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Some basic properties

and characterizations of
Gaussian measures and variables

The note (to be completed!) collects, in a random order, some basic properties and clas-

sical characterizations of Gaussian measures and variables, which may be found in standard

references in probability theory and mathematical statistics. In the text, γn, or N (0, Id),

denote the standard Gaussian distribution on the Borel sets of Rn with density 1

(2π)
n
2
e−

1
2
|x|2 ,

x ∈ Rn, with respect to the Lebesgue measure λn.
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1 Rotational invariance

The rotational invariance of Gaussian measures may be described by two main features.

1) If X is a random variable on a probability space (Ω,A,P) with law N (0, Id), and if O

is an orthogonal matrix (transformation) on Rn, then OX is also distributed according to

N (0, Id). This is checked on the covariance matrix.

Maxwell’s observation is that the standard Gaussian measure in Rn is the only probability

measure which is both invariant under orthogonal transformations and is a product measure.

More precisely, if µ is a probability measure on the Borel sets of Rn with those two properties,

necessarily µ = N (0, σ2Id) for some σ > 0. For a quick argument, after convolution with

N (0, ε2Id) for some ε > 0, it may be assumed that µ has a smooth, strictly positive, density f

with respect to the Lebesgue measure. But this density is both a function of |x|2 by rotational

invariance and a product (necessarily of the same one-dimensional density), which forces the

Gaussian density (take the partial derivatives of log f).

2) IfX and Y are centered Gaussian vectors on a probability space (Ω,A,P), independent and

identically distributed, for every real θ, X(θ) = X sin(θ) + Y cos(θ) and X ′(θ) = X cos(θ)−
Y sin(θ) are Gaussian vectors, independent with the same law as X. In others words, the

couples (X(θ), X ′(θ)) have the same law as (X, Y ). This may easily be checked on the

covariances.

The Kac-Bernstein theorem [6, 4] ensures conversely that if X and Y are independent

real random variables such that X+Y and X−Y are also independent, then both X and Y

must have normal distributions. More generally, the statement holds true as soon as X(θ)

and X ′(θ) are independent for some θ which is not an integer multiple of π
2
.

Cramér’s theorem [5] (initially announced by P. Lévy) expresses that if X and Y are two

independent (non-constant) real random variables such that X + Y is normally distributed,

then both X and Y follow a normal distribution.
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2 Wick’s formula

It is clear that, for a real random variable X on a probability space (Ω,A,P), the collection

of moments

E(X2k+1) = 0, E(X2k) =
(2k)!

2kk!
, k ≥ 0,

characterize the law of X as the standard normal distribution N (0, 1).

Wick’s formula is a kind of multilinear extension which expresses any product of the

coordinates of a Gaussian random vector by the covariance of this vector. Namely, if X is

a centered Gaussian vector in Rn, for any even collection (ξ1, . . . , ξ2k) of linear functions on

Rn,

E
(
ξ1(X) · · · ξ2n(X)

)
=
∑ k∏

`=1

E
(
ξi`(X)ξj`(X)

)
where the sum runs over all unordered sequences of unordered pairs {i1, j1}, . . . , {ik, jk}
where each of the integers 1, . . . , 2k appears only once.

For example, if X = (X1, X2, X3, X4) is a centered Gaussian vector in R4,

E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1X3)E(X2X4)

+ E(X1X4)E(X2X3).

Among other proofs, this type of identity may be obtained from the form of the Fourier

transform

E(ei〈u,X〉) = e−
1
2
E(〈u,X〉2), u = (u1, u2, u3, u4) ∈ R4.

Identification of the terms with all the u`’s distincts in Taylor expansions of both sides at

the order 4 yields the conclusion.

3 Fourier transform

The Fourier transform, of characteristic function in the probabilistic language, of the stan-

dard Gaussian measure γn is given by

ϕγn(u) = e−
1
2
|u|2 , u ∈ Rn.

In other words, the density f(x) = 1

(2π)
n
2
e−

1
2
|x|2 , x ∈ Rn, of γn, is its own Fourier transform

f̂ (up to the standard Fourier normalizations).
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4 Integration by parts and Stein’s characterization

For a function f : R → R, locally Lipschitz and such that xf and f ′ are integrable with

respect to γ1, ∫
R
xf dγ1 =

∫
R
f ′dγ1. (1)

This immediately follows by integration by parts on the form of the Gaussian density∫
R
xf dγ1 =

1√
2π

∫
R
f(x)x e−

1
2
x2dλ1(x).

On Rn, if f : Rn → R is smooth enough,∫
Rn

xf dγn =

∫
Rn

∇f dγn

as vector integrals.

Stein’s observation, leading to various approximation results cf. [2], expresses that (1)

ranging over a rich enough family of functions f characterizes γ1 (over all probability mea-

sures with a first moment). Let indeed µ be a probability on R with a first moment such

that
∫
R xf dµ =

∫
R f
′dµ for every, say, bounded continuous function f : R → R. Applied

to the real and imaginary parts of the family of functions f(x) = eiux, x ∈ R, u ∈ R, this

integration by parts formula yields that the Fourier transform ϕ(u), u ∈ R, of µ satisfies

the differential equation ϕ′(u) = −uϕ(u), u ∈ R, so that ϕ(u) = e−
1
2
u2 , u ∈ R, the Fourier

transform of γ1.

5 Heat and Mehler kernels

Let

ht(x) =
1

(4πt)
n
2

e−
1
4t
|x|2 , t > 0, x ∈ Rn, (2)

be the standard heat kernel on Rn, fundamental solution of the heat equation ∂tht = ∆ pt.

In other words, ht is the density of the normal law N (0, 2t).

The convolution semigroup Htf(x) = f ∗ ht(x), t > 0, solves

∂tHtf = ∆Htf = Ht∆f

with initial data f . By the definition of ht, the semigroup Ht, t > 0, admits the integral

representation

Htf(x) =

∫
Rn

f
(
x+
√

2t y
)
dγn(x)
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for all t > 0, x ∈ Rn, and any suitable measurable function f : Rn → R. At t = 1
2
, ht is just

the standard Gaussian density so that H 1
2
f(0) =

∫
Rn fdγn (while H0f = f).

There is however a related Gaussian kernel which has the advantage to be invariant with

respect to γn (as the classical heat kernel is invariant under the Lebesgue measure λn).

Define the Mehler kernel, for t > 0, x, y ∈ Rn, by

pt(x, y) = pt(y, x) =
1

(1− e−2t)
n
2

exp

(
− e−2t

2(1− e−2t)

[
|x|2 + |y|2 − 2et〈x, y〉

])
. (3)

It holds true that
∫
Rn pt(x, y)dγn(y) = 1 for all t > 0 and x ∈ Rn. The Mehler kernel satisfies

besides the basic semigroup property with respect to γn,∫
Rn

ps(x, z) pt(z, y)dγn(z) = ps+t(x, y)

for all s, t > 0 and x, y ∈ Rn.

The Mehler kernel generates the Ornstein-Uhlenbeck semigroup

Ptf(x) =

∫
Rn

f(y) pt(x, y)dγn(y)

for all t > 0, x ∈ Rn, and any suitable measurable function f : Rn → R, which after a

suitable change of variable admits the integral representation

Ptf(x) =

∫
Rn

f
(
e−tx+

√
1− e−2t y

)
dγn(y). (4)

With the natural extension P0 = Id, the family (Pt)t≥0 defines a Markov semigroup,

symmetric in L2(γn) and invariant with respect to γn, that is
∫
Rn fPtgdγn =

∫
Rn gPtfdγn

and
∫
Rn Ptfdγn =

∫
Rn fdγn. These properties are actually a reformulation of the rotational

invariance of Gaussian measures, expressing that under γn ⊗ γn, the couples(
x sin(θ) + y cos(θ), x cos(θ)− y sin(θ)

)
,

with e−t = sin(θ), are distributed as (x, y).

The infinitesimal generator L = ∆ − x · ∇ of the Markov semigroup (Pt)t≥0 fulfills the

integration by parts formula∫
Rn

f(−Lg)dγn =

∫
Rn

∇f · ∇g dγn (5)
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for every smooth functions f, g : Rn → R. The spectrum of the operator −L is N, and the

eigenvectors are the Hermite polynomials (cf. [3]). For example, in dimension 1, if (hk)k∈N
denotes the sequence of Hermite polynomials (normalized in L2(γ1)),

−Lhk = k hk, k ∈ N.

In particular, by the integration by parts formula (5),

k

∫
R
hkf dγ1 =

∫
R
(−Lhk)f dγ1 =

√
k

∫
R
hk−1f

′dγ1

for every smooth function f : R→ R, which extends (1) since h1(x) = x, h0(x) = 1, x ∈ R.

6 Maximum of entropy

If P is a probability measure on the Borel sets of Rn, with density f with respect to the

Lebesgue measure, its entropy is

H(P ) = −
∫
Rn

f log(f)dλn

whenever the integral is well-defined, H(P ) = +∞ if not. It is easily seen that H(γn) =
n
2

log(2πe).

If f and g are probability densities, by Jensen’s inequality with respect to the convex

function − log and to the probability measure fdλn,∫
Rn

f log
(f
g

)
dλn =

∫
Rn

(− log)
( g
f

)
f dλn ≥ − log

(∫
Rn

g dλn

)
= 0.

In other words,
∫
Rn f log(f)dλn ≥

∫
Rn f log(g)dλn.

Let now P be a probability measure with density f and finite entropy H(P ), satisfying∫
Rn |x|2fdλn ≤ n (=

∫
Rn |x|2dγn). If g is the density of the Gaussian distribution γn, by the

preceding,

H(P ) = −
∫
Rn

f log(f)dλn

≤ −
∫
Rn

f log(g)dλn

=
1

2

∫
Rn

(
|x|2 + n log(2π)

)
f dλn

≤ n

2

(
1 + log(2π)

)
= H(γn)
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since
∫
Rn |x|2fdλn ≤ n.

As a conclusion, the standard Gaussian measure γn maximizes the entropy over all prob-

ability measures with density f of finite entropy satisfying
∫
Rn |x|2fdλn ≤ n. By the case of

equality in Jensen’s inequality, the proof shows at the same time that the Gaussian measure

γn is characterized in this way, a result commonly attributed to L. Boltzmann.

7 Chi-squared distribution

If X1, . . . , Xn are independent variables with common law N (0, 1), then X2
1 + · · · + X2

n

follows the classical χ2 law with n degree of freedom, expressed by the gamma distribution

with density 1

2
n
2 Γ(n

2
)
x

n
2
−1e−

x
2 , x ∈ (0,∞), with respect to the Lebesgue measure.

8 Independence of empirical mean and variance

If X = (X1, . . . , Xn) is random vector with law N (0, Id), the empirical mean and variance

of the sample (X1, . . . , Xn) defined by

X =
1

n

n∑
k=1

Xk and S2 =
1

n− 1

n∑
k=1

(
Xk −X

)2

are independent. Moreover, (n−1)S2 has the same distribution as
∑n−1

k=1 X
2
k (that is, follows

a χ2 law with n− 1 degree of freedom).

To verify these properties, let O be a n × n orthogonal matrix, and Y = OX. Then∑n
k=1X

2
k =

∑n
k=1 Y

2
k , and Y has the same distribution as X. Choosing O such that the

coefficients of the last line are all equal to 1√
n
, so that Yn =

√
nX, it may be checked that

(n− 1)S2 =
n∑
k=1

X2
k − nX

2
=

n∑
k=1

Y 2
k − Y 2

n =
n−1∑
k=1

Y 2
k .

Since Y = (Y1, . . . , Yn) has lawN (0, Id), the coordinates Y1, . . . , Yn are independent standard

normal real random variables. As a consequence, X = 1√
n
Yn is independent from (n−1)S2 =∑n−1

k=1 Y
2
k , which proves the various claims.
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9 Maximum of iid Gaussians

It is a classical exercise to check that if X1, . . . , Xn, n ≥ 1, are independent standard normal

random variables on a probability space (Ω,A,P), then

c
√

log n ≤ E
(

max
1≤k≤n

Xk

)
≤ C

√
log n (6)

for numerical constants 0 < c < C <∞.

The upper-bound actually holds in a wider generality. Let X1, . . . , Xn, n ≥ 2, be cen-

tered Gaussian variables on (Ω,A,P) with respective variances σ2
1, . . . , σ

2
n. Then, for any

0 < p <∞, there is a constant Cp > 0 only depending on p such that[
E
(

max
1≤k≤n

|Xk|p
)]1/p

≤ Cp max
1≤k≤n

σk
√

log n. (7)

As a quick proof, by homogeneity, it may be assumed that max1≤k≤n σk ≤ 1. For p ≥ 2,

let Ψ : R+ → R+ be the convex function equal to e
1
4
x2/p on the complement of the interval

[0, (2p− 4)p/2], and equal to e
1
4

(2p−4) on this interval. By Jensen’s inequality,

exp

(
1

4

[
E
(

max
1≤k≤n

|Xk|p
)]2/p

)
≤ Ψ

(
E
(

max
1≤k≤n

|Xk|p
))
≤ E

(
Ψ
(

max
1≤k≤n

|Xk|p
))
.

Now

E
(

Ψ
(

max
1≤k≤n

|Xk|p
))
≤ e

1
4

(2p−4) + E
(
e

1
4

max1≤k≤nX
2
k

)
≤ e

1
4

(2p−4) +
n∑
k=1

E
(
e

1
4
X2

k

)
≤ e

1
4

(2p−4) + n
√

2 ,

from which the claim follows.

Towards the lower-bound in (6), since the X1, . . . , Xn are independent with common law

γ1, the distribution function of the random variable max1≤k≤nXk is Φ(t)n, t ∈ R (where Φ

is the distribution function of γ1), so its law has density nΦ(x)n−1 1√
2π
e−

1
2
x2 , x ∈ R, with

respect to the Lebesgue measure λ1 on R. Hence

E
(

max
1≤k≤n

Xk

)
=

∫
R
xnΦ(x)n−1 1√

2π
e−

1
2
x2dλ1(x) =

∫
R
n(n− 1)Φ(x)n−2 1

2π
e−x

2

dλ1(x)

where the second equality follows from the integration by parts formula (1). In particular,

if n = 2, E(max(X1, X2)) = 1
2
√
π
, so that in the following it may be assumed that n is large
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enough (larger than some fixed n0). Now, for any α ∈ R,

E
(

max
1≤k≤n

Xk

)
≥
∫ ∞
α

n(n− 1)Φ(x)n−2 1

2π
e−x

2

dλ1(x)

≥ n(n− 1)Φ(α)n−2

∫ ∞
α

1

2π
e−x

2

dλ1(x)

= n(n− 1)Φ(α)n−2 1

2
√
π

[
1− Φ

(√
2α
)]
.

Take then α = αn =
√

2 log n− log log n, n ≥ n0. Recall the classical tail estimates (cf. [1])(1

t
− 1

t3

) 1√
2π

e−
1
2
t2 ≤ 1− Φ(t) ≤ 1

t

1√
2π

e−
1
2
t2

for every t > 0. By the upper-bound, Φ(αn) ≥ 1− c
n

for some numerical c > 0, while by the

lower-bound, 1− Φ(
√

2αn) ≥ c
n2

√
log n. The claim follows.
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