Mehler kernel, and the Ornstein-Uhlenbeck operator

Let

$$h_t(x) = \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{1}{4t}|x|^2}, \quad t > 0, \ x \in \mathbb{R}^n,$$

be the standard heat kernel, fundamental solution of the heat equation

$$\partial_t h_t = \Delta p_t$$

with Δ the standard Laplacian. The convolution semigroup $H_t f(x) = f * h_t(x), t > 0$, solves $\partial_t H_t f = \Delta H_t f = H_t \Delta f$ with initial data f. At $t = \frac{1}{2}$, h_t is just the standard Gaussian density so that $H_{\frac{1}{2}}f(0) = \int_{\mathbb{R}^n} f d\gamma_n$ (while $H_0 f = f$), where $d\gamma_n(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}|x|^2} d\lambda_n(x)$ is the standard Gaussian measure on the Borel sets of \mathbb{R}^n .

While the Gaussian density is the central piece of the heat kernel definition, invariance of the heat semigroup $(H_t)_{t\geq 0}$ is still with respect to the Lebesgue measure (in the sense that $\int_{\mathbb{R}^n} h_t(x) d\lambda_n(x) = 1$). There is a related Gaussian kernel, the Mehler kernel,

$$p_t(x,y) = \frac{1}{(1-e^{-2t})^{\frac{n}{2}}} \exp\left(-\frac{e^{-2t}}{2(1-e^{-2t})} \left[|x|^2 + |y|^2 - 2e^t x \cdot y\right]\right),\tag{1}$$

 $t > 0, x, y \in \mathbb{R}^n$, which has the advantage to be invariant with respect to γ_n , i.e.

$$\int_{\mathbb{R}^n} p_t(x, y) d\gamma_n(y) = 1$$

(for every $x \in \mathbb{R}^n$).

Drafted by M. L. v1 January 2024

The Mehler kernel induces the Ornstein-Uhlenbeck semigroup, with infinitesimal generator the drifted Laplacian $L = \Delta - x \cdot \nabla$. The spectrum of the operator -L is \mathbb{N} , and the eigenvectors are the Hermite polynomials (cf. [1]).

It is the purpose of this post to briefly present some general aspects and results on the Mehler kernel and the Ornstein-Uhlenbeck operator. Standard references include [6, 5, 7, 8, 4]...

Table of contents

- 1. Mehler kernel and Ornstein-Uhlenbeck operator
- 2. Spectrum of the Ornstein-Uhlenbeck operator
- 3. Differential formulas
- 4. Ornstein-Uhlenbeck process
- 5. Harmonic oscillator
- 6. A proof of the Gaussian Poincaré inequality

References

1 Mehler kernel and Ornstein-Uhlenbeck operator

The Mehler kernel, as given in (1), satisfies the basic semigroup property with respect to γ_n ,

$$\int_{\mathbb{R}^n} p_s(x,z) p_t(z,y) d\gamma_n(z) = p_{s+t}(x,y)$$
(2)

for all s, t > 0 and $x, y \in \mathbb{R}^n$. As such, it generates the Ornstein-Uhlenbeck semigroup

$$P_t f(x) = \int_{\mathbb{R}^n} f(z) p_t(x, z) d\gamma_n(z), \quad t > 0, \ x \in \mathbb{R}^n,$$
(3)

for any suitable measurable function $f : \mathbb{R}^n \to \mathbb{R}$, with the natural extension $P_0 = \text{Id.}$ After the change of variable $e^{-t}x + \sqrt{1 - e^{-2t}}y = z$ in (3), it takes the form

$$P_t f(x) = \int_{\mathbb{R}^n} f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) d\gamma_n(y), \quad t \ge 0, \ x \in \mathbb{R}^n,$$
(4)

known as Mehler's integral formula.

The family $(P_t)_{t\geq 0}$ defines a Markov semigroup, symmetric in $L^2(\gamma_n)$ and invariant with respect to γ_n , that is

$$\int_{\mathbb{R}^n} f P_t g \, d\gamma_n = \int_{\mathbb{R}^n} g P_t f d\gamma_n \quad \text{and} \quad \int_{\mathbb{R}^n} P_t f d\gamma_n = \int_{\mathbb{R}^n} f d\gamma_n$$

These properties are actually a reformulation of the rotational invariance of Gaussian measures, expressing that under $\gamma_n \otimes \gamma_n$, the couples

$$(x\sin(\theta) + y\cos(\theta), x\cos(\theta) - y\sin(\theta))$$

with $e^{-t} = \sin(\theta)$, are distributed as (x, y).

The infinitesimal generator

$$\mathcal{L} = \lim_{t \to 0} \frac{1}{t} \left[P_t - P_0 \right]$$

of the Markov semigroup $(P_t)_{t\geq 0}$ is the drifted Laplacian $\mathcal{L} = \Delta - x \cdot \nabla$. This can be checked for instance on the Mehler formula (4) since

$$\frac{d}{dt}P_t f = \int_{\mathbb{R}^n} \left(-e^{-t}x + \frac{e^{-2t}}{\sqrt{1 - e^{-2t}}}y \right) \cdot \nabla f \left(e^{-t}x + \sqrt{1 - e^{-2t}}y \right) d\gamma_n(y)$$

$$= -e^{-t} \int_{\mathbb{R}^n} x \cdot \nabla f \left(e^{-t}x + \sqrt{1 - e^{-2t}}y \right) d\gamma_n(y)$$

$$+ e^{-2t} \int_{\mathbb{R}^n} \Delta f \left(e^{-t}x + \sqrt{1 - e^{-2t}}y \right) d\gamma_n(y)$$

$$= \mathrm{L}P_t f$$

where the last steps follows from integration by parts in the y variable.

The semigroup $(P_t)_{t\geq 0}$ is invariant with respect to γ_n $(\int_{\mathbb{R}^n} \mathcal{L}f d\gamma_n = 0)$, and fulfills the basic integration by parts formula by with respect to γ_n

$$\int_{\mathbb{R}^n} f(-\mathrm{L}g) d\gamma_n = \int_{\mathbb{R}^n} \nabla f \cdot \nabla g \, d\gamma_n \tag{5}$$

for every smooth functions $f, g: \mathbb{R}^n \to \mathbb{R}$.

The semigroup $(P_t)_{t\geq 0}$ is a contraction in all $L^p(\mu)$ -spaces with norms $\|\cdot\|_p$, $1 \leq p \leq \infty$. The hypercontractivity property [2] on the other hand expresses that whenever $1 and <math>e^{2t} \geq \frac{q-1}{p-1}$,

$$\|P_t f\|_q \le \|f\|_p.$$
 (6)

The Ornstein-Uhlenbeck semigroup $(P_t)_{t\geq 0}$ is ergodic, $\lim_{t\to\infty} P_t f = \int_{\mathbb{R}^n} f d\gamma_n$. The convergence in the $L^2(\gamma_n)$ -norm is exponential on mean-zero functions $f : \mathbb{R}^n \to \mathbb{R}$ as a consequence of the Gaussian Poincaré inequality (cf. Section 6).

2 Spectrum of the Ornstein-Uhlenbeck operator

The spectrum of the operator -L is \mathbb{N} , with eigenfunctions given by the Hermite polynomials $H_k, \underline{k} \in \mathbb{N}^n$,

$$\mathcal{L}H_{\underline{k}} = -k H_{\underline{k}} \tag{7}$$

with $k = k_1 + \dots + k_n$, $\underline{k} = (k_1, \dots, k_n)$.

This may be seen in various ways. For example, by the Mehler formula (4), the action of P_t on the multi-dimensional generating function $f_{\lambda}(x) = e^{\lambda \cdot x - \frac{1}{2}|\lambda|^2}$, $x, \lambda \in \mathbb{R}^n$, of the family of Hermite polynomials, is given by

$$P_t f_{\lambda}(x) = \int_{\mathbb{R}^n} e^{\lambda \cdot (e^{-t}x + \sqrt{1 - e^{-2t}}y) - \frac{1}{2}|\lambda|^2} d\gamma_n(y) = f_{e^{-t}\lambda}(x).$$

Therefore $P_t H_{\underline{k}} = e^{-kt} H_{\underline{k}}, t \ge 0$, where $k = k_1 + \cdots + k_n, \underline{k} = (k_1, \ldots, k_n)$, and hence $LH_{\underline{k}} = -kH_{\underline{k}}$.

As a consequence of the integration by parts formual (7), for any (smooth) function $f : \mathbb{R}^n \to \mathbb{R}$, and any $\underline{k} \in \mathbb{N}^n$,

$$k\int_{\mathbb{R}^n} f H_{\underline{k}} d\gamma_n = -\int_{\mathbb{R}^n} f \operatorname{L} H_{\underline{k}} d\gamma_n = \int_{\mathbb{R}^n} \nabla f \cdot \nabla H_{\underline{k}} d\gamma_n,$$

which is a generalized form of the basic integration by parts formula

$$\int_{\mathbb{R}^n} xf \, d\gamma_n \, = \, \int_{\mathbb{R}^n} \nabla f \, d\gamma_n$$

(as vector integrals), corresponding to the choice of the first eigenfunctions $H_{\underline{k}}$, k = 1.

3 Differential formulas

The following differential formulas on the Mehler kernel are fundamental in Gaussian calculus of variation, and directly follow from the Mehler formula (4).

Whenever $f : \mathbb{R}^n \to \mathbb{R}$ is smooth enough, $t > 0, x \in \mathbb{R}^n$,

$$\nabla P_t f(x) = e^{-t} \int_{\mathbb{R}^n} \nabla f \left(e^{-t} x + \sqrt{1 - e^{-2t}} y \right) d\gamma_n(y) = e^{-t} P_t(\nabla f)(x), \tag{8}$$

$$\nabla P_t f(x) = \frac{e^{-t}}{\sqrt{1 - e^{-2t}}} \int_{\mathbb{R}^n} y f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) d\gamma_n(y), \tag{9}$$

the second resulting from integration by parts.

4 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process $\{X_t^x; t \ge 0, x \in \mathbb{R}^n\}$ with associated semigroup

$$P_t f(x) = \mathbb{E} \left(f(X_t^x) \right) = \mathbb{E} \left(f(X_t) \mid X_0 = x) \right), \quad t \ge 0, \ x \in \mathbb{R}^n,$$

admits the explicit representation

$$X_t^x = e^{-t} \left(x + \sqrt{2} \int_0^t e^s B_s \right)$$

where $(B_s)_{s\geq 0}$ is a standard Brownian motion in \mathbb{R}^n . This process is the solution of the stochastic differential equation

$$dX_t = \sqrt{2} \, dB_t - X_t dt.$$

The law of X_t given $X_0 = x$ is normal with mean $e^{-t}x$ and covariance $\sqrt{1 - e^{-2t}}$ Id, from which the Mehler formula (4) is recovered, and if X_0 is distributed as $\mathcal{N}(0, \mathrm{Id})$, so is X_t (invariance). For $s, t \ge 0$,

$$\operatorname{Cov}(X_s, X_t) = e^{-|s-t|} (1 - e^{-2(s \wedge t)}).$$

5 Harmonic oscillator

The Ornstein-Uhlenbeck operator is closely related to another famous and well-studied operator, the harmonic oscillator in \mathbb{R}^n , given on smooth functions f by

$$Hf = \Delta f - \frac{1}{4} |x|^2 f.$$
 (10)

The harmonic oscillator H is thus adding a potential to the Laplace operator. It is still symmetric with respect to the Lebesgue measure, and represents the simplest model of quantum mechanics. Denoting by $U_0 = e^{-\frac{1}{4}|x|^2}$, $x \in \mathbb{R}^n$, the ground state function for which $HU_0 = -\frac{n}{2}U_0$, the (ground state) transformation

$$f \mapsto \frac{n}{2}f + \frac{1}{U_0}\operatorname{H}(U_0f)$$

yields the Ornstein-Uhlenbeck operator L since

$$\mathbf{H}(U_0 f) = -\frac{n}{2} U_0 f + U_0 \Delta f + 2 \nabla U_0 \cdot \nabla f.$$

The transformation $f \mapsto U_0 f$ therefore carries over the analysis of the harmonic oscillator H into the analysis of the Ornstein-Uhlenbeck operator L in terms of Hermite polynomials.

6 A proof of the Gaussian Poincaré inequality

The Gaussian Poincaré inequality

$$\operatorname{Var}_{\gamma_n}(f) \leq \int_{\mathbb{R}^n} |\nabla f|^2 d\gamma_n,$$
 (11)

for functions f in $L^2(\gamma_n)$ as well as their gradients, is presented in the post [3]. A quick proof may be provided by interpolation along the Ornstein-Uhlenbeck semigroup. Namely, for a smooth function $f : \mathbb{R}^n \to \mathbb{R}$,

$$\operatorname{Var}_{\gamma_n}(f) = \int_{\mathbb{R}^n} f^2 d\gamma_n - \left(\int_{\mathbb{R}^n} f \, d\gamma_n\right)^2 = \int_0^\infty \left(\frac{d}{dt} \int_{\mathbb{R}^n} (P_t f)^2 d\gamma_n\right) dt$$

Now, by the integration by parts formula (5),

$$\frac{d}{dt} \int_{\mathbb{R}^n} (P_t f)^2 d\gamma_n = 2 \int_{\mathbb{R}^n} P_t f \, \mathrm{L} P_t f d\gamma_n = 2 \int_{\mathbb{R}^n} |\nabla P_t f|^2 d\gamma_n.$$

Using that $\nabla P_t f = e^{-t} P_t(\nabla f), t \ge 0$ (8), and that P_t is a contraction in $L^2(\gamma_n)$, it follows that

$$\operatorname{Var}_{\gamma_n}(f) = 2 \int_0^\infty e^{-2t} \left(\int_{\mathbb{R}^n} |P_t(\nabla f)|^2 d\gamma_n \right) dt$$
$$\leq 2 \int_0^\infty e^{-2t} \left(\int_{\mathbb{R}^n} |\nabla f|^2 d\gamma_n \right) dt$$
$$= \int_{\mathbb{R}^n} |\nabla f|^2 d\gamma_n.$$

The Gaussian Poincaré inequality induces (is actually equivalent to) the exponential decay for mean-zero functions f in $L^2(\gamma_n)$,

$$\|P_t f\|_2 \le e^{-t} \|f\|_2, \quad t \ge 0.$$
(12)

Namely,

$$\frac{d}{dt} e^{2t} \|P_t f\|_2^2 = e^{2t} \left(2 \int_{\mathbb{R}^n} (P_t f)^2 d\gamma_n + 2 \int_{\mathbb{R}^n} P_t f \operatorname{L} P_t f \, d\gamma_n \right)$$
$$= e^{2t} \left(2 \int_{\mathbb{R}^n} (P_t f)^2 d\gamma_n - 2 \int_{\mathbb{R}^n} |\nabla P_t f|^2 \, d\gamma_n \right)$$

where integration by parts has been used. Hence the Poincaré inequality (11) applied to $P_t f$ ensures that $e^{2t} \|P_t f\|_2^2$, $t \ge 0$, is decreasing, which amounts to (12).

This exponential decay may also be viewed spectrally, as a spectral gap. Namely, in dimension one for simplicity, if a mean-zero function f is Fourier-Hermite expanded as $f = \sum_{k>1} a_k h_k$, then, for every $t \ge 0$,

$$P_t f = \sum_{k \ge 1} e^{-kt} a_k h_k$$

Taking the $L^2(\gamma_1)$ -norm,

$$\|P_t f\|_2^2 = \sum_{k \ge 1} e^{-2kt} a_k^2 \le e^{-2t} \sum_{k \ge 1} a_k^2 = e^{-2t} \|f\|_2^2.$$

References

- [1] Hermite polynomials The Gaussian Blog.
- [2] Logarithmic Sobolev and transportation inequalities. The Gaussian Blog.
- [3] The Gaussian Poincaré inequality. The Gaussian Blog.
- [4] D. Bakry, I. Gentil, M. Ledoux. Analysis and geometry of Markov diffusion operators. Grundlehren der mathematischen Wissenschaften 348. Springer (2014).
- [5] V. Bogachev. Gaussian measures. Math. Surveys Monogr. 62. American Mathematical Society (1998).
- [6] P.-A. Meyer. Note sur les processus d'Ornstein-Uhlenbeck. Séminaire de Probabilités XVI, Lecture Notes in Math. 920, 95–132. Springer (1982).
- [7] D. Nualart. The Malliavin calculus and related topics. Springer (2006).
- [8] D. Stroock. Probability theory: an analytic view. Cambridge University Press (2011).