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Boundedness and continuity

of Gaussian processes

A Gaussian random process (or better, random function) X = (Xt)t∈T indexed by a set

T is a family of random variables on some probability space (Ω,A,P) such that the law of

each finite family (Xt1 , . . . , Xtn), t1, . . . , tn ∈ T , is Gaussian on Rn. For simplicity, Gaussian

will always mean centered Gaussian. In particular, the law (the distributions of the finite-

dimensional marginals) of the process X is uniquely determined by the covariance structure

E(XsXt), s, t ∈ T .

Such Gaussian processes are common and appear in numerous contexts, with index sets

T of various types (the time interval T = [0,∞) being of central importance in evolution

processes). A natural question is to decide under which conditions such a Gaussian process

is almost surely bounded, or continuous provided T is endowed by a topology (such as an

interval on the real line). (Due to the rather arbitrary nature of the set T , the question might

require to discuss several measurability issues, not really relevant and not addressed here.)

These conditions should a priori only involve the covariance structure of the process. This

easy-to-state problem arises in various settings, and even the understanding of boundedness

on a finite set T , that is the analysis of the random variable maxt∈T Xt, can give rise to

delicate (numerical) developments.

Going back to early studies by A. Kolmogorov, a key idea in the investigation of this

problem, developed in particular by R. Dudley, V. Strassen, V. Sudakov, X. Fernique [5, 6,

19, 20, 21, 8] in the late sixties and early seventies, was to try to connect boundedness and

regularity of a Gaussian process X = (Xt)t∈T to the size and geometry of the metric space
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(T, d) where d is the L2-metric induced by the process itself

d(s, t) = ‖Xs −Xt‖L2 =
(
E
(
|Xs −Xt|2

))1/2
, s, t ∈ T. (1)

This metric is entirely characterized by the covariance structure of the process. It does not

necessarily separate points in T , but this is of no importance.

Covering (entropy) numbers of the metric space (T, d) have been a first tool in the in-

vestigation of this project, resulting in the famous Dudley-Sudakov entropy bound theorem.

It was later improved with the concept of majorizing measures and admissible families of

partitions, leading to the Fernique-Talagrand theorem, which provides a complete metric

characterization of boundedness and continuity of Gaussian processes, a remarkable state-

ment connecting a probabilistic property to a purely metric one.

This text is mainly taken from [11] and [12]. A brief historical account of the developments

of the sixties and seventies has been provided by R. Dudley [7]. The article [6] by the latter,

the monograph [22] of V. Sudakov, and the courses [8, 9] by X. Fernique provide a complete

account on the Gaussian picture. See also [4, 13, 14]... for more modern expositions. A

recent investigation, extended to large families of stochastic processes, is the monograph

[24].
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1 Kolmogorov’s continuity theorem

Kolmogorov’s continuity theorem is a basic statement which ensures that a stochastic process

(not necessarily Gaussian) (Zt)t≥0 indexed on [0,∞), or any interval of the real line, with
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real values (for simplicity) admits a version (i.e. a process (Z̃t)t≥0 such that, for every t ≥ 0,

Z̃t = Zt almost surely) with continuous sample paths. The efficiency of the theorem stems

from the fact that only conditions on the increments of the process are required.

Theorem 1 (Kolmogorov’s continuity theorem). Let (Zt)t≥0 be a stochastic process indexed

by [0,∞). Assume that for every T > 0, there exist α, β > 0 and C > 0 such that

E
(
|Zs − Zt|α

)
≤ C |s− t|1+β

for all 0 ≤ s, t ≤ T . Then (Zt)t≥0 admits a continuous version.

It may be shown moreover that the version has locally κ-Hölder continuous paths for

every 0 < κ < β
α

.

The proof of this theorem is based on a fundamental chaining argument. Basically, and

with T = 1 for simplicity, given an increasing sequence of subdivisions of [0, 1], for instance

T0 = {0}, Tn = { k
2n

; k = 0, 1, . . . , 2n}, n ≥ 0, and denoting by sn(t) the nearest element of

Tn from t ∈ [0, 1], it amounts to the representation

Zt = Z0 +
∑
n≥1

(
Zsn(t) − Zsn−1(t)

)
and the inequality

sup
t∈[0,1]

Zt ≤ Z0 +
∑
n≥1

sup
t∈[0,1]

(
Zsn(t) − Zsn−1(t)

)
on which conditions on increments may be exploited, the point being that the last supremum

is actually a maximum on a finite set. This scheme will be abundantly illustrated in the

next sections in the framework of Gaussian processes.

2 Gaussian process and intrinsic distance

Kolmogorov’s continuity theorem may easily be applied to Gaussian processes X = (Xt)t∈T
indexed by an interval of the real line, provided E(|Xs−Xt|2) may be controlled in terms of the

distance between s and t. Due to the equivalence of moments of Gaussian random variables, it

is indeed enough to consider the L2-moment. But actually, the strong integrability properties

of Gaussian random variables, illustrated for example by the Gaussian tails

P
(
|Xs −Xt| ≥ u

)
≤ e−

u2

2
E(|Xs−Xt|2), u ≥ 0, (2)

suggest on the one hand that Kolmogorov’s theorem could be improved, in terms of the

parameters α and β, within the class of Gaussian processes.
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On the other hand, Gaussian processes X = (Xt)t∈T indexed by more general sets T

may be considered. As presented in the introduction, their study is connected to the size of

the metric space (T, d) for the intrinsic distance (1) (reflected on the parameters α and β in

Kolmogorov’s theorem).

Within this abstract framework, the main point of the investigation is the question of

boundedness of the paths t 7→ Xt, t ∈ T . Once the appropriate bounds on the supremum of

X are obtained, the characterization of continuity (whenever T is topological) easily follows.

Readers are refered to [8, 12, 13, 24] for technical details in this regard, not developed here.

In addition, due to the integrability properties of norms of Gaussian random vectors or

supremum of Gaussian processes (cf. [1]), various cumbersome and unessential measurability

questions are avoided by considering the supremum functional

F (T ) = sup
{
E
(

sup
t∈U

Xt

)
;U finite in T

}
.

(If S ⊂ T , F (S) is defined in the same way.) Thus, F (T ) < ∞ if and only if X is almost

surely bounded in any reasonable sense. In particular, the main question will reduce to a

uniform control of F (U) over the finite subsets U of T .

3 The Dudley-Sudakov theorem

A standard and useful way to measure the size of a metric space (T, d) is provided by entropy

or covering numbers. For every ε > 0, let N(T, d; ε) denote the minimal number of (open to

fix the idea) balls of radius ε for the metric d that are necessary to cover T . The logarithm

of these covering numbers N(T, d; ε) is usually referred to as entropy numbers.

The two main results concerning regularity of Gaussian processes under entropy condi-

tions, due to R. Dudley [5, 6] for the upper-bound and V. Sudakov [21] for the lower-bound

(cf. [6, 8]) are summarized in the following statement. The parameter set T is endowed with

the intrinsic metric d (1).

Theorem 2 (The Dudley-Sudakov theorem). There are numerical constants C1 > 0 and

C2 > 0 such that for every Gaussian process X = (Xt)t∈T ,

C−11 sup
ε>0

ε
√

logN(T, d; ε) ≤ F (T ) ≤ C2

∫ ∞
0

√
logN(T, d; ε) dε. (3)

Possible numerical values are C1 = 6 and C2 = 42 (see below). The integral on the

right-hand side of (3) is often called Dudley’s entropy integral. As emphasized by R. Dudley

himself [7], while he defined such an integral, the upper-bound in (3) was first established by
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V. Sudakov in [21, 22]. He also refers to [16]. The convergence of the integral is understood

for the small values of ε since it stops at the diameter D(T ) = sup{d(s, t); s, t ∈ T}. Actually,

if any of the three terms of (3) is finite, then (T, d) is totally bounded, and in particular

D(T ) <∞.

As mentioned above, it may be shown that the process X = (Xt)t∈T actually admits

an almost surely continuous (with respect to d) version when the entropy integral is finite.

Conversely, if X = (Xt)t∈T is continuous, it holds true that limε→0 ε
√

logN(T, d; ε) = 0

(cf. [8]). Roughly speaking, continuity at t0 follows from the bounds (3) applied to the

process Xt −Xt0 for t in a ball of radius η > 0.

Theorem 2 may be tested on the Kolmogorov theorem. On the interval [0, T ], with α = 2

and some β > 0, the covering numbers N(T, d; ε) are of the order of ε−2/(1+β), so that the

entropy integral is clearly finite, actually for any β > −1.

The proof of the right-hand side of (3) emphasizes the basic chaining argument.

Proof. It may be assumed that T is finite. Let q > 1 (usually an integer), that is thought

of as a power of discretization; a posteriori, its value is completely arbitrary. Let n0 be

the largest integer n in Z such that N(T, d; q−n) = 1. For every n ≥ n0, consider a family

of cardinality N(T, d; q−n) = N(n) of balls of radius q−n covering T . One may therefore

construct a partition An of T of cardinality N(n) on the basis of this covering with sets of

diameter less than 2q−n. In each A of An, fix a point of T and denote by Tn the collection

of these points. For each t in T , denote by An(t) the element of An that contains t. For

every t and every n, let then sn(t) be the element of Tn such that t ∈ An(sn(t)). Note that

d(t, sn(t)) ≤ 2q−n for every t and n ≥ n0.

The main argument of the proof is the so-called chaining argument going back to A. Kol-

mogorov in his proof of Theorem 1. For every t ∈ T , write

Xt = Xs0 +
∑
n>n0

(
Xsn(t) −Xsn−1(t)

)
(4)

where s0 = sn0(t) may be chosen independent of t ∈ T (and the sum is finite). Note that

d
(
sn(t), sn−1(t)

)
≤ 2q−n + 2q−n+1 = 2(q + 1)q−n.

Let cn = 4(q + 1)q−n
√

logN(n), n > n0. It follows from (4) that

F (T ) = E
(

sup
t∈T

Xt

)
≤
∑
n>n0

cn + E
(

sup
t∈T

∑
n>n0

∣∣Xsn(t) −Xsn−1(t)

∣∣1{|Xsn(t)−Xsn−1(t)
|>cn}

)
≤
∑
n>n0

cn + E
(∑
n>n0

∑
(u,v)∈Hn

∣∣Xu −Xv

∣∣1{|Xu−Xv |>cn}

)
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where Hn = {(u, v) ∈ Tn × Tn−1; d(u, v) ≤ 2(q + 1)q−n}. If G is a real centered Gaussian

variable with variance less than or equal to σ2, for every c > 0

E
(
|G|1{|G|>c}

)
≤ σ e−c

2/2σ2

. (5)

Hence,

F (T ) ≤
∑
n>n0

cn +
∑
n>n0

Card(Hn) 2(q + 1)q−n exp
(
− c2n/8(q + 1)2q−2n

)
≤
∑
n>n0

4(q + 1)q−n
√

logN(n) +
∑
n>n0

2(q + 1)q−n

≤ 7(q + 1)
∑
n>n0

q−n
√

logN(n)

where it is used that Card(Hn) ≤ N(n)2. Since∫ ∞
0

√
logN(T, d; ε) dε ≥

∑
n>n0

∫ q−n

q−n−1

√
logN(T, d; ε) dε

≥ (1− q−1)
∑
n>n0

q−n
√

logN(n),

the conclusion follows. If q = 2, the value C2 = 42 is acceptable.

The proof of the lower-bound in (3) is an easy consequence of the Gaussian comparison

inequalities going back to Slepian’s lemma [18]. The convenient tool is the Sudakov-Chevet-

Fernique inequality, see [2]. Fix ε > 0 and let n ≤ N(T, d; ε). There exist therefore t1, . . . , tn
in T such that d(ti, tj) ≥ ε. Let then g1, . . . , gn be independent standard normal random

variables. For every i, j = 1, . . . , n, i 6= j,

E
(∣∣∣ ε√

2
gi −

ε√
2
gj

∣∣∣2) = ε2 ≤ d(ti, tj)
2 = E

(
|Xti −Xtj |2).

Therefore, by the Sudakov-Chevet-Fernique inequality,

F (T ) ≥ E
(

max
1≤i≤n

Xti

)
≥ ε√

2
E
(

max
1≤i≤n

gi
)
.

Now, it is classical (cf. [3]) that E(max1≤i≤n gi) ≥ c
√

log n for some numerical c > 0 (one

may choose c such that
√
2
c
≤ 6). Since n is arbitrary less than or equal to N(T, d; ε), the

claim follows. Theorem 2 is therefore fully established.

It is worthwhile mentioning that the Dudley entropy bound applies to each (centered)

stochastic process (Xt)t∈T , indexed by some metric space (T, d), such that, for some constant

C > 0,
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P
(
|Xs −Xt| ≥ u

)
≤ C e−

u2

C
d(s,t)2 , u ≥ 0,

for all s, t ∈ T , u ≥ 0. Such processes are called sub-Gaussian. The argument further applies

to other types of tails, by suitably modifying the entropy integral (cf. [16, 12, 24]).

4 Majorizing measures

Although rather tight, it soon appeared historically that the Dudley-Sudakov entropy bounds

of Theorem 3 are not precise enough to fully characterize boundedness of a Gaussian process

in terms of the complexity of the associate metric space (T, d). It should be emphasized

however that the Dudley entropy integral does describe boundedness and continuity of sta-

tionary Gaussian processes (when the intrinsic distance is translation invariant for a group

structure on the parameter set T ). This result, due to X. Fernique [8], has been instrumental

in the study of random Fourier series by M. Marcus and G. Pisier [15].

A sharper upper-bound was then emphasized by X. Fernique in the form of majorizing

measures [8]. Trying to imagine what can be used instead of the entropy numbers in order

to sharpen the conclusions of Theorem 2, it is important to realize that one feature of

entropy is that is attributes an equal weight to each piece of the parameter set T . The

following definition then appears as a possible sharper substitute. Let q > 1 (an integer),

and A = (An)n∈Z be an increasing sequence of finite partitions of T (i.e. each A ∈ An+1 is

contained in some B ∈ An) such that the diameter D(A) of each element A of An is less

than or equal to 2q−n. If t ∈ T , denote by An(t) the element of An that contains t. Now,

for each partition An, consider a family of non-negative weights αn(A), A ∈ An, such that∑
A∈An

αn(A) ≤ 1. Set then

ΘA,α(T, d) = sup
t∈T

∑
n

q−n

√
log

1

αn(An(t))
.

It is worthwhile mentioning that for 2q−n ≥ D(T ), one can take An = {T} and αn(T ) = 1.

Now, Fernique’s observation is that the proof of Dudley’s upper bound may be (almost

exactly) repeated so to yield that, for any such family {A, α} of partitions and weights,

F (T ) ≤ C ΘA,α(T, d) (6)

where C = C(q) > 0. Hence the single entropy integral is replaced by the functionals

ΘA,α(T, d) varying with the partitions and weights.
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The family of weights {A, α} and the functional ΘA,α may also be synthesized as a single

“majorizing measure” probability m on the Borel sets of T of the form

sup
t∈T

∫ ∞
0

√
log

1

m(B(t, ε))
dε (7)

where B(t, ε) is the ball in T with center t and radius ε > 0. As such, Fernique’s result is

closely related to the integral bounds in [17, 10]. It is not difficult to check (cf. [24, 11])

that Dudley’s entropy integral produces a majorizing measure, and that in a stationary

setting, the relevant majorizing measure is the Haar measure on the (pseudo-) group T , and

is equivalent to Dudley’s integral.

5 The generic chaining

Modern expositions have replaced majorizing measures by admissible partitions, providing

a purely metric description. The monograph [24] presents all the details of the relationships

between these various objects and definitions.

Given a (finite) metric space (T, d), consider an increasing sequence of finite partitions

(Cn)n≥0 of T such that Card(C0) = 1 and Card(Cn) ≤ 22n , n ≥ 1. (Recall that by increasing,

it is meant that each element of Cn is contained in a cell of Cn−1.) For each n ≥ 0, fix a point

in each element C of Cn, and denote by Tn the collection of those points. By construction,

Card(Tn) ≤ 22n (while Card(T0) = 1). For a point t in T , denote by Cn(t) the unique element

of Cn that contains t, and by sn(t) the element of Tn such that t ∈ Cn(sn(t)) (s0(t) = s0 may

be taken as an arbitrary fixed point in T ).

With such a sequence of partitions, the chaining argument may be developed as with

entropy numbers or majorizing measures (weights). Indeed, given a (centered) Gaussian

process (Xt)t∈T with intrinsic metric d(s, t) = (E|Xs−Xt|2)1/2, s, t ∈ T , start again with the

decomposition (4)

Xt = Xs0 +
∑
n≥1

(
Xsn(t) −Xsn−1(t)

)
.

Arguing then almost as in the proof of the upper-bound in (3), but with the truncation cn
depending on t,

Xt −Xs0 ≤
∑
n≥1

2(n+2)/2d
(
sn(t), sn−1(t)

)
+
∑
n≥1

∣∣Xsn(t) −Xsn−1(t)

∣∣1{|Xsn(t)−Xsn−1 (t)|>2(n+2)/2d(sn(t),sn−1(t))} .
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Taking the supremum in t ∈ T and integrating,

F (T ) = E
(

sup
t∈T

Xt

)
≤ sup

t∈T

∑
n≥1

2(n+2)/2d
(
sn(t), sn−1(t)

)
+ E

(
sup
t∈T

∑
n≥1

∣∣Xsn(t) −Xsn−1(t)

∣∣1{|Xsn(t)−Xsn−1(t)
|>2(n+2)/2d(sn(t),sn−1(t))}

)
≤ sup

t∈T

∑
n≥1

2(n+2)/2d
(
sn(t), sn−1(t)

)
+ E

(∑
n≥1

∑
(u,v)∈Tn×Tn−1

∣∣Xu −Xv

∣∣1{|Xu−Xv |>2(n+2)/2d(u,v)}

)
≤ sup

t∈T

∑
n≥1

2(n+2)/2d
(
sn(t), sn−1(t)

)
+D(T )

∑
n≥1

Card(Tn × Tn−1) e−2
n+1

where (5) applied to (Xu −Xv)/d(u, v) with d(u, v) ≤ D(T ) is used in the last step. Now

d
(
sn(t), sn−1(t)

)
≤ d

(
sn(t), t

)
+ d
(
t, sn−1(t)

)
≤ D

(
Cn(t)

)
+D

(
Cn−1(t)

)
while

Card(Tn × Tn−1) ≤ 22n · 22n−1 ≤ 22n+1

.

As a conclusion,

F (T ) ≤ 5 sup
t∈T

∑
n≥0

2n/2D
(
Cn(t)

)
+D(T ) ≤ 6 sup

t∈T

∑
n≥0

2n/2D
(
Cn(t)

)
(8)

(since C0(t) = T ).

6 The Fernique-Talagrand theorem

Call the sequence C = (Cn)n≥0 described in the previous section a “sequence of admissible

partitions”. The preceding analysis (8) expresses that

F (T ) ≤ 6 γ2(T, d) (9)

where

γ2(T, d) = inf sup
t∈T

∑
n≥0

2n/2D
(
Cn(t)

)
,

the infimum being taken over all such sequences of admissible partitions.
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Within the notation of Section 4, denote by Θ(T, d) the infimum of the functional

ΘA,α(T, d) over all possible choices of partitions (An)n∈Z and weights αn(A), A ∈ An, n ∈ Z.

Alternatively, consider the infimum over all probability measures m in (7). These quantities

are all equivalent, up to numerical constants, to γ2(T, d) (cf. [24]).

The functional γ2(T, d) is therefore an alternate upper bound on F (T ) = E(supt∈T Xt).

A main achievement by M. Talagrand in 1987 [23] is that it is actually also a lower bound.

Theorem 3 (The Fernique-Talagrand theorem). There exists a numerical constant K > 0

such that, for any Gaussian process (Xt)t∈T ,

1

K
γ2(T, d) ≤ F (T ) ≤ K γ2(T, d). (10)

This major result thus provides a purely metric characterization of almost sure bounded-

ness of Gaussian processes in terms of functionals associated to families of weights, majorizing

measures, or sequences of admissible partitions. The monograph [24] is an extensive inves-

tigation of families of such functionals, with a wide range of applications far away from just

Gaussian processes.
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