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Stein’s method
for normal approximation

Stein’s method, initiated by C. Stein in his celebrated monograph [22] (after the seminal

contribution [21]), is a general device to achieve approximation of probability measures by

a fixed target measure, typically the normal distribution.

It is based on the so-called Stein lemma which expresses that a given real integrable

random variable X, defined on some probability space (Ω,A,P), has law the standard Gaus-

sian distribution N (0, 1) if and only if, for any differentiable function f : R → R such that

Xf(X) and f ′(X) are integrable,

E
(
Xf(X)

)
= E

(
f ′(X)

)
. (1)

Whenever X has distribution N (0, 1), this is of course the basic integration by parts formula

with respect to the Gaussian density (cf. [1]). For a quick proof, apply (1) to the real and

imaginary parts of the functions f(x) = eitx, x ∈ R, depending on the parameter t ∈ R, to

get that E(XeitX) = itE(eitX) for every t ∈ R. By the integrability of X, the characteristic

function ϕX(t) = E(eitX), t ∈ R, of the law of X is differentiable and ϕ′X(t) = iE(XeitX).

Thus it solves the differential equation ϕ′X(t) = −tϕX(t), t ∈ R, implying that ϕX(t) = e−
1
2
t2 ,

t ∈ R. Weaker assumption on X may be considered [18].

The idea underlying this observation is a path towards approximating Gaussian distri-

butions without involving these Gaussian distributions themselves. Typically, if N has law

N (0, 1) and X is any integrable random variable, the Kolmogorov distance between the

respective laws of N and X may be estimated, in terms of the Stein lemma, as

sup
t∈R

∣∣P(X ≤ t)− P(N ≤ t)
∣∣ ≤ 2

(
sup
f∈D

∣∣E(Xf(X)
)
− E

(
f ′(X)

)∣∣) 1
2

(2)
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where D is the family of twice continuously differentiable functions f : R → R such that

‖f‖∞ ≤ 1, ‖f ′‖∞ ≤ 1, ‖f ′′‖∞ ≤ 1.

The post is a brief survey of some ideas and results around Stein’s method. Complete

expositions include [22, 6, 11, 18, 9, 10] among others.
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1 Solving Stein’s equation

Let dγ1(x) = e−x
2/2 dx√

2π
be the standard normal distribution on the real line R. Given a

(bounded, measurable) function g : R→ R, the classical Stein equation looks for a solution

f : R→ R of the equation

f ′(x)− x f(x) = g(x)−
∫
R
g dγ1 (3)

that is absolutely continuous and such that there exists a version of the derivative f ′ verifying

(3) for every x ∈ R.

Actually, a solution may be easily be produced as

f(x) = c e
1
2
x2 + e

1
2
x2
∫ x

−∞

[
g(y)−

∫
R g dγ1

]
e−

1
2
y2dy, x ∈ R, (4)

where c ∈ R. When c = 0, f is the unique solution of (3) such that limx→±∞ e
− 1

2
x2f(x) = 0.

For a proof, simply observe that Stein’s equation (3) may be rewritten as

e
1
2
x2 d

dx

[
e−

1
2
x2 f(x)

]
= g(x)−

∫
R
g dγ1.

The claim when c = 0 is a consequence of the dominated convergence theorem.
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2 Stein’s inequality for the total variation distance

When the input function g in Stein’s equation (3) is bounded, for example taking values in

[0, 1], it is not difficult to observe that the solution f is bounded as well as its derivative. More

precisely, f may be chosen so that ‖f‖∞ ≤
√

2π ‖g‖∞ and ‖f ′‖∞ ≤ 4 ‖g‖∞ (cf. e.g. [18]).

This remark has significant importance towards bounds on distances between probability

measures.

For example, recall the total variation distance between a probability measure µ on R
and γ1,

‖µ− γ1‖TV = sup
A∈B(R)

[
µ(A)− γ1(A)

]
=

1

2
sup

[ ∫
R
g dµ−

∫
R
g dγ1

]
where the last supremum is taken over all bounded measurable g : R → R with ‖g‖∞ ≤ 1.

The previous comments thus yield the following basic approximation bound, sometimes

called Stein’s inequality.

Proposition 1 (Stein’s inequality). In the preceding notation,

‖µ− γ1‖TV ≤ sup

∣∣∣∣ ∫
R
f ′dµ−

∫
R
x f dµ

∣∣∣∣ (5)

where the supremum runs over all continuously differentiable functions f : R→ R such that

‖f‖∞ ≤
√

π
2

and ‖f ′‖∞ ≤ 2.

As already mentioned, one of the main interests in (5) lies in the fact that only the

measure µ is involved in the upper bound via explicit integrals. It has been used in a wide

range of applications quantifying the convergence to a normal distribution (see the general

references).

The bound (2) on the Kolmogorov distance displayed in the introduction is achieved in

a similar way (see [9]).

3 Application to Berry-Esseen-type bounds

Stein’s method may be illustrated in a relevant way on the standard central limit theorem.

Consider the simplest instance of a sequence (Xk)k≥1 of independent real random variables

equally distributed as a random variable X with mean zero and variance one. The central

limit theorem thus expresses that the sequence
(
Sn√
n

)
n≥1

, where Sn = X1+· · ·+Xn, converges

weakly to a random variable N with the standard normal law N (0, 1).

The central limit theorem may be quantified by the celebrated Berry-Esseen inequality,

under a third moment assumption (cf. [2]). What follows does not reach the full strength of
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this inequality, but illustrates in a simple manner the use of Stein’s method in the form of

the inequality (2).

Towards the use of (2), let f : R → R be a function such that ‖f‖∞ ≤ 1, ‖f ′‖∞ ≤ 1,

‖f ′′‖∞ ≤ 1, and consider the expression in n ≥ 2,

E
(
Sn√
n
f

(
Sn√
n

))
− E

(
f ′
(
Sn√
n

))
.

By identical distribution E
(
Sn√
n
f
(
Sn√
n

))
=
√
nE
(
Xnf

(
Sn√
n

))
. By a Taylor expansion of f at

the second order around Sn−1√
n

,

f

(
Sn√
n

)
= f

(
Sn−1√
n

+
Xn√
n

)
= f

(
Sn−1√
n

)
+
Xn√
n
f ′
(
Sn−1√
n

)
+
X2
n

2n
f ′′(Θ)

for some (random) Θ. Using the independence between Xn and Sn−1, the moment conditions

E(Xn) = 0, E(X2
n) = 1, and the hypothesis ‖f ′′‖∞ ≤ 1, it follows that∣∣∣∣E(Xnf

(
Sn√
n

))
− 1√

n
E
(
f ′
(
Sn−1√
n

)∣∣∣∣ ≤ 1

2n
E
(
|X|3

)
.

In the same way, ∣∣∣∣E(f ′( Sn√
n

))
− E

(
f ′
(
Sn−1√
n

)∣∣∣∣ ≤ 1√
n
.

As a conclusion,∣∣∣∣E( Sn√
n
f

(
Sn√
n

))
− E

(
f ′
(
Sn√
n

))∣∣∣∣ ≤ 1

2
√
n
E
(
|X|3

)
+

1√
n
.

Together with (2), for any n ≥ 1,

sup
t∈R

∣∣∣∣P( Sn√n ≤ t
)
− P(N ≤ t)

∣∣∣∣ ≤ ( 2√
n
E
(
|X|3

)) 1
2
.

As announced, due to the square root, this is not the Berry-Esseen theorem. It may

however be reached with some more efforts along the same lines (see e.g. [18]).

4 Stein’s inequality for multivariate Gaussian variables

The question of analogues of the Stein inequality (5) in higher dimension has been raised

in various studies and context. The delicate point is that Stein’s equation in a multivariate

setting is not always explicitly solvable. Nevertheless, some substitutes may be considered.
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Let γn be the standard Gaussian measure on the Borel sets of Rn with density 1

(2π)
n
2
e−

1
2
|x|2 ,

x ∈ Rn, with respect to the Lebesgue measure.

To address Stein’s equation in Rn, the notion of Stein kernel associated to an unknown

distribution is of significant interest. Given a centered probability measure µ on Rn, a Stein

kernel of µ is a measurable matrix-valued map τµ on Rn such that for every smooth test

function g : Rn → R, ∫
Rn

x · ∇g dµ =

∫
Rn

τµ · ∇2g dµ

where∇g stands for the gradient of g, with the scalar product between vectors in Rn, and∇2g

stands for the Hessian of g, with the Hilbert-Schmidt scalar product between (symmetric)

n× n matrices. The choice for g of the coordinate maps x 7→ xk, k = 1, . . . , n, justifies the

centering hypothesis. With respect to the differential equation (3), the picture here lies at a

second differential order.

Stein kernels appear implicitly in the literature about Stein’s method (see the original

monograph [22, Lecture VI] of C. Stein, as well as [8, 9, 12, 13]...), while second order

operators in a multivariate setting were considered in [7, 14, 17].... They gained momentum in

connection with probabilistic approximations involving random variables living on a Gaussian

(Wiener) space in [18].

According to the standard Gaussian integration by parts formula∫
Rn

xk h dγn =

∫
Rn

∂kh dγn

applied h = ∂kg, k = 1, . . . , n, the identity matrix Id in Rn is a Stein kernel for γn. The

proximity of τµ with Id thus indicates that µ should be close to the Gaussian distribution

γn. Therefore, whenever such a Stein kernel τµ exists, the quantity, called Stein discrepancy

(of µ with respect to γn, and associated to the underlying kernel τµ),

S2

(
µ | γn

)
=

(∫
Rn

|τµ − Id|2 dµ
) 1

2

(with | · | the Hilbert-Schmidt norm) becomes relevant as a measure of the proximity of µ

and γn.

In dimension one, Stein’s inequality (5) (with f = g′) precisely indicates that

‖µ− γ1‖TV ≤ 2

∫
R
|τµ − 1|dµ,

and therefore, by Jensen’s inequality,

‖µ− γ1‖TV ≤ 2 S2

(
µ | γ1

)
,
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justifying the interest in the Stein discrepancy.

It is the purpose of the following proposition from [16] (after the prior investigation

[17] for the W1 Wasserstein distance) to emphasize the corresponding inequality in Rn with

respect to the Kantorovich metric W2. Given probability measures µ and ν on the Borel

sets of Rn with a finite second moment, let

W2(µ, ν) = inf
π

(∫
Rn×Rn

|x− y|2dπ(x, y)

) 1
2

,

where the infimum is taken over all couplings π on Rn×Rn with respective marginals µ and

ν, be the quadratic Kantorovich (Wasserstein) distance between µ and ν.

Proposition 2 (A multivariate version of Stein’s inequality). In the preceding notation,

W2

(
µ, γn

)
≤ S2

(
µ | γn

)
.

For such a result to be useful and of interest, it is necessary to determine and describe

suitable kernels τµ of the probability µ to be approximated by the Gaussian distribution γn.

In dimension n = 1, if µ has a density ρ with respect to the Lebesgue measure on R, the

Stein kernel τµ is uniquely determined (up to sets of zero Lebesgue measure), and under

standard regularity assumptions on ρ, a version of τµ is given by

τµ(x) =
1

ρ(x)

∫ ∞
x

yρ(y)dy

for x inside the support of ρ. In higher dimension, Stein kernels are not always unique and

even may not exist.

5 Second order Poincaré inequalities

In several illustrations and applications, the unknown probability measure µ is actually of

more concrete nature, allowing for explicit descriptions of a kernel. A typical instance is the

example of the law µ of F (X) where

F = (F1, . . . , Fn) : RN → Rn

is measurable and X is a standard Gaussian random vector on RN (on some probability space

(Ω,A,P)). In other words, µ, as a probability measure on the Borel sets of Rn, is the law of

F under γN , and the following studies its proximity to the standard Gaussian distribution

γn on Rn. It is possible to consider more general distributions for X, such as the Wiener
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measure in infinite dimension [18]. In most applications, the function F is also assumed

to be reasonably regular in order to perform a number of differentiation and integration by

parts operations, smoothness that will always be implicit below (polynomials is a class of

examples). Since µ should be centered, E(F (X)) = 0.

In this setting, a Stein kernel τµ for the law µ of F (X) = (F1, . . . , Fn)(X) on Rn may be

represented by a regular version of the conditional (matrix-valued) expectation

E
(
T (X) |F (X)

)
of T (X) with respect to the σ-field generated by F (X), where T = ∇(−L)−1F · ∇F with L

the Ornstein-Uhlenbeck generator on RN (cf. [3]). Proposition 2 therefore yields

W2

(
µ, γn

)2 ≤ ∫
Rd

|τµ − Id|2 dµ

= E
(∣∣E(T (X) |F (X))− Id

∣∣2)
≤ E

(
|T (X)− Id|2

)
=

∫
RN

|T − Id|2dγN

(6)

after the use of Jensen’s inequality in the conditional expectation.

The form of T is of particular interest for eigenfunctions of L, as developed in the works

by I. Nourdin and G. Peccati in their investigation of asymptotics of multiple stochastic

integrals and Wiener chaos [20, 18]. In general, the inverse operator (−L)−1 embedded in

the definition of T may be analyzed via the underlying Ornstein-Uhlenbeck semigroup with

infinitesimal generator L, to provide handful expressions (cf. [3]). The following statement

is one illustration of what may be achieved along these lines, in a form which has taken the

name of second order Poincaré inequalities [8, 19] (as the Gaussian Poincaré inequality [4] is

used at the level of the gradients along the Ornstein-Uhlenbeck semigroup).

Proposition 3. In the preceding notation, provided that F (X), with law µ on the Borel sets

of Rn, has covariance matrix the identity, and that F : RN → Rn is smooth enough,

W2

(
µ, γn

)2 ≤ 3

(∫
RN

[ n∑
k=1

|∇Fk|2
]2
dγN

) 1
2
(∫

RN

[ n∑
k=1

|∇2Fk|2
]2
dγN

) 1
2

. (7)

Arbitrary covariances are considered in [19]. The preceding statement applies in dimen-

sion n = 1 also for the total variation distance. Inequalities such as (7) have been exploited

in [19] to study central limit theorems on Wiener space (cf. [18]) and in [8] to control the

distance of the law of traces of random matrices to the Gaussian distribution.

Variations on Proposition 3 have been illustrated in [15] in the study of rates of conver-

gence of linear statistics along polynomials of the spectral measure of random matrices from

the Gaussian Unitary Ensemble [5].
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Probab. Theory Related Fields 143, 1–40 (2009).

[9] S. Chatterjee. A short survey of Stein’s method. Kyung Moon Sa, 1–24. Seoul (2014).

[10] L. Chen. Stein’s method of normal approximation: some recollections and reflections.

Ann. Statist. 49, 1850–1863 (2021).

[11] L. Chen, L. Goldstein, Q.-M. Shao. Normal approximation by Stein’s method. Proba-

bility and its Applications. Springer (2011).

[12] L. Goldstein, G. Reinert. Stein’s method and the zero bias transformation with appli-

cation to simple random sampling. Ann. Appl. Probab. 7, 935–952 (1997).

[13] L. Goldstein, G. Reinert. Zero biasing in one and higher dimensions, and applications.

Stein’s method and applications, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.

5, 1–18. Singapore Univ. Press (2005).

[14] F. Götze. On the rate of convergence in the multivariate CLT. Ann. Probab. 19, 724–739

(1991).

[15] G. Lambert, M. Ledoux, C. Webb. Quantitative normal approximation of linear statis-

tics of beta-ensembles. Ann. Probab. 47, 2619–2685 (2019).

[16] M. Ledoux, I. Nourdin, G. Peccati. Stein’s method, logarithmic Sobolev and transport

inequalities. Geom. and Funct. Anal. 25, 256–306 (2015).

8



[17] E. Meckes. On Stein’s method for multivariate normal approximation. High dimensional

probability V: the Luminy volume, 153–178, Inst. Math. Stat. Collection 5 (2009).

[18] I. Nourdin, G. Peccati. Normal approximations with Malliavin calculus: from Stein’s

method to universality. Cambridge Tracts in Mathematics. Cambridge University Press

(2012).

[19] I. Nourdin, G. Peccati, G. Reinert. Second order Poincaré inequalities and CLTs on
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