∥|∇f |∥∥

1

for every C∞ compactly supported function f on Rn with gradient ∇f . This inequality is

equivalent to (1.2) by letting f approximate the characterisitic function IA of a set A whose

boundary ∂A is smooth enough so that
∫
|∇f | dx approaches voln−1(∂A). For simplicity,

smoothness properties of boundaries will always be understood in this way throughout this

paper. Inequality (1.3) is due independently to E. Gagliardo [Ga] and L. Nirenberg [Ni]

with a nice inductive proof on the dimension. This proof, however, does not seem to yield

the optimal constant, and therefore the extremal character of balls. The connection between

(1.2) and (1.3) through the coarea formula seems to be due to H. Federer and W. H. Fleming

[F-F] and V. G. Maz’ya [Maz1] (cf. [Os]).

Inequality (1.3) of course belongs to the family of Sobolev inequalities. Replacing f

(positive) by fα for some appropriate α easily yields after an application of Hölder’s

inequality that, for every C∞ compactly supported function f on Rn,

(1.4) ‖f‖q ≤ C(n, p, q)
∥∥|∇|∥∥

p

with 1 ≤ p < n, 1
q = 1

p −
1
n and C(n, p, q) > 0 a constant only depending on n, p, q. The

family of inequalities (1.4) with 1 < p < n goes back to S. L. Sobolev [So], the inequality for

p = 1 (which implies the others) having thus been established later on. Of particular interest

is the value p = 2 which may be expressed equivalently by integration by parts as (n > 2)

(1.5) ‖f‖2n/n−2 ≤ C
∫
|∇f |2 dx = C

∫
f(−∆f) dx

where ∆ is the usual Laplacian on Rn. As developed in an abstract setting by N. Varopoulos

[Va1] (see [C-SC-V]), this Dirichlet type inequality (1.5) is closely related to the behaviour

of the heat semigroup Tt = e−t∆, t ≥ 0, as ‖Ttf‖∞ ≤ Ct−n/2‖f‖1, t > 0.

As an introduction, our first task in this work will be to illustrate, in this concrete setting,

some aspects of the semigroup ideas of N. Varopoulos, and to show how these can yield, in

a very simple way, (a form of) the isoperimetric inequality, actually the inequality (1.2) (or

(1.3)) with a worse constant. We will work with the (probabilistic) integral representation

of the heat semigroup Tt = e−t∆, t ≥ 0, given by

Ttf(x) =

∫
Rn

f
(
x+
√

2t y
)
dγn(y), x ∈ Rn, f ∈ L1(dx),
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where γn is the canonical Gaussian measure on Rn with density with respect to Lebesgue

measure ϕn(x) = (2π)−n/2 exp(−|x|2/2), x ∈ Rn.

The following proposition is crucial for the understanding of the general principle of

proof. Set, for Borel subsets A, B in Rn, and t ≥ 0, KT
t (A,B) =

∫
B
Tt(IA) dx where IA is

the indicator function of the set A. Ac denotes below the complement of A.

PROPOSITION 1.1. — For every subset A of finite volume in Rn with smooth boundary

∂A and every t ≥ 0,

KT
t (A,Ac) ≤

( t
π

)1/2

voln−1(∂A).

Proof. Let f, g be smooth functions on Rn. For every t ≥ 0, we can write∫
g (Ttf − f) dx =

∫ t

0

(∫
g∆Tsf dx

)
ds

= −
∫ t

0

(∫
〈∇Tsg,∇f〉 dx

)
ds.

Now, by integration by parts,

∇Tsg =
1√
2s

∫
Rn

y g
(
x+
√

2s y
)
dγn(y) .

Hence ∫
g (Ttf − f) dx = −

∫ t

0

1√
2s

∫ ∫
〈∇f(x), y〉 g

(
x+
√

2s y
)
dxdγn(y)ds.

This identity of course extends to g = IAc . Since∫ ∫
〈∇f(x), y〉 dxdγn(y) = 0,

we see that, for every s ≥ 0,

−
∫ ∫
〈∇f(x), y〉 IAc

(
x+
√

2s y
)
dxdγn(y) ≤

∫ ∫ (
〈∇f(x), y〉

)−
dxdγn(y)

=
1

2

∫ ∫ ∣∣〈∇f(x), y〉
∣∣dxdγn(y)

=
1√
2π

∫
|∇f | dx

by partial integration with respect to dγn(y). The conclusion follows since, by letting f

approximate IA,
∫
|∇f | dx approaches voln−1(∂A). The proof of Proposition 1.1 is complete.
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Proposition 1.1 is sharp since it may be tested on balls. Namely, if B is an Euclidean

ball, one may check that

(1.6) lim
t→0

(π
t

)1/2

KT
t (B,Bc) = voln−1(∂B).

By translation invariance and homogeneity, we may assume that B is the unit ball of center

the origin and radius 1. Then, for t > 0,

KT
t (B,Bc) =

∫
|x|>1

γn
(
y ∈ Rn;

∣∣x+
√

2t y
∣∣ ≤ 1

)
dx.

Using polar coordinates and the rotational invariance of γn,

KT
t (B,Bc) =

∫ ∞
1

∫
ω∈∂B

ρn−1γn
(
y;
∣∣ρω +

√
2t y
∣∣ ≤ 1

)
dρdω

= voln−1(∂B)

∫ ∞
1

ρn−1γ1 ⊗ γn−1

(
(y1, ỹ);

∣∣ρ+
√

2ty1

∣∣2 + 2t|ỹ|2 ≤ 1
)
dρ

where y = (y1, ỹ), y1 ∈ R, ỹ ∈ Rn−1. We then use Fubini’s theorem to write

KT
t (B,Bc) = voln−1(∂B)

∫
Jt(y1, ỹ) dγ1(y1)dγn−1(ỹ)

where

Jt(y1, ỹ) = I{2t|ỹ|2≤1;
√

2ty1≤
√

1−2t|ỹ|2−1}

∫ ∞
1

ρn−1I{|ρ+
√

2ty1|2≤1−2t|ỹ|2} dρ.

By a simple integration of the preceding, it is easily seen that for almost all y1, ỹ

lim
t→0

1√
t
Jt(y1, ỹ) = −

√
2 y1I{y1≤0}

so that, by dominated convergence,

lim
t→0

1√
t
KT
t (B,Bc) = − voln−1(∂B)

∫ 0

−∞

√
2 y1 dγ1(y1) =

1√
π

voln−1(∂B)

which is the claim (1.6).

Together with (1.6), the isoperimetric inequality (1.2) will now follow from Proposition

1.1 if we have that, for every t ≥ 0 and every Borel subset A of Rn, KT
t (A,A) ≤ KT

t (B,B)

whenever B is a ball with the same volume as A, or in other words, since KT
t (A,A) =

‖Tt/2(IA)‖22, if

(1.7)
∥∥Tt(IA)

∥∥
2
≤
∥∥Tt(IB)

∥∥
2
, t ≥ 0.
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Indeed, under such a property, by Proposition 1.1, for every t > 0,

voln−1(∂A) ≥
(π
t

)1/2

KT
t (A,Ac) ≥

(π
t

)1/2

KT
t (B,Bc),

and when t→ 0, voln−1(∂A) ≥ voln−1(∂B) by (1.6).

Inequality (1.7) was actually established by A. Baernstein and B. A. Taylor [B-T]

through delicate rearrangement inequalities of isoperimetric nature (see also [Ba]). While we

noticed its equivalence with isoperimetry, one may wonder for an independent simpler proof

of (1.7).

If one does not mind bad constants, one can actually deduce (a form of) isoperimetry

from Proposition 1.1 in an elementary way. Note from the inequality ‖Ttf‖∞ ≤ Ct−n/2‖f‖1,

t > 0, that, by interpolation, ‖Ttf‖2 ≤ Ct−n/4‖f‖1, t > 0 for every f in L1(dx) and some

possibly different constant C still only depending on n. Hence, by Proposition 1.1, for every

subset A in Rn with fijnite volume and smooth boundary ∂A, and every t > 0,

voln−1(∂A) ≥
(π
t

)1/2

KT
t (A,Ac)

=
(π
t

)1/2[
voln(A)−

∥∥Tt/2(IA)
∥∥2

2

]
≥
(π
t

)1/2[
voln(A)− C

( t
2

)−n/2
voln(A)2

]
.

Optimising over t > 0 then yields

voln−1(∂A) ≥ C ′voln(A)(n−1)/n

hence (1.2), with however a worse constant. This easy proof could appear to be even simpler

than the one by E. Gagliardo and L. Nirenberg.

The purpose of this work will be to develop throughout the next sections the same ap-

proach in the setting of the Gaussian isoperimetric inequality. As in this classical Euclidean

case, we will follow closely the semigroup techniques of the work by N. Varopoulos [Va1],

[Va2], [C-SC-V] (and the references therein) in his functional approach to geometric inequal-

ities and heat kernel estimates on groups and manifolds. We work out these techniques with

the Ornstein-Uhlenbeck semigroup, using some general results such as hypercontractivity,

as well as tools developed by G. Pisier in [Pi1], [Pi2] (on the concentration phenomenon and

Gaussian Riesz transforms). While classical Sobolev inequalities provide one of the main

abstract tools in the classical case, we only substitute here logarithmic Sobolev inequalities

and hypercontractivity. Although we do not attack the question here, this overall approach

may possibly be developed similarly for the Ornstein-Uhlenbeck in backward as studied in

[Bo5].

The present exposition does not present any real new results. It only would like to

emphasise some simple semigroup ideas in the study of the geometry of (Euclidean and)
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Gauss space. We hope furthermore that some of these ideas could be used in abstract

settings. While true isoperimetric techniques such as symmetrisation always seem to yield

best constants and therefore characterise extremal sets, we thought of some interest to

investigate the Gaussian isoperimetric inequality through the Ornstein-Uhlenbeck semigroup

whose central rôle in the Analysis of Wiener space need not be demonstrated anymore.

In the next section, we briefly recall the isoperimetric inequality in Gauss space in its

various formulations and applications, while in section 3, we survey the Ornstein-Uhlenbeck

semigroup (Pt)t≥0 and some of its classical properties such as hypercontractivity, for which

we provide an elementary proof. In the last section, we show how to use the Ornstein-

Uhlenbeck semigroup (Pt)t≥0 to establish both the concentration of measure phenomenon

for γn and a version of the isoperimetric inequality itself via the analogue of Proposition 1.1.

2. The isoperimetric inequality in Gauss space

In the rest of this work, we will work with the canonical Gaussian distribution γn on Rn

with density with respect to Lebesgue measure

ϕn(x) = (2π)−n/2 exp
(
−|x|2/2

)
, x ∈ Rn.

The measure γn is thus the product measure of the one-dimensional canonical Gaussian

measure on each coordinate. As Lebesgue measure, the Gaussian measure γn satisfies

an isoperimetric property, which, avoiding firstly surface measure considerations, may

easily be described as follows. Let A be a Borel set in Rn and let H be a half-space

H = {x ∈ Rn; 〈x, u〉 ≤ a}, |u| = 1, a ∈ [−∞,+∞], such that γn(A) = γn(H). Then,

for any real number r ≥ 0,

(2.1) γn(Ar) ≥ γn(Hr)

where Ar is defined to be the Euclidean neighbourhood of order r ≥ 0 of A, that is

Ar = {x ∈ Rn; d(x,A) ≤ r} with d the Euclidean distance on Rn or equivalently

Ar = A+B(0, r) = {x+y ;x ∈ A, y ∈ B(0, r)} with B(0, r) the (closed) Euclidean ball with

center the origin and radius r. Hence, while balls are the extremal sets in the classical case,

half-spaces play this rôle in this Gaussian setting. By rotational invariance, and since γn is

a product measure, the Gaussian measure of the half-space H is computed in dimension 1

as γn(H) = Φ(a) where

Φ(t) =

∫ t

−∞
ϕ1(x) dx = (2π)−1/2

∫ t

−∞
e−x

2/2 dx, t ≥ 0.

Furthermore, since the neighbourhood Hr of H is again a half-space and γn(Hr) = Φ(a+r).

Therefore, (2.1) may be stated equivalently as

(2.2) γn(Ar) ≥ Φ(a+ r) for every r ≥ 0
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whenever γn(A) = Φ(a). In this form, the Gaussian isoperimetric inequality appears to be

dimension-free and indeed easily extends to infinite dimensional Gaussian measures. More

precisely, let µ be a (centered) Gaussian measure on a real separable Banach space E with

reproducing kernel Hilbert space H (the Cameron-Martin space for Wiener measure for

example). That is, the abstract Wiener space factorisation

E∗
i−→ L2(µ)

i∗−→ E

where i is the canonical injection map defines a hilbertian subspace H = i∗(L2(µ)) of E.

Then, given a Borel set A in E with µ(A) = Φ(a), the isoperimetric inequality for the

Gaussian measure µ reads as

(2.3) µ∗
(
A+BH(0, r)

)
≥ Φ(a+ r) for every r ≥ 0

where BH(0, r) is the ball in H with center the origin and radius r and where µ∗ is inner

measure (the use of inner measure is necessary since A + BH(0, r) need not always be

measurable). Inequality (2.3) is deduced from (2.2) in a standard way by a finite dimensional

approximation (see for example [Bo1], [Fa1]) ; the stricking property is of course that in

infinite dimension µ(H) = 0. Although it is this infinite dimensional version which might

appear to be the most useful in applications, for example in the Analysis of Wiener space,

it is really the finite dimensional version which one has to establish first. Therefore, we only

concentrate in this paper on this finite dimensional version. In particular, all the isoperimetric

like inequalities which we will establish for γn with simple semigroup tools may easily be

extended to infinite dimensional Gaussian measures and can therefore be used in applications

as simpler minded inequalities.

Inequality (2.1) thus expresses the extremal character of half-spaces in the isoperimetric

problem for Gaussian measures. It was established independently by C. Borell [Bo1] and V.

N. Sudakov and B. S. Tsirel’son [S-T] on the basis of the isoperimetric inequality on the

sphere [Lé], [Sch] and a limiting argument known as Poincaré’s lemma (cf. [MK]). An intrisic

proof using Gaussian isoperimetric symmetrisation was then provided by A. Ehrhard [Eh1]

with applications to Gaussian Dirichlet integrals [Eh2], [Bo4].

The Gaussian isoperimetric inequality has been proved useful and extremely powerful

in various and rather distinct contexts such as, for example, tail estimates of Gaussian

seminorms [Bo1], [Ta1] and Wiener chaos [Bo2], [Bo3], [L-T], large deviations [Che], [G-K],

[BA-L], [Led3], Banach space Geometry (in particular the study of almost spherical sec-

tions of convex bodies) [F-L-M], [M-S], [Pi1], [Pi3], and hypercontractivity and logarithmic

Sobolev inequalities [Eh3], [Led2]. In these applications, the Gaussian isoperimetric inequal-

ity is used in two rather distinct ways depending on whether the isoperimetric enlargement

Ar of a set A is considered for the large values of r or the small values.

In the first three mentioned applications, it is used for the large values of r in the

form of what has been called the concentration of measure phenomenon [G-M], [M-S]. This
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phenomenon expresses here that if A is a Borel subset of Rn such that γn(A) ≥ 1
2 , then one

may take a = 0 in (2.2) and get that for every r ≥ 0,

(2.4) γn(Ar) ≥ Φ(r) ≥ 1− 1
2 exp(−r2/2).

In other words, starting from a set A with γn(A) ≥ 1
2 , its enlargement Ar gets very rapidly

a mass close to 1 when r increases to infinity.

Let us mention here that the inequality (2.4) has been recently surprisingly improved

by M. Talagrand [Ta2] (see also [Ma]) who showed that for several sets A, the Euclidean

enlargement may not be the optimal one in an inequality such as (2.4). M. Talagrand also

studies in [Ta4] improved versions of the concentration inequality (2.4) which depend on

the geometry of A rather that on its measure only (with applications, in particular, to balls

of the Wiener space, which may be considered as cubes for the canonical product measure

[Ta3]).

The inequality (2.4) may be translated equivalently on functions and is often most useful

in this form in applications. Let f : Rn → R be a Lipschitz map on Rn with Lipschitz norm

‖f‖Lip = sup

{
|f(x)− f(y)|
|x− y|

; x 6= y in Rn
}
,

and let Mf be a median of f for γn i.e.

γn(f ≥Mf ) ≥ 1
2 and γn(f ≤Mf ) ≥ 1

2 .

By applying (2.4) to A = {f ≥Mf} and A = {f ≤Mf} we get that for every r ≥ 0,

(2.5) γn
(
|f −Mf | > r

)
≤ exp

(
− r2

2‖f‖2Lip

)
.

Conversely, given a set A one may take in (2.5) the Lipschitz map f(x) = d(x,A) and obtain,

after some elementary considerations, an inequality such as (2.4) (or at least close enough

to (2.4) — see Section 4).

In the applications to hypercontractivity and logarithmic Sobolev inequalities, the

Gaussian isoperimetric inequality is used in its infinitesimal formulation connecting the

“Gaussian volume” of a set to the “Gaussian length” of its boundary, which is really

isoperimetry, the concentration phenomenon being only a mild corollary. More precisely,

given a Borel subset A of Rn, define (following [B-Z], [Fe], [Os], [Eh2]) the (Gaussian)

Minkowski content of its boundary ∂A as

On−1(∂A) = lim inf
r→0

1

r

[
γn(Ar)− γn(A)

]
.

The isoperimetric inequality (2.1) (for the small values of r ≥ 0) then expresses that if H is

a half-space with the same measure as A, then

(2.6) On−1(∂A) ≥ On−1(∂H),

8



that is the analogue of (1.1). Now, one may easily compute (in dimension one) the Minkowski

content of a half-space H as

On−1(∂H) = lim inf
r→0

1

r

[
Φ(a+ r)− Φ(a)

]
= ϕ1(a)

where Φ(a) = γn(H) = γn(A). Hence, denoting by Φ−1 the inverse function of Φ, we get

that, for every Borel set A in Rn,

(2.7) On−1(∂A) ≥ ϕ1 ◦ Φ−1
(
γn(A)

)
.

The function ϕ1 ◦ Φ−1 is the isoperimetric function of the Gauss space (Rn, γn). It may be

compared to the function nω1/nx(n−1)/n of the classical isoperimetric inequality in Rn. The

function ϕ1 ◦ Φ−1 is still concave ; it is defined on [0, 1], is symmetric with respect to the

vertical line going through 1
2 with a maximum equal to (2π)−1/2 there, and its behaviour at

the origin (or at 1 by symmetry) is governed by the equivalence

(2.8) lim
x→0

ϕ1 ◦ Φ−1(x)

x(2 log(1/x))1/2
= 1.

This can easily be established by noticing that the derivative of ϕ1 ◦ Φ−1 is −Φ−1 and by

comparing Φ−1(x) to (2 log(1/x))1/2.

As in the classical case, (2.7) may be expressed equivalently on functions by means,

again, of the coarea formula (see [Eh2], [Led3]). Writing for a smooth function f on Rn with

gradient ∇f that ∫
|∇f | dγn =

∫ ∞
0

(∫
Cs

ϕn(x) dHn−1(x)

)
ds

where Cs = {x ∈ Rn; |f(x)| = s} and where dHn−1 is the Hausdorff measure of dimension

n− 1 on Cs, we deduce from (2.7) that

(2.9)

∫
|∇f | dγn ≥

∫ ∞
0

ϕ1◦ Φ−1γn
(
|f | ≥ s

)
ds.

When f is a smooth function approximating the indicator function of a set A, we of course

recover (2.7) from (2.9), at least for subsets A with smooth boundary. Due to the equivalence

(2.8), it follows in particular from (2.9) (and integration y parts) that a smooth function f

satisfying
∫
|∇f | dγn <∞ is such that

∫
|f |(log(1 + |f |))1/2dγn <∞. In analogy with (1.3),

such a property belongs to the family of Sobolev inequalities, but here of logarithmic type.

In the past years, it has been realised that rather elementary arguments may be used to

establish the concentration properties (2.4) or (2.5). This observation is due B. Maurey and

G. Pisier [Pi1] and the main idea involves the Ornstein-Uhlenbeck or Hermite semigroup

with respect to the Gauss measure γn defined by the representation

Ptf(x) =

∫
Rn
f
(
e−tx+ (1− e−2t)1/2

)
dγn(y), t ≥ 0,
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for f in L1(γn). One of the crucial underlying properties of the semigroup (Pt)t≥0 used in

these proofs is the commutation property ∇Ptf = e−tPt(∇f), in particular for the large

values of the time t.

One of the purposes of this work will be to show, in the same spirit as what we presented

in the classical Euclidean case, that the behaviour of the Ornstein-Uhlenbeck semigroup

(Pt)t≥0 for the small values of the time t together with its hypercontractivity property may

properly be combined to yield the infinitesimal version (2.7) of the isoperimetric inequality.

More precisely, we will show, with these tools, that there exists a small enough numerical

constant 0 < c < 1 such that for every measurable subset A with smooth boundary,

On−1(∂A) ≥ c ϕ1 ◦ Φ−1
(
γn(A)

)
.

We doubt that this approach can lead to the exact constant c = 1. The line of reasoning

will thus follow the one of the classical case presented in the first section via tha analogue of

Proposition 1.1, simply replacing then the classical heat semigroup estimates and Sobolev

inequalities on Rn by the hypercontractivity property and logarithmic Sobolev inequalities

of the Ornstein-Uhlenbeck semigroup which we now describe.

3. The Ornstein-Uhlenbeck semigroup and hypercontractivity

Let (Bt)t≥0 be a standard Brownian motion starting from the origin with values in Rn.

Consider the stochastic differential equation

dXt =
√

2 dBt −Xt dt

with initial condition X0 = x, whose solution is

Xt = e−t
(
x+
√

2

∫ t

0

es dBs

)
, t ≥ 0.

Since
∫ t

0
es dBs has the same distribution as Be2t−1, the Markov semigroup (Pt)t≥0 of (Xt)t≥0

is given by

(3.1) Ptf(x) = E
(
f(e−t + e−tBe2t−1)

)
=

∫
Rn

f
(
e−t + (1− e−2t)1/2y)

)
dγn(y)

for any f in L1(γn) and x in Rn, thus defining the Ornstein-Uhlenbeck or Hermite semigroup

with respect to the Gaussian measure γn. (Pt)t≥0 is a Markovian semigroup of contractions

on all Lp(γn)-spaces, 1 ≤ p ≤ ∞, symmetric and invariant with respect to γn, and with

generator L which acts on each smooth function f on Rn as

Lf(x) = ∆f(x)− 〈x,∇f(x)〉.
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The generator L satifies the integration by parts formula with respect to γn∫
f(−Lg) dγn =

∫
〈∇f,∇g〉 dγn

for every smooth functions f, g on Rn.

One of the remarkable properties of the Ornstein-Uhlenbeck semigroup is its hypercon-

tractivity property discovered by E. Nelson [Ne] : whenever 1 < p < q <∞ and t > 0 satisfy

et ≥ [(q − 1)/(p− 1)]1/2, then, for all functions f in Lp(γn),

(3.2) ‖Ptf‖q ≤ ‖f‖p

where (now) ‖ · ‖p is the norm in Lp(γn). In other words, Pt maps Lp(γn) in Lq(γn) (q > p)

with norm one. Many simple proofs of (3.2) have been given in the litterature, mainly based

on its equivalent formulation as logarithmic Sobolev inequalities due to L. Gross [Gr]. Fix

p = 2 and let q(t) = 1 + e2t, t ≥ 0. Given a smooth function f , set Ψ(t) = ‖Ptf‖q(t),
t ≥ 0. Under the hypercontractivity property (2.2), Ψ(t) ≤ Ψ(0) for every t ≥ 0 and thus

Ψ′(0) ≤ 0. Performing this differentiation, we see that

(3.3)

∫
f2 log |f | dγn −

∫
f2dγn log

(∫
f2dγn

)1/2

≤
∫
|∇f |2 dγn

which in turn implies (3.2) by applying it to Ptf (f > 0) for every t. The inequality (3.3)

is called a logarithm Sobolev inequality. One may note, with respect to the classical Sobolev

inequalities on Rn, that it is only of logarithmic type, with however constants independent

of the dimension, a characterisitic feature of Gaussian measures.

Simple proofs of (3.3) may be found in e.g. [Nev], [A-C], [B-E]... The one which we

present now for completeness already appeared in [Led4] and only relies (see also [B-E]) on

the observation, immediately drawn from the representation (3.1), that ∇Ptf = e−tPt(∇f)

(of course exploited for the large values of t). Namely, to establish (3.3), replacing f (positive)

by
√
f , it is enough to show that for every smooth positive function f on Rn,

(3.4)

∫
f log f dγn −

∫
f dγn log

(∫
f dγn

)
≤ 1

2

∫
1

f
|∇f |2 dγn.

To this aim, we can write by the semigroup properties and integration by parts that∫
f log f dγn −

∫
f dγn log

(∫
f dγn

)
= −

∫ ∞
0

(
d

dt

∫
Ptf logPtf dγn

)
dt

= −
∫ ∞

0

(∫
LPtf logPtf dγn

)
dt

=

∫ ∞
0

(∫
〈∇Ptf,∇(logPtf)〉 dγn

)
dt

=

∫ ∞
0

(∫
1

Ptf
|∇Ptf |2 dγn

)
dt.
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Now, set

F (t) =

∫
1

Ptf
|∇Ptf |2 dγn t ≥ 0.

The commutation property ∇Ptf = e−tPt(∇f) and Cauchy-Schwarz inequality on the

integral representation of Pt show that, for every t ≥ 0,

F (t) = e−2t
k∑
i=1

∫
1

Ptf

(
Pt
∂f

∂xi

)2

dγn

≤ e−2t
k∑
i=1

∫
Pt

(
1

f

(
∂f

∂xi

)2
)
dγn = e−2t

∫
1

f
|∇f |2 dγn

which immediately yields (3.4). Therefore, hypercontractivity is established in this way.

While our aim is to investigate isoperimetric inequalities via semigroup techniques,

it is however of some interest to notice that the Gaussian isoperimetric inequality (2.7)

or (2.9) may be used to establish the logarithmic Sobolev inequality (3.3) and therefore

hypercontractivity. This was noticed in [Led2] in analogy with the classical case discussed

in the first section. Let f be a smooth positive function on Rn with ‖f‖2 = 1. Apply then

(2.9) to g = f2(log(1 + f2))1/2. Using (2.8), one obtains after some elementary, although

cumbersome, computations that for every ε > 0 there exists C(ε) > 0 only depending on ε

such that∫
f2 log(1 + f2) dγn ≤ (1 + ε)

(∫
|∇f |2dγn

)1/2(∫
f2 log(1 + f2) dγn + 2

)1/2

+ C(ε).

It follows that

2

∫
f2 log f dγn ≤

∫
f2 log(1 + f2) dγn

≤ 2(1 + ε)4

∫
|∇f |2dγn + 2(1 + ε)2

(∫
|∇f |2dγn

)1/2

+ C ′(ε)

where C ′(ε) = (1 + ε)C(ε)/ε. To get rid of the extra terms on the left hand side of this

inequality, we use a tensorisation argument due to A. Ehrhard [Eh3] : this inequality namely

holds with constants independent of the dimension n. Therefore, applying it to f⊗k in

(Rn)k = Rnk yields

k

∫
f2 log f dγn ≤ k(1 + ε)4

∫
|∇f |2dγn +

√
k (1 + ε)2

(∫
|∇f |2dγn

)1/2

+ C ′(ε).

Divide then by k, let k tend to infinity and then ε to zero and we obtain (3.3) by homogeneity.

4. Semigroup proofs of the Gaussian isoperimetric inequality

12



Our first task, in this last section, will be to show how the concentration of measure

phenomenon (2.4) or (2.5) may be analysed with the Ornstein-Uhlenbeck semigroup. This

observation goes back to B. Maurey and G. Pisier ; more precisely, the next lemma is due

to B. Maurey (see [Pi1, p. 181]). We follow here the proof oulined in greater generality

(Riemannian manifolds with non-negative Ricci curvature e.g.) in [Led5].

PROPOSITION 4.1. — Let f be a Lipschitz map on Rn with ‖f‖Lip ≤ 1 and
∫
f dγn = 0.

Then, for every real number λ, ∫
exp(λf) dγn ≤ exp

(
λ2

2

)
.

Before turning to the proof of Proposition 4.1, let us briefly indicate how it relates

to concentration. Namely, by Chebyshev’s inequality, it immediately follows that for every

Lipschitz map f and every r ≥ 0,

(4.1) γn
(
|f −

∫
f dγn| ≥ r

)
≤ 2 exp

(
− r2

2‖f‖2Lip

)
.

This property is almost identical to (2.5) although it is not completely understood how one

can go directly from the median to the expectation or conversely, preserving the best constant

2 in the exponent. However, (4.1) has a similar meaning on sets. Let indeed (see [Led1]) A

be a Borel set in Rn with γn(A) > 0. For every u > 0, let fu be the Lipschitz map defined

by

fu(x) = min
(
d(x,A), u

)
, x ∈ Rn.

Clealy ‖fu‖Lip ≤ 1 and
∫
fu dγn ≤ u(1− γn(A)) so that (4.1) applied to fu for r = uγn(A)

already yields, for every u > 0,

γn(x ∈ Rn; x /∈ Au) ≤ γn(fu ≥ u)

≤ γn
(
fu ≥

∫
fu dγn + uγn(A)

)
≤ 2 exp

(
−u2γn(A)2/2

)
.

But now, we may improve with this inequality our previous estimate on
∫
fu dγn and get

that ∫
fu dγn ≤

∫ u

0

γn(x; x /∈ Av) dv ≤
∫ ∞

0

min
(
1− γn(A), 2 exp(− v2γn(A)2/2

)
dv.

Denoting by δ(γn(A)) the right hand side of this inequality, (4.1) applied to fu for

r = u− δ(γn(A)) ≥ 0 then yields

γn(x ∈ Rn; x /∈ Au) ≤ 2 exp

(
−u

2

2
+ u δ

(
γn(A)

))
.

13



This inequality is as good as (2.4) in applications, in particular if we notice furthermore

that δ(γn(A)) → 0 when γn(A) → 1. It also immediately extends to infinite dimensional

Gaussian measures, replacing Au by A+BH(0, u).

Now, we prove Proposition 4.1.

Proof of Proposition 4.1. As for the proof of the logarithmic Sobolev inequality in the

previous section, we simply write by the semigroup properties and the integration by parts

formula for the operator L that, for every t ≥ 0,

G(t) =

∫
exp(λPtf) dγn = 1−

∫ ∞
t

G′(s) ds

= 1− λ
∫ ∞
t

(∫
LPsf exp(λPsf) dγn

)
ds

= 1 + λ2

∫ ∞
t

(∫
|∇Psf |2 exp(λPsf)dγn

)
ds.

Now ∇Psf = e−sPs(∇f) and |∇f | ≤ 1 almost everywhere since ‖f‖Lip ≤ 1. It follows that,

for every t ≥ 0,

G(t) ≤ 1 + λ2

∫ ∞
t

e−2sG(s) ds.

Let H(t) be the logarithm of the right hand side of this inequality. Then H ′(t) ≥ −λ2e−2t,

t ≥ 0. Therefore

logG(0) ≤ H(0) = −
∫ ∞

0

H ′(t) dt ≤ λ2

2

which is the conclusion. Proposition 4.1 is established.

Finally, we turn to the isoperimetric inequality itself. The next proposition, implicit in

[Pi1, p. 180], is the first step towards our goal and is the Gaussian analogue of Proposition

1.1. Given Borel sets A,B in Rn and t ≥ 0, we set

KP
t (A,B) =

∫
A

Pt(IB) dγn.

Note that KP
t (A,A) = ‖Pt/2(IA)‖22. The notation KP

t is used in analogy with that of a

kernel. Large deviation estimates of the kernel KP
t (A,B) for the Wiener measure when

d(A,B) > 0 are developed in [Fa2]. As in the classical case, we will simply agree that

“smooth” for the boundary ∂A of a set A means that
∫
|∇f | dγn approaches the Gaussian

length On−1(∂A) of the boundary of A when f is a smooth function on Rn which approaches

the indicator function of A.

PROPOSITION 4.2. — For every Borel set A in Rn with smooth boundary ∂A and every

t ≥ 0,

KP
t (A,Ac) ≤ (2π)−1/2 arccos(e−t)On−1(∂A).

14



Proof. It is similar to the proof of Proposition 1.1. Let f, g be smooth functions on Rn.

For every t ≥ 0, we can write∫
g (Ptf − f) dγn =

∫ t

0

(∫
g LPsf dγn

)
ds

= −
∫ t

0

(
〈∇Psg,∇f〉 dγn

)
ds.

Now, by an integration by parts on the representation of Ps using the Gaussian density,

∇Psg =
e−s

(1− e−2s)1/2

∫
Rn

y g
(
e−sx+ (1− e−2s)1/2y

)
dγn(y) .

Hence∫
g (Ptf − f) dγn

= −
∫ t

0

e−s

(1− e−2s)1/2

∫ ∫
〈∇f(x), y〉 g

(
e−sx+ (1− e−2s)1/2y

)
dγn(x)dγn(y) ds.

This identity of course extends to g = IAc . Since∫ ∫
〈∇f(x), y〉 dγn(x)dγn(y) = 0 ,

we see that, for every s ≥ 0,

−
∫ ∫
〈∇f(x), y〉IAc

(
e−sx+ (1− e−2s)1/2y

)
dγn(x)dγn(y)

≤
∫ ∫ (

〈∇f(x), y〉
)−
dγn(x)dγn(y)

=
1

2

∫ ∫ ∣∣〈∇f(x), y〉
∣∣dγn(x)dγn(y)

=
1√
2π

∫
|∇f | dγn .

The conclusion follows by letting f approximate IA since
∫
|∇f | dγn will then approach

On−1(∂A) when ∂A is smooth enough. The proof is complete.

The inequality of the proposition is sharp in many respects. When t→∞, it reads as

(4.2) On−1(∂A) ≥ 2

√
2

π
µ(A)

(
1− µ(A)

)
,

that is, when µ(A) = 1
2 , the maximun of the isoperimetric function ϕ1 ◦ Φ−1(x) at x = 1

2 .

Inequality (4.2) may actually be interpreted as Cheeger’s isoperimetric constant [Ch] of the

Gauss space (Rn, γn). It is responsible for the optimal factor π/2 which appears in the vector
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valued inequalities of [Pi1]. Indeed, one may integrate (4.2) by the coarea formula (cf. [Ya])

to get that for every smooth function f with mean zero,∫
|f | dγn ≤

√
π

2

∫
|∇f | dγn,

an inequality which is easily seen to be best possible (take n = 1 and f on R be defined by

f(x) = x/ε for |x| ≤ ε, f(x) = x/|x| elsewhere, and let ε→ 0).

Proposition 4.2 may also be tested on half-spaces, as we did with balls in the first section.

Namely, if we let H = {x ∈ Rn; 〈x, u〉 ≤ a}, |u| = 1, a ∈ R, it is easily checked (reduce to

dimension one by rotational invariance and use polar coordinates) that

KP
t (H,Hc) =

1

2π

∫ ∫
R2

e−x
2/2e−y

2/2I{x≤a, e−tx+(1−e−2t)1/2y>a}dxdy

=
1

2π

∫ 2π

0

∫ ∞
0

re−r
2/2I{r sin(ϕ)≤a, r sin(ϕ+θ)>a}dϕdr

=
θ

2π
e−a

2/2 − 1

2π

∫ |a|/ sin((π−θ)/2)

|a|

(
2 arcsin

(
|a|/r

)
+ θ − π

)
re−r

2/2dr

where θ = arccos(e−t). The absolute value of the second term of the latter may be bounded

by
θ

2π

(
e−a

2/2 − e−a
2/2 cos2(θ/2)

)
≤ θ

2π
· a

2

2
tan2(θ/2) e−a

2/2 ≤ θ3

2π
a2 e−a

2/2

at least for all θ small enough. In particular, since θ = arccos(e−t) and thus θ ∼
√

2t when

t→ 0, it follows that

(4.3) KP
t (H,Hc) = (2π)−1/2 arccos(e−t)On−1(∂H) + o

(√
t
)

for t→ 0.

On the basis of Proposition 4.2, we now would need lower estimates of the functional

KP
t (A,Ac) for the small values of t. The typical isoperimetric approach would be to use a

symmetrisation result of C. Borell [Bo4], which is the analogue of (1.7), asserting that if H

is a half-space with the same measure as A, then for every t ≥ 0,

KP
t (A,A) ≤ KP

t (H,H).

Hence KP
t (A,Ac) ≥ KP

t (H,Hc) and we would conclude from Proposition 4.2 and (4.3) that

On−1(∂A) ≥ On−1(∂H),

i.e. (2.6). In particular, and as in the classical case, isoperimetry is therefore equivalent to

saying that for every Borel subset A

(4.4)
∥∥Pt(IA)

∥∥
2
≤
∥∥Pt(IH)

∥∥
2
, t ≥ 0 ,
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when H is a half-space with the same measure as A. This inequality is thus established in

[Bo4], extending ideas of [Eh2] and based on techniques developed in the classical case in

[Ba] and [B-T], via the Gaussian isoperimetric inequality. It is moreover established, as (1.7)

in [B-T], for functions and not only indicator functions. It might be that a simple direct

approach to (4.4) (and (1.7) as we mentioned in Section 1) is possible ; it would then be an

ideal complement to the simple approach presented here.

Our approach to bound KP
t (A,A) will be to use hypercontractivity as the corresponding

semigroup estimate in this Gaussian setting. Namely, we simply write for a Borel set A with

(smooth) boundary ∂A in Rn and p(t) = 1 + e−t that

(4.5) KP
t (A,A) =

∥∥Pt/2(IA)
∥∥2

2
≤
∥∥IA∥∥2

p(t)
, t ≥ 0.

Hence

KP
t (A,Ac) ≥ γn(A)

[
1− γn(A)(2/p(t))−1

]
.

Therefore, combined with Proposition 4.2,

On−1(∂A) ≥ (2π)1/2γn(A) sup
t>0

[(
arccos(e−t)

)−1(
1− γn(A)(2/p(t))−1

)]
.

Setting θ = arccos(e−t) ∈ (0, π2 ], we need evaluate

sup
0<θ≤π2

1

θ

[
1− exp

(
−1− cos θ

1 + cos θ
log

1

γn(A)

)]
.

To this aim, we can note for example that

1− cos θ

1 + cos θ
≥ θ2

2π
,

and choosing thus θ of the form

θ = (2π)1/2

(
log

1

γn(A)

)−1/2

provided that γn(A) ≤ exp(−8/π), we find that

On−1(∂A) ≥
(

1− 1

e

)
γn(A)

(
log

1

γn(A)

)1/2

.

Due to the equivalence (2.8), there exists then δ > 0 such that when γn(A) ≤ δ,

On−1(∂A) ≥ 1

3
ϕ1 ◦ Φ−1

(
γn(A)

)
.

When δ < γn(A) ≤ 1/2, we can always use (4.2) to get

On−1(∂A) ≥
√
π

2
γn(A) ≥ c(δ)ϕ1 ◦ Φ−1

(
γn(A)

)
17



for some c(δ) > 0. These two inequalities, together with symmetry, yield that, for some

numerical constant 0 < c < 1 and all measurable subsets A in Rn with smooth boundary,

(4.6) On−1(∂A) ≥ c ϕ1 ◦ Φ−1
(
γn(A)

)
,

that is, a form of the Gaussian isoperimetric inequality. One may try to tighten the preceding

computations to reach the value c = 1 in (4.6). This however does not seem likely and it is

certainly in the hypercontractive estimate (4.5) that a good deal of the best constant is lost.

One may wonder why this is the case ; it seems that hypercontractivity, while an equality

on exponential functions, is perhaps not that sharp on indicator functions. This would have

to be understood in connection with (4.4). Note finally that one may integrate back (4.6) to

obtain the analogue of (2.1), that is, if γn(A) = Φ(a), for every r ≥ 0,

γn(Ar) ≥ Φ(a+ cr).

It is likely that the preceding approach has some interesting consequences in more ab-

stract settings. In particular, one could imagine to study, with these tools, the hypercon-

tractivity constant of a compact Riemannian manifold, or rather to investigate isoperimet-

ric properties implied by hypercontractivity (see [Led6]). This would be in analogy with

the isoperimetric inequalities obtained in [Va1], [Va2], [C-SC-V] via the dimension of the

underlying heat semigroup.
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