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Gaussian Riesz transforms

A famous result in harmonic analysis (cf. e.g. [11]) expresses that, for any 1 < p < ∞,

there is a constant Cp > 0 such that for any function f : Rn → R in C∞c (Rn),

1

Cp

∫
Rn
|∇f |pdλn ≤

∫
Rn

∣∣√−∆f
∣∣pdλn ≤ Cp

∫
Rn
|∇f |pdλn. (1)

Here
√
−∆ is the fractional Laplacian, which may be defined by multiplication by |x| of the

Fourier transform (the Fourier transform of
√
−∆f is the Fourier transform of f multiplied

by |x|).

This result is also a multi-dimensional extension of the boundedness of the classical

Hilbert transform

HRf(x) =
1

π
p.v.

∫
R

f(x− y)

y
dλ1(y) =

1

π
lim
ε→0

∫
{|y|>ε}

f(x− y)

y
dλ1(y). (2)

The Hilbert transform may indeed be viewed via multiplication by i sgn(x) of the Fourier

transform of f . Its multi-dimensional extension in Rn amounts to the multiplication by ixk
|x| ,

k = 1, . . . , n, of the Fourier transform, yielding the family Rk of Riesz transforms, for which,

symbolically,

Rk = ∂k(−∆)−1/2, k = 1, . . . , n.

The family of inequalities (1) is therefore formulated equivalently as the boundedness in

Lp(λn), 1 < p < ∞, of the Riesz transform operator ∇(−∆)−1/2. This result is typically

established by complex analysis techniques, cf. [11].
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The Gaussian Riesz transform inequalities due to P.-A. Meyer [8], are the analogue of

(1) when the Laplacian ∆ is replaced by the Ornstein-Uhlenbeck operator L = ∆ − x · ∇,

with invariant measure the standard Gaussian measure dγn(x) = 1

(2π)
n
2
e−

1
2
|x|2dλn(x) on Rn.

Theorem 1 (The Meyer inequalities). For any 1 < p < ∞, there is a constant Cp > 0,

independent of n, such that

1

Cp

∫
Rn
|∇f |pdγn ≤

∫
Rn

∣∣√−Lf
∣∣pdγn ≤ Cp

∫
Rn
|∇f |pdγn (3)

for every smooth f : Rn → R.

The class of functions for which the inequalities hold true extend to suitably domains

for which the integrals are well-defined. This aspect will be mostly ignored throughout the

note (under the simplified language of “smooth functions”). An important feature of the

result is the independence of the constant Cp upon the dimension n of the underlying state

space, allowing for extensions to infinite-dimensional Gaussian measures, as considered in

[8, 7]. (It should be pointed out that the constants in the Euclidean version (1) may also be

chosen independent of n, cf. [10] and the references therein.) These inequalities are actually

motivated by, and pivotal in, the study of the Malliavin stochastic calculus of variations

cf. [7, 9].

The purpose of this post is to sketch the proof of the Meyer inequalities emphasized

by G. Pisier in [10], relying on a transference argument to the boundedness of the Hilbert

transform on the torus. Another proof is also proposed in [6].
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1 Gaussian Riesz transforms

The Ornstein-Uhlenbeck operator is defined by

Lf = ∆f − x · ∇f (4)

acting on smooth functions f : Rn → R (cf. [8, 3, 1]...). The differential operator L, as a

drifted Laplacian, fulfills the basic integration by parts formula with respect to the Gaussian

measure γn, ∫
Rn
f(−Lg)dγn =

∫
Rn
∇f · ∇g dγn (5)

for suitably smooth functions f, g : Rn → R.

In this Gaussian context, the square root operator
√
−L may be given a simple spectral

description via Fourier-Hermite expansions. To illustrate the picture, consider the one-

dimensional case, and recall that the spectrum the Ornstein-Uhlenbeck operator −L is the

set N of the integers, with Hermite polynomials as eigenfunctions. A mean-zero function

f in L2(γ1) (or even a polynomial if necessary) is thus represented in the family (hk)k∈N of

Hermite polynomials (cf. [2]) in the form

f =
∑
k∈N

akhk.

Since −Lhk = khk, k ∈ N, formally
√
−Lf =

∑
k∈N

√
k akhk.

A similar meaning can be given to the fractional powers of −L, even negative ones provided

the operators are applied to mean-zero functions.

According to (5), and as for the standard Laplacian, for every function f in some appro-

priate domain, ∫
Rn

[√
−Lf

]2
dγn =

∫
Rn
f(−Lf)dγn =

∫
Rn
|∇f |2dγn.

The Gaussian Riesz transform issue is therefore to extend these comparisons to Lp(γn),

1 < p <∞, and to reach the analogue of (1) for the Ornstein-Uhlenbeck operator L.

2 Ornstein-Uhlenbeck semigroup and gradient formu-

las

To briefly recall some basic facts [8, 3, 1], the Ornstein-Uhlenbeck operator L = ∆ − x · ∇
generates a Markov semigroup (Pt)t≥0, which may be represented by the integral Mehler
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formula as

Ptf(x) =

∫
Rn
f
(
e−tx+

√
1− e−2t y

)
dγn(y) (6)

for all t > 0, x ∈ Rn, and suitable functions f : Rn → R.

To illustrate, in dimension one, the action of Pt, letting f =
∑

k∈N akhk, then

Ptf =
∑
k∈N

e−ktakhk.

Accordingly, the Gaussian Riesz transform∇(−L)−1/2 may be constructed from the Ornstein-

Uhlenbeck semigroup by the formulas

(−L)−1/2 =

∫ ∞
0

Pt
dt√
πt

(7)

(since
∫∞
0
e−kt dt√

πt
= 1√

k
, k ≥ 1), and thus

∇(−L)−1/2 =

∫ ∞
0

∇Pt
dt√
πt
. (8)

To this representation, the gradient formulas for Pt may be added (t > 0, x ∈ Rn),

∇Ptf(x) = e−t
∫
Rn
∇f
(
e−tx+

√
1− e−2t y

)
dγn(y)

(
= e−tPt(∇f)(x)

)
=

e−t√
1− e−2t

∫
Rn
y f
(
e−tx+

√
1− e−2t y

)
dγn(y)

(9)

as vector integrals (the second identity being the result of integration by parts).

3 A representation formula for the Gaussian Riesz trans-

form

The proof of Theorem 1 presented here is due to G. Pisier [10], and is based on a transference

principle to the Riesz transform on the torus via the Gaussian rotational invariance.

It is enough to prove the existence, for any 1 < p <∞, of a constant Cp > 0 (independent

of n) such that ∥∥∇(−L)−1/2f
∥∥
Lp(γn)

≤ Cp ‖f‖Lp(γn) (10)

for any smooth (mean-zero) function f : Rn → R (even just a polynomial, linear combination

of Hermite polynomials). Namely, changing f into (−L)1/2f yields the left-hand side in (3).
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To reach the right-hand side, by duality with 1
p

+ 1
q

= 1, and integration by parts,∥∥(−L)1/2f
∥∥
Lp(γn)

= sup
‖g‖Lq(γn)≤1

∫
Rn
g(−L)1/2f dγn

= sup
‖g‖Lq(γn)≤1

∫
Rn

(−L)−1/2g (−Lf)dγn

= sup
‖g‖Lq(γn)≤1

∫
Rn
∇(−L)−1/2g · ∇f dγn,

from which the claim follows by (10) applied to the function g, and to q instead of p.

This section is devoted to the first steps of the proof, with in particular a suitable repre-

sentation formula for the Gaussian Riesz transform.

According therefore to (7) and (9), for a smooth function f : Rn → R and x ∈ Rn,

∇(−L)−1/2f(x) =

∫ ∞
0

(∫
Rn
y f
(
e−tx+

√
1− e−2t y

)
dγn(y)

)
e−tdt√

π t(1− e−2t)
.

Changing y into −y, it also holds true that

∇(−L)−1/2f(x) = −
∫ ∞
0

(∫
Rn
y f
(
e−tx−

√
1− e−2t y

)
dγn(y)

)
e−tdt√

π t(1− e−2t)
.

At this stage, it is useful to perform the change of variables e−t 7→ cos θ, θ ∈ [0, π
2
) so that

the first formula for ∇(−L)−1/2f(x) above reads

∇(−L)−1/2f(x) =

∫ π
2

0

(∫
Rn
y f
(
x cos(θ) + y sin(θ)

)
dγn(y)

)
dθ√

π| log(cos(θ))|

= lim
ε→0

∫ π
2

ε

(∫
Rn
y f
(
x cos(θ) + y sin(θ)

)
dγn(y)

)
dθ√

π| log(cos(θ))|

while the second one yields

∇(−L)−1/2f(x) = −
∫ π

2

0

(∫
Rn
y f
(
x cos(θ)− y sin(θ)

)
dγn(y)

)
dθ√

π| log(cos(θ))|

= −
∫ 0

−π
2

(∫
Rn
y f
(
x cos(θ) + y sin(θ)

)
dγn(y)

)
dθ√

π| log(cos(θ))|

= − lim
ε→0

∫ −ε
−π

2

(∫
Rn
y f
(
x cos(θ) + y sin(θ)

)
dγn(y)

)
dθ√

π| log(cos(θ))|
.

Adding the two expressions, and using Fubini’s theorem, it appears that

∇(−L)−1/2f(x) =

∫
Rn
y J(x, y) dγn(y)
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where, for every x, y ∈ Rn,

J(x, y) =

∫ π
2

−π
2

f
(
x cos(θ) + y sin(θ)

)
ϕ(θ)dθ (11)

and

ϕ(θ) =
sgn(θ)

2
√
π | log(cos(θ))|

, θ ∈ (−π
2
, π
2
). (12)

The function J is therefore understood as a principal-value integral in order to avoid the

singularity at the origin, that is

J(x, y) = p.v.

∫ π
2

−π
2

f
(
x cos(θ) + y sin(θ)

)
ϕ(θ)dθ

= lim
ε→0

∫ π
2

−π
2

f
(
x cos(θ) + y sin(θ)

)
ϕ(θ)1{|θ|>ε}dθ.

For every x ∈ Rn, by duality and Hölder’s inequality,∣∣∣∣ ∫
Rn
yJ(x, y) dγn(y)

∣∣∣∣ = sup
|c|≤1

∫
Rn
〈c, y〉J(x, y) dγn(y)

≤ sup
|c|≤1

(∫
Rn

∣∣〈c, y〉∣∣qdγn(y)

) 1
q
(∫

Rn

∣∣J(x, y)
∣∣pdγn(y)

) 1
p

where q is the conjugate of 1 < p <∞. Hence∣∣∣∣ ∫
Rn
yJ(x, y) dγn(y)

∣∣∣∣ ≤ Kp

(∫
Rn

∣∣J(x, y)
∣∣pdγn(y)

) 1
p

where Kp =
( ∫

R |x|
qdγ1(x)

) 1
q only depends on p. As a consequence,∥∥∇(−L)−1/2f

∥∥p
p
≤ Kp

p

∫
Rn×Rn

∣∣J(x, y)
∣∣p dγn(x)dγn(y).

4 The transference argument

It therefore remains to show that, for f : Rn → R,∫
Rn×Rn

∣∣J(x, y)
∣∣p dγn(x) ≤ Cp ‖f‖pLp(γn) (13)

where Cp > 0 is another constant only depending on p, possibly changing from line to

line below. To this task, the argument will develop the method of rotations to reduce the
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result to the boundedness of the Riesz transform on the torus. The method of rotations is

classically used in the study of singular integrals on Rn, see [4, 11], and transference methods

are formalized in [5].

To make full use of the transference principle, it is useful to recall that the Hilbert

transform on the unit circle T = (−π, π],

HTg(ω) = p.v.

∫
T
g(ω + θ) cot

(
θ
2

)
dθ
2π

= lim
ε→0

∫
{|θ|>ε}

g(ω + θ) cot
(
θ
2

)
dθ
2π
, ω ∈ T, g ∈ C∞c (T),

is bounded in Lp(T) for any 1 < p <∞ (see [11] or [7, Chapter II Appendix]).

For each ω ∈ T, denote by Rω the rotation operator on Rn × Rn defined by

Rω(x, y) =
(
x cos(ω) + y sin(ω),−x sin(ω) + y cos(ω)

)
, (x, y) ∈ Rn × Rn.

Given F ∈ Lp(γn ⊗ γn), for every (x, y) ∈ Rn × Rn, define

ω ∈ T 7→ ux,y(ω) = F
(
Rω(x, y)

)
.

Note that by the invariance of the Gaussian measure γn ⊗ γn under the rotations Rω, for

every ω ∈ T, ∫
Rn×Rn

∣∣ux,y(ω)
∣∣pdγn(x)dγn(y) = ‖F‖pLp(γn⊗γn). (14)

In particular, by Fubini’s theorem, ux,y ∈ Lp(T) for γn ⊗ γn-almost every (x, y) ∈ Rn × Rn.

Notice next that ϕ of (12) has the form

ϕ(θ) =
sgn(θ)

2
√
π| log(cos(θ))|

=
1

2
√

2π
cot
(
θ
2

)
+ r(θ)

where r ∈ L∞(T)1. If Φ is then the operator

Φ(g)(ω) = p.v.

∫
T
g(ω + θ)ϕ(θ) dθ

2π
, ω ∈ T, g ∈ Lp(T),

by the Lp-boundedness of the Hilbert transform on the torus, Φ is a bounded operator on

Lp(T). Hence, for almost every (x, y) ∈ Rn × Rn,∥∥Φ(ux,y)
∥∥p
Lp(T) ≤ Cp ‖ux,y‖pLp(T). (15)

1Here the function ϕ is initially defined on (−π
2 ,

π
2 ), and needs to be extended to (−π, π] by letting ϕ ≡ 0

outside [−π
2 ,

π
2 ]

7



Using that Rω+θ = Rω ◦Rθ,

Φ(ux,y)(ω) = p.v.

∫
T
uRω(x,y)(θ)ϕ(θ)dθ. (16)

Combining then (15) and (16), and integrating over (x, y),∫
Rn×Rn

(∫
T

∣∣∣∣p.v.∫
T
uRω(x,y)(θ)ϕ(θ)dθ

∣∣∣∣pdω)dγn(x)dγn(y)

≤ Cp

∫
Rn×Rn

‖ux,y‖pLp(T)dγn(x)dγn(y)

= Cp ‖F‖pLp(γn⊗γn)

(17)

where the invariance property (14) is used in the last step.

Using again the rotational invariance of Gaussian measures, the integral∫
Rn×Rn

∣∣∣∣p.v.∫
T
uRω(x,y)(θ)ϕ(θ)dθ

∣∣∣∣pdγn(x)dγn(y)

is independent of the value of ω. By (17) and Fubini’s theorem, it finally follows that∫
Rn×Rn

∣∣∣∣p.v.∫
T
ux,y(θ)ϕ(θ)dθ

∣∣∣∣pdγn(x)dγn(y) ≤ Cp ‖F‖pLp(γn⊗γn).

Recalling the definition (11) of J , the proof of (13) is complete after setting F (x, y) = f(x),

(x, y) ∈ Rn × Rn.
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