Some basic properties and characterizations of Gaussian measures and variables

The note (to be completed!) collects, in a random order, some basic properties and classical characterizations of Gaussian measures and variables, which may be found in standard references in probability theory and mathematical statistics. In the text, γ_{n}, or $\mathcal{N}(0$, Id $)$, denote the standard Gaussian distribution on the Borel sets of \mathbb{R}^{n} with density $\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\frac{1}{2}|x|^{2}}$, $x \in \mathbb{R}^{n}$, with respect to the Lebesgue measure λ_{n}.

Table of contents

1. Rotational invariance
2. Wick's formula
3. Fourier transform
4. Integration by parts and Stein's characterization
5. Heat and Mehler kernels
6. Maximum of entropy

Drafted by M. L. v1 November 2023

7. Chi-squared distribution

8. Independence of empirical mean and variance

9. Maximum of iid Gaussians

References

1 Rotational invariance

The rotational invariance of Gaussian measures may be described by two main features.

1) If X is a random variable on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with law $\mathcal{N}(0$, Id $)$, and if O is an orthogonal matrix (transformation) on \mathbb{R}^{n}, then $O X$ is also distributed according to $\mathcal{N}(0$, Id $)$. This is checked on the covariance matrix.

Maxwell's observation is that the standard Gaussian measure in \mathbb{R}^{n} is the only probability measure which is both invariant under orthogonal transformations and is a product measure. More precisely, if μ is a probability measure on the Borel sets of \mathbb{R}^{n} with those two properties, necessarily $\mu=\mathcal{N}\left(0, \sigma^{2} I d\right)$ for some $\sigma>0$. For a quick argument, after convolution with $\mathcal{N}\left(0, \varepsilon^{2} \mathrm{Id}\right)$ for some $\varepsilon>0$, it may be assumed that μ has a smooth, strictly positive, density f with respect to the Lebesgue measure. But this density is both a function of $|x|^{2}$ by rotational invariance and a product (necessarily of the same one-dimensional density), which forces the Gaussian density (take the partial derivatives of $\log f$).
2) If X and Y are centered Gaussian vectors on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, independent and identically distributed, for every real $\theta, X(\theta)=X \sin (\theta)+Y \cos (\theta)$ and $X^{\prime}(\theta)=X \cos (\theta)-$ $Y \sin (\theta)$ are Gaussian vectors, independent with the same law as X. In others words, the couples $\left(X(\theta), X^{\prime}(\theta)\right)$ have the same law as (X, Y). This may easily be checked on the covariances.

The Kac-Bernstein theorem [6, 4] ensures conversely that if X and Y are independent real random variables such that $X+Y$ and $X-Y$ are also independent, then both X and Y must have normal distributions. More generally, the statement holds true as soon as $X(\theta)$ and $X^{\prime}(\theta)$ are independent for some θ which is not an integer multiple of $\frac{\pi}{2}$.

Cramér's theorem [5] (initially announced by P. Lévy) expresses that if X and Y are two independent (non-constant) real random variables such that $X+Y$ is normally distributed, then both X and Y follow a normal distribution.

2 Wick's formula

It is clear that, for a real random variable X on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, the collection of moments

$$
\mathbb{E}\left(X^{2 k+1}\right)=0, \quad \mathbb{E}\left(X^{2 k}\right)=\frac{(2 k)!}{2^{k} k!}, k \geq 0
$$

characterize the law of X as the standard normal distribution $\mathcal{N}(0,1)$.
Wick's formula is a kind of multilinear extension which expresses any product of the coordinates of a Gaussian random vector by the covariance of this vector. Namely, if X is a centered Gaussian vector in \mathbb{R}^{n}, for any even collection $\left(\xi_{1}, \ldots, \xi_{2 k}\right)$ of linear functions on \mathbb{R}^{n},

$$
\mathbb{E}\left(\xi_{1}(X) \cdots \xi_{2 n}(X)\right)=\sum \prod_{\ell=1}^{k} \mathbb{E}\left(\xi_{i_{\ell}}(X) \xi_{j_{\ell}}(X)\right)
$$

where the sum runs over all unordered sequences of unordered pairs $\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{k}, j_{k}\right\}$ where each of the integers $1, \ldots, 2 k$ appears only once.

For example, if $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is a centered Gaussian vector in \mathbb{R}^{4},

$$
\begin{aligned}
\mathbb{E}\left(X_{1} X_{2} X_{3} X_{4}\right)= & \mathbb{E}\left(X_{1} X_{2}\right) \mathbb{E}\left(X_{3} X_{4}\right)+\mathbb{E}\left(X_{1} X_{3}\right) \mathbb{E}\left(X_{2} X_{4}\right) \\
& +\mathbb{E}\left(X_{1} X_{4}\right) \mathbb{E}\left(X_{2} X_{3}\right)
\end{aligned}
$$

Among other proofs, this type of identity may be obtained from the form of the Fourier transform

$$
\mathbb{E}\left(e^{i\langle u, X\rangle}\right)=e^{-\frac{1}{2} \mathbb{E}\left(\langle u, X\rangle^{2}\right)}, \quad u=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathbb{R}^{4}
$$

Identification of the terms with all the u_{ℓ} 's distincts in Taylor expansions of both sides at the order 4 yields the conclusion.

3 Fourier transform

The Fourier transform, of characteristic function in the probabilistic language, of the standard Gaussian measure γ_{n} is given by

$$
\varphi_{\gamma_{n}}(u)=e^{-\frac{1}{2}|u|^{2}}, \quad u \in \mathbb{R}^{n}
$$

In other words, the density $f(x)=\frac{1}{(2 \pi)^{\frac{\pi}{2}}} e^{-\frac{1}{2}|x|^{2}}, x \in \mathbb{R}^{n}$, of γ_{n}, is its own Fourier transform \hat{f} (up to the standard Fourier normalizations).

4 Integration by parts and Stein's characterization

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, locally Lipschitz and such that $x f$ and f^{\prime} are integrable with respect to γ_{1},

$$
\begin{equation*}
\int_{\mathbb{R}} x f d \gamma_{1}=\int_{\mathbb{R}} f^{\prime} d \gamma_{1} \tag{1}
\end{equation*}
$$

This immediately follows by integration by parts on the form of the Gaussian density

$$
\int_{\mathbb{R}} x f d \gamma_{1}=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) x e^{-\frac{1}{2} x^{2}} d \lambda_{1}(x) .
$$

On \mathbb{R}^{n}, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth enough,

$$
\int_{\mathbb{R}^{n}} x f d \gamma_{n}=\int_{\mathbb{R}^{n}} \nabla f d \gamma_{n}
$$

as vector integrals.
Stein's observation, leading to various approximation results cf. [2], expresses that (1) ranging over a rich enough family of functions f characterizes γ_{1} (over all probability measures with a first moment). Let indeed μ be a probability on \mathbb{R} with a first moment such that $\int_{\mathbb{R}} x f d \mu=\int_{\mathbb{R}} f^{\prime} d \mu$ for every, say, bounded continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$. Applied to the real and imaginary parts of the family of functions $f(x)=e^{i u x}, x \in \mathbb{R}, u \in \mathbb{R}$, this integration by parts formula yields that the Fourier transform $\varphi(u), u \in \mathbb{R}$, of μ satisfies the differential equation $\varphi^{\prime}(u)=-u \varphi(u), u \in \mathbb{R}$, so that $\varphi(u)=e^{-\frac{1}{2} u^{2}}, u \in \mathbb{R}$, the Fourier transform of γ_{1}.

5 Heat and Mehler kernels

Let

$$
\begin{equation*}
h_{t}(x)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{1}{4 t}|x|^{2}}, \quad t>0, x \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

be the standard heat kernel on \mathbb{R}^{n}, fundamental solution of the heat equation $\partial_{t} h_{t}=\Delta p_{t}$. In other words, h_{t} is the density of the normal law $\mathcal{N}(0,2 t)$.

The convolution semigroup $H_{t} f(x)=f * h_{t}(x), t>0$, solves

$$
\partial_{t} H_{t} f=\Delta H_{t} f=H_{t} \Delta f
$$

with initial data f. By the definition of h_{t}, the semigroup $H_{t}, t>0$, admits the integral representation

$$
H_{t} f(x)=\int_{\mathbb{R}^{n}} f(x+\sqrt{2 t} y) d \gamma_{n}(x)
$$

for all $t>0, x \in \mathbb{R}^{n}$, and any suitable measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. At $t=\frac{1}{2}, h_{t}$ is just the standard Gaussian density so that $H_{\frac{1}{2}} f(0)=\int_{\mathbb{R}^{n}} f d \gamma_{n}\left(\right.$ while $\left.H_{0} f=f\right)$.

There is however a related Gaussian kernel which has the advantage to be invariant with respect to γ_{n} (as the classical heat kernel is invariant under the Lebesgue measure λ_{n}).

Define the Mehler kernel, for $t>0, x, y \in \mathbb{R}^{n}$, by

$$
\begin{equation*}
p_{t}(x, y)=p_{t}(y, x)=\frac{1}{\left(1-e^{-2 t}\right)^{\frac{n}{2}}} \exp \left(-\frac{e^{-2 t}}{2\left(1-e^{-2 t}\right)}\left[|x|^{2}+|y|^{2}-2 e^{t}\langle x, y\rangle\right]\right) \tag{3}
\end{equation*}
$$

It holds true that $\int_{\mathbb{R}^{n}} p_{t}(x, y) d \gamma_{n}(y)=1$ for all $t>0$ and $x \in \mathbb{R}^{n}$. The Mehler kernel satisfies besides the basic semigroup property with respect to γ_{n},

$$
\int_{\mathbb{R}^{n}} p_{s}(x, z) p_{t}(z, y) d \gamma_{n}(z)=p_{s+t}(x, y)
$$

for all $s, t>0$ and $x, y \in \mathbb{R}^{n}$.
The Mehler kernel generates the Ornstein-Uhlenbeck semigroup

$$
P_{t} f(x)=\int_{\mathbb{R}^{n}} f(y) p_{t}(x, y) d \gamma_{n}(y)
$$

for all $t>0, x \in \mathbb{R}^{n}$, and any suitable measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, which after a suitable change of variable admits the integral representation

$$
\begin{equation*}
P_{t} f(x)=\int_{\mathbb{R}^{n}} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) d \gamma_{n}(y) \tag{4}
\end{equation*}
$$

With the natural extension $P_{0}=\mathrm{Id}$, the family $\left(P_{t}\right)_{t \geq 0}$ defines a Markov semigroup, symmetric in $\mathrm{L}^{2}\left(\gamma_{n}\right)$ and invariant with respect to γ_{n}, that is $\int_{\mathbb{R}^{n}} f P_{t} g d \gamma_{n}=\int_{\mathbb{R}^{n}} g P_{t} f d \gamma_{n}$ and $\int_{\mathbb{R}^{n}} P_{t} f d \gamma_{n}=\int_{\mathbb{R}^{n}} f d \gamma_{n}$. These properties are actually a reformulation of the rotational invariance of Gaussian measures, expressing that under $\gamma_{n} \otimes \gamma_{n}$, the couples

$$
(x \sin (\theta)+y \cos (\theta), x \cos (\theta)-y \sin (\theta))
$$

with $e^{-t}=\sin (\theta)$, are distributed as (x, y).
The infinitesimal generator $\mathrm{L}=\Delta-x \cdot \nabla$ of the Markov semigroup $\left(P_{t}\right)_{t \geq 0}$ fulfills the integration by parts formula

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(-\mathrm{L} g) d \gamma_{n}=\int_{\mathbb{R}^{n}} \nabla f \cdot \nabla g d \gamma_{n} \tag{5}
\end{equation*}
$$

for every smooth functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The spectrum of the operator -L is \mathbb{N}, and the eigenvectors are the Hermite polynomials (cf. [3]). For example, in dimension 1, if $\left(h_{k}\right)_{k \in \mathbb{N}}$ denotes the sequence of Hermite polynomials (normalized in $\mathrm{L}^{2}\left(\gamma_{1}\right)$),

$$
-\mathrm{L} h_{k}=k h_{k}, \quad k \in \mathbb{N} .
$$

In particular, by the integration by parts formula (5),

$$
k \int_{\mathbb{R}} h_{k} f d \gamma_{1}=\int_{\mathbb{R}}\left(-\mathrm{L} h_{k}\right) f d \gamma_{1}=\sqrt{k} \int_{\mathbb{R}} h_{k-1} f^{\prime} d \gamma_{1}
$$

for every smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$, which extends (1) since $h_{1}(x)=x, h_{0}(x)=1, x \in \mathbb{R}$.

6 Maximum of entropy

If P is a probability measure on the Borel sets of \mathbb{R}^{n}, with density f with respect to the Lebesgue measure, its entropy is

$$
\mathrm{H}(P)=-\int_{\mathbb{R}^{n}} f \log (f) d \lambda_{n}
$$

whenever the integral is well-defined, $\mathrm{H}(P)=+\infty$ if not. It is easily seen that $\mathrm{H}\left(\gamma_{n}\right)=$ $\frac{n}{2} \log (2 \pi e)$.

If f and g are probability densities, by Jensen's inequality with respect to the convex function $-\log$ and to the probability measure $f d \lambda_{n}$,

$$
\int_{\mathbb{R}^{n}} f \log \left(\frac{f}{g}\right) d \lambda_{n}=\int_{\mathbb{R}^{n}}(-\log)\left(\frac{g}{f}\right) f d \lambda_{n} \geq-\log \left(\int_{\mathbb{R}^{n}} g d \lambda_{n}\right)=0 .
$$

In other words, $\int_{\mathbb{R}^{n}} f \log (f) d \lambda_{n} \geq \int_{\mathbb{R}^{n}} f \log (g) d \lambda_{n}$.
Let now P be a probability measure with density f and finite entropy $\mathrm{H}(P)$, satisfying $\int_{\mathbb{R}^{n}}|x|^{2} f d \lambda_{n} \leq n\left(=\int_{\mathbb{R}^{n}}|x|^{2} d \gamma_{n}\right)$. If g is the density of the Gaussian distribution γ_{n}, by the preceding,

$$
\begin{aligned}
\mathrm{H}(P) & =-\int_{\mathbb{R}^{n}} f \log (f) d \lambda_{n} \\
& \leq-\int_{\mathbb{R}^{n}} f \log (g) d \lambda_{n} \\
& =\frac{1}{2} \int_{\mathbb{R}^{n}}\left(|x|^{2}+n \log (2 \pi)\right) f d \lambda_{n} \\
& \leq \frac{n}{2}(1+\log (2 \pi))=\mathrm{H}\left(\gamma_{n}\right)
\end{aligned}
$$

since $\int_{\mathbb{R}^{n}}|x|^{2} f d \lambda_{n} \leq n$.
As a conclusion, the standard Gaussian measure γ_{n} maximizes the entropy over all probability measures with density f of finite entropy satisfying $\int_{\mathbb{R}^{n}}|x|^{2} f d \lambda_{n} \leq n$. By the case of equality in Jensen's inequality, the proof shows at the same time that the Gaussian measure γ_{n} is characterized in this way, a result commonly attributed to L. Boltzmann.

7 Chi-squared distribution

If X_{1}, \ldots, X_{n} are independent variables with common law $\mathcal{N}(0,1)$, then $X_{1}^{2}+\cdots+X_{n}^{2}$ follows the classical χ^{2} law with n degree of freedom, expressed by the gamma distribution with density $\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, x \in(0, \infty)$, with respect to the Lebesgue measure.

8 Independence of empirical mean and variance

If $X=\left(X_{1}, \ldots, X_{n}\right)$ is random vector with law $\mathcal{N}(0$, Id $)$, the empirical mean and variance of the sample $\left(X_{1}, \ldots, X_{n}\right)$ defined by

$$
\bar{X}=\frac{1}{n} \sum_{k=1}^{n} X_{k} \quad \text { and } \quad S^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}
$$

are independent. Moreover, $(n-1) S^{2}$ has the same distribution as $\sum_{k=1}^{n-1} X_{k}^{2}$ (that is, follows a χ^{2} law with $n-1$ degree of freedom).

To verify these properties, let O be a $n \times n$ orthogonal matrix, and $Y=O X$. Then $\sum_{k=1}^{n} X_{k}^{2}=\sum_{k=1}^{n} Y_{k}^{2}$, and Y has the same distribution as X. Choosing O such that the coefficients of the last line are all equal to $\frac{1}{\sqrt{n}}$, so that $Y_{n}=\sqrt{n} \bar{X}$, it may be checked that

$$
(n-1) S^{2}=\sum_{k=1}^{n} X_{k}^{2}-n \bar{X}^{2}=\sum_{k=1}^{n} Y_{k}^{2}-Y_{n}^{2}=\sum_{k=1}^{n-1} Y_{k}^{2} .
$$

Since $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ has law $\mathcal{N}(0$, Id $)$, the coordinates Y_{1}, \ldots, Y_{n} are independent standard normal real random variables. As a consequence, $\bar{X}=\frac{1}{\sqrt{n}} Y_{n}$ is independent from $(n-1) S^{2}=$ $\sum_{k=1}^{n-1} Y_{k}^{2}$, which proves the various claims.

9 Maximum of iid Gaussians

It is a classical exercise to check that if $X_{1}, \ldots, X_{n}, n \geq 1$, are independent standard normal random variables on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, then

$$
\begin{equation*}
c \sqrt{\log n} \leq \mathbb{E}\left(\max _{1 \leq k \leq n} X_{k}\right) \leq C \sqrt{\log n} \tag{6}
\end{equation*}
$$

for numerical constants $0<c<C<\infty$.
The upper-bound actually holds in a wider generality. Let $X_{1}, \ldots, X_{n}, n \geq 2$, be centered Gaussian variables on $(\Omega, \mathcal{A}, \mathbb{P})$ with respective variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$. Then, for any $0<p<\infty$, there is a constant $C_{p}>0$ only depending on p such that

$$
\begin{equation*}
\left[\mathbb{E}\left(\max _{1 \leq k \leq n}\left|X_{k}\right|^{p}\right)\right]^{1 / p} \leq C_{p} \max _{1 \leq k \leq n} \sigma_{k} \sqrt{\log n} \tag{7}
\end{equation*}
$$

As a quick proof, by homogeneity, it may be assumed that $\max _{1 \leq k \leq n} \sigma_{k} \leq 1$. For $p \geq 2$, let $\Psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be the convex function equal to $e^{\frac{1}{4} x^{2 / p}}$ on the complement of the interval $\left[0,(2 p-4)^{p / 2}\right]$, and equal to $e^{\frac{1}{4}(2 p-4)}$ on this interval. By Jensen's inequality,

$$
\exp \left(\frac{1}{4}\left[\mathbb{E}\left(\max _{1 \leq k \leq n}\left|X_{k}\right|^{p}\right)\right]^{2 / p}\right) \leq \Psi\left(\mathbb{E}\left(\max _{1 \leq k \leq n}\left|X_{k}\right|^{p}\right)\right) \leq \mathbb{E}\left(\Psi\left(\max _{1 \leq k \leq n}\left|X_{k}\right|^{p}\right)\right)
$$

Now

$$
\begin{aligned}
\mathbb{E}\left(\Psi\left(\max _{1 \leq k \leq n}\left|X_{k}\right|^{p}\right)\right) & \leq e^{\frac{1}{4}(2 p-4)}+\mathbb{E}\left(e^{\frac{1}{4} \max _{1 \leq k \leq n} X_{k}^{2}}\right) \\
& \leq e^{\frac{1}{4}(2 p-4)}+\sum_{k=1}^{n} \mathbb{E}\left(e^{\frac{1}{4} X_{k}^{2}}\right) \\
& \leq e^{\frac{1}{4}(2 p-4)}+n \sqrt{2}
\end{aligned}
$$

from which the claim follows.
Towards the lower-bound in (6), since the X_{1}, \ldots, X_{n} are independent with common law γ_{1}, the distribution function of the random variable $\max _{1 \leq k \leq n} X_{k}$ is $\Phi(t)^{n}, t \in \mathbb{R}$ (where Φ is the distribution function of γ_{1}), so its law has density $n \Phi(x)^{n-1} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}, x \in \mathbb{R}$, with respect to the Lebesgue measure λ_{1} on \mathbb{R}. Hence

$$
\mathbb{E}\left(\max _{1 \leq k \leq n} X_{k}\right)=\int_{\mathbb{R}} x n \Phi(x)^{n-1} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d \lambda_{1}(x)=\int_{\mathbb{R}} n(n-1) \Phi(x)^{n-2} \frac{1}{2 \pi} e^{-x^{2}} d \lambda_{1}(x)
$$

where the second equality follows from the integration by parts formula (1). In particular, if $n=2, \mathbb{E}\left(\max \left(X_{1}, X_{2}\right)\right)=\frac{1}{2 \sqrt{\pi}}$, so that in the following it may be assumed that n is large
enough (larger than some fixed n_{0}). Now, for any $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
\mathbb{E}\left(\max _{1 \leq k \leq n} X_{k}\right) & \geq \int_{\alpha}^{\infty} n(n-1) \Phi(x)^{n-2} \frac{1}{2 \pi} e^{-x^{2}} d \lambda_{1}(x) \\
& \geq n(n-1) \Phi(\alpha)^{n-2} \int_{\alpha}^{\infty} \frac{1}{2 \pi} e^{-x^{2}} d \lambda_{1}(x) \\
& =n(n-1) \Phi(\alpha)^{n-2} \frac{1}{2 \sqrt{\pi}}[1-\Phi(\sqrt{2} \alpha)]
\end{aligned}
$$

Take then $\alpha=\alpha_{n}=\sqrt{2 \log n-\log \log n}, n \geq n_{0}$. Recall the classical tail estimates (cf. [1])

$$
\left(\frac{1}{t}-\frac{1}{t^{3}}\right) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} \leq 1-\Phi(t) \leq \frac{1}{t} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}}
$$

for every $t>0$. By the upper-bound, $\Phi\left(\alpha_{n}\right) \geq 1-\frac{c}{n}$ for some numerical $c>0$, while by the lower-bound, $1-\Phi\left(\sqrt{2} \alpha_{n}\right) \geq \frac{c}{n^{2}} \sqrt{\log n}$. The claim follows.

References

[1] Some basics on Gaussian measures and variables. The Gaussian Blog.
[2] Stein's method and applications. The Gaussian Blog.
[3] Hermite polynomials. The Gaussian Blog.
[4] S. Bernstein. On a property which characterizes a Gaussian distribution. Proceedings of the Leningrad Polytechnic Institute 217, 21-22 (1941).
[5] H. Cramér. Über eine Eigenschaft der normalen Verteilungsfunktion. Math. Z. 41, 405414 (1936).
[6] M. Kac. On a characterization of the normal distribution. Amer. J. of Math. 61, 726-728 (1939).

