
Proofs of the
Gaussian isoperimetric inequality

(as of 2017)

The note reviews the known proofs of the isoperimetric inequality for Gaussian measures

(as of 2017 – any relevant informations and references on omitted or new further proofs are

welcome, and will be incorporated).

Let γ = γn be the standard Gaussian probability measure on the Borel sets of Rn, with

density ϕn(x) = 1

(2π)
n
2
e−

1
2
|x|2 , x ∈ Rn, with respect to the Lebesgue measure. Denote by

Φ(t) =
∫ t
−∞ ϕ1(x)dx, t ∈ R, the (continuous, strictly increasing) distribution function in

dimension one, and define then the Gaussian isoperimetric profile

I(s) = ϕ1 ◦ Φ−1(s), s ∈ [0, 1]. (1)

0

1√
2π

1
2

1

I

The function I is symmetric along the vertical line s = 1
2
, and such that I(0) = I(1) = 0.

It is worthwhile observing that I(s) ∼ s
√

2 log
(
1
s

)
as s→ 0.
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Given r > 0, Ar = {x ∈ Rn; infa∈A |x− a| ≤ r} is the (closed) r-neighborhood of a set A

in Rn. The (Gaussian) outer Minkowski content of Borel set A is defined as

γ+(A) = lim inf
r→0

1

r

[
γ(Ar)− γ(A)

]
.

Theorem [The Gaussian isoperimetric inequality] For any Borel set A in Rn,

γ+(A) ≥ I
(
γ(A)

)
. (2)

Equality is achieved on the half-spaces H = {x ∈ Rn; 〈x, u〉 ≤ h} where u is a unit vector

and h ∈ R.

The measure of a half-space is computed in dimension one, γ(H) = Φ(h), and its bound-

ary measure is

γ+(H) = lim inf
r→0

1

r

[
Φ(h+ r)− Φ(h)

]
= ϕ1(h).

The Gaussian isoperimetric inequality thus expresses equivalently that, if H is a half-space

such that Φ(h) = γ(H) = γ(A), then

γ+(A) ≥ γ+(H), (3)

and half-spaces are the extremal sets of the Gaussian isoperimetric problem.

H

h

A

Integrating along the neighborhoods, (3) is equivalently formulated as

γ(Ar) ≥ γ(Hr), r > 0, (4)

provided that γ(A) = (≥) γ(H), or

Φ−1
(
γ(Ar)

)
≥ Φ−1

(
γ(A)

)
+ r, r > 0 (5)
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(since γ(Hr) = Φ(h+ r)).

Linear (affine) transformations yield the isoperimetric statement for any Gaussian mea-

sure. The dimension-free character allows furthermore for an infinite-dimensional formula-

tion on an abstract Wiener space (E,H, µ), developed first in [7], as

Φ−1
(
µ(A+ rK)

)
≥ Φ−1

(
µ(A)

)
+ r, r ≥ 0,

where K is the unit ball of the reproducing kernel Hilbert space H (cf. [21]). (Here A+rK =

{a+ rh ; a ∈ A, h ∈ K}, which, in Rn, amounts to Ar for K the Euclidean unit ball.)

The following sections briefly present the various known proofs of the Gaussian isoperi-

metric inequality.

1 Limit of spherical isoperimetry

In the neighborhood formulation, the isoperimetric inequality for the (normalized) uniform

measure σN on the N -sphere SN in RN+1, due to P. Lévy [22] and E. Schmidt [28], expresses

that whenever A is a Borel set in SN , and B a spherical cap (geodesic ball) such that σN(A) =

(≥) σN(B), then

σN(Ar) ≥ σN(Br) (6)

for any r ≥ 0, where Ar is the r-neighborhood of A in the geodesic metric.

It is a folklore result, usually quoted as “Poincaré’s lemma”, that the normalized uniform

measure on the sphere
√
N SN , when projected on a n-dimensional subspace, converges

as N → ∞ to the standard n-dimensional Gaussian measure (cf. e.g. [21]). Via this limit,

V. Sudakov and B. Tsirel’son [29], and C. Borell [7], independently, put forward the Gaussian

isoperimetric inequality from the corresponding one on the sphere, the extremal spherical

caps turning into half-spaces.

2 Gaussian symmetrization

Classical proofs of the isoperimetric inequality on the sphere use symmetrization techniques

(see e.g. [16]). It is the contribution of A. Ehrhard [13] to have introduced a powerful (Steiner)

symmetrization procedure specifically attached to the Gaussian framework, with which he

provided a direct independent proof of the Gaussian isoperimetric inequality (along the

standard symmetrization scheme). Specifically, given a Borel set A in Rn, and u a direction
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vector, define the (Gaussian) symmetrized set A∗ (in the direction u) such that, for any

x ∈ (Ru)⊥, A∗ ∩ (x+ Ru) = (−∞, a] where a ∈ [−∞,+∞] is given by

Φ(a) = γ1
(
A ∩ (x+ Ru)

)
.

Then γ(A∗) = γ(A), and the task is to show that symmetrization decreases the boundary

measure γ+(A∗) ≤ γ+(A). For infinitely many directions u, the resulting symmetrized set is

a half-space.

3 Kernel rearrangement inequality

For Borel sets A,B in Rn, and t > 0, set

Kt(A,B) =

∫
Rn

∫
Rn

1A(x)1B
(
e−tx+

√
1− e−2t ) y

)
dγ(x)dγ(y).

It has been shown by C. Borell [8], using the Gaussian symmetrization technology of [13, 14],

that, whenever H is a half-space with the same Gaussian measure as a Borel set A, then

Kt(A,A) ≤ Kt(H,H). (7)

A heat flow argument of this inequality is provided in [26], extended in a diffusion process

picture in [15]. It is shown in [20, 21] that, for any Borel set A and any t > 0,

γ(A)−Kt(A,A) = Kt(A,A
c) ≤ arccos(e−t)√

2π
γ+(A),

and that, if H is a half-space,

lim
t→0

√
2π

arccos(e−t)
Kt(H,H

c) = γ+(H).

Combined with (7), the latter yields that γ+(A) ≥ γ+(H) whenever γ(A) = γ(H), that is

the Gaussian isoperimetric inequality.

4 Brunn-Minkowski inequality

In [13], A. Ehrhard discovered, using Gaussian symmetrization, an improved form of the

Brunn-Minkowski inequality for Gaussian measures

Φ−1
(
γ(θA+ (1− θ)B)

)
≥ θΦ−1

(
γ(A)

)
+ (1− θ) Φ−1

(
γ(B)

)
(8)
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for any θ ∈ [0, 1] and any convex bodies A, B in Rn. This inequality has been extended to

the case of only one convex body in [19], and finally to all Borel sets in [9] by pde methods1.

The inequality (8) applied to B the Euclidean ball with center the origin and radius r
1−θ

yields (5) as θ → 1.

5 Limit of a two-point inequality

In [5], S. Bobkov showed that for any smooth function f : Rn → [0, 1],

I
(∫

Rn

f dγ

)
≤
∫
Rn

√
I(f)2 + |∇f |2 dγ. (9)

Applied to a (smooth) approximation of f = 1A, this inequality yields (2). This functional

form is actually equivalent to (2) when considering the level sets of functions defined on

Rn+1.

The proof of (9) in [5] is based on the two-point inequality

I
(
a+b
2

)
≤ 1

2

√
I(a)2 + 1

2
|a− b|2 + 1

2

√
I(b)2 + 1

2
|a− b|2

for all a, b ∈ [0, 1], and a tensorization argument and the central limit theorem. The stability

by product of the functional inequality (9) is indeed a main feature (being true for n = 1, it

holds for any dimension n).

6 Heat flow monotonicity

A direct heat flow proof of Bobkov’s inequality (9) has been presented in [1]. Let

pt(x) =
1

(4πt)
n
2

e−
1
4t
|x|2 , t > 0, x ∈ Rn,

be the standard heat kernel, fundamental solution of the heat equation ∂tpt = ∆pt. The

convolution semigroup Ptf(x) = f ∗ pt(x), t > 0, solves ∂tPtf = ∆Ptf with initial data f .

At t = 1
2
, pt is just the standard Gaussian density so that P 1

2
f(0) =

∫
Rn fdγ (while

P0f = f). In order to verify (9), it suffices therefore to show that, for a smooth function

f : Rn → [0, 1], (at any point),

Ps

(√
I (P 1

2
−sf)2 + 2s|∇P 1

2
−sf |2

)
, s ∈ [0, 1

2
],

is increasing, which is simply achieved taking its derivative (cf. [1]). A martingale proof along

the same line, which includes extensions to path (Wiener) spaces, is provided in [4, 11].

1New recent proofs include [30, 18, 27].
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7 Geometric measure theory

A proof of the Gaussian isoperimetric inequality relying on geometric measure theory is

presented in the note by F. Morgan [24], with the suitable version of the Heinze-Karcher

inequality on weighted manifolds. This inequality provides an upper bound on the volume

of a one-sided neighborhood of a hypersurface in terms of its mean curvature and the Ricci

curvature of the ambient manifold. In Gauss space, it yields

γ(A)

γ+(S)
≤ γ(H)

γ+(H)

where S is a minimizing hypersurface enclosing a set A with γ(A) = γ(H). See also E. Mil-

man [23], relying on regularity of isoperimetric minimizers, both in the interior and on the

boundary, as emphasized in the early work by M. Gromov [17].

8 Deficit

A stronger version of the isoperimetric inequality examines lower bounds on the deficit

γ+(A)− γ(H+)

in terms of a functional measuring the proximity of a half-spaceH = Hu = {x ∈ Rn; 〈x, u〉 ≤ h}
such as γ(Hu) = γ(A), with the Borel set A. First steps in this investigation involved a geo-

metric analysis with the Ehrhard symmetrization [12], and a study of the deficit in the kernel

rearrangement inequality (7) [25, 26, 15]. A variational method is developed by M. Barchiesi,

A. Brancolini and V. Julin [3] providing sharp bounds on the deficit. These authors introduce

a technique which is based on an analysis of the first and the second variation conditions of

solutions to a suitable minimization problem, providing a direct proof of the sharp deficit

bound

γ+(A)− γ(H+) ≥ c
(
γ(A)

)√
inf

u∈Sn−1
γ(A∆Hu)

(where c(γ(A)) > 0 only depends on the measure of A).

9 Extension to strongly log-concave measures

The Gauss space and measure is a model example (of positive curvature and infinite dimen-

sion in the language of [2]) to which other examples may be compared. A most natural and

famous instance is the case of a probability measure dµ = e−V dx on Rn whose potential

V : Rn → R is more convex than the quadratic potential, that is V (x) − c
2
|x|2, x ∈ Rn, is
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convex for some c > 0. A main result in this setting is that the isoperimetric profile Iµ of µ

is bounded from below by the Gaussian one. That is, if

Iµ(s) = inf
{
µ+(A) ;µ(A) = s

}
, s ∈ [0, 1],

where the infimum is running over all Borel sets A in Rn (and with a definition of µ+(A)

similar to γ+(A)), then

Iµ ≥
√
c I. (10)

The property (10) has been established in [1] by the heat flow monotonicity method

(Section 6). A proof using needle decomposition has been proposed in [6]. A celebrated

contraction principle in optimal transport by L. Caffarelli [10], expressing that µ is the
1√
c
-Lipschitz image of γ, produces a neat and direct proof of (10) (although not saying

anything on the Gaussian case itself). The geometric measure theory approach outlined

in Section 7 covers the framework of weighted Riemannian manifolds with (generalized)

curvature bounded from below by a positive constant, also covered by the heat flow argument

(cf. [1, 2]).
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[22] P. Lévy. Problèmes concrets d’analyse fonctionnelle. Gauthier-Villars (1951).

[23] E. Milman. Sharp isoperimetric inequalities and model spaces for the curvature-

dimension-diameter condition. J. Eur. Math. Soc. 17, 1041–1078 (2015).

[24] F. Morgan. Manifolds with density. Notices Amer. Math. Soc. 52, 853–858 (2005).

8



[25] E. Mossel, J. Neeman. Robust dimension free isoperimetry in Gaussian space. Ann.

Probab. 43, 971–991 (2015).

[26] E. Mossel, J. Neeman. Robust optimality of Gaussian noise stability. J. Eur. Math.

Soc. 17, 433–482 (2015).

[27] J. Neeman, G. Paouris. An interpolation proof of Ehrhard’s inequality. Geometric as-

pects of functional analysis, Lecture Notes in Math. 2266, 263–278. Springer (2020).

[28] E. Schmidt. Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die

isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Ge-

ometrie. Math. Nach. 1, 81–157 (1948).

[29] V. N. Sudakov, B. S. Tsirel’son. Extremal properties of half-spaces for spherically in-

variant measures. J. Soviet. Math. 9, 9–18 (1978); translated from Zap. Nauch. Sem.

L.O.M.I. 41, 14–24 (1974).

[30] R. van Handel. The Borell-Ehrhard game. Probab. Theory Related Fields 170, 555–585

(2018).

9


