
The Gaussian Blog

Some basics on
Gaussian measures and variables

The content of this note may be found in any standard textbook on probability theory

or statistics.
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1 Standard Gaussian measure in Rn

The standard Gaussian measure, or normal distribution, γn on the Borel sets of Rn is given

by

dγn(x) =
1

(2π)
n
2

e−
1
2
|x|2dλn(x)

Drafted by M. L. v1 November 2023

1



where λn is the Lebesgue measure on Rn (and, for x = (x1, . . . , xn) ∈ Rn, |x|2 = 〈x, x〉 =∑n
k=1 x

2
k).

Density of the standard normal distribution in dimension 2

The Gaussian measure γn has Rn as full support, and is equivalent to the Lebesgue

measure λn. It is not translation invariant: shifted measures are described by

γn(B + h) = e−
1
2
|h|2
∫
B

e−〈h,x〉dγn (1)

where, for the shift h ∈ Rn, B + h = {x + h;x ∈ B}, B Borel set in Rn. In particular,

the shifted measure γn(· + h) is absolutely continuous (equivalent) with respect to γn, with

density e−
1
2
|h|2−〈h,x〉, x ∈ Rn.

The Gaussian measure γn is the product measure γn = γ1 ⊗ · · · ⊗ γ1 of n copies of the

one-dimensional measure. The measure γn is symmetric (with respect to the origin in Rn),

invariant under the action of the orthogonal group, and its push-forward by the map x 7→ x
|x|

is the uniform measure on the unit sphere of Rn. It is log-concave (the logarithm of the

density is concave, actually its derivative is uniformly bounded from above by – equal to –

−1).

It is already of interest to emphasize at this stage a basic integration by parts formula∫
Rn
xf dγn =

∫
Rn
∇f dγn (2)

(as vector integrals) for any smooth enough function f : Rn → R (locally Lipschitz, such

that |x||f | and |∇f | are integrable). This immediately follows, in dimension one, from the

fact that e−
1
2
x2 is the anti-derivative of −x e− 1

2
x2 .

The distribution function of γ1,

Φ(t) =
1√
2π

∫ t

−∞
e−

1
2
x2dλ1(x), t ∈ R, (3)
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is continuous, strictly increasing. By symmetry, 1 − Φ(t) = Φ(−t) for every t ≥ 0 (in

particular Φ(0) = 1
2
). It is convenient to set Φ(−∞) = 0, Φ(+∞) = 1. In the same way, the

well-defined inverse function Φ−1 : [0, 1] → R satisfies Φ−1(0) = −∞ and Φ−1(1) = +∞. A

basic (although not the sharpest) two-sided bound on Φ is given by(1

t
− 1

t3

) 1√
2π

e−
1
2
t2 ≤ 1− Φ(t) ≤ 1

t

1√
2π

e−
1
2
t2 (4)

for every t > 0 (use integration by parts on
∫∞
t

1
xk
e−

1
2
x2dλ1(x), k = 2, 4).

The upper-bound (by a simple study of function)

1− Φ(t) ≤ 1

2
e−

1
2
t2 , t ≥ 0, (5)

is already quite useful.

The associated error function is E(t) = 1√
2π

∫ t
−t e

− 1
2
x2dλ1(x) = 2Φ(t) − 1, t ≥ 0. By the

preceding, 1− E(t) ≤ e−
1
2
t2 .

The Gaussian measure γn generates all other Gaussian measures, in finite as well as

infinite, dimension. This is best explained via random variables and vectors.

2 Real Gaussian random variable

A real random variable X on a probability space (Ω,A,P) is said to have a Gaussian, or

normal, distribution N (m,σ2) with parameters m ∈ R and σ2 > 0, if its law has density

fm,σ2(x) =
1√

2πσ2
e−

1
2σ2

(x−m)2 , x ∈ R,

with respect to the Lebesgue measure on R. The terminology of the parameters is due to

the fact that the mean of the law of X is E(X) = m and its variance Var(X) = σ2, which

thus completely determine the distribution within the class of Gaussian random variables.
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It is sometimes convenient to include the degenerate case σ = 0 into the picture, corre-

sponding to the Dirac mass at m.

The standard normal distribution N (0, 1), that is γ1 in the notation of the first section,

generates all the other normal distributions, since if Y has law N (0, 1), then X = m + σY

has law N (m,σ2) (and conversely, if X has law N (m,σ2), then Y = X−m
σ

has law N (0, 1)).

This observation follows from an affine change of variable in the definition of the Gaussian

density.

The Laplace transform of a random variable Y with distribution N (0, 1) is easily com-

puted as

E
(
euY
)

=
1√
2π

∫
R
eux−

1
2
x2dλ1(x) = e

1
2
u2 , u ∈ R.

As a consequence, if X has law N (m,σ2), then E(euX) = emu+ 1
2
σ2u2 , u ∈ R. A real Gaussian

random variable thus admits moments of all orders. More precisely, a Taylor expansion on

the Laplace transform indicates that if, for example, Y has law N (0, 1),

E
(
euY
)

=
∞∑
k=0

uk

k!
E(Y k).

Identification with the series defining e
1
2
u2 yields

E(Y 2k) =
(2k)!

2kk!
(6)

and E(Y 2k+1) = 0, k ∈ N. These equations also follow, recursively, from the integration by

parts formula (2) E(Y f(Y )) = E(f ′(Y )) applied to f(x) = x2k+1.

As a random variable X with law N (0, σ2) may be represented by σY where Y is dis-

tributed according to N (0, 1), it follows that all the moments E(|X|p), p > 0, of X are

proportional to σp, and thus all their 1
p
-powers are proportional.

The cumulants are the coefficients in the series expansion of the logarithm of the Laplace

transform logE(uX), u ∈ R. Clearly, for X with distribution N (m,σ2), the first two coeffi-

cients are m and σ2, and all the others vanish.

It is possible to work equivalently with the Fourier transform, or characteristic function,

ϕY (u) = E(eiuY ) = e−
1
2
u2 , u ∈ R.

(If X has law N (m,σ2), then ϕX(u) = E(eiuX) = eimu−
1
2
σ2u2 , u ∈ R.) The expression of

ϕY may for example be deduced from the differential equation ϕ′Y (u) = −uϕY (u), u ∈ R,

as a consequence of (2). The Gaussian density is therefore the fixed point of the Fourier

transform.
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From either a direct convolution argument on the Gaussian density, or the Fourier trans-

form, if X1 et X2 are independent with respective normal distributions N (m1, σ
2
1) and

N (m2, σ
2
2), m1,m2 ∈ R, σ1, σ2 > 0, then X1 +X2 has law N (m1 +m2, σ

2
1 +σ2

2). In particular,

if X1, . . . , Xn are independent random variables with common normal law N (m,σ2), then

1

σ
√
n

n∑
k=1

(Xk −m)

has law N (0, 1). Cramér’s theorem shows conversely that if X1 and X2 are two independent

random variables variables with X1 +X2 normally distributed, then both X1 and X2 follow

a normal distribution.

A simple check on the variances indicates that if X and Y are independent centered

Gaussian variables, for any θ ∈ R, X(θ) = X sin(θ) + Y cos(θ) and X ′(θ) = X cos(θ) −
Y sin(θ) are Gaussian, independent with the same law as X. That is, the couples (X, Y ) and

(X(θ), X ′(θ)) have the same distribution. Bernstein’s theorem ensures conversely that if X

and Y are independent and X+Y and X−Y are also independent, then both X and Y must

have normal distributions. The statement actually holds true for the couple (X(θ), X ′(θ))

provided that θ is not an integer multiple of π
2
.

3 Gaussian random vector

A random vector X = (X1, . . . , Xn) on a probability space (Ω,A,P) with values in Rn is

said to be Gaussian if every linear combination of its coordinates is a real Gaussian random

variable. That is, for every c = (c1, . . . , cn) ∈ Rn,

〈c,X〉 =
n∑
k=1

ckXk

is a real Gaussian variable.

More generally, a sequence (Xk)k≥1 of (real) random variables is said to be Gaussian if

every finite subsequence is a Gaussian vector.

Since Gaussian, the distribution of 〈c,X〉 is determined by its mean E(〈c,X〉) and vari-

ance Var(〈c,X〉). By linearity,

E
(
〈c,X〉

)
=

n∑
k=1

ck E(Xk) = 〈c, E(X)〉

where m = E(X) = (E(X1), . . . ,E(Xn)) is the vector of the means, and by bilinearity,

Var
(
〈c,X〉

)
=

n∑
k,`=1

ckc` E
([
Xk − E(Xk)

][
X` − E(X`)

])
= 〈Σc, c〉
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where Σ = (Σk,`)1≤k,`≤n ,

Σk,` = E
([
Xk − E(Xk)

][
X` − E(X`)

])
,

is the covariance matrix of the law of X. Hence, the law of the Gaussian random vector X is

described by the mean vector m = E(X) and the covariance matrix Σ, and usually denoted,

by analogy with the real case, by N (m,Σ).

In terms of the Fourier transform of the law of X,

ϕX(u) = E
(
ei〈u,X〉

)
= ϕ〈u,X〉(1) = ei〈m,u〉−

1
2
〈Σu,u〉, u ∈ Rn.

Any affine transformation of a Gaussian vector is still a Gaussian vector. By the very

definition of a Gaussian vector X = (X1, . . . , Xn), the coordinates X1, . . . , Xn are real Gaus-

sian random variables. But conversely, Gaussian entries do not always ensure that the vector

is Gaussian. For example, if Y is a standard normal real random variable on (Ω,A,P), and ε

an independent Bernoulli random variable with law P(ε = +1) = P(ε = −1) = 1
2
, then both

Y and εY are Gaussian, but the vector (Y, εY ) is not Gaussian.

A check on the covariances indicates, as in the real case, that if X and Y are independent

centered Gaussian vectors, for any θ ∈ R, X(θ) = X sin(θ)+Y cos(θ) and X ′(θ) = X cos(θ)−
Y sin(θ) are Gaussian, independent with the same law as X. That is, the couples (X, Y )

and (X(θ), X ′(θ)) have the same distribution.

As in the real case, the Gaussian vector with mean zero and covariance matrix Σ = Id,

the n × n identity matrix, plays a central role and generates all other Gaussian vectors.

Its law is actually the standard Gaussian measure γn as described in the first section. Let

indeed Y = (Y1, . . . , Yn) be a random vector with law γn. The marginal distributions are

all the standard one-dimensional Gaussian distribution N (0, 1), and the density f being a

product of the marginals, the random variables Y1, . . . , Yn are independent. In the preceding

notation, Y has law N (0, Id).

A covariance matrix Σ is symmetric and (semi-) positive definite, so that it admits a

square root Σ = A >A (with >A the transpose of A). Therefore, if Y follows the standard

Gaussian law N (0, Id) in Rn, any Gaussian random vector X in Rn with mean m and

covariance matrix Σ = A >A has the same distribution as m+ AY .

As a consequence, if Σ, and hence its square root A, are invertible, for any Borel set B

in Rn,

P(X ∈ B) = P(m+ AY ∈ B) = P
(
Y ∈ A−1(B −m)

)
,

so that

P(X ∈ B) =
1

(2π)
n
2

∫
A−1(B−m)

e−
1
2
|y|2 dλn(y).
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After the change of variable x = m+ Ay in Rn with Jacobian det(A), it follows that

P(X ∈ B) =
1

(2π)
n
2 |det(A)|

∫
B

e−
1
2
|A−1(x−m)|2 dλn(x)

=
1

(2π)
n
2

√
|det(Σ)|

∫
B

e−
1
2
〈Σ−1(x−m),x−m〉 dλn(x).

This formula expresses that the law of the Gaussian random vector X, with invertible co-

variance matrix Σ, admits the density

1

(2π)
n
2

√
|det(Σ)|

e−
1
2
〈Σ−1(x−m),x−m〉, x ∈ Rn,

with respect to the Lebesgue measure λn on Rn.

The preceding description of the density of a Gaussian vector assumes the non-singularity

of the covariance matrix. In case of singularities, densities are described similarly but in

subspaces with dimension the rank of the covariance matrix. (See also below.)

The coordinates (X1, . . . , Xn) of a Gaussian random vector X = (X1, . . . , Xn) are inde-

pendent if and only if the covariance matrix Σ of X is diagonal (as can be checked easily,

for example, on the Fourier transform).

More generally, given a random vector X with law N (0, Id) in Rn, Cochran’s theorem

indicates that if F is a vector subspace in Rn with orthogonal subspace F⊥, and if PF
and PF⊥ denote the matrices of the orthogonal projections on F and F⊥ respectively, then

PFX and PF⊥X are independent with respective distributions N (0, PF ) and N (0, PF⊥). By

induction, a similar result holds for any decomposition of Rn in orthogonal subspaces.

In the following, let X be a Gaussian random vector in Rn, centered for simplicity.

Actually, up to translation, every Gaussian variable or vector can be centered, and this is

usually mostly assumed for simplicity.

The covariance matrix Σ of the law of X is symmetric and (semi-) positive definite, so

may be diagonalized in an orthogonal basis, with non-negative eigenvalues. That is, there

exists a orthogonal matrix Q such that Σ = QD>Q, where D is diagonal, with non-negative

(eigen-) values s1, . . . , sn ≥ 0 on the diagonal (some directions might be degenerated). In

this representation, A = Q
√
D, where

√
D is the diagonal matrix consisting of

√
s1, . . . ,

√
sn.

Hence the Gaussian vector X has the same distribution as

AY = Q
√
DY

where Y follows the standard normal law N (0, Id). Now, the (Gaussian) vector
√
DY , with

diagonal covariance matrix D, admits independent coordinates. As a consequence of this
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construction, starting from the Gaussian vector X, after the change of basis by the matrix
>Q, the new Gaussian vector Z = >QX has the same law as

>QAY = >QQ
√
DY =

√
DY,

and its components are therefore independent. Thus, after a suitable change of basis in Rn

built from the covariance matrix, a (centered) Gaussian vector may be put in a position

where all its coordinates are independent, which is of course of significant benefit.

Finally, it is useful in applications to benefit from the integration by parts formula (2)

for an arbitrary centered Gaussian vector X with covariance matrix Σ = A >A. Namely, if

f : Rn → R is sufficiently smooth,

E
(
Xf(X)

)
= AE

(
Y f ◦ A(Y )

)
where Y has distribution N (0, Id), so that

E
(
Xf(X)

)
= ΣE

(
∇f(X)

)
(7)

(as vectors in Rn).

4 Convergence of sequences of Gaussian variables

If (Xk)k∈N is a sequence of Gaussian random variables on a probability space (Ω,A,P)

converging in law to some random variable X, necessarily X is Gaussian. Indeed, if Xk has

law N (mk, σ
2
k), k ∈ N, it may be shown first that the sequence (mk)k∈N is bounded. If not,

for any M > 0 there exists k such that |mk| ≥M , and in particular

P
(
|Xk| ≥M

)
≥ P

(
|Xk| ≥ mk

)
≥ 1

2

since mk is the median of Xk. But this is incompatible with the tightness of the sequence

(Xk)k∈N. By the convergence of the characteristic functions

lim
k→∞

eimku−
1
2
σ2
ku

2 → ϕX(u)

for every u ∈ R, where ϕX is the characteristic function of X, so that, by taking modulus,

the sequence (σk)k∈N is convergent.

There is therefore a subsequence k′ of integers such thatmk′ → m ∈ R and σk′ → σ ∈ [0,∞),

and by the convergence of the characteristic functions, ϕX(u) = eimu−
1
2
σ2u2 for every u ∈ R.

Hence X has law N (m,σ2) (possibly degenerated).
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In case the sequence (Xk)k∈N converges almost surely, or only in probability, towards X,

it may be shown in addition that (Xk)k∈N converges to X in any Lp-space, p > 0. Namely,

from the boundedness of the sequences (mk)k∈N and (σk)k∈N, since all moments of Gaussian

random variables are equivalent, supk∈N E(|Xk|p) < ∞ for every p > 0. In particular, the

sequence (|Xk|p)k∈N is uniformly integrable, from which the claim follows. Of course, this

is no more true if the convergence is only in distribution (take for example Xk = Y for all

k ∈ N where Y is a standard normal variable, and X = −Y ).

5 Conditioning of Gaussian vectors

Let (X1, . . . , Xn) be a Gaussian random vector in Rn, defined on a probability space (Ω,A,P),

centered for simplicity. For 1 ≤ k ≤ n − 1, set U = (X1, . . . , Xk) and V = (Xk+1, . . . , Xn).

The Gaussian structure allows for an easy and complete description of the conditional law

of U given V = v (∈ Rn−k).

Towards this claim, it may first be noticed that, for any c ∈ Rk, the conditional ex-

pectation E(〈c, U〉 |V ) is simply the orthogonal projection, in L2(P), on the linear subspace

generated by the coordinates of V , and is in particular Gaussian. Indeed, if R represents

this orthogonal projection, it is measurable with respect to V and 〈c, U〉 = R + S where S

is orthogonal with respect to the subspace generated by V . But then S is independent from

V , and

E
(
〈c, U〉 |V

)
= E

(
R |V

)
+ E

(
S |V

)
= R + E(S) = R

(by centering).

Next, by a Fourier transform argument, the conditional law of U given V = v may be

described by the conditional expectations

E
(
ei〈c,U〉 |V

)
, c ∈ Rk.

Fix c ∈ Rk. By a covariance argument, it is immediate that 〈c, U〉 −E(〈c, U〉 |V ) and V are

orthogonal, and thus, as jointly Gaussian, independent. As a consequence,

E
(
ei〈c,U〉 |V

)
= eiE(〈c,U〉 |V ) E

(
ei(〈c,U〉−E(〈c,U〉 |V )) |V

)
= eiE(〈c,U〉 |V ) E

(
ei(〈c,U〉−E(〈c,U〉 |V ))

)
= exp

(
iE(〈c, U〉 |V )− 1

2
E
([
〈c, U〉 − E(〈c, U〉 |V )

]2))
.

Therefore, by the standard expression of the Fourier transform of Gaussian vectors, the

conditional distribution of U given V = v is Gaussian with mean E(U |V = v) (∈ Rk) and
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covariance matrix (independent on v)

E
([
Ui − E(Ui |V )

][
Uj − E(Uj |V )

])
, i, j = 1, . . . , k.

In particular, it is enough to know the conditional expectation E(U |V ) to determine the

conditional laws.

The preceding may also be checked directly on the densities.
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