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The Gaussian Poincaré inequality

Let X = (X1, . . . , Xn) be centered Gaussian vector with values in Rn defined on a prob-

ability space (Ω,A,P). It holds true that

Var
(

max
1≤k≤n

Xk

)
≤ max

1≤k≤n
Var(Xk). (1)

This easy to remember inequality is both very general and useful (and, at this level of

generality, optimal). While it may be addressed via the Gaussian isoperimetric inequality

[1], it may be deduced in a straightforward manner from a functional inequality known as

the Gaussian Poincaré inequality, expressing that for every smooth function f : Rn → R,

Varγn(f) ≤
∫
Rn

|∇f |2dγn. (2)

Here γn stands for the standard Gaussian probability measure on the Borel sets of Rn with

density 1

(2π)
n
2
e−

1
2
|x|2 , x ∈ Rn, with respect to the Lebesgue measure, and, for a function

f : Rn → R in L2(γn),

Varγn(f) =

∫
Rn

f 2dγn −
(∫

Rn

f dγn

)2

is the variance of f with respect to γn. The gradient ∇f of f is the vector of partial

derivatives (∂kf)1≤k≤n, and |∇f |2 =
∑n

k=1(∂kf)2.

To deduce the variance inequality (1) from the Poincaré inequality (2), apply the latter

to a smooth approximation of the function f : x 7→ max1≤k≤n(Mx)k where Σ = M >M is

the covariance matrix of the law of X. Consider for example, for any β > 0,

fβ(x) =
1

β
log

( n∑
k=1

eβ(Mx)k

)
, x ∈ Rn.
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Then, for every k = 1, . . . , n,

∂kfβ(x) =

∑n
`=1Mk` e

β(Mx)`∑n
`=1 e

β(Mx)`
=

n∑
`=1

p`(x)Mk`

where p`(x) = eβ(Mx)`/
∑n

j=1 e
β(Mx)j , ` = 1, . . . , n. By Jensen’s inequality with respect to

the probability weights p`(x), ` = 1, . . . , n, at every x ∈ Rn,
n∑
k=1

(
∂kfβ(x)

)2 ≤ n∑
`=1

p`(x)
n∑
k=1

M2
k` =

n∑
`=1

p`(x) Σ`` ≤ max
1≤`≤n

Σ``.

Therefore, as an application of the Poincaré inequality (2) to fβ, it follows that

Varγn(fβ) ≤ max
1≤k≤n

Var(Xk).

It remains to observe that limβ→∞ fβ(x) = max1≤k≤n(Mx)k, x ∈ Rn, and that x 7→ Mx

under γn is distributed as X.

This note is devoted to a brief discussion of the Poincaré inequality (2), including two

independent proofs (among numerous alternate proofs available in the literature). Stronger

inequalities are discussed in the companion note [2]. While the exposition is limited to

the Poincaré inequality for finite-dimensional Gaussian distributions, it may be extended to

arbitrary (infinite-dimensional) Gaussian distributions (cf. [6]).

Within the family of so-called “Poincaré inequalities”, the one considered here is more of

the form of the Wirtinger inequality (on the sphere – see in particular the historical note of

J. Mawhin [9]). The Gaussian Poincaré inequality was probably known already in the years

1930 in the physics literature, as part of some folklore along expansions in Fourier-Hermite

(harmonic oscillator) polynomials. It is later stated explicitly in a pde context in [10] and

in statistics [8]. It then developed in a number of areas of studies and applications. Some

account may be found in [6, 5]...
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1 The Gaussian Poincaré inequality

The Poincaré inequality for the standard Gaussian measure γn emphasized in the introduc-

tion is summarized in the following statement.

Theorem 1 (The Gaussian Poincaré inequality). For any locally Lipschitz function

f : Rn → R in L2(γn),

Varγn(f) ≤
∫
Rn

|∇f |2dγn. (3)

It is not difficult to verify that linear functions are extremals of the inequality.

If X is an arbitrary Gaussian random vector with values in Rn on a probability space

(Ω,A,P), with covariance matrix Σ, the Poincaré inequality takes the form

Var
(
f(X)

)
≤ E

(
〈Σ∇f,∇f〉

)
(4)

for every smooth function f : Rn → R. This follows, as in the introduction, from the fact

that X has the same distribution as E(X) + MG where Σ = M >M and G is standard

normal.

2 Tensorization

An important and useful property of the Poincaré inequality (3) is the tensorization property.

That is, due to the product property of γn, it is enough to establish (3) in dimension one.

For a sketch of the argument for n = 2,∫
R2

f(x1, x2)
2dγ2(x1, x2) =

∫
R

(∫
R
f(x1, x2)

2dγ1(x2)

)
dγ1(x1)

≤
∫
R

(∫
R
f(x1, x2)dγ1(x2)

)2

dγ1(x1)

+

∫
R

(∫
R

[
∂2f(x1, x2)

]2
dγ1(x2)

)
dγ1(x1)

where (3) has been used along the x2 coordinate. Apply next (3) to h(x1) =
∫
R f(x1, x2)dγ1(x2),

x1 ∈ R, for which

h′(x1)
2 =

(∫
R
∂1f(x1, x2)dγ1(x2)

)2

≤
∫
R

[
∂1f(x1, x2)

]2
dγ1(x2)
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to conclude that∫
R2

f(x1, x2)
2dγ2(x1, x2) ≤

(∫
R

∫
R
f(x1, x2)dγ1(x2)dγ1(x1)

)2

+

∫
R

(∫
R

[
∂2f(x1, x2)

]2
dγ1(x2)

)
dγ1(x1)

+

∫
R

(∫
R

[
∂1f(x1, x2)

]2
dγ1(x2)

)
dγ1(x1)

which amounts to the Poincaré inequality (3) in dimension 2.

This tensorization argument may actually be formalized via the inequality (in arbitrary

dimension)

Varγn(f) ≤
n∑
k=1

∫
Rn−1

Vardγ1(xk)(fk) dγn−1(x1, . . . , xk−1, xk+1, . . . , xn)

(valid for any product measure) where fk(xk) = f(x1, . . . , xn) with x1, . . . , xk−1, xk+1, . . . , xn
fixed.

3 Hermite expansion proof

The Poincaré inequality of Theorem 1 may be given a simple proof by a series expansion

in Hermite polynomials. Although this is not strictly necessary, the argument is easily

developed in dimension one (the general case following by tensorization).

Start therefore with the expansion of a function f ∈ L2(γ1) in Hermite polynomials

f −
∫
R
f dγ1 =

∞∑
k=1

fkhk

where fk are real coefficients, and hk, k ≥ 0, is the sequence of Hermite polynomials (nor-

malized in L2(γ1)), see [3]. If necessary, start with a finite sum. Since h′k =
√
k hk−1, k ≥ 1,

f ′ =
∞∑
k=1

fk
√
k hk−1.

Since the Hermite polynomials form an orthonormal basis of L2(γ1),∫
R

[
f −

∫
R fdγ1

]2
dγ1 =

∞∑
k=1

f 2
k
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while ∫
R
f ′

2
dγ1 =

∞∑
k=1

k f 2
k

from which the inequality
∫
R[f−

∫
R fdγ1]

2dγ1 ≤
∫
R f
′2dγ1 is immediate. A density argument

then completes the proof.

4 Heat flow proof

An alternate approach to the Poincaré inequality goes via the heat semigroup (Ht)t≥0. Recall

ht(x) =
1

(4πt)
n
2

e−
1
4t
|x|2 , t > 0, x ∈ Rn,

the standard heat kernel, fundamental solution of the heat equation ∂tht = ∆pt. The

convolution semigroup Htf(x) = f ∗ ht(x), t > 0, solves ∂tHtf = ∆Htf = Ht∆f with initial

data f . At t = 1
2
, ht is just the standard Gaussian density so that H 1

2
f(0) =

∫
Rn fdγ (while

H0f = f).

Fix t > 0 (later taken to be 1
2
), and for a smooth function f : Rn → R, write, at any

point (omitted in the notation),

Ht(f
2)− (Htf)2 =

∫ t

0

d

ds
Hs

(
(Ht−sf)2

)
ds.

By the chain rule and the heat equation,

d

ds
Hs

(
(Ht−sf)2

)
= ∆Hs

(
(Ht−sf)2

)
− 2Hs

(
Ht−sf ∆Ht−sf

)
= Hs

(
∆
(
(Ht−sf)2

))
− 2Hs

(
Ht−sf ∆Ht−sf

)
.

Now, for any smooth function u, ∆(u2)− 2u∆u = 2|∇u|2 so that

d

ds
Hs

(
(Ht−sf)2

)
= 2Hs

(
|∇Ht−sf |2

)
.

Next, as is immediately verified on the convolution definition of Ht,

|∇Ht−sf |2 =
∣∣Ht−s(∇f)

∣∣2 ≤ Ht−s
(
|∇f |2

)
so that

Ht(f
2)−

(
Htf

)2
= 2

∫ t

0

Hs

(
|∇Ht−sf |2

)
ds

≤ 2

∫ t

0

Hs

(
Ht−s(|∇f |2)

)
ds

= 2tHt

(
|∇f |2

)
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where the last step follows from the semigroup property. As announced at the beginning of

the argument, at t = 1
2

(and at the point x = 0 for example), the latter inequality exactly

amounts to the Poincaré inequality.

A similar, even somewhat easier, proof may be produced via the Ornstein-Uhlenbeck

semigroup [4].

5 Characterization

It is shown in [7] that Gaussian measures are the only probability measures µ on the real

line satisfying the Poincaré inequality

Varµ(f) ≤ σ2

∫
R
f ′

2
dµ

for every smooth function f : R→ R in L2(µ), where σ2 is the variance of µ.

By homogeneity, it is enough to consider the case when σ = 1. Denote by ν the measure

µ centered at its mean, which also satisfies the Poincaré inequality with constant 1. The

task is to show that ν is the standard normal distribution. This is achieved as soon as∫
R
hk dν = 0 (5)

along the sequence of Hermite polynomials hk, k ≥ 1. There is the prior that polynomials

are integrable with respect to µ, which is easily verified applying the Poincaré inequality

successively to f(x) = x2, x4 etc.

By the normalization hypothesis, (5) holds true for k = 2 since h2(x) = 1√
2
(x2−1), x ∈ R

(and also for k = 1 by centering). Assume by induction that it is true up to k ≥ 3, and

prove that it is satisfied for k+1. By the three-term recurrence relation satisfied by Hermite

polynomials (cf. [3])

xhk =
√
k + 1hk+1 +

√
k hk−1,

it is equivalent to show that
∫
R xhkdν = 0. Now, for every real a, if f(x) = ax + hk(x),

x ∈ R,

Varν(f) = a2 + 2a

∫
R
xhk dν + Varν(hk)

by the normalization of the variance. On the other hand, since f ′(x) = a + h′k(x) =

a+
√
k hk−1(x), ∫

R
f ′

2
dν = a2 + 2a

√
k

∫
R
hk−1dν + k

∫
R
h2k−1dν

= a2 + k

∫
R
h2k−1dν
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by the induction hypothesis. The Poincaré inequality for ν thus expresses that

2a

∫
R
xhk dν + Varν(hk) ≤ k

∫
R
h2k−1dν.

Since a ∈ R is arbitrary, it must be that
∫
R xhdν = 0, which is the claim.
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