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Gaussian concentration inequalities

Let γn be the standard Gaussian probability measure γn on Rn, with density 1

(2π)
n
2
e−

1
2
|x|2 ,

x ∈ Rn, with respect to the Lebesgue measure. As a consequence of the Gaussian isoperi-

metric inequality [1], if F : Rn → R is a Lipschitz function on Rn, with Lipschitz coefficient

‖F‖Lip, and if m(F ) is a median of F under γn, for every r ≥ 0,

γn
(
|F −m(F )| ≥ r) ≤ e−r

2/2‖F‖2Lip . (1)

This result is a prototype of a concentration inequality : under some smoothness assumption

on a function F : Rn → R, for example ‖F‖Lip ≤ 1, already for values of r of the order of

5 or 10, F is within r from a fixed value (median) with very high probability. In vigorous

words, a (mildly) smooth function is almost constant on almost (in the sense of the measure

γn) all the space. As developed below, (1) also holds with the mean
∫
Rn Fdγn instead of a

median m(F ).

A significant feature of this inequality is that it holds for large families of functions, and is

dimension-free, independent of the dimension of the underlying state space Rn. (Dimension

is actually hidden in the median or mean value, as witnessed for example by the function

F (x) = |x|, x ∈ Rn, for which m(F ) and
∫
Rn Fdγn are of the order of

√
n while ‖F‖Lip = 1.)

As such, this and related concentration inequalities extend to arbitrary Gaussian measures,

on finite or infinite-dimensional spaces. They give rise in particular to the sharp integrability

properties of norms of Gaussian vectors and processes, emphasized in the note [2] and recalled

below.

The Gaussian concentration inequalities are part of the more general concentration of

measure phenomenon, a widely shared property which emerged within asymptotic geometric
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analysis and applies to numerous probabilistic models depending on a large number of (in-

dependent) coordinates (cf. [6]).

While the concentration statement (1) is deduced from the somewhat delicate Gaussian

isoperimetric inequality, simple functional analytic tools may be developed to achieve similar

statements. It is the purpose of this post to briefly emphasize and present some of these

arguments. A prior, weaker, form of the Laplace transform inequality is the Maurey-Pisier

inequality presented in the companion post [2].
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1 Concentration and isoperimetry

One basic concentration inequality arises as an natural consequence of the Gaussian isoperi-

metric inequality. Recall namely (cf. [1]) that if A is a Borel set in Rn such that γn(A) ≥
Φ(a) = 1√

2π

∫ a
−∞ e

− 1
2
x2dx for some a ∈ R, it holds true that

γn(Ar) ≥ Φ(a+ r) (2)

for any r ≥ 0, where Ar is the (closed) r-th neighborhood of A in the Euclidean metric.

Consider then a set A such that γn(A) ≥ 1
2

= Φ(0). Then, for any r ≥ 0,

γn(Ar) ≥ Φ(r) ≥ 1− 1

2
e−

1
2
r2 . (3)

That is, starting from a set A with γn(A) ≥ 1
2
, for r already of the order of 5 or 10,

the enlargement Ar has a measure close to 1, one illustration therefore of the terminology
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“concentration of measure”. The value 1
2

is nothing special at this stage, the claim would be

similar for any γn(A) ≥ ε > 0 (choosing r large enough depending on ε), cf. [6]. It will be

useful nevertheless when dealing with medians of Lipschitz functions.

The result (3) extends to arbitrary, finite or infinite-dimensional, Gaussian measures µ

on the basis of the isoperimetric inequality

µ(A+ rK) ≥ Φ(a+ r), r ≥ 0,

whenever A is a Borel set such that µ(A) ≥ Φ(a), a ∈ R, and K is the unit ball of the

reproducing kernel Hilbert spaceH associated to µ [3]. For example, if µ is finite-dimensional

with covariance matrix M >M , K is the image by M of the Euclidean unit ball.

2 Concentration of Lipschitz functions

The preceding concentration property (3) on sets may be expressed equivalently on Lipschitz

functions. If F : Rn → R, its Lipschitz coefficient is defined by

‖F‖Lip = sup
x 6=y

|F (x)− F (y)|
|x− y|

(where | · | is the Euclidean length in Rn).

By homogeneity, it is often convenient to deal with Lipschitz functions F : Rn → R such

that ‖F‖Lip ≤ 1, called 1-Lipschitz in the sequel. The various inequalities derived below for

1-Lipschitz functions are immediately extended to arbitrary Lipschitz functions (as in (1)).

Let thus F : Rn → R be 1-Lipschitz, and let m ∈ R be such that γn(F ≤ m) ≥ 1
2

= Φ(0).

It is immediate by the Lipschitz property that, for any r ≥ 0,(
{F ≤ m}

)
r
⊂ {F ≤ m+ r}.

Hence, from (3),

γn(F ≤ m+ r) ≥ Φ(r) ≥ 1− 1

2
e−

1
2
r2 .

Thus (and by continuity of the lower-bound),

γn(F ≥ m+ r) ≤ 1− Φ(r) ≤ 1

2
e−

1
2
r2 , r ≥ 0. (4)

The choice of F = d(·, A), where d is the Euclidean distance, shows that (4) is actually

equivalent to (3).
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Now, ifm(F ) denotes a median of F , i.e. such that γn(F ≥ m(F )) ≥ 1
2

and γn(F ≤ m(F ))

≥ 1
2
, the preceding inequality (4) applied to both F and −F yields, by the union bound,

γn
(
|F −m(F )| ≥ r) ≤ e−

1
2
r2 , r ≥ 0. (5)

The Lipschitz function F therefore “concentrates” around the value m(F ) on a set of measure

close to 1 for the large values of r.

For an arbitrary, finite or infinite-dimensional, Gaussian measures µ on a Banach space

E (cf. [3]), the Lipschitz property of a function F : E → R has to be understood with respect

to the (reproducing kernel) Hilbertian structure H induced by the measure, that is∣∣F (x+ h)− F (x)
∣∣ ≤ |h|H

for any x ∈ E, h ∈ H.

3 Laplace transform inequality

While the preceding concentration inequalities are deduced from the isoperimetric property

of Gaussian measures, a rather simple direct approach may be provided. This is the content

of the following estimate on the Laplace transform of a given Lipschitz function.

Theorem 1 (Laplace transform inequality). Let F : Rn → R be 1-Lipschitz. For any λ ∈ R,∫
Rn
eλFdγn ≤ eλ

∫
Rn Fdγn+

1
2
λ2 . (6)

By Markov’s inequality, for any λ ≥ 0 and r ≥ 0,

γn
(
F ≥

∫
Rn Fdγn + r

)
≤ e−λr+

1
2
λ2 .

After optimization in λ (= r), for every r ≥ 0,

γn
(
F ≥

∫
Rn Fdγn + r

)
≤ e−

1
2
r2 . (7)

Since (7) similarly holds for −F , by the union bound

γn
(∣∣F − ∫Rn Fdγn∣∣ ≥ r

)
≤ 2 e−

1
2
r2 , r ≥ 0. (8)

Before turning to a proof of Theorem 1 in the next section, it has to be observed that the

concentration inequalities on Lipschitz functions just deduced from it are rather close to the

ones obtained in the previous section, with the mean instead of a median. Actually, integrat-

ing (5) with respect to r ≥ 0 shows that
∣∣ ∫

Rn F dγn −m(F )
∣∣ ≤ √π

2
for any median m(F ).
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Conversely, choosing r0 > 0 such that 2 e−
1
2
r20 < 1

2
in (8) shows that

∣∣ ∫
Rn F dγn −m(F )

∣∣
≤ r0. Hence, up to numerical constants, both in the exponential and in front of it, the two

inequalities (5) and (8) are essentially equivalent.

In the applications to integrability of norms of Gaussian random vectors (in the last

section), it is sometimes more convenient to use (5) since it does not require to check a priori

that the expectation is finite.

It is also worthwhile mentioning that Theorem 1, or (7), is good enough to get close to the

isoperimetric statement. For example, applied to F (x) = min(d(x,A), r), x ∈ Rn, r > 0, for

some Borel set A with γn(A) ≥ α, 0 < α < 1, for which
∫
Rn F dγn ≤ (1−γn(A))r ≤ (1−α)r,

(7) yields

γn
(
Aαr
)
≥ 1− e−

1
2
r2 .

With some more effort, it is possible to show that

γn
(
Ar
)
≥ 1− e−

1
2
r2+δ(γn(A))r (9)

for every r ≥ 0, where δ(γn(A))→ 0 as γn(A)→ 1 (cf. [6]).

4 Functional analytic proof

A weaker form of Theorem 1 is presented in [2] (the Maurey-Pisier inequality). In the post

[5], it is shown how Theorem 1 may be deduced from the logarithmic Sobolev inequality via

the Herbst argument. A simple proof of the logarithmic Sobolev inequality itself is provided

by heat (Mehler kernel) flow arguments. It is actually instructive to give a direct heat flow

proof of Theorem 1.

Let

ht(x) =
1

(4πt)
n
2

e−
1
4t
|x|2 , t > 0, x ∈ Rn,

be the standard heat kernel, fundamental solution of the heat equation ∂tht = ∆ht. The

convolution semigroup Htf(x) = f ∗ ht(x), t > 0, solves ∂tHtf = ∆Htf = Ht∆f with initial

data f . At t = 1
2
, ht is just the standard Gaussian density so that H 1

2
f(0) =

∫
Rn fdγn (while

H0f = f).

Let F : Rn → R be bounded, 1-Lipschitz, and smooth so that |∇F | ≤ 1 everywhere. For

λ ∈ R, and t > 0 fixed, consider the function J(s) = Hs(e
λHt−sF ), s ∈ [0, t] (at any fixed
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point x in Rn, omitted in the notation). By the heat equation and the chain rule,

J ′(s) = ∆Hs

(
eλHt−sF

)
−Hs

(
λ eλHt−sF∆Ht−sf

)
= Hs

(
∆ eλHt−sF − λ eλHt−sF∆Ht−sf

)
= λ2Hs

(
eλHt−sF |∇Ht−sF |2

)
.

Now |∇Ht−sF | = |Ht−s(∇F )| ≤ Ht−s(|∇F |) ≤ 1, so that

J ′(s) ≤ λ2J(s), s ∈ [0, t].

Integration of this differential inequality yields

log
( J(t)

J(0)

)
= log J(t)− log J(0) ≤ λ2t,

that is

Ht(e
λF ) ≤ eλHtF+λ2t.

At t = 1
2

(and at the point x = 0 for example), this is the announced claim. If F is

an arbitrary 1-Lipschitz function, apply the preceding to min(N,max(HεF,−N)), N ≥ 1,

ε > 0, and let N →∞, ε→ 0.

The preceding argument is, in spirit, not very far from the Maurey-Pisier inequality

presented in [2]. It may indeed be developed completely similarly with the Mehler kernel

and Ornstein-Uhlenbeck semigroup (cf. [4, 5]), which is represented as

Ptf(x) =

∫
Rn
f
(

sin(θ)x+ cos(θ)y)dγn(y)

with e−t = sin(θ).

5 Concentration of Gaussian vectors

The concentration inequalities for the canonical Gaussian measure γn presented in the pre-

vious sections extend to arbitrary Gaussian measures. It is actually convenient to present

them for random vectors.

Let thus X be a centered Gaussian vector on a probability space (Ω,A,P) with values in

Rn, with covariance matrix Σ = M >M . If Y is a random vector with law γn, then MY has

the law of X. Therefore, whenever F : Rn → R, (7) for example yields

P
(
F (X) ≥ E(F (X)) + r

)
≤ e−r

2/2σ2
F , r ≥ 0,
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where σF = ‖F ◦M‖Lip (provided it is finite). It may be observed that, in general,

‖F ◦M‖Lip ≤ sup
|c|≤1

√
〈Σc, c〉 ‖F‖Lip,

but depending on the nature of F , sharper bounds might be available.

For instance, if F (x) = max1≤k≤n xk, x = (x1, . . . , xn) ∈ Rn,

‖F ◦M‖Lip ≤ max
1≤k≤n

Σkk = max
1≤k≤n

E(X2
k) = σ2.

Indeed, for every x, y ∈ Rn, k = 1, . . . , n,∣∣(Mx)k − (My)k
∣∣2 =

∣∣∣∣ n∑
`=1

Mk`(x` − y`)
∣∣∣∣2 ≤ n∑

`=1

M2
k` |x− y|2 = Σkk |x− y|2.

As a consequence, for any centered Gaussian vector X = (X1, . . . , Xn) in Rn and any r ≥ 0,

P
(

max
1≤k≤n

Xk ≥ E
(

max
1≤k≤n

Xk

)
+ t
)
≤ e−r

2/2σ2

. (10)

It holds as well, for any r ≥ 0,

P
(∣∣∣ max

1≤k≤n
Xk − E

(
max
1≤k≤n

Xk

)∣∣∣ ≥ r
)
≤ 2 e−r

2/2σ2

, (11)

and similarly with max1≤k≤n |Xk| instead of max1≤k≤nXk. These properties are used in

the study of the integrability of norms of Gaussian vectors and processes (next section

and [2]). Again, it is important to realize the relative sizes of E
(

max1≤k≤nXk

)
and σ2 =

max1≤k≤n E(X2
k) in these concentration inequalities. For example, for a sample of indepen-

dent standard normal variables X1, . . . , Xn, the first quantity is of order of
√

log n (cf. [4])

while σ2 = 1.

6 Integrability of norms of Gaussian vectors

This section briefly resumes the conclusions of the note [2] on the basis of the concentration

inequalities emphasized in the previous sections.

Theorem 2 (Concentration and integrability of norms of Gaussian vectors). Let X be a cen-

tered Gaussian random vector on a probability space (Ω,A,P) with values in a real separable

Banach space (E, ‖ · ‖). Then E(‖X‖) <∞, and

P
(∣∣‖X‖ −m∣∣ ≥ r

)
≤ 2 e−

r2

2σ2 , r ≥ 0.

where m is either a median of ‖X‖ or E(‖X‖), and

σ = sup
ξ∈E∗,‖ξ‖≤1

[
E
(
〈ξ,X〉2

)]1/2
.

As a consequence, E(eα‖X‖
2
) <∞ if and only if α < 1

2σ2 .

7



References

[1] The Gaussian isoperimetric inequality. The Gaussian Blog.

[2] Integrability of norms of Gaussian random vectors and processes. The Gaussian Blog.

[3] Admissible shift, reproducing kernel Hilbert space, and abstract Wiener space. The

Gaussian Blog.

[4] Some basic properties and characterizations of Gaussian measures and variables. The

Gaussian Blog.

[5] Logarithmic Sobolev and transportation inequalities. The Gaussian Blog.

[6] M. Ledoux. The concentration of measure phenomenon. Mathematical Surveys and

Monographs 89. American Mathematical Society (2001).

8


