Some basic properties and characterizations of Gaussian measures and variables

The note (to be completed!) collects, in a random order, some basic properties and classical characterizations of Gaussian measures and variables, which may be found in standard references in probability theory and mathematical statistics. In the text, γ_n , or $\mathcal{N}(0, \mathrm{Id})$, denote the standard Gaussian distribution on the Borel sets of \mathbb{R}^n with density $\frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}|x|^2}$, $x \in \mathbb{R}^n$, with respect to the Lebesgue measure λ_n .

Table of contents

- 1. Rotational invariance
- 2. Wick's formula
- 3. Fourier transform
- 4. Integration by parts and Stein's characterization
- 5. Heat and Mehler kernels
- 6. Maximum of entropy

Drafted by M. L. v1 November 2023

- 7. Chi-squared distribution
- 8. Independence of empirical mean and variance
- 9. Maximum of iid Gaussians

References

1 Rotational invariance

The rotational invariance of Gaussian measures may be described by two main features.

1) If X is a random variable on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with law $\mathcal{N}(0, \mathrm{Id})$, and if O is an orthogonal matrix (transformation) on \mathbb{R}^n , then OX is also distributed according to $\mathcal{N}(0, \mathrm{Id})$. This is checked on the covariance matrix.

Maxwell's observation is that the standard Gaussian measure in \mathbb{R}^n is the only probability measure which is both invariant under orthogonal transformations and is a product measure. More precisely, if μ is a probability measure on the Borel sets of \mathbb{R}^n with those two properties, necessarily $\mu = \mathcal{N}(0, \sigma^2 \mathrm{Id})$ for some $\sigma > 0$. For a quick argument, after convolution with $\mathcal{N}(0, \varepsilon^2 \mathrm{Id})$ for some $\varepsilon > 0$, it may be assumed that μ has a smooth, strictly positive, density fwith respect to the Lebesgue measure. But this density is both a function of $|x|^2$ by rotational invariance and a product (necessarily of the same one-dimensional density), which forces the Gaussian density (take the partial derivatives of log f).

2) If X and Y are centered Gaussian vectors on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, independent and identically distributed, for every real θ , $X(\theta) = X \sin(\theta) + Y \cos(\theta)$ and $X'(\theta) = X \cos(\theta) - Y \sin(\theta)$ are Gaussian vectors, independent with the same law as X. In others words, the couples $(X(\theta), X'(\theta))$ have the same law as (X, Y). This may easily be checked on the covariances.

The Kac-Bernstein theorem [6, 4] ensures conversely that if X and Y are independent real random variables such that X + Y and X - Y are also independent, then both X and Y must have normal distributions. More generally, the statement holds true as soon as $X(\theta)$ and $X'(\theta)$ are independent for some θ which is not an integer multiple of $\frac{\pi}{2}$.

Cramér's theorem [5] (initially announced by P. Lévy) expresses that if X and Y are two independent (non-constant) real random variables such that X + Y is normally distributed, then both X and Y follow a normal distribution.

2 Wick's formula

It is clear that, for a real random variable X on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, the collection of moments

$$\mathbb{E}(X^{2k+1}) = 0, \quad \mathbb{E}(X^{2k}) = \frac{(2k)!}{2^k k!}, \ k \ge 0,$$

characterize the law of X as the standard normal distribution $\mathcal{N}(0,1)$.

Wick's formula is a kind of multilinear extension which expresses any product of the coordinates of a Gaussian random vector by the covariance of this vector. Namely, if X is a centered Gaussian vector in \mathbb{R}^n , for any even collection $(\xi_1, \ldots, \xi_{2k})$ of linear functions on \mathbb{R}^n ,

$$\mathbb{E}\big(\xi_1(X)\cdots\xi_{2n}(X)\big) = \sum \prod_{\ell=1}^k \mathbb{E}\big(\xi_{i_\ell}(X)\xi_{j_\ell}(X)\big)$$

where the sum runs over all unordered sequences of unordered pairs $\{i_1, j_1\}, \ldots, \{i_k, j_k\}$ where each of the integers $1, \ldots, 2k$ appears only once.

For example, if $X = (X_1, X_2, X_3, X_4)$ is a centered Gaussian vector in \mathbb{R}^4 ,

$$\mathbb{E}(X_1X_2X_3X_4) = \mathbb{E}(X_1X_2)\mathbb{E}(X_3X_4) + \mathbb{E}(X_1X_3)\mathbb{E}(X_2X_4) \\ + \mathbb{E}(X_1X_4)\mathbb{E}(X_2X_3).$$

Among other proofs, this type of identity may be obtained from the form of the Fourier transform

$$\mathbb{E}(e^{i\langle u,X\rangle}) = e^{-\frac{1}{2}\mathbb{E}(\langle u,X\rangle^2)}, \quad u = (u_1, u_2, u_3, u_4) \in \mathbb{R}^4.$$

Identification of the terms with all the u_{ℓ} 's distincts in Taylor expansions of both sides at the order 4 yields the conclusion.

3 Fourier transform

The Fourier transform, of characteristic function in the probabilistic language, of the standard Gaussian measure γ_n is given by

$$\varphi_{\gamma_n}(u) = e^{-\frac{1}{2}|u|^2}, \quad u \in \mathbb{R}^n.$$

In other words, the density $f(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}|x|^2}$, $x \in \mathbb{R}^n$, of γ_n , is its own Fourier transform \hat{f} (up to the standard Fourier normalizations).

4 Integration by parts and Stein's characterization

For a function $f : \mathbb{R} \to \mathbb{R}$, locally Lipschitz and such that xf and f' are integrable with respect to γ_1 ,

$$\int_{\mathbb{R}} xf \, d\gamma_1 = \int_{\mathbb{R}} f' d\gamma_1. \tag{1}$$

This immediately follows by integration by parts on the form of the Gaussian density

$$\int_{\mathbb{R}} xf \, d\gamma_1 \,=\, \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) x \, e^{-\frac{1}{2}x^2} d\lambda_1(x).$$

On \mathbb{R}^n , if $f : \mathbb{R}^n \to \mathbb{R}$ is smooth enough,

$$\int_{\mathbb{R}^n} xf \, d\gamma_n \, = \, \int_{\mathbb{R}^n} \nabla f \, d\gamma_n$$

as vector integrals.

Stein's observation, leading to various approximation results cf. [2], expresses that (1) ranging over a rich enough family of functions f characterizes γ_1 (over all probability measures with a first moment). Let indeed μ be a probability on \mathbb{R} with a first moment such that $\int_{\mathbb{R}} xf d\mu = \int_{\mathbb{R}} f'd\mu$ for every, say, bounded continuous function $f : \mathbb{R} \to \mathbb{R}$. Applied to the real and imaginary parts of the family of functions $f(x) = e^{iux}$, $x \in \mathbb{R}$, $u \in \mathbb{R}$, this integration by parts formula yields that the Fourier transform $\varphi(u)$, $u \in \mathbb{R}$, of μ satisfies the differential equation $\varphi'(u) = -u \varphi(u)$, $u \in \mathbb{R}$, so that $\varphi(u) = e^{-\frac{1}{2}u^2}$, $u \in \mathbb{R}$, the Fourier transform of γ_1 .

5 Heat and Mehler kernels

Let

$$h_t(x) = \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{1}{4t}|x|^2}, \quad t > 0, \ x \in \mathbb{R}^n,$$
(2)

be the standard heat kernel on \mathbb{R}^n , fundamental solution of the heat equation $\partial_t h_t = \Delta p_t$. In other words, h_t is the density of the normal law $\mathcal{N}(0, 2t)$.

The convolution semigroup $H_t f(x) = f * h_t(x), t > 0$, solves

$$\partial_t H_t f = \Delta H_t f = H_t \Delta f$$

with initial data f. By the definition of h_t , the semigroup H_t , t > 0, admits the integral representation

$$H_t f(x) = \int_{\mathbb{R}^n} f\left(x + \sqrt{2t} y\right) d\gamma_n(x)$$

for all $t > 0, x \in \mathbb{R}^n$, and any suitable measurable function $f : \mathbb{R}^n \to \mathbb{R}$. At $t = \frac{1}{2}$, h_t is just the standard Gaussian density so that $H_{\frac{1}{2}}f(0) = \int_{\mathbb{R}^n} f d\gamma_n$ (while $H_0 f = f$).

There is however a related Gaussian kernel which has the advantage to be invariant with respect to γ_n (as the classical heat kernel is invariant under the Lebesgue measure λ_n).

Define the Mehler kernel, for $t > 0, x, y \in \mathbb{R}^n$, by

$$p_t(x,y) = p_t(y,x) = \frac{1}{(1-e^{-2t})^{\frac{n}{2}}} \exp\left(-\frac{e^{-2t}}{2(1-e^{-2t})} \left[|x|^2 + |y|^2 - 2e^t \langle x,y \rangle\right]\right).$$
(3)

It holds true that $\int_{\mathbb{R}^n} p_t(x, y) d\gamma_n(y) = 1$ for all t > 0 and $x \in \mathbb{R}^n$. The Mehler kernel satisfies besides the basic semigroup property with respect to γ_n ,

$$\int_{\mathbb{R}^n} p_s(x,z) p_t(z,y) d\gamma_n(z) = p_{s+t}(x,y)$$

for all s, t > 0 and $x, y \in \mathbb{R}^n$.

The Mehler kernel generates the Ornstein-Uhlenbeck semigroup

$$P_t f(x) = \int_{\mathbb{R}^n} f(y) \, p_t(x, y) d\gamma_n(y)$$

for all $t > 0, x \in \mathbb{R}^n$, and any suitable measurable function $f : \mathbb{R}^n \to \mathbb{R}$, which after a suitable change of variable admits the integral representation

$$P_t f(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) d\gamma_n(y).$$
 (4)

With the natural extension $P_0 = \text{Id}$, the family $(P_t)_{t\geq 0}$ defines a Markov semigroup, symmetric in $L^2(\gamma_n)$ and invariant with respect to γ_n , that is $\int_{\mathbb{R}^n} f P_t g d\gamma_n = \int_{\mathbb{R}^n} g P_t f d\gamma_n$ and $\int_{\mathbb{R}^n} P_t f d\gamma_n = \int_{\mathbb{R}^n} f d\gamma_n$. These properties are actually a reformulation of the rotational invariance of Gaussian measures, expressing that under $\gamma_n \otimes \gamma_n$, the couples

$$(x\sin(\theta) + y\cos(\theta), x\cos(\theta) - y\sin(\theta)),$$

with $e^{-t} = \sin(\theta)$, are distributed as (x, y).

The infinitesimal generator $\mathcal{L} = \Delta - x \cdot \nabla$ of the Markov semigroup $(P_t)_{t \ge 0}$ fulfills the integration by parts formula

$$\int_{\mathbb{R}^n} f(-\mathrm{L}g) d\gamma_n = \int_{\mathbb{R}^n} \nabla f \cdot \nabla g \, d\gamma_n \tag{5}$$

for every smooth functions $f, g : \mathbb{R}^n \to \mathbb{R}$. The spectrum of the operator -L is \mathbb{N} , and the eigenvectors are the Hermite polynomials (cf. [3]). For example, in dimension 1, if $(h_k)_{k \in \mathbb{N}}$ denotes the sequence of Hermite polynomials (normalized in $L^2(\gamma_1)$),

$$-\mathbf{L}h_k = k h_k, \quad k \in \mathbb{N}.$$

In particular, by the integration by parts formula (5),

$$k \int_{\mathbb{R}} h_k f \, d\gamma_1 = \int_{\mathbb{R}} (-\mathbf{L}h_k) f \, d\gamma_1 = \sqrt{k} \int_{\mathbb{R}} h_{k-1} f' d\gamma_1$$

for every smooth function $f : \mathbb{R} \to \mathbb{R}$, which extends (1) since $h_1(x) = x$, $h_0(x) = 1$, $x \in \mathbb{R}$.

6 Maximum of entropy

If P is a probability measure on the Borel sets of \mathbb{R}^n , with density f with respect to the Lebesgue measure, its *entropy* is

$$\mathbf{H}(P) = -\int_{\mathbb{R}^n} f \log(f) d\lambda_n$$

whenever the integral is well-defined, $H(P) = +\infty$ if not. It is easily seen that $H(\gamma_n) = \frac{n}{2} \log(2\pi e)$.

If f and g are probability densities, by Jensen's inequality with respect to the convex function $-\log$ and to the probability measure $fd\lambda_n$,

$$\int_{\mathbb{R}^n} f \log\left(\frac{f}{g}\right) d\lambda_n = \int_{\mathbb{R}^n} (-\log)\left(\frac{g}{f}\right) f \, d\lambda_n \ge -\log\left(\int_{\mathbb{R}^n} g \, d\lambda_n\right) = 0.$$

In other words, $\int_{\mathbb{R}^n} f \log(f) d\lambda_n \ge \int_{\mathbb{R}^n} f \log(g) d\lambda_n$.

Let now P be a probability measure with density f and finite entropy H(P), satisfying $\int_{\mathbb{R}^n} |x|^2 f d\lambda_n \leq n \ (= \int_{\mathbb{R}^n} |x|^2 d\gamma_n)$. If g is the density of the Gaussian distribution γ_n , by the preceding,

$$H(P) = -\int_{\mathbb{R}^n} f \log(f) d\lambda_n$$

$$\leq -\int_{\mathbb{R}^n} f \log(g) d\lambda_n$$

$$= \frac{1}{2} \int_{\mathbb{R}^n} (|x|^2 + n \log(2\pi)) f d\lambda_n$$

$$\leq \frac{n}{2} (1 + \log(2\pi)) = H(\gamma_n)$$

since $\int_{\mathbb{R}^n} |x|^2 f d\lambda_n \le n$.

As a conclusion, the standard Gaussian measure γ_n maximizes the entropy over all probability measures with density f of finite entropy satisfying $\int_{\mathbb{R}^n} |x|^2 f d\lambda_n \leq n$. By the case of equality in Jensen's inequality, the proof shows at the same time that the Gaussian measure γ_n is characterized in this way, a result commonly attributed to L. Boltzmann.

7 Chi-squared distribution

If X_1, \ldots, X_n are independent variables with common law $\mathcal{N}(0, 1)$, then $X_1^2 + \cdots + X_n^2$ follows the classical χ^2 law with *n* degree of freedom, expressed by the gamma distribution with density $\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1}e^{-\frac{x}{2}}$, $x \in (0, \infty)$, with respect to the Lebesgue measure.

8 Independence of empirical mean and variance

If $X = (X_1, \ldots, X_n)$ is random vector with law $\mathcal{N}(0, \mathrm{Id})$, the empirical mean and variance of the sample (X_1, \ldots, X_n) defined by

$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$$
 and $S^2 = \frac{1}{n-1} \sum_{k=1}^{n} \left(X_k - \overline{X} \right)^2$

are independent. Moreover, $(n-1)S^2$ has the same distribution as $\sum_{k=1}^{n-1} X_k^2$ (that is, follows a χ^2 law with n-1 degree of freedom).

To verify these properties, let O be a $n \times n$ orthogonal matrix, and Y = OX. Then $\sum_{k=1}^{n} X_k^2 = \sum_{k=1}^{n} Y_k^2$, and Y has the same distribution as X. Choosing O such that the coefficients of the last line are all equal to $\frac{1}{\sqrt{n}}$, so that $Y_n = \sqrt{n} \overline{X}$, it may be checked that

$$(n-1)S^{2} = \sum_{k=1}^{n} X_{k}^{2} - n\overline{X}^{2} = \sum_{k=1}^{n} Y_{k}^{2} - Y_{n}^{2} = \sum_{k=1}^{n-1} Y_{k}^{2}.$$

Since $Y = (Y_1, \ldots, Y_n)$ has law $\mathcal{N}(0, \mathrm{Id})$, the coordinates Y_1, \ldots, Y_n are independent standard normal real random variables. As a consequence, $\overline{X} = \frac{1}{\sqrt{n}}Y_n$ is independent from $(n-1)S^2 = \sum_{k=1}^{n-1} Y_k^2$, which proves the various claims.

9 Maximum of iid Gaussians

It is a classical exercise to check that if $X_1, \ldots, X_n, n \ge 1$, are independent standard normal random variables on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, then

$$c\sqrt{\log n} \le \mathbb{E}\left(\max_{1\le k\le n} X_k\right) \le C\sqrt{\log n}$$
 (6)

for numerical constants $0 < c < C < \infty$.

The upper-bound actually holds in a wider generality. Let X_1, \ldots, X_n , $n \ge 2$, be centered Gaussian variables on $(\Omega, \mathcal{A}, \mathbb{P})$ with respective variances $\sigma_1^2, \ldots, \sigma_n^2$. Then, for any $0 , there is a constant <math>C_p > 0$ only depending on p such that

$$\left[\mathbb{E}\left(\max_{1\leq k\leq n}|X_k|^p\right)\right]^{1/p} \leq C_p \max_{1\leq k\leq n} \sigma_k \sqrt{\log n}.$$
(7)

As a quick proof, by homogeneity, it may be assumed that $\max_{1 \le k \le n} \sigma_k \le 1$. For $p \ge 2$, let $\Psi : \mathbb{R}_+ \to \mathbb{R}_+$ be the convex function equal to $e^{\frac{1}{4}x^{2/p}}$ on the complement of the interval $[0, (2p-4)^{p/2}]$, and equal to $e^{\frac{1}{4}(2p-4)}$ on this interval. By Jensen's inequality,

$$\exp\left(\frac{1}{4}\left[\mathbb{E}\left(\max_{1\leq k\leq n}|X_k|^p\right)\right]^{2/p}\right) \leq \Psi\left(\mathbb{E}\left(\max_{1\leq k\leq n}|X_k|^p\right)\right) \leq \mathbb{E}\left(\Psi\left(\max_{1\leq k\leq n}|X_k|^p\right)\right).$$

Now

$$\mathbb{E}\Big(\Psi\Big(\max_{1\le k\le n} |X_k|^p\Big)\Big) \le e^{\frac{1}{4}(2p-4)} + \mathbb{E}\Big(e^{\frac{1}{4}\max_{1\le k\le n} X_k^2}\Big)$$
$$\le e^{\frac{1}{4}(2p-4)} + \sum_{k=1}^n \mathbb{E}\Big(e^{\frac{1}{4}X_k^2}\Big)$$
$$\le e^{\frac{1}{4}(2p-4)} + n\sqrt{2},$$

from which the claim follows.

Towards the lower-bound in (6), since the X_1, \ldots, X_n are independent with common law γ_1 , the distribution function of the random variable $\max_{1 \le k \le n} X_k$ is $\Phi(t)^n, t \in \mathbb{R}$ (where Φ is the distribution function of γ_1), so its law has density $n\Phi(x)^{n-1}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}, x \in \mathbb{R}$, with respect to the Lebesgue measure λ_1 on \mathbb{R} . Hence

$$\mathbb{E}\left(\max_{1\leq k\leq n} X_{k}\right) = \int_{\mathbb{R}} x \, n\Phi(x)^{n-1} \frac{1}{\sqrt{2\pi}} \, e^{-\frac{1}{2}x^{2}} d\lambda_{1}(x) = \int_{\mathbb{R}} n(n-1)\Phi(x)^{n-2} \frac{1}{2\pi} \, e^{-x^{2}} d\lambda_{1}(x)$$

where the second equality follows from the integration by parts formula (1). In particular, if n = 2, $\mathbb{E}(\max(X_1, X_2)) = \frac{1}{2\sqrt{\pi}}$, so that in the following it may be assumed that n is large

enough (larger than some fixed n_0). Now, for any $\alpha \in \mathbb{R}$,

$$\mathbb{E}\left(\max_{1\leq k\leq n} X_k\right) \geq \int_{\alpha}^{\infty} n(n-1)\Phi(x)^{n-2} \frac{1}{2\pi} e^{-x^2} d\lambda_1(x)$$
$$\geq n(n-1)\Phi(\alpha)^{n-2} \int_{\alpha}^{\infty} \frac{1}{2\pi} e^{-x^2} d\lambda_1(x)$$
$$= n(n-1)\Phi(\alpha)^{n-2} \frac{1}{2\sqrt{\pi}} \left[1 - \Phi(\sqrt{2\alpha})\right].$$

Take then $\alpha = \alpha_n = \sqrt{2 \log n - \log \log n}$, $n \ge n_0$. Recall the classical tail estimates (cf. [1])

$$\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} \le 1 - \Phi(t) \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2}$$

for every t > 0. By the upper-bound, $\Phi(\alpha_n) \ge 1 - \frac{c}{n}$ for some numerical c > 0, while by the lower-bound, $1 - \Phi(\sqrt{2\alpha_n}) \ge \frac{c}{n^2}\sqrt{\log n}$. The claim follows.

References

- [1] Some basics on Gaussian measures and variables. The Gaussian Blog.
- [2] Stein's method and applications. The Gaussian Blog.
- [3] Hermite polynomials. The Gaussian Blog.
- [4] S. Bernstein. On a property which characterizes a Gaussian distribution. Proceedings of the Leningrad Polytechnic Institute 217, 21–22 (1941).
- [5] H. Cramér. Über eine Eigenschaft der normalen Verteilungsfunktion. Math. Z. 41, 405– 414 (1936).
- [6] M. Kac. On a characterization of the normal distribution. Amer. J. of Math. 61, 726–728 (1939).