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Abstract
We explore upper bounds on Kantorovich transport distances between probability
measures on the Euclidean spaces in terms of their Fourier-Stieltjes transforms, with
focus on non-Euclidean metrics. The results are illustrated on empirical measures in
the optimal matching problem on the real line.
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1 Introduction

The Kantorovich transport distance between two (Borel) probability measures μ and
ν on a separable metric space (E, ρ) is defined as

W(μ, ν) = inf
λ

∫∫
ρ(x, y) dλ(x, y), (1.1)
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where the infimum is running over all measures λ on the product space E × E with
marginals μ and ν. It describes the minimal cost needed to pay in order to transport
one measure to the other one, given that it costs ρ(x, y) to move a particle x to a
particle y.

Under mild moment assumptions, W may be used to metrize the topology of weak
convergence in the space of probability distributions on E . This metric and related
functionals also appear in a natural way in many mathematical areas and concrete
problems. It is therefore not surprising that the literature on the optimal transport is
rather rich and intensive, reflecting various models and focusing on specific families
of probability distributions (see for example [3,14,21] which provide numerous refer-
ences on the subject). Nevertheless, often it is not easy to compute or even to estimate
the distance W(μ, ν). One exceptional case is the real line E = R with the canonical
Euclidean metric ρ(x, y) = |x − y|, when (1.1) is reduced to the well-known formula

W(μ, ν) =
∫ ∞

−∞
|Fμ(x) − Fν(x)| dx (1.2)

in terms of the distribution functions Fμ and Fν associated to μ and ν. The case of the
Euclidean space E = R

d of dimension d ≥ 2 turns out already to be quite non-trivial.
In analogywith theEsseen’s Fourier analytic inequalitywhich serves as a traditional

approach to the central limit theorem with respect to the Kolmogorov distance (cf.
e.g. [4]), one general upper bound on W has been recently considered in [7] for
the class of compactly supported measures on R

d in terms of their Fourier-Stieltjes
transforms (characteristic functions). To describe this bound, in the sequel we denote
by |x | = √

x · x the Euclidean norm and by x · y = x1y1 + · · · + xd yd the inner
product of the vectors x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R

d ; m is used to denote
a vector with integer components, that is, an element of the lattice Zd .

Note that any probability measure μ which is supported on the cube (torus) Qd =
(−π, π ]d is uniquely determined by the multi-indexed sequence

fμ(m) =
∫
Qd

eim·x dμ(x), m ∈ Z
d .

Assuming that μ and ν are supported on [0, π ]d , it was shown in [7] that, for any
t > 0,

W(μ, ν) ≤
⎛
⎝∑

m �=0

1

|m|2 e
−t |m|2 ∣∣ fμ(m) − fν(m)

∣∣2
⎞
⎠

1/2

+ 2
√
dt . (1.3)

In further applications, the right-hand side of (1.2) should be optimized over the
parameter t (or, just a suitable choice of t may work).

In this paper we extend this bound to non-Euclidean metrics of the form

ρ(x, y) = ω(|x − y|), x, y ∈ R
d .
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This equality does define a metric, once ω : [0,∞) → R is a modulus of con-
tinuity, i.e., a non-decreasing, continuous, subadditive function such that ω(0) = 0
and ω(δ) > 0 for δ > 0. The subadditivity refers to the property
ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2) (δ1, δ2 ≥ 0), ensuring the triangle inequality for ρ.

Thus, in accordance with (1.1) define the transport distance

Wω(μ, ν) = inf
λ

∫∫
ω(|x − y|) dλ(x, y) (1.4)

for a modulus of continuity ω, where, as before, the infimum is taken over all
probability measures λ on R

d × R
d with marginals μ and ν. Here, one interest-

ing choice ω(δ) = δα with 0 < α ≤ 1 corresponds to the Zolotarev “ideal”
metric Wω(μ, ν) = ζα(μ, ν) of order α (as a consequence of the Kantorovich-
Rubinstein theorem). In the class of measures with a fixed compact support, these
metrics are getting stronger when the parameter α is decreasing (and, as the limit case,
ζ0(μ, ν) = supA |μ(A) − ν(A)| becomes the total variation distance). With this in
mind, it is natural to try to strengthen a number of statements known about W with
respect to the Euclidean distance ρ by means of the Zolotarev metrics. Here is a main
result in this paper whose proof we postpone to Sects. 5–7.

Theorem 1.1 Given probability measures μ and ν on [0, π ]d with Fourier-Stieltjes
transforms fμ and fν , for any modulus of continuity ω and any t > 0,

Wω(μ, ν) ≤ √
d

⎛
⎝∑

m �=0

ω2
(

π

|m|
)

e−t |m|2 | fμ(m) − fν(m)|2
⎞
⎠

1/2

+ 6ω(
√
dt).

(1.5)

Due to a different argument in the proof of (1.5), this generalization of (1.3) contains
however an additional factor

√
d in front of the sum (see, however, Remark 7.2 below

for a certain improvement). In both cases, we use smoothing ofμ and ν by “Gaussian”
measures on the torus. Another choice of the smoothing distribution leads to the
following alternative, which may be viewed as a multidimensional variant of the
Berry–Esseen bound:

Wω(μ, ν) ≤ √
d

⎛
⎝ ∑

1≤‖m‖∞≤T

ω2
(

π

|m|
)

| fμ(m) − fν(m)|2
⎞
⎠

1/2

+6ω

(√
12 d

T

)
.

(1.6)
Here T > 0 is arbitrary, and ‖m‖∞ = max1≤l≤d |ml | for m = (m1, . . . ,md).

The sharpness of inequalities (1.3) and (1.5)–(1.6)may be illustrated on the example
of discrete random measures in the so-called matching problem. Some history of the
problem and general consequences from Theorem 1.1 are discussed in Sect. 2. These
results are specialized to the class of Zolotarev’s distances in Sect. 3, where we explore
the way how the asymptotic behaviour of ζα(μn, νn) is influenced by the parameter
α (on average). Here, the index α = 1/2 turns out to be critical. As shown in Sect. 4,
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using this parameter, one may study sharper forms in the one-dimensional minimax
grid matching (the problem which motivates applications of Zolotarev’s distances). In
this connection, the role of order statistics is discussed separately in Sect. 8.

2 Empirical Measures

Given two collections X1, . . . , Xn and Y1, . . . ,Yn of random elements in (E, ρ), the
optimal matching problem is concernedwith an asymptotic behaviour of the quantities
such as

inf
σ

1

n

n∑
k=1

ρ
(
Xk,Yσ(k)

)
,

where the infimum is taken over all permutations σ of {1, . . . , n}. This expression can
be recognized as the transport distance W(μn, νn) as in (1.1) between the empirical
measures

μn = 1

n

n∑
k=1

δXk , νn = 1

n

n∑
k=1

δYk , (2.1)

assigning the mass 1/n to each point in both collections. Of a large interest is in
particular the question on the average value E (W(μn, νn)), assuming that all Xk and
Yl are independent and distributed according to a common law μ.

On the real line E = Rwith the Euclidean distance, the question is relatively simple
and can be explored directlywith the help of the identity (1.2). For compactly supported
μ, it easily yields the standard rate (which is best possible), and more generally (cf.
[6]), for an arbitrary law μ with distribution function F(x) = μ((−∞, x]) we have

E (W(μn, νn)) ∼ 1√
n

⇐⇒
∫ ∞

−∞

√
F(x)(1 − F(x)) dx < ∞. (2.2)

Here and elsewhere, A ∼ B means that c−1B ≤ A ≤ cB for some constant c ≥ 1
independent of n.

In dimension d = 2, if the two independent samples are drawn from the uniform
distribution μ on the square [0, 1] × [0, 1], the rate at which E

(
W(μn, νn)

)
tends to

zero with respect to the growing number of observations turns out to be essentially
the same as in dimension one, but up to a rather delicate logarithmic correction. More
precisely, the famous AKT optimal matching theorem, due to Ajtai et al. [1], asserts
that

E (W(μn, νn)) ∼
√
log n

n
, (2.3)

and actually W(μn, νn) is of order (2.3) for large n with high probability. As for
dimensions d ≥ 3, the asymptotics depends on the dimension and is given by
E (W(μn, νn)) ∼ n−1/d .

These results, especially the non-trivial two-dimensional relation (2.3), inspired
further investigations in this direction, starting with [16,20]. As was shown by Tala-
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grand [18], E (W(μn, νn)) admits an upper bound for any law μ supported on [0, 1]d
with the same rates as in the case of the uniform distribution, i.e.

E (W(μn, νn)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
(

1√
n

)
if d = 1,

O

(√
log n
n

)
if d = 2,

O
(

1
n1/d

)
if d ≥ 3.

In addition, Talagrand [12,19], undertook a deep investigation of optimal matching
with the tool of the majorizing measure theory, thus replacing the original combina-
torial approach of [1].

Quite surprisingly, the use of (1.3) not only simplifies the proof of the AKT the-
orem, but also expands the scope of its application, by weakening the independence
assumption between Xk’s and Yl ’s, cf. [7]. Anyhow, the one-dimensional case remains
to be exceptional, since the standard rate in it does not follow the general asymptotic
rule n−1/d (in which one may include the case of the plane by ignoring a slowly
increasing logarithmic factor). This inspires the idea that in some sense the property
E

(
W(μn, νn)

) ∼ 1/
√
n should be properly strengthened, by modifying the matching

problem itself, or by strengthening the Euclidean metric on the line, with involvement
of the Zolotarev metrics, for example. Such a strengthening is indeed possible, which
has become known only recently due to the work of Dereich et al. [9] and Fournier and
Guillin [11] on the asymptotic behaviour of the Kantorovich power distances between
empirical measures. Some of the results of [11] are mentioned in the next section.

Now, turning to the Fourier analytic inequality (1.5) about the transport distance
(1.4) (associated to an arbitrary modulus of continuity ω), first let us apply it to one
general class of empirical measures. For a random variable ξ , define the Orlicz norm

‖ξ‖ψ2 = inf
{
r > 0 : E exp{ξ2/r2} ≤ 2

}
,

generated by the Young function ψ2(t) = et
2 − 1 (t ∈ R). In a similar manner, one

defines the Orlicz norm for other Young functions including ψs(t) = exp{|t |s} − 1
(s ≥ 1). These norms are commonly used to control large deviations of ξ viaMarkov’s
inequality.

Proposition 2.1 Let (X1,Y1), . . . , (Xn,Yn) be pairwise independent random vectors
with values in [0, π ]d ×[0, π ]d such that Xk and Yk have equal distributions for each
k ≥ 1. For any t > 0, the empirical measures μn and νn defined in (2.1) satisfy

cE (Wω(μn, νn)) ≤
√
d√
n

⎛
⎝∑

m �=0

ω2
(

π

|m|
)

e−t |m|2
⎞
⎠

1/2

+ ω(
√
dt) (2.4)

with some absolute constant c > 0. Moreover, if all Xk,Yl are independent, a similar
inequality also holds for the ψ2-norm of Wω(μn, νn) in place of the L1-norm.
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As another variant based on the application of the inequality (1.6), we also have
the bound

cE (Wω(μn, νn)) ≤
√
d√
n

⎛
⎝ ∑

1≤‖m‖∞≤T

ω2
(

π

|m|
)⎞
⎠

1/2

+ ω

(√
d

T

)
, (2.5)

which is valid for any T > 0 (and similarly, for the ψ2-norm).

Proof By the assumption, the expression

fμn (m) − fνn (m) = 1

n

n∑
k=1

(
eim·Xk − eim·Yk

)
(2.6)

represents the normalized sum of non-correlated, complex-valued random variables
with mean zero and modulus ≤ 2. Hence, for any m ∈ Z

d ,

E

(
| fμn (m) − fνn (m)|2

)
≤ 4

n
,

and applying Jensen’s inequality in (1.5), we then get the desired bound

E (Wω(μn, νn)) ≤ 2
√
d√
n

⎛
⎝∑

m �=0

ω2
(

π

|m|
)

e−t |m|2
⎞
⎠

1/2

+ 6ω(
√
dt). (2.7)


�
In the second assertion of Proposition 2.1, the terms in the sum (2.6) are independent

and have mean zero. One can therefore appeal to the following well-known fact.

Lemma 2.2 Let the complex-valued random variables ξ1, . . . , ξn be independent, with
|Re(ξk)| ≤ 1, |Im(ξk)| ≤ 1, andE(ξk) = 0 for k = 1, . . . , n. Then, for the normalized
sum Sn = 1√

n
(ξ1 + · · · + ξn), we have

E

(
e|Sn |2/r2

)
≤ 2,

where one may take r = 4√
3
. That is, ‖Sn‖ψ2 ≤ 4√

3
.

Let us recall the argument. Any real-valued random variable ξ such that |ξ | ≤ 1
and E(ξ) = 0 has a Laplace transform satisfying E (etξ ) ≤ et

2/2 for all t ∈ R (the
coefficient 1/2 in the exponent is optimal and is attained for the symmetric Bernoulli
distribution on {−1, 1}). If the random variables in the lemma are real-valued, we
therefore obtain a similar bound

E (et Sn ) ≤ et
2/2, t ∈ R.
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One can now integrate this inequality over the Gaussian measure on the real line with
mean zero and standard deviation 0 < σ < 1, to get

E

(
eσ 2S2n/2

)
≤ 1

σ
√
2π

∫ ∞

−∞
et

2/2 e−t2/(2σ 2) dt = 1√
1 − σ 2

.

In the complex-valued case as in the lemma, the above inequality may be applied
separately to the real and imaginary parts of Sn , which gives, by replacing σ with 2σ ,

E exp
{
2σ 2 |Re(Sn)|2

}
≤ 1√

1 − 4σ 2
, E exp

{
2σ 2 |Im(Sn)|2

}
≤ 1√

1 − 4σ 2
.

Hence, by Cauchy’s inequality,

E

(
eσ 2|Sn |2

)
= E exp

{
σ 2 (|Re(Sn)|2 + |Im(Sn)|2

)}

≤ (
E exp

{
2σ 2 |Re(Sn)|2

})1/2 (
E exp

{
2σ 2 |Im(Sn)|2

})1/2 ≤ 1√
1 − 4σ 2

.

Here, the right-hand side is equal to 2 for σ = 1
4

√
3, proving the lemma.

Thus, returning to (2.6) and applying the lemma,weget‖ fμn (m)− fνn (m)‖ψ2 ≤ r√
n

with r = 4/
√
3, or equivalently

∥∥ | fμn (m) − fνn (m)|2 ∥∥
ψ1

≤ r2

n
.

Now, squaring (1.5), we have

W2
ω(μn, νn) ≤ 2d

∑
m �=0

ω2
(

π

|m|
)

e−tm2 | fμ(m) − fν(m)|2 + 72ω2
(√

dt
)

,

and, by the triangle inequality for the ψ1-norm,

∥∥W2
ω(μn, νn)

∥∥
ψ1

≤ 2dr2

n

∑
m �=0

ω2
(

π

|m|
)

e−t |m|2 + 72

log 2
ω2

(√
dt

)

(where we used that ‖1‖ψ1 = 1
log 2 ). This gives

∥∥Wω(μn, νn)
∥∥

ψ2
≤

√
2d r√
n

⎛
⎝∑

m �=0

ω2
(

π

|m|
)

e−t |m|2
⎞
⎠

1/2

+
√

72

log 2
ω

(√
dt

)
.


�
The inequality (2.5) and itsψ2-version are derived from (1.6) by similar arguments.
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3 Kantorovich–Rubinstein Theorem and Zolotarev Distances

In the setting of an abstract separablemetric space (E, ρ), theKantorovich–Rubinstein
duality theorem asserts that, for any two (Borel) probability measures μ and ν on E ,

W(μ, ν) = sup
u

∣∣∣∣
∫

u dμ −
∫

u dν

∣∣∣∣. (3.1)

Here, the supremum is taken over all functions u : E → R such that |u(x) − u(y)| ≤
ρ(x, y), x, y ∈ E , i.e., with Lipschitz semi-norm ‖u‖Lip ≤ 1 (cf. [10]).

Definition 3.1 In the case of the Euclidean space E = R
d , the Zolotarev distance

ζα(μ, ν) of order α ∈ (0, 1] is defined to be the right-hand side of (3.1) with supremum
taken over all u : E → R such that |u(x) − u(y)| ≤ |x − y|α , x, y ∈ R

d .

The latter inequality describes the Lipschitz property of the function u with respect
to the metric ρ(x, y) = |x− y|α onRd . HenceWω = ζα for the modulus of continuity
ω(δ) = δα . The Zolotarev distance is also defined for α > 1, but we do not consider
it here (cf. [22,23]).

Some further generalization of the Kantorovich distance (1.1) between the proba-
bility measures on R

d is given by

Tα(μ, ν) = inf
λ

∫∫
|x − y|α dλ(x, y), α > 0.

As before, the infimum is running over all probability measures λ on R
d × R

d with
marginals μ and ν. Thus, ζα = Tα for 0 < α ≤ 1. In the case α > 1, T1/α

α represents
a metric in the space of all probability measures μ on Rd with finite absolute moment∫ |x |α dμ(x). It is called a minimal distance, or the Kantorovich power distance, and
also (not quite correctly) the Wasserstein distance of order α (with a standard notation
Wα which we avoid here). The relationship between ζα and Tα for α > 1 for one
dimensional measures was investigated by Rio [15] in his study of transport central
limit theorems.

When ω(δ) = δα , 0 < α ≤ 1, the transport bounds (2.4)–(2.5) may easily be
simplified by optimizing the right-hand sides over t > 0 and T > 0. Let us start with
dimension d = 1 and apply (2.4). If α > 1

2 , one may let t → 0, and then (2.4) leads
to the standard rate

E
(
ζα(μn, νn)

) ≤ c1√
n

( ∞∑
m=1

1

m2α

)1/2

≤ c2√
2α − 1

1√
n

with some absolute constants c j > 0.

If α ≤ 1
2 , one may replace the sum in (2.4) with an integral. Note that m−2α e−tm2

is decreasing in m, so that

∞∑
m=1

1

m2α e−tm2 ≤ 1 +
∫ ∞

1

1

x2α
e−t x2 dx = 1 + 1

t
1
2−α

∫ ∞
√
t

1

y2α
e−y2 dy. (3.2)
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If α < 1
2 and 0 < t ≤ 1, the last integral is bounded, up to a constant, by 1

1−2α tα− 1
2 ,

and then (3.2) gives, after replacing s = √
t ,

cE
(
ζα(μn, νn)

) ≤ 1√
n

1√
1 − 2α

sα− 1
2 + sα.

Choosing s = 1/n, we get

E
(
ζα(μn, νn)

) ≤ c

nα
√
1 − 2α

.

If α = 1
2 and 0 < t ≤ 1, the last integral in (3.2) is bounded, up to a constant, by

log(2/
√
t), and then (3.2) gives, after replacing s = √

t ,

cE
(
ζα(μn, νn)

) ≤ 1√
n

√
log(2/s) + √

s.

Choosing s = 1/n, we can summarize.

Corollary 3.2 In the setting of Proposition 2.1 for the one dimensional case we have

√
2α − 1 E

(
ζα(μn, νn)

) ≤ c√
n
, if

1

2
< α ≤ 1,

E
(
ζα(μn, νn)

) ≤ c√
n

√
log(2n), if α = 1

2
,

√
1 − 2α E

(
ζα(μn, νn)

) ≤ c

nα
, if 0 < α <

1

2
,

where c is a positive absolute constant. If all Xk,Yl are independent, similar bounds
also hold for the ψ2-norm of the random variable ζα(μn, νn).

Thus, the value α = 1
2 is critical, meaning that the rate in the upper bound is

changing for smaller values of the parameter α. This interesting phenomenon is deeply
connected with the following well-known theorem due to S. Bernstein (cf. [24]): If a
(2π)-periodic function u on the line belongs to the Lipschitz class Lip(α)with α > 1

2 ,
then this function can be expanded into the absolutely convergent Fourier series

u(x) = a0
2

+
∞∑

m=1

(
am cos(mx) + bm sin(mx)

)
.

In fact,
∑∞

m=1

(|am | + |bm |) ≤ Cα ‖u‖Lip(α) where the constant Cα depends on α

only. Moreover, this property is no longer true for α = 1
2 .
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Now, let d ≥ 2.We apply the bound (2.5), which in the polynomial case ω(δ) = δα

takes the form

cd E
(
ζα(μn, νn)

) ≤ 1√
n

⎛
⎝ ∑

1≤‖m‖∞≤T

1

|m|2α

⎞
⎠

1/2

+ 1

T α
, T > 0, (3.3)

with some d-dependent constant cd > 0 (possibly varying from line to line below).
Clearly, if T ≥ 1 and d ≥ 3,

∑
1≤‖m‖∞≤T

1

|m|2α ≤ Cd

∑
1≤k≤T

kd−1−2α ≤ C ′
dT

d−2α,

and (3.3) is simplified to

cd E
(
ζα(μn, νn)

) ≤ 1√
n
T

d
2 −α + 1

T α
= 2

nα/d
,

where we choose T = n on the last step. Similarly, if d = 2 and α < 1,

∑
1≤‖m‖∞≤T

1

|m|2α ≤ C
∑

1≤k≤T

k1−2α ≤ C ′

1 − α
T 2−2α,

so that

cE
(
ζα(μn, νn)

) ≤ 1√
n

C ′

1 − α
T 1−α + 1

T α
≤ C ′′

1 − α

1

nα/2 .

Also, if d = 2 and α = 1, we recover the upper bound in the AKT theorem (2.3).
Collecting these statements together, we arrive at:

Corollary 3.3 In the setting of Proposition 2.1 for the dimension d ≥ 2, we have

E
(
ζα(μn, νn)

) ≤ Cd
An(α)

nα/d
,

where the constant Cd depends on d only, and

An(α) =
⎧⎨
⎩

1
1−α

if d = 2, α < 1,√
log(2n) if d = 2, α = 1,
1 if d ≥ 3, α ≤ 1.

If all Xk,Yl are independent, a similar bound also holds for theψ2-norm of ζα(μn, νn).

For independent random vectors X1, . . . , Xn having a common distribution μ,
similar bounds on E (Tα(μn, μ)) have been derived by Fournier and Guillin [11].
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They considered a general multidimensional case of samples with not necessarily
compactly supported distributions, by involving moment conditions. In particular, if
the moment M2α = ∫ |x |2α dμ(x) is finite for a fixed α > 0, it was shown that

cE
(
Tα(μn, μ)

) ≤ M1/2
2α ×

⎧⎪⎨
⎪⎩

1√
n

if α > d/2,
1√
n
log(2n) if α = d/2,

n−α/d if α < d/2,

where the constant c > 0 depends only on α and d. Thus, in the case of a compactly
supported measure μ, this statement coincides with Corollary 3.3 for d ≥ 3 with
an arbitrary α ∈ (0, 1] and for d = 2 with α ∈ (0, 1) (without specifying the type
of dependence on α when this parameter approaches 1). In the case d = 2 and
α = 1, the assertion is not optimal, while Corollary 3.3 yields the AKT theorem.
Also, when d = 1, Corollary 3.2 provides an improvement for α = 1

2 . Another
advantage of Corollaries 3.2–3.3 is that the random vectors Xk are not required to be
equally distributed (and fully independent).

The authors of [11] have also studied concentration properties. Specializing their
Theorem 2 to the case where μ is compactly supported, it was shown that, if
(X1, . . . , Xn) is a sample drawn from μ, then

∥∥Tα(μn, μ)
∥∥

ψ2
≤ c√

n
for α > d/2.

This is consistent with the second part of Corollary 3.2 when d = 1 and 1
2 < α ≤ 1.

If α < d/2, Theorem 2 of [11] provides the bound

∥∥Tα(μn, μ)
∥∥

ψd/α
≤ c

nα
,

which is stronger than the concentration part of Corollary 3.2 when d = 1, α < 1
2 ,

since the Orlicz norm for the Young function ψd/α(t) = exp{|t |d/α} − 1 is stronger
than the one for ψ2.

Let us also emphasize that the 1√
n
-rate forE (Tα(μn, μ))withα > 1may essentially

be improved for a large family of probability distributions μ. Staying on the real line,
introduce the functional

Jα(μ) =
∫ ∞

−∞
(
F(x)(1 − F(x))

) α
2 p(x)1−α dx,

where F is the distribution function associated to the probability measure μ, and
where p denotes the density of its absolutely continuous component (with respect to
the Lebesgue measure on the line). For α = 1, this integral thus becomes the one from
the characterization (2.2). As was shown in [6], cf. Corollary 5.9, for any fixed α > 1,

(
E (Tα(μn, μ))

)1/α ∼ 1√
n

if and only if Jα(μ) < ∞.
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If 1 < α < 2, the integral Jα(μ) is finite, as long as, for example, μ represents a
transform of the two-sided exponential distribution with density 1

2 e
−|x | under a map

with finite Lipschitz semi-norm (equivalently, μ has a positive Cheeger isoperimetric
constant).

If d ≥ 2, an almost sure behaviour of Tα(μn, νn) was considered by Barthe and
Bordenave [2] (under certain constraints on α and d). In particular, if μ represents a
uniform distribution over a bounded set 
 ⊂ R

d with volume |
| > 0, and μn and νn
are independent samples drawn from μ of size n, it was shown that, with probability
one,

lim
n→∞

[
nα/d Tα(μn, νn)

] = cd(α) |
|, 0 < α < d/2

(for some unknown constant cd(α) > 0).

4 Minimax Grid Matching

Following [17], for two collections of points X = {x1, . . . , xn} and Y = {y1, . . . , yn}
in the cube [0, 1]d , define the minimax matching length

L(X ,Y ) = min
σ

max
1≤k≤n

|xk − yσ(k)|,

where the minimum is running over all permutations σ of {1, . . . , n}. This quantity
represents a metric in the space of all unordered collections with fixed n. Equivalently,

L(X ,Y ) = lim
α→∞ (Tα(μn, νn))

1/α

for the associated empirical measures μn and νn as in (2.1). Note that L(X ,Y ) ≥
W(μn, νn).

If X and Y are independent samples drawn from a given distributionμ, theminimax
grid matching problem is to find the rate of E (L(X ,Y )) at which it tends to zero as
n → ∞. When μ is a uniform distribution on the cube, it was shown by Shor and
Yukich [17] that, for d ≥ 3,

E
(
L(X ,Y )

) ∼
(
log n

n

)1/d

.

If d = 2, the rate is somewhat different,

E
(
L(X ,Y )

) ∼ (log n)3/4√
n

,
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which was proved earlier by Leighton and Shor [13]. Like for W, this case turns out
to be very similar to the one dimensional case (d = 1), when

E
(
L(X ,Y )

) ∼ 1√
n

(cf. e.g. [6]). The improvement is thus only in the logarithmic term.
Nevertheless, using Corollary 3.2, one can improve the rate in dimension one, if

counting not all, but most of the points in perfect matching. Namely, for a (non-empty)
subset I of {1, . . . , n}, define the restricted minimax matching length

LI (X ,Y ) = min
σ

max
k∈I |xk − yσ(k)|,

still assuming that the minimum is running over all permutations σ of {1, . . . , n}. In
the next observation, there is no need to keep the assumption that the distributions of
the components Xk are identical.

Proposition 4.1 Let Y = (Y1, . . . ,Yn) be an independent copy of the random vector
X = (X1, . . . , Xn) which has independent coordinates with values in [0, 1]. With
high probability, for each ε > 0, there is a (random) set I ⊂ {1, . . . , n} of cardinality
|I | ≥ (1 − ε) n such that

LI (X ,Y ) ≤ Cε

log2(2n)

n
,

where one may take Cε = C/ε2 with an absolute constant C.

Here, “with high probability”means the probability 1−n−p, where p can be chosen
as large as we wish by a proper choice of the constant C . We thus obtain a much better
1
n -rate (modulo a logarithmic term) by removing a small proportion of “bad” points in
both samples X and Y and constructing a perfect matching between remaining “good”
points.

Proof WeapplyCorollary 3.2 in its strongerψ2-versionwith themodulus of continuity
ω(δ) = √

δ. It is telling us that the random variable

ξn = 1

n
inf
σ

n∑
k=1

|Xk − Yσ(k)|1/2,

where the infimum is running over all permutations σ of {1, . . . , n}, has the norm

‖ξn‖ψ2 ≤ c√
n
log1/2(2n)

with some absolute constant c > 0. Hence, the event An = {ξn ≥ c
√
p log(2n)√

n
} has

probability

P(An) ≤ 2 exp
{ − p log(2n)

} = 2

(2n)p
, (4.1)
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for any p ≥ 1, the complementary set, we thus have an opposite inequality ξn <

c
√
p log(2n)√

n
, which means that for some σ ,

1

n

n∑
k=1

|Xk − Yσ(k)|1/2 < c
√
p
log(2n)√

n
.


�
Let πn denote the uniform discrete probability measure on {1, . . . , n}, so that to

recognize the above left-hand side as the expectation with respect to πn . By Markov’s
inequality, it follows that, for any ε ∈ (0, 1),

πn

{
k ≤ n : |Xk − Yσ(k)|1/2 ≥ c

√
p
log(2n)

ε
√
n

}
< ε,

that is,

πn

{
k ≤ n : |Xk − Yσ(k)| ≥ c2 p

log2(2n)

ε2n

}
< ε.

In other words, the set

I =
{
k ≤ n : |Xk − Yσ(k)| < c2 p

log2(2n)

ε2n

}

has cardinality |I | ≥ (1− ε)n, and, by the construction, LI (X ,Y ) < c2 p log2(2n)

ε2n
. So,

by (4.1),

P

{
inf|I |≥(1−ε)n

LI (X ,Y ) ≥ c2 p
log2(2n)

ε2n

}
≤ 1

n p
.


�

5 Reduction to the Torus

Before turning to the proof of Theorem 1.1, we need some preparation. By the
Kantorovich-Rubinstein theorem, applied to the Euclidean space R

d with metric
ρ(x, y) = ω(|x − y|), where ω is a modulus of continuity, the transport distance (1.4)
between given (Borel) probability measures μ and ν on Rd admits a dual description
(3.1), i.e.,

Wω(μ, ν) = sup
u

∣∣∣∣
∫
Rd

u dμ −
∫
Rd

u dν

∣∣∣∣. (5.1)

Here, the supremum is taken over all functions u such that |u(x) − u(y)| ≤ ρ(x, y),
x, y ∈ R

d , which for short we denote as the Lipschitz property ‖u‖Lip(ω) ≤ 1. To
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bound Wω via (5.1) by means of the Fourier analysis, it is desirable to require some
additional properties of u like periodicity. To this aim, let us consider a related quantity

W̃ω(μ, ν) = sup
u

∣∣∣∣
∫
Qd

u dμ −
∫
Qd

u dν

∣∣∣∣, (5.2)

assuming that μ and ν are supported on the cube Qd = (−π, π ]d , and where the
supremum is taken over all (2π)-periodic functions u on R

d with Lipschitz semi-
norm ‖u‖Lip(ω) ≤ 1. By the definition, W̃ω ≤ Wω. On the other hand, we have:

Lemma 5.1 If μ and ν are supported on [0, π ]d , then Wω(μ, ν) = W̃ω(μ, ν).

Proof Introduce a canonical functional

‖z‖ = dist(z, 2πZd) = min
m∈Zd

|z − 2πm|, z ∈ R
n,

describing the (shortest) distance from a point to the lattice. It is subadditive, i.e.
‖z1 + z2‖ ≤ ‖z1‖ + ‖z2‖ for all z1, z2 ∈ R

d . Hence

ρ̃(x, y) = ω(‖x − y‖)

is non-negative, symmetric, and satisfies the triangle inequality on R
d , by the subad-

ditivity of ω. The only axiom of a metric which is not satisfied by ρ̃ is the separation:
we have ρ̃(x, y) = 0 if and only if x − y ∈ 2πZd .

If u : Rd → R is (2π)-periodic and ‖u‖Lip(ω) ≤ 1, then, for all x, y ∈ R
d and

m ∈ Z
d ,

|u(x) − u(y)| = |u(x) − u(y + 2πm)| ≤ ω
(|(x − y) − 2πm|),

so,
|u(x) − u(y)| ≤ ρ̃(x, y). (5.3)

Conversely, this inequality readily implies that u is (2π)-periodic with ‖u‖Lip(ω) ≤ 1.
Thus, (5.3) describes the class of all functions u on R

d participating in the definition
(5.2).

Being restricted to the cube Qd = (−π, π ]d , ρ̃ becomes a metric: For x, y ∈ Qd ,
necessarily x − y ∈ (−2π, 2π)d , so that ρ̃(x, y) = 0 ⇒ x = y. Hence, the property
(5.3) being applied to the functions u on Qd describes the Lipschitz property with
respect to the metric ρ̃. Let us also note that, if u is defined on Qd and satisfies (5.3)
for all x, y ∈ Qd , its (2π)-periodic extension to R

d satisfies the same inequality for
all x, y ∈ R

d (since the right-hand side of (5.3) is invariant under adding to x and y
elements of 2πZd ).

Thus, when the measures μ and ν are supported on Qd , the quantity W̃ω(μ, ν)

represents the Kantorovich distance between μ and ν with respect to the metric ρ̃. By
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the Kantorovich-Rubinstein theorem (3.1), one can therefore conclude that

W̃ω(μ, ν) = inf
λ

∫∫
ω(‖x − y‖) dλ(x, y), (5.4)

where the infimum is running over all Borel probability measures λ on Qd × Qd

with marginals μ and ν. Moreover, if μ and ν are supported on [0, π ]d , then all such
λ’s have to be supported on [0, π ]d × [0, π ]d . But, for x, y ∈ [0, π ]d , necessarily
x − y ∈ [−π, π ]d , and for this point the origin is the closest element in the lattice
2πZd . Hence, ‖x − y‖ = |x − y|, and the right-hand side of (5.4) becomesWω(μ, ν),
according to (1.4). 
�
Remark 5.2 In the definition (5.2) one may additionally require that the function u be
of class C∞(Rd). Indeed, for ε > 0, consider the convolution of u with a Gaussian
density

uε(x) = 1

(2πε2)d/2

∫
u(x − y) e−|y|2/2ε2 dy, x ∈ R

d .

Clearly, u is also (2π)-periodic, of class C∞(Rd) and with ‖uε‖Lip(ω) ≤ 1. Writing

uε(x) − u(x) = 1

(2π)d/2

∫
(u(x − εy) − u(x)) e−|y|2/2 dy,

it follows that

sup
x

|uε(x) − u(x)| ≤ 1

(2π)d/2

∫
ω(ε|y|) e−|y|2/2 dy

= E
(
ω(ε|Z |)) ≤ 3ω(ε

√
d) → 0 as ε → 0,

where Z is a standard normal random vector inRd . Thus, in (5.2) the functions u may
be replaced with uε’s.

Here, on the last step we applied the following Jensen-type inequality, which will
be needed later on in the smoothing argument.

Lemma 5.3 For any random variable ξ ≥ 0,

E (ω(ξ)) ≤ 3ω(E(ξ)). (5.5)

Proof One may assume that ξ is bounded, say 0 ≤ ξ ≤ M , and E(ξ) = a. Given this
linear constraint, the inequality (5.5) is affine with respect to the distribution of ξ . The
collection of all probability distributions μ on [0, M] with ∫

x dμ(x) = a is a convex
compact space (for the weak topology) and has as extreme “points” the probability
measures with at most two atoms. This means that we only need to check (5.5) for
Bernoulli distributions μ, that is, for random variables ξ taking two values, say x > 0
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and y > 0 with probabilities p and q = 1 − p respectively (0 ≤ p ≤ 1), and such
that px + qy = a.

For definiteness, let x ≥ y, so that x ≥ a ≥ y. Then, since px ≤ a,

E (ω(ξ)) = pω(x) + qω(y) ≤ a

x
ω(x) + ω(a). (5.6)

On the other hand, by the subadditivity property of moduli of continuity, ω(nδ) ≤
nω(δ) for all δ ≥ 0 and all positive integers n. Introducing n = [ xa ], we therefore
have

ω(x) = ω
( x
a

· a
)

≤ ω((n + 1) · a) ≤ (n + 1) ω(a) ≤ 2n ω(a) ≤ 2x

a
ω(a).

Plugging this bound in (5.6), we arrive at (5.5). 
�

Note that any non-decreasing concave function ω on the half-axis [0,∞) such that
ω(0) = 0 (and which is not identically zero) represents a modulus of continuity. In
that case, the constant 3 in (5.5) may be removed, by the usual Jensen inequality.

6 Fourier Analytic Inequalities

Let us fix a modulus of continuity ω and the associated metric ρ(x, y) = ω(|x − y|)
on Rd .

The integrals in (5.2) may be explored in terms of the Fourier-Stieltjes transforms
fμ and fν . As in Remark 5.2, suppose that a function u participating in the supremum
(5.2) is of class C∞(Rd), so that it has an absolutely convergent Fourier series

u(x) =
∑
m∈Zd

am eim·x (6.1)

with
∑

m∈Zd |am | < ∞. Integrating this equality over the measures μ and ν, we get

∫
Qd

u dμ −
∫
Qd

u dν =
∑
m∈Zd

am ( fμ(m) − fν(m)). (6.2)

To bound the right-hand side, one may follow a standard argument used in the proof
of Bernstein’s theorem on the absolute convergence of Fourier series, cf. e.g. [24],
Ch. VI.

Given h ∈ R
d , it follows from (6.1) that

u(x + h) − u(x − h) = 2i
∑
m∈Zd

am sin(m · h) eim·x ,
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so that, by the Parseval identity,

1

(2π)d

∫
Qd

|u(x + h) − u(x − h)|2 dx = 4
∑
m∈Zd

|am |2 sin2(m · h).

Using the Lipschitz assumption |u(x + h) − u(x − h)| ≤ ω(2|h|), it implies

∑
m∈Zd

|am |2 sin2(m · h) ≤ 1

4
ω2(2|h|). (6.3)

We choose here h = π 2−k−1 θ with θ ∈ R
d , |θ | = 1, and k = 1, 2, . . . This gives

∑
m∈Zd

|am |2 sin2
(
π 2−k−1 m · θ

)
≤ 1

4
ω2

(
π 2−k

)
.

In particular, if |m| ≤ 2k , the expression under the sine function does not exceed π/2
in absolute value, so,

sin2
(
π 2−k−1m · θ

)
≥ 4

π2

(
π 2−k−1m · θ

)2 = 4−k (m · θ)2 ,

which thus gives

∑
|m|≤2k

|am |2 4−k (m · θ)2 ≤ 1

4
ω2

(
π 2−k

)
. (6.4)

Averaging the left-hand side over θ with respect to the uniform measure σd−1 on the
unit sphere Sd−1 in Rd , we get

∑
|m|≤2k

|am |2 4−k |m|2 ≤ d

4
ω2

(
π 2−k

)
. (6.5)

It makes sense to restrict the summation on the left to the integral values of m with
length |m| ≥ 2k−1, under which 4−k |m|2 ≥ 1

4 , and then

∑
2k−1≤|m|<2k

|am |2 ≤ d ω2
(
π 2−k

)
.

Hence, by Cauchy’s inequality,

∑
2k−1≤|m|<2k

|am | | fμ(m) − fν(m)| ≤ √
d ω(π 2−k)

( ∑
2k−1≤|m|<2k

| fμ(m) − fν(m)|2
)1/2

.
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Performing summation over all k ≥ 1 and applying Cauchy’s inequality once more,
we get

⎛
⎝∑

m �=0

|am | | fμ(m) − fν(m)|
⎞
⎠

2

≤
∞∑
k=1

∑
2k−1≤|m|<2k

dω2(π 2−k)| fμ(m) − fν(m)|2

≤ d
∑
m �=0

ω2
(

π

|m|
)

| fμ(m) − fν(m)|2.

Thus, the last expression may be used as an upper bound for the square of the left-
hand side of (6.2). Taking the supremum over all admissible functions u as in (5.2),
we arrive at the following Fourier analytic inequality.

Proposition 6.1 Given two probability measures μ and ν on Qd = (−π, π ]d ,

W̃ω(μ, ν) ≤ √
d

⎛
⎝∑

m �=0

ω2
(

π

|m|
)

| fμ(m) − fν(m)|2
⎞
⎠

1/2

. (6.6)

It would be interesting to explore whether or not the coefficient
√
d may be removed

from the right-hand side of (6.6) (which is indeed possible for the Euclidean metric
corresponding to the linear modulus of continuity ω(δ) = δ). As was noticed to us by
S. Sodin, some improvement might be achieved, if we perform averaging over θ not
in the inequality (6.4), but on the earlier step such as (6.3) with h = rθ . To this aim,
we need the following:

Lemma 6.2 If |v|2 ≤ d/2, v ∈ R
d , then

∫
Sd−1

sin2(v · θ) dσd−1(θ) ≥ |v|2
2d

. (6.7)

Proof Let ξ be a random variable with Eξ2 = 1 and β4 = Eξ4 < ∞. The function
u(t) = E sin2(tξ) satisfies u(0) = u′(0) = u′′′(0) = 0, u′′(0) = 2. Since also
u(iv)(t) = −8E ξ4 cos(2tξ), necessarily |u(iv)(t)| ≤ 8β4. Hence, by Taylor’s formula,
for some point t1 between zero and t ,

u(t) = t2 + u(iv)(t1)

4! t4 ≥ t2 − 8β4

4! t4 ≥ 1

2
t2, (6.8)

where in the last inequality we assume that t2 ≤ 3/(2β4). We apply this inequality
on the unit sphere to ξ = √

d θ1 in which case β4 = 3d
d+2 < 3. Since v · θ has the

same distribution under σd−1 as |v| ξ/
√
d, the inequality (6.7) follows from (6.8) by

choosing t = |v|/√d. 
�
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Putting h = rθ , r > 0, and taking the average over θ ∈ Sd−1 in (6.3), we get, by
(6.7), that

r2

2d

∑
r |m|≤√

d/2

|am |2 |m|2 ≤ 1

4
ω2(πr).

This bound may be used for the values r = √
d/2 2−k , when it takes the form as in

(6.5)

∑
|m|≤2k

|am |2 4−k |m|2 ≤ ω2
(
π
√
d/2 2−k

)
.

Continuing to argue as before, we therefore arrive at the following slight sharpening
of (6.6).

Proposition 6.3 Given two probability measures μ and ν on Qd,

W̃ω(μ, ν) ≤ 2

⎛
⎝∑

m �=0

ω2
(

π
√
d/2

|m|
)

| fμ(m) − fν(m)|2
⎞
⎠

1/2

. (6.9)

7 Smoothed Fourier Analytic Inequalities: Proof of Theorem 1.1

The inequality (6.6) may be useless, especially for discrete measures, when the sum
on the right-hand side is not convergent. However, in typical approximation prob-
lems, fμ(m) and fν(m) are close to each other on large integer m-balls. In this case,
smoothing arguments are useful, which we first describe in a somewhat general form.

Identifying Qd = (−π, π ]d with the torus (S1)d = S1 × · · · × S1 via the map

x →
(
eix1 , . . . , eixd

)
, x = (x1, . . . , xd),

one may introduce the convolution operation. Namely, for any two probability mea-
suresμ and κ on Qd , their convolution is defined as the probability measure μ̃ = μ∗κ

on Qd satisfying ∫
u dμ̃ =

∫∫
u(x + y) dμ(x) dκ(y) (7.1)

in the class of all (2π)-periodic continuous functions u on Rd . Applying this equality
to u(x) = eim·x , it is expressed in terms of the Fourier-Stieltjes transforms as

fμ̃(m) = fμ(m) fκ(m), m ∈ Z
d , (7.2)

which may also be taken as the definition of convolution.
Being supported on Qd , the measure μ̃ is close to μ in a weak sense, as long as κ is

close to the delta measure at the origin. More precisely, if ρ is the metric generated by
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the modulus of continuity ω, and ‖u‖Lip(ω) ≤ 1 (in addition to the (2π)-periodicity),
it follows from (7.1) and the Jensen-type inequality (5.5) that

∣∣∣∣
∫

u dμ̃ −
∫

u dμ

∣∣∣∣ =
∣∣∣∣
∫∫

(u(x + y) − u(x)) dμ(x) dκ(y)

∣∣∣∣
≤

∫∫
ρ(x + y, x) dμ(x) dκ(y)

=
∫

ω(|y|) dκ(y) ≤ 3ω
(
E (|K |)),

where the random vector K is distributed according to κ . Here, the factor 3 may be
removed once ω is a concave function.

Now, let us start with a random vector H = (H1, . . . , Hd) with characteristic
function h(s) = E (eis·H ), s ∈ R

d , and apply the above inequality to the random
vector K = Ud(H) = (U (H1), . . . ,U (Hd)), where the map U : R → (−π, π ]
is defined by U (x) = x − 2πk for π(2k − 1) < x ≤ π(2k + 1) (k ∈ Z). In
particular, |U (x)| ≤ |x | for all x ∈ R and thus |Ud(x)| ≤ |x | for all x ∈ R

d . Hence
E (|K |) ≤ E (|H |), so that

∣∣∣∣
∫

u dμ̃ −
∫

u dμ

∣∣∣∣ ≤ 3ω
(
E (|H |)). (7.3)

On the other hand, since Ud(x) − x = −2πk(x) for each x ∈ R
d with some

k(x) ∈ Z
d , the characteristic functions of H and K coincide on the lattice Zd :

E

(
eim·K

)
= E

(
eim·Ud (H)

)
= E

(
eim·(H−2πk(H))

)
= h(m).

Hence, according to (7.2), fμ̃(m) = fμ(m) h(m) for all m ∈ Z
d .

Now, given two probability measures μ and ν on Qd , one can apply the triangle
inequality for the metric W̃ω, to derive from (7.3) a smoothing inequality

W̃ω(μ, ν) ≤ W̃ω (μ̃, ν̃) + 6ω(E |H |).

Here, the left distance coincides with Wω(μ, ν) as long as μ and ν are supported
on [0, π ]d (Lemma 5.1). Applying Proposition 6.1 to the measures μ̃ and ν̃, we thus
obtain the following smoothed Fourier analytic inequality for the metric Wω.

Proposition 7.1 Let ω be a modulus of continuity. Given probability measures μ and
ν on [0, π ]d , for any random vector H in R

d with characteristic function h,

Wω(μ, ν) ≤ √
d

( ∑
m �=0

ω2
(

π

|m|
)

| fμ(m) − fν(m)|2 |h(m)|2
)1/2

+ 6ω (E (|H |)) .

(7.4)



60 Page 22 of 27 Journal of Fourier Analysis and Applications (2020) 26 :60

Here, the constant 6 may be replaced with 2, if ω is a concave function. The factor√
d may also be removed for the canonical case ω(δ) = δ, as was shown in [7] with

a different argument.
Choosing a characteristic function h which decays sufficiently fast, the series in

(7.4) will be convergent. In practice, one applies this inequality to the random vectors
H = βZ with a parameter β > 0, and then tries to optimize in β > 0 the bound

Wω(μ, ν) ≤ √
d

( ∑
m �=0

ω2
( π

|m|
)

| fμ(m)− fν(m)|2 |h(βm)|2
)1/2

+6ω
(
β E (|Z |)),

(7.5)
where now h(s) denotes the characteristic function of Z .

Proof of Theorem 1.1. As a classical smoothing probability distribution, one may take
for Z in (7.5) a standard normal random vector in Rd . In this case h(s) = e−|s|2/2 and
E |Z | ≤ √

d . Replacing β = √
t , we then get the desired inequality (1.5). 
�

Adifferent choice of the smoothing distribution leads to the inequality (1.6).Assum-
ing that the characteristic function h(s) of the random vector H in Rd is supported on
the cube ‖s‖∞ ≤ T , from (7.4) we immediately obtain that

Wω(μ, ν) ≤ √
d

( ∑
1≤‖m‖∞≤T

ω2
( π

|m|
)

| fμ(m) − fν(m)|2
)1/2

+ 6ω
(
E (|H |)).

(7.6)
Our aim is now to indicate a specific hwith this property and to estimate the expectation
on the right-hand side of (7.6).

Let us start with v(s) = (1 − 2 |s|)+, s ∈ R, which represents the characteristic
function of the probability measure on the real line with density

q(x) = 2(1 − cos(x/2))

πx2
, x ∈ R.

Although v is compactly supported, the second moment of the measure with density
q is infinite (and the first moment is also infinite). So, we consider the convolution

w(s) = 1

c
(v ∗ v)(s) = 1

c

∫ ∞

−∞
v(s − r)v(r) dr , (7.7)

where c is a normalizing constant corresponding to the condition w(0) = 1, i.e.,

c =
∫ ∞

−∞
v(s)2 ds = 2

∫ 1/2

0
(1 − 2s)2 ds = 1

3
.

Clearly, w is also a characteristic function, namely – for the density 2π
c q(x)2 (by

Plancherel’s theorem), which has a finite second moment.
Now, since v is supported on (− 1

2 ,
1
2 ), the function w is supported on the inter-

val (−1, 1). If ξ is a random variable with characteristic function w, then E(ξ2) =
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−w′′(0). Using the property that the function v′(s) = −2 sign(s) 1{|s|<1/2} serves as
a Radon-Nikodym derivative of v, from (7.7) we obtain that

w′(s) = 3
∫ ∞

−∞
v′(s − r)v(r) dr = 3

∫ ∞

−∞
v(s − r)v′(r) dr

and

w′′(s) = 3
∫ ∞

−∞
v′(s − r)v′(r) dr .

Hence

E(ξ2) = −3
∫ ∞

−∞
v′(−r)v′(r) dr = 3

∫ ∞

−∞
v′(r)2 dr = 3

∫ 1/2

−1/2
4 dr = 12.

Finally, consider the random vector H = 1
T (ξ1, . . . , ξd), where ξ1, . . . , ξd are

independent copies of ξ . It has characteristic function

h(s) = w(s1/T ) · · · w(sd/T ), s = (s1, . . . , sd) ∈ R
d ,

which is vanishing in the cube ‖s‖∞ ≤ T . Hence, (7.6) is applicable, and in this case,
we have E (|H |2) = d

T 2 E (ξ2) = 12 d
T 2 , thus proving (1.6).

Remark 7.2 A slight sharpening of (1.5) may be achieved by applying Proposition 6.3,
which leads to the bound

Wω(μ, ν) ≤ 2

⎛
⎝∑

m �=0

ω2
(

π
√
d/2

|m|
)

e−t |m|2 | fμ(m) − fν(m)|2
⎞
⎠

1/2

+ 6ω(
√
dt).

8 Matching and Order Statistics

Returning to the one dimensional Corollary 3.1, let us recall that, for empirical mea-
sures μn and νn as in (2.1), the Zolotarev distance is reduced to the representation

ξn ≡ ζα(μn, νn) = 1

n
inf
σ

n∑
k=1

|Xk − Yσ(k)|α, (8.1)

where the infimum is running over all permutations σ of {1, . . . , n}. Moreover, if
α = 1, one may use the general formula (1.2) which further simplifies (8.1) to the
explicit expression

ζ1(μn, νn) = W(μn, νn) = 1

n

n∑
k=1

|X∗
k − Y ∗

k |
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in terms of the order statistics, that is, the non-decreasing rearrangements
X∗
1 ≤ · · · ≤ X∗

n and Y ∗
1 ≤ · · · ≤ Y ∗

n inside each collection of points (the random-
ness of μn and νn is irrelevant). One may therefore wonder, whether or not a similar
description continues to hold for the expression (8.1) in the case α < 1. However, this
case turns out to be quite different. To see this, define

ξ∗
n = 1

n

n∑
k=1

|X∗
k − Y ∗

k |α.

By the construction, ξ∗
n ≥ ξn , and we have ξ∗

n = ξn for α = 1. The next statement
shows that ξ∗

n is asymptotically much larger than ξn for independent samples.

Proposition 8.1 Let 0 < α < 1, and let the random variables X1, . . . , Xn,Y1, . . . ,Yn
be independent and have a common log-concave density on (0, 1). If n is large enough,
then ξ∗

n > ξn with positive probability.

Proof It is sufficient to see that E(ξ∗
n ) > E(ξn) for all n large enough. We use the

following two-sided bound

1

12
≤ sup

a<x<b
p2(x)Var(X) ≤ 1,

which holds true for any random variable X , whose distribution μ is supported on an
interval (a, b) and has there a log-concave density p (cf. e.g. [5], Proposition 2.1).
One may rewrite these inequalities as

1√
12 sup0<t<1 I (t)

≤ √
Var(X) ≤ 1

sup0<t<1 I (t)
(8.2)

in terms of the associated function I (t) = p(F−1(t)) defined via the inverse F−1 :
(0, 1) → (a, b) of the distribution function F(x) = P{X ≤ x} restricted to (a, b).

If X1, . . . , Xn are drawn independently from a common law μ with density p(x),
the k-th order statistic X∗

k has density

pk(x) = n!
(k − 1)! (n − k)! F(x)k−1(1 − F(x)

)n−k
p(x), x ∈ R,

where F(x) = μ((−∞, x]), x ∈ R, is the associated distribution function. This
formula implies that, all the functions pk are log-concave as well. Hence, by (8.2), cf.
also [6], Lemma 6.1, we have

1√
12 sup0<t<1 Jk,n(t)I (t)

≤
√
Var(X∗

k ) ≤ 1

sup0<t<1 Jk,n(t)I (t)
, (8.3)
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where

Jk,n(t) = n!
(k − 1)! (n − k)! t

k−1(1 − t)n−k .

For example, ifU1, . . . ,Un is another sample drawn from the uniform distribution
on (0, 1), then the associated I -function is equal to 1, so that for the k-th order statistic
U∗
k , (8.3) gives

1√
12 sup0<t<1 Jk,n(t)

≤
√
Var(U∗

k ) ≤ 1

sup0<t<1 Jk,n(t)
. (8.4)

To further estimate from below the left-hand side in (8.3), one may apply the upper
bound in (8.2) with X = X1, which leads to

√
Var(X∗

k ) ≥ 1√
12 sup0<t<1 Jk,n(t)

√
Var(X1).

In view of (8.4), this implies that

Var(X∗
k ) ≥ 1

12
Var(X1)Var(U

∗
k ).

Thus, using the log-concavity hypothesis, we have reduced the problem of the
estimation of the variance of the k-th order statistic to the simple case where the
sample is drawn from the uniform distribution on (0, 1). In that case, U∗

k has a beta
distribution with parameters (k, n − k + 1), so,

Var(U∗
k ) = k(n − k + 1)

(n + 1)2 (n + 2)
.

Hence

Var(X∗
k ) ≥ k(n − k + 1)

12 (n + 1)2 (n + 2)
Var(X1) ≥ c

n
Var(X1),

where the last bound holds with an absolute constant c > 0 in the region n
4 ≤ k ≤ 3n

4 .
Now, since the distributions of X∗

k are log-concave, so are the distributions of
X∗
k − Y ∗

k . Hence, the quantities ‖X∗
k − Y ∗

k ‖q = (E (|X∗
k − Y ∗

k |q))1/q are equivalent
to each other within an absolute factor for the region 0 ≤ q ≤ 2. That is, with some
absolute constants

‖X∗
k − Y ∗

k ‖α ≥ ‖X∗
k − Y ∗

k ‖0 ≥ c ‖X∗
k − Y ∗

k ‖2 = c
√
2Var(X∗

k ) ≥ c′
√
n

√
Var(X1)
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for n
4 ≤ k ≤ 3n

4 in the last inequality. It follows that, for n ≥ 2,

E (ξ∗
n ) = 1

n

n∑
k=1

E
(|X∗

k − Y ∗
k |α) = 1

n

n∑
k=1

‖X∗
k − Y ∗

k ‖α
α

≥ c

n

(
Var(X1)

)α/2 ∑
n
4≤k≤ 3n

4

1

nα/2 ≥ c′

nα/2

(
Var(X1)

)α/2
.

As a result, E(ξ∗
n ) > E(ξn) for all n large enough in view of the upper bounds on

E(ξn) in Corollary 3.1. 
�
Remark 8.2 From another point of view, matching for one-dimensional concave costs
are investigated in [8].
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