Some geometric inequalities for Gaussian measures

Gaussian measures share some surprising geometric inequalities. The isoperimetric inequality, already discussed in [1], is one of them, and some others are presented here. Among them, the Gaussian correlation inequality has aroused great interest over the last 60 years.

Let, as usual, γ_{n} be the standard Gaussian measure on the Borel sets of \mathbb{R}^{n}, with density $\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\frac{1}{2}|x|^{2}}, x \in \mathbb{R}^{n}$, with respect to the Lebesgue measure. The Gaussian correlation inequality states that for any symmetric convex sets A, B in \mathbb{R}^{n},

$$
\begin{equation*}
\gamma_{n}(A \cap B) \geq \gamma_{n}(A) \gamma_{n}(B) \tag{1}
\end{equation*}
$$

The same result holds true for any centered Gaussian measure on a Banach space E, and symmetric convex sets in E.

A detailed history of the problem can be found in [5]. In dimension 2, the result goes back to L. Pitt [18]. When one of the sets A or B is a symmetric strip, the inequality was proved independently by C. Khatri [12] and Z. Šidák [20]. It was extended to the case when one of the sets is a symmetric ellipsoid by G. Hargé [11]. The final step was achieved in a striking short contribution by T. Royen in 2014 [19].

The note emphasizes a number of related inequalities on the Gaussian measure of geometric flavour. Its pattern is modeled on the 2002 review article [15] by R. Latała, with the remarkable feature that all the conjectures exposed therein have now been solved.

Drafted by M. L. v1 January 2024

Table of contents

1. The Gaussian isoperimetric inequality

2. The Ehrhard inequality

3. The S-inequality

4. The B-inequality

References

1 The Gaussian isoperimetric inequality

The Gaussian isoperimetric inequality is extensively discussed in the corresponding chapter of this blog [1], with a number of various proofs.

Recall the distribution function

$$
\Phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{\infty} e^{-\frac{1}{2} x^{2}} d x, \quad t \in \mathbb{R}
$$

of the standard normal law on the real line (with the convention $\Phi(-\infty)=0, \Phi(+\infty)=1$).
The Gaussian isoperimetric profile is defined by

$$
\begin{equation*}
\mathcal{I}(s)=\varphi_{1} \circ \Phi^{-1}(s), \quad s \in[0,1] . \tag{2}
\end{equation*}
$$

The function \mathcal{I} is symmetric along the vertical line $s=\frac{1}{2}$, and such that $\mathcal{I}(0)=\mathcal{I}(1)=0$.
Given $r>0, A_{r}=\left\{x \in \mathbb{R}^{n} ; \inf _{a \in A}|x-a| \leq r\right\}$ is the (closed) r-neighborhood of a set A in \mathbb{R}^{n}. The (Gaussian) outer Minkowski content of Borel set A is defined as

$$
\gamma^{+}(A)=\liminf _{r \rightarrow 0} \frac{1}{r}\left[\gamma\left(A_{r}\right)-\gamma(A)\right]
$$

Theorem 1 (The Gaussian isoperimetric inequality). For any Borel set A in \mathbb{R}^{n},

$$
\begin{equation*}
\gamma^{+}(A) \geq \mathcal{I}(\gamma(A)) \tag{3}
\end{equation*}
$$

Equality is achieved on the half-spaces $H=\left\{x \in \mathbb{R}^{n} ;\langle x, u\rangle \leq h\right\}$ where u is a unit vector and $h \in \mathbb{R}$.

The measure of a half-space is computed in dimension one as $\gamma(H)=\Phi(h)$, and its boundary measure is

$$
\gamma^{+}(H)=\liminf _{r \rightarrow 0} \frac{1}{r}[\Phi(h+r)-\Phi(h)]=\varphi_{1}(h) .
$$

The Gaussian isoperimetric inequality thus expresses equivalently that, if H is a half-space such that $\Phi(h)=\gamma(H)=\gamma(A)$, then

$$
\begin{equation*}
\gamma^{+}(A) \geq \gamma^{+}(H) \tag{4}
\end{equation*}
$$

and half-spaces are the extremal sets of the Gaussian isoperimetric problem.
Integrating along the neighborhoods, (4) is equivalently formulated as

$$
\begin{equation*}
\gamma\left(A_{r}\right) \geq \gamma\left(H_{r}\right), \quad r>0, \tag{5}
\end{equation*}
$$

provided that $\gamma(A)=(\geq) \gamma(H)$, or

$$
\begin{equation*}
\Phi^{-1}\left(\gamma\left(A_{r}\right)\right) \geq \Phi^{-1}(\gamma(A))+r, \quad r>0 \tag{6}
\end{equation*}
$$

(since $\gamma\left(H_{r}\right)=\Phi(h+r)$).
Linear (affine) transformations yield the isoperimetric statement for any Gaussian measure. The dimension-free character allows furthermore for an infinite-dimensional formulation on an abstract Wiener space (E, \mathcal{H}, μ) as, for example,

$$
\Phi^{-1}(\mu(A+r \mathcal{K})) \geq \Phi^{-1}(\mu(A))+r, \quad r \geq 0
$$

where \mathcal{K} is the unit ball of the reproducing kernel Hilbert space \mathcal{H} (cf. [2]), and

$$
A+r \mathcal{K}=\{a+r h ; a \in A, h \in \mathcal{K}\} .
$$

(Due to the linear structure, on the Euclidean space $\mathbb{R}^{n}, A_{r}=A+r B(0,1)$ where $B(0,1)$ is the (closed) Euclidean unit ball.)

2 The Ehrhard inequality

The classical Brunn-Minkowski inequality in Euclidean space states that for any Borel sets A and B in \mathbb{R}^{n},

$$
\begin{equation*}
\operatorname{vol}_{n}(\theta A+(1-\theta) B) \geq \theta \operatorname{vol}_{n}(A)+(1-\theta) \operatorname{vol}_{n}(B), \quad \theta \in[0,1] . \tag{7}
\end{equation*}
$$

(If A and B are subsets of $\mathbb{R}^{n}, A+B=\{a+b ; a \in A, b \in B\}$.) This remarkable and powerful geometric inequality, with numerous consequences and applications, may be used
in particular to recover the standard isoperimetric inequality in \mathbb{R}^{n}. The task is to show that, for fixed volume, balls are the extremal sets of the isoperimetric problem. That is, in the integrated form, whenever $\operatorname{vol}_{n}(A)=(\geq) \operatorname{vol}_{n}(B)$ where B is some ball,

$$
\operatorname{vol}_{n}(A+B(0, r)) \geq \operatorname{vol}_{n}(B+B(0, r))
$$

for every $r>0$. If $B=B\left(0, r_{0}\right)$ for some r_{0}, the choice in (7) of $B=B\left(0, \frac{\theta r}{1-\theta}\right)$ such that $\theta=\frac{r_{0}}{r_{0}+r} \in(0,1)$, yields on the left-hand side $\theta^{n} \operatorname{vol}_{n}(A+B(0, r))$ while, by the choice of θ, the right-hand side is equal to

$$
\begin{aligned}
\theta \operatorname{vol}_{n}\left(B\left(0, r_{0}\right)\right)+(1-\theta) & \operatorname{vol}_{n}\left(B\left(0, \frac{\theta r}{1-\theta}\right)\right) \\
& =\theta r_{0}^{n} \operatorname{vol}_{n}(B(0,1))+(1-\theta) \frac{\theta^{n} r^{n}}{(1-\theta)^{n}} \operatorname{vol}_{n}(B(0,1)) \\
& =\theta^{n}\left(r_{0}+r\right)^{n} \operatorname{vol}_{n}(B(0,1)) \\
& =\theta^{n} \operatorname{vol}_{n}\left(B\left(0, r_{0}+r\right)\right) \\
& =\theta^{n} \operatorname{vol}_{n}\left(B\left(0, r_{0}\right)+B(0, r)\right)
\end{aligned}
$$

which is therefore the result.

Gaussian measures satisfy a similar property, in the form of the log-concavity inequality

$$
\begin{equation*}
\log \gamma_{n}(\theta A+(1-\theta) B) \geq \theta \log \gamma_{n}(A)+(1-\theta) \log \gamma_{n}(B), \quad \theta \in[0,1] \tag{8}
\end{equation*}
$$

This inequality extends to any Gaussian measure μ on a separable Banach space E, and any Borel sets A and B in E (cf. [5]). However, the log-concavity of the measure does not imply the Gaussian isoperimetry.

In 1983, A. Ehrhard [10] emphasized an improved form of log-concavity of Gaussian measures through the inverse Φ^{-1} of the distribution function Φ the standard normal distribution.

Theorem 2 (The Ehrhard inequality). For any Borel sets A, B in \mathbb{R}^{n}, and any $\theta \in[0,1]$,

$$
\Phi^{-1}\left(\gamma_{n}(\theta A+(1-\theta) B)\right) \geq \theta \Phi^{-1}\left(\gamma_{n}(A)\right)+(1-\theta) \Phi^{-1}\left(\gamma_{n}(B)\right)
$$

Theorem 2 extends to any Gaussian measure on a separable Banach space.
It is not difficult to see how Ehrhard's inequality includes isoperimetry. Indeed, applying it to $\frac{1}{\theta} A$ and to $B=\frac{r}{1-\theta} B(0,1), r>0, \theta \in(0,1)$, where $B(0,1)$ is the (closed) Euclidean unit ball, yields

$$
\begin{aligned}
\Phi^{-1}\left(\gamma _ { n } \left(A+(1-\theta)^{-1}\right.\right. & r B(0,1))) \\
\geq & \theta \Phi^{-1}\left(\gamma_{n}\left(\theta^{-1} A\right)\right)+(1-\theta) \Phi^{-1}\left(\gamma_{n}\left((1-\theta)^{-1} r B(0,1)\right)\right) .
\end{aligned}
$$

As $\theta \rightarrow 1$,

$$
\Phi^{-1}\left(\gamma_{n}(A+r B(0,1))\right) \geq \Phi^{-1}\left(\gamma_{n}(A)\right)+r
$$

which is one form of Gaussian isoperimetry (6).
Theorem 2 was established for convex sets by A. Ehrhard [10] using Gaussian symmetrization techniques. It was extended to the case of only one of the sets A, B to be convex (good enough to recover isoperimetry) in [13]. C. Borell [8] finally proved the full result using pde tools on the functional version, in the form of the following Prékopa-Leindler-type inequality. If $f, g, h: \mathbb{R}^{n} \rightarrow[0,1]$ are measurable, and $\theta \in[0,1]$, are such that

$$
\Phi^{-1}(h(\theta x+(1-\theta) y)) \geq \theta \Phi^{-1}(f(x))+(1-\theta) \Phi^{-1}(g(y))
$$

for all $x, y \in \mathbb{R}^{n}$, then

$$
\Phi^{-1}\left(\int_{\mathbb{R}^{n}} h d \gamma_{n}\right) \geq \theta \Phi^{-1}\left(\int_{\mathbb{R}^{n}} f d \gamma_{n}\right)+(1-\theta) \Phi^{-1}\left(\int_{\mathbb{R}^{n}} g d \gamma_{n}\right)
$$

Applied to $f=\mathbb{1}_{A}$ and $g=\mathbb{1}_{B}$ yields the statement in Theorem 2 (and this functional form is actually equivalent to it when considering the level sets of functions defined on \mathbb{R}^{n+1}).

The proof in [8] is based on a parabolic maximum principle applied to the second order differential operator on $\mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\mathcal{E}=\Delta_{x}+\Delta_{y}+2 \sum_{i=1}^{n} \partial_{x_{i}} \partial_{y_{i}}
$$

and the functional

$$
C(t, x, y)=U_{h}(t, \theta x+(1-\theta) y)-\theta U_{f}(t, x)-(1-\theta) U_{g}(t, y)
$$

$t \geq 0, x, y \in \mathbb{R}^{n}$, where, for $q=h, f, g, U_{q}=\Phi^{-1}\left(u_{q}\right)$ and

$$
u_{q}(t, x)=\int_{\mathbb{R}^{n}} q(x+\sqrt{t} z) d \gamma_{n}(z) .
$$

Alternate proofs have been presented in [21] or [17].

3 The S-inequality

The S inequality is a type of isoperimetric inequality with respect to homotheties, with strips as extremal sets.

Theorem 3 (The S-inequality). Let A be a symmetric closed convex set in \mathbb{R}^{n}, and let $S=\left\{x \in \mathbb{R}^{n} ;\left|x_{1}\right| \leq s\right\}$, $s \geq 0$, be a strip such that $\gamma_{n}(A)=\gamma_{n}(S)$. Then

$$
\gamma_{n}(t A) \geq \gamma_{n}(t S) \quad \text { for } t \geq 1
$$

and

$$
\gamma_{n}(t A) \leq \gamma_{n}(t S) \quad \text { for } 0 \leq t \leq 1
$$

This theorem has been established by R. Latała and K. Oleszkiewicz [14], relying on technical arguments and some clever real-line inequalities. It was observed from the S inequality by S. Szarek (cf. [14], that the moment comparison of Gaussian random vectors (cf. [2]) are the same as in the real case. That is, if X is a centered Gaussian random vector on a separable Banach space E with norm $\|\cdot\|$, then

$$
\frac{\left(\mathbb{E}\left(\|X\|^{q}\right)\right)^{1 / q}}{\left(\mathbb{E}\left(|g|^{q}\right)\right)^{1 / q}} \leq \frac{\left(\mathbb{E}\left(\|X\|^{p}\right)\right)^{1 / p}}{\left(\mathbb{E}\left(|g|^{p}\right)\right)^{1 / p}}
$$

for any $0 \leq p \leq q$, where g has distribution $\mathcal{N}(0,1)$ on \mathbb{R}.

4 The B-inequality

The B-inequality for Gaussian measure is another statement about convex sets.
Theorem 4 (The B-inequality). Let A be a symmetric closed convex set in \mathbb{R}^{n}. For every $\alpha, \beta>0$,

$$
\begin{equation*}
\gamma_{n}(\sqrt{\alpha \beta} A) \geq \sqrt{\gamma_{n}(\alpha A) \gamma_{n}(\beta A)} \tag{9}
\end{equation*}
$$

In an equivalent formulation, the map $t \mapsto \gamma_{n}\left(e^{t} A\right)$ is log-concave on \mathbb{R}.
The B-inequality has been established by D. Cordero-Erausquin, M. Fradelizi and B. Maurey in [9]. A interesting feature of the proof is that it is connected to (but lies much deeper than) the Gaussian Poincaré inequality for functions f which are orthogonal to constants and linear functions, for which the constant is improved as

$$
\operatorname{Var}_{\gamma_{n}}(f) \leq \frac{1}{2} \int_{\mathbb{R}^{n}}|\nabla f|^{2} d \gamma_{n}
$$

This is in particular clear on the Hermite expansion proof of the Gaussian Poincaré inequality [3].

References

[1] The Gaussian isoperimetric inequality. The Gaussian Blog.
[2] Admissible shift, reproducing kernel Hilbert space, and abstract Wiener space. The Gaussian Blog.
[3] The Gaussian Poincaré inequality. The Gaussian Blog.
[4] D. Bakry, I. Gentil, M. Ledoux. Analysis and geometry of Markov diffusion operators. Grundlehren der mathematischen Wissenschaften 348. Springer (2014).
[5] F. Barthe. L'inégalité de corrélation gaussienne [d'après T. Royen]. Séminaire Bourbaki, Astérisque 407, 117-133 (2019).
[6] C. Borell. The Brunn-Minskowski inequality in Gauss space. Invent. Math. 30, 207-216 (1975).
[7] C. Borell. Geometric bounds on the Ornstein-Uhlenbeck process. Z. Wahrscheinlichkeitstheor. verw. Gebiete 70, 1-13 (1985).
[8] C. Borell. The Ehrhard inequality. C. R. Math. Acad. Sci. Paris 337, 663-666 (2003).
[9] D. Cordero-Erausquin, M. Fradelizi, B. Maurey. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214, 410-427 (2004).
[10] A. Ehrhard. Symétrisation dans l'espace de Gauss. Math. Scand. 53, 281-301 (1983).
[11] G. Hargé. A particular case of correlation inequality for the Gaussian measure. Ann. Probab. 27, 1939-1951 (1999).
[12] C. Khatri. On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist. 38, 1853-1867 (1967).
[13] R. Latała. A note on the Ehrhard inequality. Studia Math. 118, 169-174 (1996).
[14] R. Latała, K. Oleszkiewicz. Gaussian measures of dilatations of convex symmetric sets. Ann. Probab. 27, 1922-1938 (1999).
[15] R. Latała. On some inequalities for Gaussian measures. Proceedings of the ICM 2002 Beijing, 813-822. Higher Education Press (2002)
[16] M. Ledoux. Isoperimetry and Gaussian Analysis. École d'Été de Probabilités de SaintFlour 1994. Lecture Notes in Math. 1648, 165-294. Springer (1996).
[17] J. Neeman, G. Paouris. An interpolation proof of Ehrhard's inequality. Geometric aspects of functional analysis, Lecture Notes in Math. 2266, 263-278. Springer (2020).
[18] L. Pitt. A Gaussian correlation inequality for symmetric convex sets. Ann. Probability 5, 470-474 (1977)
[19] T. Royen. A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions. Far East J. Theor. Stat. 48, 139-145 (2014).
[20] S. Šidák. Rectangular confidence regions for the means of multivariate nor- mal distributions. J. Amer. Statist. Assoc. 62, 626-633 (1967).
[21] R. van Handel. The Borell-Ehrhard game. Probab. Theory Related Fields 170, 555-585 (2018).

