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Personal Note
It is a pleasure to dedicate this contribution to Catriona Byrne, in recognition
of her many years at the service of the scientific community, with dedication,
professionalism, deep scientific knowledge and expertise, and cordiality. With
special thoughts to the many rewarding and friendly exchanges over the years, as
author and editor.

Optimal matching problems have been investigated from various viewpoints in
computer science, algorithmic analysis and physics, while rates of convergence of
empirical measures to their common distribution is a central topic in probability and
mathematical statistics.

Perfect matching problems (on bipartite graphs), also called assignment prob-
lems, are combinatorial optimization problems classically studied within operation
research and algorithmic, combinatorics, graph theory and mathematical physics
(cf. e.g. [32, 33]). Classical applications to planning, allocation of resources,
traveling salesman problems, expand nowadays to networks and complex systems.
Linear programming relaxation within assignment and optimal transport problems
also provide useful tools in machine learning and data science [34].

The random version of the matching problems addresses optimization of Eu-
clidean additive functionals in geometric probability [37, 41] and rates of conver-
gence of empirical measures. It opened recently fascinating challenges, which are
active parts of current research. The close relationship with mass transportation in
particular favored the novel use of tools from convex analysis, probability theory and
partial differential equations (pde). This note describes a few of these stimulating
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questions for the Euclidean random optimal matching problem and associated rates
of convergence of empirical measures.

1 Euclidean Random Optimal Matching and Rates
of Convergence of Empirical Measures

Given points x1, . . . , xn and y1, . . . , yn in Rd , and p ≥ 1, the optimal matching
problem raises the question of estimating

inf
σ

1
n

n∑

i=1

|xi − yσ (i)|p

where the infimum runs over all permutations σ of
{
1, . . . , n

}
(and | · | is, for

example at this stage, the Euclidean distance on Rd ). That is, the task is to match
the points of a sample (x1, . . . , xn) with the ones of another sample (y1, . . . , yn)

minimizing a given cost function. The typical values of p are p = 1 and p = 2,
also p =∞ (with then infσ max1≤i≤n |xi − yσ (i)|).

The question may be formulated equivalently in the closely related mass
transportation framework. Given p ≥ 1, the Kantorovich distance (cf. [40] e.g.)
between two probability measures ν and µ on the Borel sets of Rd with a finite p-th
moment is defined by

Wp(ν, µ) = inf
π

(∫

Rd×Rd
|x − y|pdπ(x, y)

)1/p
(1)

where the infimum is taken over all couplings π on Rd × Rd with respective
marginals ν and µ. The Wp metrics are monotone increasing with p. In the limit
p →∞, W∞(ν, µ) may be understood as the infimum over all couplings π of

esssupπ
{
|x − y| ; (x, y) ∈ Rd ×Rd

}

(for measures ν and µ with bounded support).
Given samples (x1, . . . , xn) and (y1, . . . , yn) of points in Rd , if ν = 1

n

∑n
i=1 δxi

and µ = 1
n

∑n
i=1 δyi are the empirical measures on the respective samples, the

right-hand side of (1) to the power p takes the form

inf
π

n∑

i,j=1

|xi − yj |pπij

where πij = π({xi, yj }), i, j = 1, . . . , n. Since π has marginals ν and µ, for
every i or j ,

∑n
i=1 πij = ∑n

j=1 πij = 1
n , and the set of those matrices π is convex
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and compact in Rn2 , so that by the Birkhoff–von Neumann theorem the infimum is
achieved on a permutation matrix πij = 1

n 1{j=σ (i)}. As a consequence

inf
σ

1
n

n∑

i=1

|xi − yσ (i)|p = Wp
p(ν, µ) = Wp

p

(
1
n

n∑

i=1

δxi ,
1
n

n∑

i=1

δyi

)
.

The matching problem is thus translated equivalently as a discrepancy problem
between empirical measures in Kantorovich distances.

The random optimal matching problem deals with samples (X1, . . . , Xn) and
(Y1, . . . , Yn) of independent and identically distributed random variables in Rd

(with a finite p-th moment), and a first order analysis aims at studying the order
of growth in n of the averages

E
(
inf
σ

1
n

n∑

i=1

|Xi − Yσ (i)|p
)
. (2)

If X1, . . . , Xn are independent random variables in Rd with common distribution
µ, and if µn = 1

n

∑n
i=1 δXi , n ≥ 1, is the empirical measure on the sample, simple

arguments from the triangle and Jensen’s inequalities compare (2) to the average
E(Wp

p(µn,µ)). The latter is then sometimes referred to as a semi-discrete matching
as opposed to bipartite matching for the former. Almost surely, the sequence µn,
n ≥ 1, of empirical measures converges weakly to the common distribution µ,
a central question of interest and study in probability and statistics. The strength
of the approximation of µ by the empirical µn is indeed of basic importance in
statistical applications, and orders of decay in various probabilistic distances have
been considered. One of them is thus the Kantorovich distance that attracted a lot of
attention (the convergence of Wp(µn,µ) to 0 is equivalent to the weak convergence
of µn towards µ plus convergence of p-moments). By standard concentration tools,
not developed here, rates on E(Wp

p(µn,µ)) may often be turned into bounds on
Wp

p(µn,µ) with high probability.
More general probabilistic dependences in the random sample (X1, . . . , Xn)may

be considered. Spectral measures of randommatrices is one such instance, that gave
rise to numerous recent contributions.

The exposition here is devoted to the Euclidean random optimal matching
problem in the semi-discrete form and to the rate of convergence of the empirical
measure to the reference measure in Kantorovich distance. As such, the discussion
will be mostly focused on (lower and upper) bounds on the sequence of expectations

E
(
Wp

p(µn,µ)
)

(3)

where µn = 1
n

∑n
i=1 δXi , n ≥ 1, and X1, . . . , Xn are independent identically

distributed in Rd with common distribution µ with a finite p-th moment, as well
as on possible exact (renormalized) limits (although the study of the limits for the
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bipartite matching problem does in general require further details). The note surveys
some basic results in the area, and features challenging open questions of the current
research on the asymptotic rates of (3). The basic parameters entering the discussion
are p ≥ 1, the distribution µ and the dimension d of the state space. Throughout the
text, the notationA ≈ B expresses that C−1B ≤ A ≤ CB for some constant C > 0
independent of n, possibly depending on the dimension d and the parameters of the
underlying distribution µ. Similarly A ! B and A " B indicate that A ≤ CB and
A ≥ C−1B respectively. The bibliography is not extensive, and often concentrated
only on reference texts or articles.

2 The One-Dimensional Case

The one-dimensional case is of particular nature due to explicit representations of
the Kantorovich metrics Wp(ν, µ) by monotone transport map of the distributions
ν and µ on the Borel sets of R . For example,

W1(ν, µ) =
∫

R
|G(x)− F(x)|dx

where G(x) = ν( ] −∞, x]), F(x) = µ( ] −∞, x]), x ∈ R, are the distribution
functions of ν and µ respectively. There are similar representation formulas for
Wp(ν, µ), p ≥ 1, in terms of the inverse distribution functions, quantiles or order
statistics of empirical measures (cf. e.g. [11]).

On the basis of these explicit representations, rather precise descriptions of the
rates of convergence of empirical measures in Kantorovich distances are available
(cf. [11]). For example, E(W1(µn,µ)) is typically of the order of 1/

√
n for large

families of distributions µ, and a precise statement is that

E
(
W1(µn,µ)

)
! 1√

n

if and only if
∫
R
√
F(x)(1− F(x)) dx < ∞ (which is the case for instance if∫

R |x|qdµ <∞ for some q > 2). The lower bound E(W1(µn,µ)) " 1/
√
n holds

true for any µ (with a first moment).
However, when p > 1 some differences occur already on basic examples

emphasizing the size of the support of µ as influencing the rate. The standard rate
1/np/2 is the rule for compactly supported laws, but in general it cannot be obtained
under moment conditions only. For example, by comparison with W1,

E
(
W2

2(µn,µ)
)
! 1

n
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if and only if
∫
R[F(x)(1 − F(x))/f (x)] dx < ∞, where f is the density of the

absolutely continuous component of µ. Such a characterization, which admits
a version for any p > 1, is of particular interest for log-concave measures for
which two-sided comparison inequalities may be achieved. As an illustration, while
E(Wp

p(µn,µ)) is of order 1/np/2 for any p ≥ 1 if µ is uniform on a compact
interval, for µ the (standard) Gaussian distribution on R,

E
(
Wp

p(µn,µ)
) ≈






1
np/2

if 1 ≤ p < 2,

log log n
n if p = 2,

1
n(logn)p/2 if p > 2.

(4)

While the rate is therefore the same as in the uniform case for 1 ≤ p < 2, two
changes occur as p = 2 and p > 2. Further models are of interest, such as for
instance the exponential distribution (see [11]).

Theoretical studies have been completed by various numerical simulations in
the physics literature, covering related random assignment problems and their
sharp asymptotic behaviors [15], such as for example the exact renormalized limit
limn→∞(n/log logn)E(W2

2(µn,µ)
)
= 1 in the Gaussian case obtained in [10].

3 The Ajtai–Komlós–Tusnády Theorem in Dimension 2 and
the Ultimate Matching Conjecture

In the bipartite formulation (2) and for p = 1, the famous Ajtai–Komlós–Tusnády
theorem in dimension 2 expresses that

E
(
inf
σ

1
n

n∑

i=1

|Xi − Yσ (i)|
)
≈
√
logn
n

(5)

for samples of independent random variables uniformly distributed on the unit
square [0, 1]2. It has been established in [1] by the transportation method on
dyadic decompositions and combinatorial arguments, then reproved and deepened
by P. Shor [35] and M. Talagrand (cf. [39] and the references therein) via generic
chaining tools. The point is that, from the Kantorovich dual representation
(see [40]),

W1(ν, µ) = sup
[ ∫

Rd
ϕ dν −

∫

Rd
ϕ dµ
]
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where the supremum is taken over 1-Lipschitz maps ϕ : Rd → R, and as such
the study enters the framework of bounds on stochastic processes. Together with
a Fourier representation of the parameter set as an ellipsoid, it allows indeed for
the powerful use of majorizing measures and generic chaining methods (for which
a complete account is the monograph [39]). The methodology covers similarly the
values of p ≥ 1, with order of growth (logn/n)p/2, but the limiting case p = ∞
shows an interesting logarithmic correction described by the Leighton–Shor grid-
matching theorem [31]

E
(
inf
σ

max
1≤i≤n

|Xi − Yσ (i)|
)
≈ (logn)3/4√

n
. (6)

This type of analysis furthermore led P. Shor [35] to a striking statement,
improving upon the upper bound in the Ajtai–Komlós–Tusnády theorem, in which
the coordinates of the variables (in R2, indicated by the superscripts 1 and 2) do not
play the same role, namely

E
(
inf
σ
max
(
1
n

n∑

i=1

∣∣X1
i − Y 1

σ (i)

∣∣, max
1≤i≤n

∣∣X2
i − Y 2

σ (i)

∣∣
))

!
√
logn
n

. (7)

In this framework, the “ultimate matching conjecture” promoted by M. Talagrand
[39] would be that, for every α1,α2 > 0 with 1

α1
+ 1

α2
= 1

2 , there is a constant
C > 0 such that

E
(
inf
σ

max
j=1,2

( n∑

i=1

exp
(
1
C

√
n

logn

∣∣Xj
i − Y

j
σ (i)

∣∣
)αj))

≤ Cn.

Using on the one hand that ea
4 ≥ a4, and on the other hand that

∑n
i=1 e

a4i ≥
exp(max1≤i≤n a4i ) together with Jensen’s inequality, the case α1 = α2 = 4 would
provide a neat common generalization of (the upper bounds in) the Ajtai–Komlós–
Tusnády and Leighton–Shor theorems, and at the same time improve upon (7)
corresponding to α1 = 2 and α2 = ∞ (with max1≤i≤n |X2

i − Y 2
σ (i)| in the j = 2

coordinate). A partial version of the conjecture as well as a suitable formulation in
dimension d ≥ 3 are discussed in [39].

Turning back to rates of empirical measures (or semi-discrete matching), for µ
the uniform distribution on the unit cube [0, 1]d of Rd , for any d ≥ 1 and p ≥ 1,

E
(
Wp

p(µn,µ)
)
≈






1
np/2

if d = 1,

( logn
n

)p/2 if d = 2,

1
np/d

if d ≥ 3.

(8)



Optimal Matching of Random Samples 621

The case d = 2 is thus the Ajtai–Komlós–Tusnády theorem, which, as for d = 1,
develops an unusual rate with respect to the uniform spacing 1/n1/d of n points in
[0, 1]d . However, this natural spacing is fully reflected in dimension d ≥ 3, which
makes this case easier than d = 2. Indeed, in dimension 2, there are irregularities
at all scales in the distribution of a random sample (X1, . . . , Xn) which combine
to create the logn factor, while in higher dimension, there are still irregularities
at many different scales but they cannot combine (see [39]). The complete range
of parameters p ≥ 1 and d ≥ 1 in (8) is implicit in the paper [1] and the study
[39]. See [27] for an independent proof relying on the mass transportation and pde
methodology exposed in the subsequent Sect. 5. In the same vein, a simple Fourier
analytic proof of the Ajtai–Komlós–Tusnády theorem is provided in [12] (see also
[39]). The articles [18, 21] consider distributionswith compact support and densities
with respect to the Lebesgue measure uniformly bounded from below and above.

When p =∞, the rates are respectively 1/
√
n in dimension 1, (logn)3/4/

√
n in

dimension 2 (the Leighton–Shor theorem (6)), and (logn/n)1/d in dimension d ≥ 3
[36] (and its extension [21]).

4 General Distributions and Higher Dimension

Beyond the uniform distribution, the corresponding results for more general
distributions µ, in particular with unbounded support, gave rise to a number
of contributions and open questions. The one-dimensional case is extensively
discussed in [11], and already develops unusual phenomena as mentioned in Sect. 2.

The Ajtai–Komlós–Tusnády theorem (5) in dimension 2 for p = 1 extends to
large families of distributions (see [39]). For example,

E
(
W1(µn,µ)

)
!
√
logn
n

as soon as
∫
R2 |x|qdµ <∞ for some q > 2.

A non-trivial aspect of the Ajtai–Komlós–Tusnády theorem consists also in the
lower bound E(W1(µn,µ)) "

√
logn/n (besides the proofs in [1] and [39], see [5]

for a new proof by mass transportation-pde arguments). Lower bounds are usually
not covered by general tools and for general distributions. Actually, for irregular
laws, the decay can be faster, see among others [7, 8, 17].

When p > 1, and in higher dimension d ≥ 1, the picture is more diversified. The
general investigations of [13, 17, 20], based on couplings on dyadic decompositions
together with a randomization argument by a Poisson variable, typically yield that,
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if for example
∫
Rd |x|qdµ <∞ for some q > p

1−min(p/d,1/2) , then

E
(
Wp

p(µn,µ)
)
! 1

nmin(p/d,1/2) . (9)

(The case p = d/2 actually involves some extra logarithmic factor.) At this level
of generality, these results are essentially optimal, and suitably extend the uniform
example when p < d/2. With respect to the Ajtai–Komlós–Tusnády theorem, one
structural aspect of the proof of the general bounds (9) (due in particular to the
randomization step) is however that, for d = 1 or 2, these will never yield anything
better than a rate of the order of 1/

√
n, and are essentially restricted to p < d/2 in

higher dimension.
The Gaussian model is a good test example to appreciate the potential range of

decay. Let thus, in the following,µ be the standard Gaussian distribution onRd with
density (2π)−d/2 e−

1
2 |x|2 with respect to the Lebesgue measure, and in particular

moments of all orders. By a contraction argument, the Gaussian rates are always
larger than the uniform ones from (8). The one-dimensional case is pictured in (4).
In dimension d = 2, with respect to (9), it holds true that

E
(
Wp

p(µn,µ)
)
≈






( logn
n

)p/2 if 1 ≤ p < 2,

(logn)2
n if p = 2,

(10)

which extends the uniform model for 1 ≤ p < 2, while a specific new feature
appears at p = 2 as a consequence of the unbounded support. The proof of the
case 1 ≤ p < 2 and of the upper bound for p = 2 in [27] is based on the
mass transportation and pde approach presented in the next section together with
a localization step, while the lower bound for p = 2 in [38] relies on the generic
chaining ideas of [39] together with a scaling argument (an alternate proof using the
transportation-pde method is presented in [28]).

In higher dimension d ≥ 3, the general bounds (9) yield that E(Wp
p(µn,µ)) !

1/np/d whenever 1 ≤ p < d/2. This has been extended to 1 ≤ p < d in [30] by a
specific Gaussian analysis of the associated Mehler kernel. In this range 1 ≤ p < d ,
d ≥ 3, the rates for the Gaussian are therefore the same as the ones for the compact
uniform model.

As identified by (10) when p = d = 2, the case p = d might be of special
interest. A possible conjecture for d ≥ 3 might be that

E
(
Wd

d (µn,µ)
)
≈ (logn)d/2

n
.

This is suggested as a lower bound in the note [38] (upper bounds with extra
logarithmic factors are obtained in [30]). It is certainly possible that the tools
developed in [38] could lead to more conclusions, also for p > d ≥ 2 (and for
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more general distributions than the Gaussian with exponential tail decay), but this is
essentially open at this point. Actually, there is no clear conjecture for p > d ≥ 2
(including p =∞) at this point.

5 Mass Transportation, PDE, and Exact Limits
and Asymptotic Expansions

On the basis of the Ajtai–Komlós–Tusnády theorem (8) for the uniform distribution
µ on the unit cube [0, 1]d of Rd , the question of the exact asymptotic behavior of
E(Wp

p(µn,µ)) as n → ∞ becomes natural. Again the one-dimensional case may
be addressed rather simply, for example E(W2

2(µn,µ)) = 1/6n (for any n).
Things are much more challenging in higher dimension, and actually some deep

structural issues are underlying the picture, in particular motivated by conjectures
raised by S. Caracciolo et al. [16] in the physics literature. As a major recent
development in this regard, answering one of these conjectures, the landmark
contribution [5] by L. Ambrosio, F. Stra and D. Trevisan achieved the exact
(renormalized) limit for the uniform measure µ on [0, 1]2 for p = 2,

lim
n→∞

n

logn
E
(
W2

2(µn,µ)
)
= 1

4π
. (11)

The result actually applies to the uniform measure on a two-dimensional compact
Riemannian manifold M of volume one (the results are invariant under rescaling
of the measure), with the Euclidean distance in the definition of W2 being replaced
by the Riemannian distance. The factor 1/4π captures the common small time
behavior of the trace of the Laplace operator' in the form of

lim
t→0

4π t
∫

M
pt (x, x)dµ(x) = 1

where pt (x, y), t > 0, x, y ∈ M , is the associated heat kernel (generating the
heat semigroup Pt , t > 0). The result has been extended in [4] to measures
on a bounded connected domain in R2 with Lipschitz boundary, with Hölder
continuous density uniformly strictly positive and bounded from above. The method
of proof is based on a deep analysis combining mass transportation and pde tools
following an Ansatz put forward in [16]. If T = ∇ψ is the optimal transport map
between two probability densities ρ0 and ρ1 (onM), the associated Monge–Ampère
equation ρ1(∇ψ) det(∇2ψ) = ρ0 is turned, via the linearization ρj ≈ 1, into
ψ ≈ 1

2 |x|2 + f where f solves the Poisson equation −'f = ρ1 − ρ0. In this way,
the Kantorovich metric W2 is approximated by an energy functional represented by
a dual Sobolev norm through the observation that, whenever g : M → R is smooth
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with
∫
M gdµ = 0, by a Taylor expansion on dνε = (1+ εg)dµ as ε → 0 (cf. [40])

lim
ε→0

1
ε2

W2
2(νε, µ) = ‖g‖2H−1,2(µ)

where H−1,2(µ) is the dual Sobolev norm described by the trace

‖g‖2H−1,2(µ) =
∫

M

∣∣∇(−')−1g
∣∣2dµ =

∫

M
g(−')−1g dµ

with (−')−1 =
∫∞
0 Ptdt . On the basis of this Ansatz, the proof of the limit (11)

proceeds by regularization by the heat kernel and approximation by the energy
functional, the leading term in (11), as well as the full rates in (8), reflecting the
behaviour of the Green function (of the associated heat kernel) depending in partic-
ular on the dimension. More precise descriptions of the optimal map, rather than
only the transport cost, are developed in [3], and in [23, 24] in connection with the
behavior of the optimal transport map in the Lebesgue-to-Poisson problem together
with a refined large-scale regularity theory for the Monge–Ampère equation. In case
of the 2-dimensional sphere, a proof of the optimal matching rate is provided in [26]
via gravitational allocation (the paper also describes related algorithmic questions
of interest).

Still in dimension d = 2, the case p ,= 2 is completely open (and the value p = 1
should be of particular interest). For p = 2, the paper [16] (see also [9]) actually
suggests moreover that for some value ξ ∈ R,

E
(
W2

2(µn,µ)
)
= 1

4π
logn
n

+ ξ

n
+ o
(1
n

)
. (12)

Towards this conjecture, but still far from the answer, it is shown in [2] that

∣∣∣∣E
(
W2

2(µn,µ)
)
− 1

4π
logn
n

∣∣∣∣ !
√
logn log logn

n
.

A further conjecture in this framework would be that

n
[
W2

2(µn,µ)− E
(
W2

2(µn,µ)
)] → χ

in distribution where χ is some centered random variable with an explicit distribu-
tion as a quadratic form of a Gaussian free field (see [22, 29]). Under the conjecture
(12), it would hold that

n
[
W2

2(µn,µ)−
1
4π

logn
]
→ ξ + χ
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in distribution, which would be the ultimate description of the limiting behaviour
of W2

2(µn,µ) (provided the limiting value ξ is identified). For the matter
of comparison, in dimension d = 1 for µ the Lebesgue measure on [0, 1],
E(W2

2(µn,µ)) = 1/6n while nW2
2(µn,µ) converges in law to

∫ 1
0 B(t)2dt with

B a Brownian bridge on [0, 1] (in particular E
( ∫ 1

0 B(t)2dt
)
= 1/6) [6].

The identification of the limits in dimension d ≥ 3 seems to raise even higher
difficulties. Let still µ denote the uniform measure on [0, 1]d . In [25], M. Goldman
and D. Trevisan showed that, for every d ≥ 3 and p ≥ 1, the limit

lim
n→∞ np/d E

(
Wp

p(µn,µ)
)

exists and is strictly positive. The result actually extends previous works, basically
covering p < d/2, in [7, 14, 17, 19] making use of subadditivity arguments on
dyadic and combinatorial partitionings. The new ingredient in [25] is the coupling of
subadditivity with the optimal transport and pde approachwhich has been successful
in dimension 2. However, since the error in the smoothing by the heat kernel and
the energy functional are of the same order in higher dimension d ≥ 3, a delicate
feature is that the leading term in the asymptotics of the Kantorovich rate might
not be given anymore by the dual Sobolev norm (while higher orders are), so that
identification of the limit is a serious task. Actually the prediction in [9, 16], for
p = 2 < d , would be that

E
(
W2

2(µn,µ)
) = cd

n2/d
+ ξ

4π2

1
n
+ o
(1
n

)
,

but cd is not clearly conjectured, while ξ should be explicitly given in terms of the
Epstein function.
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