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Admissible shift,

reproducing kernel Hilbert space,

and abstract Wiener space

The standard Gaussian measure γn, with density 1

(2π)
n
2
e−

1
2
|x|2 , x ∈ Rn with respect to

the Lebesgue measure on Rn, is not translation invariant. Shifted measures are described by

γn(B + h) = e−
1
2
|h|2
∫
B

e−〈h,x〉dγn (1)

where B + h = {x + h;x ∈ B}, B Borel set in Rn and h ∈ Rn. In other words, the shifted

measure γn(· + h) by an element h ∈ Rn is absolutely continuous with respect to γn, with

density e−
1
2
|h|2−〈h,·〉.

Let now µ be the Wiener measure on the Borel sets of the Banach space C([0, 1]) of

real continuous functions on [0, 1], law of a standard Brownian motion or Wiener process

W = (W (t))t∈[0,1]. It is not entirely clear to give a meaning to the preceding translation

formula in this infinite-dimensional context, and in particular to make sense of |h|2 and

〈h, ·〉. An early result of H. Cameron and W. Martin [7] answers this question in the following

form. If (and only if) h : [0, 1]→ R is absolutely continuous on [0, 1], with almost everywhere

derivative h′ in L2([0, 1]) (for the Lebesgue measure), the shifted measure µ(·+h) is absolutely

continuous with respect to µ, with density

exp

(
− 1

2

∫ 1

0

h′(t)2 dt−
∫ 1

0

h′(t)dW (t)

)
,

where
∫ 1

0
h′(t)dW (t) is understood as a Wiener (-Itô) integral.
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This translation formula actually entails some basic features associated to the Wiener

measure, namely the so-called Cameron-Martin Hilbert space of absolutely continuous func-

tions on [0, 1] with almost everywhere derivative h′ in L2([0, 1]), and the Wiener integral∫ 1

0
h′(t)dW (t). These objects are in fact only generated by the covariance function of W ,

E(W (s)W (t)) = s ∧ t, s, t ∈ [0, 1], and give rise to the specific structure consisting of the

space C([0, 1]), with its topology, the Cameron-Martin, or reproducing kernel, Hilbert space,

and the Wiener measure.

This structure, called abstract Wiener space, may be built for any Gaussian measure

(on a Banach space for example), and the text below develops the construction in a rather

general setting. While the exposition might appear somewhat abstract, it only relies on some

standard functional analysis and is not any longer or difficult than it would be for a specific

model like the Wiener space. It covers besides, in a most instructive way, several examples of

interest, even finite-dimensional. In addition, it naturally puts forward series representations

in orthonormal bases of the reproducing kernel Hilbert space (like the trigonometric or

Haar expansions of Brownian motion), a most useful property to transfer, in applications,

dimension-free statements from finite to infinite-dimensional Gaussian measures and vectors.

The note is mainly extracted from [12]. Some main expositions on Gaussian measures,

vectors, processes, in infinite-dimensional spaces are [16, 4, 11, 13, 14, 8, 10, 5, 18, 19, 15]...
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1 Gaussian measure and random vector

It is classical that the Lebesgue measure λn does not extend to an infinite-dimensional

setting. However, Gaussian measures, due in particular to their dimension-free features,

may easily be considered in infinite-dimensional spaces. A prototype, and central, example

is the Wiener measure, with associated Brownian or Wiener process, on the Banach space

C([0, 1]) of continuous functions on the interval [0, 1].

A Gaussian measure µ on a real separable Banach space E equipped with its Borel

σ-algebra B, and with norm ‖ · ‖, is a Borel probability measure on (E,B) such that the law

of each continuous linear functional on E is Gaussian. Equivalently, a random variable, or

vector, X on some probability space (Ω,A,P) with values in (E,B) is Gaussian if its law,

on the Borel sets of E, is Gaussian, that is, for every element ξ of the dual space E∗ of E,

〈ξ,X〉 is a real Gaussian variable.

By separability of B, the distribution of X may also be described by the finite-dimensional

distributions of the random process 〈ξ,X〉, ξ ∈ E∗, and therefore by the covariance operator

E
(
〈ξ,X〉〈ζ,X〉

)
=

∫
E

〈ξ, x〉〈ζ, x〉dµ(x), ξ, ζ ∈ E∗

(for µ the law of X). As such, all the standard properties of finite-dimensional Gaussian

random vectors extend to this infinite-dimensional setting.

The infinite dimensional setting may be extended to locally convex vector spaces [6], but

for simplicity, the exposition here is limited to Banach spaces.

Throughout the note, only centered Gaussian measures and vectors are considered, with-

out further notice.

2 Wiener space factorization

Let µ be a Gaussian measure on (E,B). As E is separable, µ is a Radon measure in the

sense that, for every B ∈ B,

µ(B) = sup
{
µ(K);K ⊂ B,K compact inE

}
.

It is known from the integrability properties of norms of Gaussian random vectors (cf. [1]),

that

σ = sup
ξ∈E∗,‖ξ‖≤1

(∫
E

〈ξ, x〉2dµ(x)

)1/2

<∞, (2)
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and actually ∫
E

‖x‖pdµ(x) < ∞ for every p > 0. (3)

The abstract Wiener space factorization of the Gaussian measure µ on (E,B) is given by

E∗
j−→ L2(µ)

j∗−→ E,

where j is the injection map from E∗ into L2(µ) = L2(E,B, µ;R) (i.e. j(ξ) = 〈ξ, ·〉 ∈ L2(µ)),

the dual map j∗ of j mapping L2(µ) into E (rather than the bi-dual). Indeed, by the

integrability property (3), for any element ϕ of L2(µ), the integral
∫
E
xϕ(x)dµ(x) is defined,

as an element of E, in the strong sense since∫
E

‖x‖
∣∣ϕ(x)

∣∣dµ(x) ≤
(∫

E

‖x‖2dµ(x)

)1/2(∫
E

|ϕ|2dµ
)1/2

< ∞.

Now, for every ξ ∈ E∗,

〈j(ξ), ϕ〉L2(µ) =

∫
E

〈ξ, x〉ϕ(x)dµ(x) =

〈
ξ,

∫
E

xϕ(x)dµ(x)

〉
so that j∗(ϕ) =

∫
E
xϕ(x)dµ(x) ∈ E.

3 Reproducing kernel Hilbert space

The reproducing kernel Hilbert space H of µ is defined as the subspace j∗(L2(µ)) of E. By

the preceding, its elements are of the form
∫
E
xϕ(x)dµ(x) with ϕ ∈ L2(µ). This description

induces a natural scalar product on H via the covariance of µ by

〈j∗(ϕ), j∗(ψ)〉H = 〈ϕ, ψ〉L2(µ), ϕ, ψ ∈ L2(µ).

Since j(E∗)⊥ = Ker(j∗), j∗ restricted to the closure E∗2 of E∗ in L2(µ) is linear and

bijective onto H. For simplicity in the notation, set below for h ∈ H,

h̃ = (j∗|E∗2 )−1(h) ∈ E∗2 ⊂ L2(µ).

Under µ, h̃ is Gaussian with variance |h|2H.

Note that σ of (2) is then also supx∈K ‖x‖ where K is the closed unit ball of H for this

Hilbert space scalar product. In particular, for every x in H,

‖x‖ ≤ σ |x|H
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where |x|H = 〈x, x〉1/2H . Moreover, K is a compact subset of E. Indeed, if (ξn)n∈N is a

sequence in the unit ball of E∗, there is a subsequence (ξn′)n′∈N which converges weakly to

some ξ in E∗. Now, since the ξn’s are Gaussian under µ, ξn′ → ξ in L2(µ) so that j is a

compact operator. Hence j∗ is also a compact operator, from which the compactness of K
follows.

The terminology “reproducing kernel” stems from the fact that an element ϕ ∈ L2(µ) is

reproduced, by duality, from the covariance kernel of µ as∫
E

ϕψ dµ = K(ϕ, ψ)

where ψ is running through L2(µ). A further illustration of this property in the context of

Gaussian processes is provided below.

It is useful to visualize the preceding abstract construction on a number of basic examples.

For γn the canonical Gaussian measure on Rn (equipped with an arbitrary norm), it is

plain that H = Rn with its Euclidean structure, and K is the Euclidean (closed) unit ball

B(0, 1).

If X is a Gaussian vector on Rn with non-degenerate covariance matrix Σ = M >M , the

unit ball K of the reproducing kernel Hilbert space associated to the distribution of X is the

ellipsoid M(B(0, 1)).

An infinite dimensional version of γn might consist of an infinite sequence (Yn)n∈N of

independent standard normal random variables (on some probability space (Ω,A,P)). This

sequence does not belong almost surely to the Hilbert space `2 of square summable se-

quences, but as soon as (an)n∈N is a (deterministic) sequence in `2, the new Gaussian se-

quence (anYn)n∈N belongs to E = `2, and its law µ defines an abstract Wiener space (E,H, µ)

with reproducing kernel Hilbert spaceH given by the infinite-dimensional ellipsoid consisting

of the sequences (bn)n∈N such that
(
bn
an

)
n∈N

belongs to `2 (assuming the an’s different from

zero).

Another illustrative, infinite-dimensional, example is the classical Wiener space associated

with Brownian motion, say on [0, 1] and with real values for simplicity (cf. [2]). Let thus

E be the Banach space C([0, 1]) of all real continuous functions x on [0, 1] equipped with

the uniform norm (the Wiener space), and let µ be the distribution of a standard Brownian

motion, or Wiener process, W = (W (t))t∈[0,1] starting at the origin (the Wiener measure).

The dual space of C([0, 1]) is the space of signed measures on [0, 1], and if m and m′ are

finitely supported measures on [0, 1], m =
∑

i ciδti , ci ∈ R, ti ∈ [0, 1], m′ =
∑

j c
′
jδt′j , c

′
j ∈ R,
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t′j ∈ [0, 1], ∫
E

〈m,x〉〈m′, x〉dµ(x) = E
(
〈m,W 〉〈m′,W 〉

)
=
∑
i,j

cic
′
j E
(
W (ti)W (t′j)

)
=
∑
i,j

cic
′
j(ti ∧ t′j)

by definition of the covariance of Brownian motion. It follows that the element h = j∗j(m) =∫
E
x〈m,x〉dµ(x) of H is the map h : t ∈ [0, 1] 7→

∑
i ci(ti ∧ t). This map is absolutely

continuous, with almost everywhere derivative h′ satisfying∫ 1

0

h′(t)2 dt =

∫ 1

0

∣∣∣∣∑
i

ci1[0,ti]

∣∣∣∣2dt
=

∫ 1

0

∑
i,j

cicj1[0,ti]1[0,tj ]dt

=
∑
i,j

cicj(ti ∧ tj) =

∫
E

〈m,x〉2dµ(x) = |h|2H.

By a standard extension, the reproducing kernel Hilbert space H associated to the Wiener

measure µ on E may then be identified with the Cameron-Martin Hilbert space [7] of the

absolutely continuous elements h of C([0, 1]) such that
∫ 1

0
h′(t)2dt <∞. Moreover, if h ∈ H,

h̃ = (j∗|E∗2 )−1(h) =

∫ 1

0

h′(t)dW (t)

as a Wiener (-Itô) integral, defining a Gaussian random variable with mean zero and variance∫ 1

0
h′(t)2dt.

While the Wiener space C([0, 1]) is equipped here with the uniform topology, other choices

are possible. Let F be a separable Banach space such that the Wiener process W belongs

almost surely to F . Using probabilistic notation, the previous abstract Wiener space theory

indicates that if ϕ is a real valued random variable, on a probability space (Ω,A,P), with

E(ϕ2) < ∞, then h = E(Wϕ) ∈ F . Since P(W ∈ F ∩ C([0, 1])) = 1, it immediately follows

that the Cameron-Martin Hilbert space may be identified with a subset of F , and is also

the reproducing kernel Hilbert space of the Wiener measure on F . Examples of subspaces

F include the Lebesgue spaces Lp([0, 1]), 1 ≤ p <∞, or the Hölder spaces with exponent α,

0 < α < 1
2
, given by

‖x‖α = sup
0≤s 6=t≤1

|x(s)− x(t)|
|s− t|α

, x ∈ C([0, 1]).
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4 Gaussian process

The construction of the reproducing kernel Hilbert space H of the law of a Gaussian random

vector with values in a Banach space may be, at least formally, extended to the setting

of Gaussian processes. By definition, a Gaussian process X = (Xt)t∈T , on a probability

space (Ω,A,P), indexed by a parameter set T , is a random process such that any finite-

dimensional vector (Xt1 , . . . , Xtn), t1, . . . , tn ∈ T , is a Gaussian vector in Rn. The finite-

dimensional distributions of the process X = (Xt)t∈T are therefore fully determined by the

the covariance function Σ(s, t) = E(XsXt), s, t ∈ T . As for the Brownian motion, the

associated reproducing kernel Hilbert space H is the span of the functions s 7→ Σ(s, t),

t ∈ T , with scalar product

〈h, k〉H =
∑
i,j

cidj Σ(si, tj)

whenever h =
∑

i ci Σ(si, ·, ), for a finite collection of ci ∈ R, si ∈ T , and similarly k =∑
j dj Σ(·, tj), and

E
(∣∣∣∣∑

i

ciXsi

∣∣∣∣2) = 〈h, h〉2H.

5 Abstract Wiener space

In the preceding context of a Gaussian measure µ on a Banach space E with reproducing

kernel Hilbert space H, the triple

(E,H, µ)

is called, following L. Gross [9], an abstract Wiener space.

A dual point of view, starting from a given Hilbert space, more commonly used by

analysts on Wiener spaces, may be emphasized (cf. [11] for further details). Let H be a real

separable Hilbert space with norm | · |H and let e1, e2, . . . be an orthormal basis of H. Define

a simple additive measure ν on the cylinder sets in H by

ν
(
x ∈ H ;

(
〈x, e1〉, . . . , 〈x, en〉

)
∈ B

)
= γn(B)

for all Borel sets B in Rn. Let ‖ · ‖ be a measurable semi-norm on H, and denote by E

the completion of H with respect to ‖ · ‖. Then (E, ‖ · ‖) is a real separable Banach space.

If ξ ∈ E∗, consider ξ|H : H → R that is identified with an element h in H = H∗ (in the

preceding language, h = j∗j(ξ)). Let then µ be the (σ-additive) extension of ν on the

Borel sets of E. In particular, the distribution of ξ ∈ E∗ under µ is Gaussian with mean

zero and variance |h|2H. Therefore, µ is a Gaussian Radon measure on E with reproducing

kernel Hilbert space H, and (E,H, µ) is an abstract Wiener space. With respect to this
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approach, the abstract Wiener space construction of the preceding sections focuses more on

the Gaussian measure.

6 Series representation

The next property is a useful series representation of Gaussian random vectors which can

efficiently be used to transfer (dimension-free) properties from finite-dimensional to infinite-

dimensional Gaussian measures. The Cameron-Martin translation formula (see the next

section) may for example be approached in this way. Another illustration is the extension

of the isoperimetric inequality to infinite-dimensional Gaussian measures (cf. [3]).

The result puts besides forward the fundamental Gaussian measurable structure consist-

ing of the canonical Gaussian product measure on RN with reproducing kernel Hilbert space

`2.

Theorem 1. Let (E,H, µ) a Wiener triple, (ek)k≥1 an orthonormal basis of H, and (gk)k≥1
a sequence of independent real standard normal variables on some probability space (Ω,A,P).

Then the series X =
∑∞

k=1 gkek converges in E almost surely and in every Lp, and is dis-

tributed according to µ.

In the example of the Wiener measure on the space E = C([0, 1]) of continuous functions

on [0, 1], any orthonormal basis (hk)k≥1 of L2([0, 1]) for the Lebesgue measure, gives rise to

a Schauder basis

ek(t) =

∫ t

0

hk(s)ds, t ∈ [0, 1], k ≥ 1,

of E = C([0, 1]) to which the preceding Theorem 1 applies. Now, in this concrete example,

specific bases (hk)k≥1 are of interest, such as the trigonometric or Haar bases. Each of them

actually provides a simple approach to continuity of the Brownian paths (cf. [2]).

Theorem 1 actually entails a somewhat more precise statement. Since µ is a Radon

measure, the space L2(µ) is separable and the closure E∗2 of E∗ in L2(µ) consists of Gaussian

random variables on the probability space (E,B, µ). Let (gk)k≥1 denote an orthonormal basis

of E∗2 , and set ek = j∗(gk), k ≥ 1. Then (ek)k≥1 defines a complete orthonormal system in H,

and (gk)k≥1 is a sequence on (E,B, µ) of independent standard Gaussian random variables.

A proof of Theorem 1 may, for example, be obtained from a vector valued-martingale

convergence theorem (although a direct approach in many specific situations is often easier

to apprehend). Here are some details. Recall that
∫
E
‖x‖pdµ(x) < ∞ for every p > 0.

Denote by Bn the σ-algebra generated by g1, . . . , gn. It is easily seen that the conditional

expectation of the identity map on (E, µ) with respect to Bn is equal to Xn =
∑n

k=1 gkek.
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By the vector-valued martingale convergence theorem, see [17], the series X =
∑∞

k=1 gkek
converges almost surely and in any Lp-space. Since moreover ek =

∫
E
xϕkdµ, k ≥ 1, where

(ϕk)k≥1 is an orthonormal basis of L2(µ) (by the reproducing kernel property),

E
(
〈ξ,X〉2

)
=

∞∑
k=1

〈ξ, ek〉2 =
∞∑
k=1

(∫
E

〈ξ, x〉ϕkdµ
)2

=

∫
E

〈ξ, x〉2dµ(x)

for every ξ in E∗, so that X has law µ, and the last claim follows.

As a consequence of this series representation, it may be deduced that the closure H of H
in E coincides with the support of µ (for the topology given by the norm on E), a property

that shows the coherence of the abstract Wiener space construction.

7 Cameron-Martin translation formula

After the preceding somewhat lengthy developments, this last section addresses the transla-

tion formula for infinite-dimensional Gaussian measures. Actually, the series representation

in an orthonormal basis of the reproducing kernel Hilbert space may be used to access the

Cameron-Martin translation formula discussed in the introduction from its finite-dimensional

version (cf. e.g. [5, 14]).

Theorem 2 (The Cameron Martin formula). On an abstract Wiener space (E,H, µ), for

any h in H, the shifted probability measure µ(·+ h) is absolutely continuous with respect to

µ, with density given by the formula

µ(B + h) = e−
1
2
h|2H

∫
B

e−h̃dµ (4)

for every Borel set B in E, where it is recalled that h̃ = (j∗|E∗2 )−1(h).

As developed first in [7], it takes an explicit form on the standard Wiener space. Namely,

for h ∈ H, h̃ = (j∗|E∗2 )−1(h) =
∫ 1

0
h′(t)dW (t), so that if µ is the Wiener measure on E =

C([0, 1]), the shifted measure µ(·+ h) has density

exp

(
− 1

2

∫ 1

0

h′(t)2 dt−
∫ 1

0

h′(t)dW (t)

)
with respect to µ.
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