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Logarithmic Sobolev

and transportation inequalities

If µ and ν are probability measures on the Borel sets of Rn, denote by

H
(
µ |ν
)

=

∫
Rn
f log f dν (1)

if µ is absolutely continuous with respect to ν with Radon-Nikodym derivative f , +∞ if not,

the relative entropy of µ with respect to ν.

For ν the standard Gaussian measure dγn(x) = 1

(2π)
n
2
e−

1
2
|x|2dλn(x), the relative entropy

H(· |γn) enjoys two remarkable inequalities.

The first one, called the logarithmic Sobolev inequality, expresses that, for every proba-

bility measure µ,

H
(
µ |γn

)
≤ 1

2
I
(
µ |γn

)
(2)

where

I
(
µ |γn

)
=

∫
Rn

|∇f |2

f
dγn (3)

is the Fisher information of (the density f of) µ with respect to γn (whenever well-defined).

The second one is the (quadratic) transportation cost inequality expressing that, for every

probability measure µ with a finite second moment,

W2(µ, γn)2 ≤ 2 H
(
µ |γn

)
(4)
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where

W2(µ, ν) = inf
π

(∫
Rn×Rn

|x− y|2dπ(x, y)

) 1
2

,

is the quadratic Kantorovich (Wasserstein) distance between two probability measures µ and

ν on the Borel sets of Rn with a finite second moment, the infimum being running over all

couplings π on Rn × Rn with respective marginals µ and ν.

This post (a bit dense) is devoted to a brief description of these two inequalities, and

their applications and relationships with related functional inequalities. As main features,

illustrations to Gaussian concentration, and an hierarchy from isoperimetry to the Poincaré

inequality via the logarithmic Sobolev and the transportation inequalities are emphasized

(in particular the former is formally stronger than the latter).

The inequalities are detailed for the standard Gaussian probability measure (and may

be extended to arbitrary, even infinite-dimensional, Gaussian distributions [8]), but they

actually concern large families of probability measures. In particular the hierarchy outlined

in Section 7 may be developed in general (and makes full sense within this setting). Standard

references on the subject are [16, 6]...
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1 Logarithmic Sobolev inequality

The logarithmic Sobolev inequality has been emphasized by L. Gross in [10].

Theorem 1 (The logarithmic Sobolev inequality). For every smooth function f : Rn → R
with

∫
Rn f

2dγn = 1, ∫
Rn
f 2 log f 2 dγn ≤ 2

∫
Rn
|∇f |2dγn. (5)

By homogeneity, for every smooth, square integrable, function f : Rn → R,

Entγn(f 2) =

∫
Rn
f 2 log f 2 dγn −

∫
Rn
f 2 dγn log

(∫
Rn
f 2 dγn

)
≤ 2

∫
Rn
|∇f |2dγn. (6)

It is a simple matter to check that the inequality is sharp on the exponential functions

f(x) = e〈a,x〉−|a|
2
, x ∈ Rn, where a ∈ Rn.

This inequality can take various equivalent forms. For example, changing f 2 into f > 0,

for any (smooth strictly positive) probability density f with respect to γn (i.e.
∫
Rn f dγn = 1),∫

Rn
f log f dγn ≤

1

2

∫
Rn

|∇f |2

f
dγn (7)

which amounts to (2) from the introduction.

It is an important feature that the inequality and the constants do not depend on the

dimension of the underlying state space (in contrast in particular with the classical Sobolev

inequalities). Actually, by a simple tensorization property, and the product structure of γn
(similar to the one emphasized for the Poincaré inequality in [1]), it is enough to establish

the logarithmic Sobolev inequality (5) in dimension one. By affine transformations, the

logarithmic Sobolev inequality may be formulated for arbitrary Gaussian measures. Due to

its dimension-free character, infinite-dimensional Gaussian measures may also be considered.

The Gaussian logarithmic Sobolev inequality is sometimes considered, and proved, in its

Euclidean (dimensional) form, with respect to the Lebesgue measure λn, obtained after a

simple, equivalent, change of function,∫
Rn
f 2 log f 2dλn ≤

n

2
log

(
2

nπe

∫
Rn
|∇f |2dλn

)
(8)

for every smooth function f : Rn → R such that
∫
Rn f

2dλn = 1 (cf. [16, 6]).
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2 Hypercontractivity

Another main aspect of the pioneering work [10] by L. Gross is the equivalence (in a gen-

eral Dirichlet form framework) of logarithmic Sobolev inequalities with hypercontractivity

properties.

For the Gaussian measure γn, let

Ptf(x) =

∫
Rn
f
(
e−tx+

√
1− e−2t y

)
dγn(y), t ≥ 0, x ∈ Rn, (9)

be the Ornstein-Uhlenbeck semigroup (acting on suitable functions f : Rn → R). Recall

(cf. e.g. [6, 2]) that the Markov semigroup (Pt)t≥0 is invariant and symmetric with respect

to γn, and that its infinitesimal generator L = ∆ − x · ∇ fulfills the integration by parts

formula ∫
Rn
f(−Lg)dγn =

∫
Rn
∇f · ∇g dγn (10)

for every smooth functions f, g : Rn → R.

By Jensen’s inequality on the integral representation (9), the operators Pt are contractions

in all Lp(γn), p ≥ 1, spaces. As a result, the logarithmic Sobolev inequality (5), holding for all

smooth functions f , is equivalent to the following hypercontractivity property, emphasized

first by E. Nelson [13].

Theorem 2 (Hypercontractivity). For every (measurable) function f : Rn → R, every

1 < p < q <∞, and every t > 0 such that e2t ≥ q−1
p−1 ,

‖Ptf‖q ≤ ‖f‖p (11)

(where ‖ · ‖p is the Lp(γn) norm).

The proof of this equivalence amounts to take the time derivative of R(t) = ‖Ptf‖q(t)
where q(t) = 1 + e2t(p − 1), t ≥ 0, which yields the logarithmic Sobolev inequality up to a

power-type change of function. Namely, given a non-negative smooth function f on Rn, the

chain rule formula yields, on the one hand, an entropy term as derivative of Lp-norm, and

on the other hand, the Ornstein-Uhlenbeck operator from the heat equation ∂
∂t
Ptf = LPtf ,

so to obtain

q(t)2R(t)q(t)−1R′(t) = q′(t) Entγn
(
(Ptf)q(t)

)
+ q(t)2

∫
Rn

(Ptf)q(t)−1LPtfdγn.

Next, by the integration by parts formula (10),

q(t)2R(t)q(t)−1R′(t)

= q′(t) Entγn
(
(Ptf)q(t)

)
− 2
(
q(t)− 1

) ∫
Rn

q(t)2

2
|∇Ptf |2(Ptf)q(t)−2dγn.

(12)
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Since q′(t) = 2(q(t)− 1), the logarithmic Sobolev inequality (6) applied to (Ptf)q(t)/2 yields

that R′(t) ≤ 0. Hence R(t) ≤ R(0) which is the claim. The actual equivalence with

hypercontractivity is proved similarly.

3 Proof of the logarithmic Sobolev inequality

In the note [12], “more than 15 proofs of the logarithmic Sobolev inequality” (and hypercon-

tractivity) are put forward. The simplest appears to be the one by D. Bakry and M. Émery

[5] based on heat flow arguments. While the classical heat equation is used in [12], this

section presents the same idea with the Ornstein-Uhlenbeck semigroup (Pt)t≥0.

Let thus f : Rn → R be smooth, and such that 0 < c ≤ f ≤ C < ∞, these constraints

being easily lifted at the end of the proof. Then, since P0g = g and P∞g =
∫
Rn g dγn (for

any suitable g : Rn → R),

Entγn(f) =

∫
Rn
f log f dγn −

∫
Rn
f dγn log

(∫
Rn
f dγn

)
= −

∫ ∞
0

d

dt

∫
Rn
Ptf logPtf dγn dt.

Now

d

dt

∫
Rn
Ptf logPtf dγn =

∫
Rn

LPtf logPtf dγn +

∫
Rn

LPtf dγn = −
∫
Rn

|∇Ptf |2

Ptf
dγn

by the integration by parts formula (10) (and invariance
∫
Rn Lg dγn = 0). Now, from the

integral representation of Pt, ∇Ptf = e−tPt(∇f) (as vectors). Next, by the Cauchy-Schwarz

inequality with respect to Pt (as an integral),∣∣Pt(∇f)
∣∣2 ≤ [Pt(|∇f |)]2 ≤ Ptf Pt

( |∇f |2
f

)
.

Therefore, ∫
Rn

|∇Ptf |2

Ptf
dγn ≤ e−2t

∫
Rn

|∇f |2

f
dγn

by invariance of Pt, and the conclusion follows after integration in t.

4 Infimum-convolution inequalities

The Gross link between the logarithmic Sobolev inequality and hypercontractivity may be

developed in parallel at the level of infimum-convolution inequalities.
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Consider the basic Hamilton-Jacobi initial value problem

∂v

∂t
+

1

2
|∇v|2 = 0 in Rn × (0,∞),

v = f on Rn × {t = 0}.
(13)

Solutions of (13) are described by the Hopf-Lax representation formula as infimum-convolutions.

Namely, given a (Lipschitz continuous) function f on Rn, define the one-parameter family

of infimum-convolutions of f with the quadratic cost as

Qtf(x) = inf
y∈Rn

[
f(y) +

1

2t
|x− y|2

]
, t > 0, x ∈ Rn. (14)

The family (Qt)t≥0 (with the convention Q0f = f) defines a semigroup with infinitesimal

(non-linear) generator −1
2
|∇f |2. That is, v = v(x, t) = Qtf(x) is a solution of the Hamilton-

Jacobi initial value problem (13) (at least almost everywhere). Actually, if in addition f is

bounded, the Hopf-Lax formula Qtf is the relevant mathematical solution of (13), that is its

unique viscosity solution (cf. [9]). It is also fruitful to think of the Hamilton-Jacobi equation

as the limiting point of a family of heat equations obtained after the addition of a small noise

(and an exponential change of function). With this in mind, the following development is of

no surprise ([7]).

Once this has been recognized, it is not difficult indeed to follow Gross’s idea for the

Hamilton-Jacobi equation. Namely, letting now S(t) = ‖eQtf‖λ(t), t ≥ 0, for some function

λ(t) with λ(0) = a, a ∈ R, the analogue of (12) reads as

λ(t)2 S(t)λ(t)−1S ′(t) = λ′(t) Entγn
(
eλ(t)Qtf

)
−
∫
Rn

λ(t)2

2

∣∣∇Qtf
∣∣2eλ(t)Qtfdγn. (15)

By the logarithmic Sobolev inequality (6) applied to eλ(t)Qtf , S ′(t) ≤ 0 as soon as λ′(t) = 1,

t ≥ 0. As a result, the logarithmic Sobolev inequality shows that, for every t ≥ 0, every

a ∈ R and every (say bounded) function f ,∥∥eQtf∥∥
a+t
≤
∥∥ef∥∥

a
, (16)

a family of hypercontractive inequalities for the infimum-convolution semigroup (Qt)t≥0.

Conversely, if (16) holds for every t ≥ 0 and some a 6= 0, then the logarithmic Sobolev

inequality holds true.

5 Transportation cost inequality

If t = 1 and a→ 0, (16) reads ∫
Rn
eQ1fdγn ≤ e

∫
Rn f dγn (17)
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for any (bounded measurable, or suitably integrable) function f : Rn → R. The point is that

this inequality, holding for every bounded measurable function f : Rn → R, is an infimum-

convolution reformulation of the transportation cost inequality (4). To this purpose, the

Monge-Kantorovitch theorem (cf. [16]) expresses that, for every probability measures µ and

ν on Rn (with a second moment),

W2(µ, ν)2 = sup

[ ∫
Rn
Q1f dµ−

∫
Rn
f dν

]
(18)

where the supremum is running over bounded measurable functions f : Rn → R. On

the other hand, given a probability µ with a second moment, if g is the Radon-Nikodym

derivative of µ with respect to γn,

H
(
µ | γn

)
=

∫
Rn
g log g dγn = sup

∫
Rn
gψ dγn

where the supremum is taken over all functions ψ such that
∫
Rn e

ψdγn ≤ 1. For any bounded

measurable function f , ψ = Q1f −
∫
Rn f dγn belongs to this family by (17), so that∫

Rn
Q1f dµ−

∫
Rn
f dγn =

∫
Rn
gψ dγn ≤

∫
Rn
g log g dγn.

Taking the supremum over all f ’s, the inequality (4) holds true. The full equivalence between

(17) and (4) is deduced in the same way.

As a result, the following transportation cost inequality, first discovered by M. Talagrand

[15], holds true.

Theorem 3 (The transportation cost inequality). For every Borel probability measure µ on

Rn with a finite second moment,

W2(µ, γn)2 ≤ 2 H
(
µ |γn

)
. (19)

The preceding investigation actually reveals that the (Gross) logarithmic Sobolev in-

equality (2) formally implies the (Talagrand) transportation cost inequality (4) (via the

infimum-convolution inequality (17)). This relationship, discussed below in Section 7, is

fully relevant for arbitrary measures satisfying one of these inequalities and was emphasized

by F. Otto and C. Villani [14].

Theorem 4 (The Otto-Villani theorem). The logarithmic Sobolev inequality (5) implies the

transportation cost inequality (19).
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6 Concentration inequalities and the Herbst argument

Whenever F : Rn → R is Lipschitz, with Lipschitz semi-norm ‖F‖Lip,

Q1F ≥ F − 1

2
‖F‖2Lip.

Therefore (17) for such a Lipschitz function F yields∫
Rn
eFdγn ≤ e

∫
Rn Fdγn+

1
2
‖F‖2Lip , (20)

which is exactly the Laplace concentration bounds as developed in the post [3], which entail

all the relevant information towards the (sharp) Gaussian concentration inequalities.

Now (20) may be also be reached (more) directly from the logarithmic Sobolev inequality

by the so-called Herbst argument (cf. [11]).

Let F : Rn → be bounded and smooth, such that ‖F‖Lip ≤ 1. In particular, since F is

assumed to be regular enough, it holds true that |∇F | ≤ 1 at every point. Apply next the

logarithmic Sobolev inequality (6) to f 2 = eλF for every λ ∈ R. Note first that∫
Rn
|∇F |2dγn =

λ2

4

∫
Rn
|∇F |2eλFdγn ≤

λ2

4

∫
Rn
eλFdγn.

Next, setting H(λ) =
∫
Rn e

λFdγn, λ ∈ R, (6) yields

λH ′(λ)−H(λ) logH(λ) ≤ λ2

2
H(λ).

In other words, if K(λ) = 1
λ

logH(λ) (with K(0) = H′(0)
H(0)

=
∫
Rn Fdγn), K ′(λ) ≤ 1

2
for every

λ. Therefore,

K(λ) = K(0) +

∫ λ

0

K ′(u)du ≤
∫
Rn
Fdγn +

λ

2
,

and hence, for every λ ∈ R,∫
Rn
eλFdγn = H(λ) ≤ eλ

∫
Rn Fdγn+

λ2

2 ,

which amounts to (20) for this class of functions. The boundedness and smoothness assump-

tions are easily removed. Replace F by FN = max(−N,min(F,N), N ≥ 1, and apply (20) to

PεFN , ε > 0. As ε→ 0 and N →∞, the family of inequalities (20) extends to all Lipschitz

functions F on Rn.
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7 A hierarchy of inequalities

There is a hierarchy between the most important (geometric) and functional inequalities

satisfied the Gaussian measure, which can be properly formalized, and made relevant, for

families of probability measures (cf. e.g. [16, 6]).

Namely,

isoperimetric inequality

⇓
logarithmic Sobolev inequality

⇓
transportation cost inequality

⇓
Poincaré inequality

The following hints toward this picture apply for arbitrary probability measures satisfying

one or more of these functional inequalities. A possible path along this series of implication

starts with the functional form of the Gaussian isoperimetric inequality

I
(∫

Rn
f dγn

)
≤
∫
Rn

√
I(f)2 + |∇f |2 dγn, (21)

for any smooth f : Rn → [0, 1], where I is the isoperimetric profile of γn (cf. [4]). For a given

smooth, bounded, function f on Rn, the inequality (21) applied to εf 2 as ε → 0 yields the

logarithmic Sobolev inequality (5) (use in particular the asymptotics I(s) ∼ s
√

2 log
(
1
s

)
as

s→ 0).

That the logarithmic Sobolev inequality implies the quadratic transportation cost in-

equality has been illustrated in Section 5. Finally, starting form the dual formulation (17)

of the latter applied to εf , a Taylor expansion as ε→ 0 yields the Poincaré inequality

Varγn(f) ≤
∫
Rn
|∇f |2dγn

presented in [1].
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