
The de Moivrian Blog

The Central Limit Theorem

As its name indicates, the Central Limit Theorem is one of the most important state-

ments in mathematics. It shows that the Gaussian distribution is the universal attractor in

fluctuations of a large number of random elements, sometimes called the “law of errors”.

It appears historically that the first central limit theorem was put forward by A. de

Moivre for Bernoulli random variables in 1733 (cf. [4]), introducing at the same time the

normal law, which thus should be called de Moivrian! (Note also that A. de Moivre was

close to 60 at the time of the result, and thus would not have got the Fields Medal although

he would have fully deserved it.)

The central limit theorem is extensively presented in all standard textbooks on probability

theory or statistics. The post here is focused on its most classical form for independent

identically distributed summands. The bibliography is limited to a few specific pointers.
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1 The classical one-dimensional central limit theorem

On a probability space (Ω,A,P), let Xk, k ≥ 1, be a sequence of independent and identically

distributed random variables, with the same law as a real random variable X. Set Sn =

X1 + · · · + Xn, n ≥ 1. The standard law of large numbers expresses that if E(|X|) < ∞,

then
Sn
n
→ E(X) almost surely.

(Conversely, if the sequence
(
Sn

n

)
n≥1 is almost surely bounded, then E(|X|) <∞.) What is

then the rate of convergence to 0 of the sequence Sn

n
−E(X), n ≥ 1? Under suitable moment

hypotheses, the sequence nβ
(
Sn

n
− E(X)

)
still converges almost surely provided that β < 1

2

When β = 1
2
, the convergence mode changes, and a limiting de Moivrian distribution arises.

Theorem 1 (Central limit theorem). Under the preceding notation, if 0 < E(X2) <∞,

√
n

[
Sn
n
− E(X)

]
→ G in distribution

where G is a de Moivrian random variable with law N (0, σ2) where σ2 = Var(X).

(Conversely, it may be shown that if the sequence
(
Sn√
n

)
n≥1 is stochastically bounded,

then E(X2) <∞, and E(X) = 0.)

The central limit theorem is in particular a stability property of the variance, and de

Moivrian variables are a fixed point of the statement: if Xk, k ≥ 1, are independent with

law N (0, σ2) (thus centered for simplicity), then Sn√
n

has law N (0, σ2) for every n ≥ 1.

Note for the formulation that

√
n

[
Sn
n
− E(X)

]
=

1√
n

n∑
k=1

[
Xk − E(Xk)

]
.

so that it is often convenient to center the variables. Also, it is useful to normalize the

variance so to converge towards a standard normal N (0, 1).
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In terms of distribution functions, the weak convergence in Theorem 1 thus indicates

that, for every t ∈ R,

lim
n→∞

P
(

1

σ
√
n

n∑
k=1

[
Xk − E(Xk)

]
≤ t

)
=

1√
2π

∫ t

−∞
e−

1
2
x2dx. (1)

It is important to note that the weak convergence property in the central limit theorem

cannot be strengthened into a stronger convergence mode. For simplicity, let X be such that

E(X) = 0 and E(X2) = 1 so that Sn√
n

converges, by Theorem 1, to a de Moivrian variable G

with law N (0, 1). For every n ≥ 1,

√
2
S2n√

2n
− Sn√

n
=

Xn+1 + · · ·+X2n√
n

.

If the sequence Sn√
n
, n ≥ 1, would converge for example in probability to G, the left-hand

side in this inequality would converge to (
√

2− 1)G. On the other hand, the right-hand has

the same law as Sn√
n
, and thus converges weakly to G. Since G is de Moivrian, (

√
2 − 1)G

cannot have the same law than G.

2 A. de Moivre

As mentioned in the introduction, the first central limit theorem was put forward by A. de

Moivre back in 1733 for sequences of Bernoulli random variables. If X is a Bernoulli random

variable on {0, 1}, with parameter p ∈ ]0, 1[, E(X) = p and Var(X) = p(1 − p), so that the

statement (1) takes the form

lim
n→∞

P
(

1√
p(1− p)n

n∑
k=1

[Xk − p] ≤ t

)
=

1√
2π

∫ t

−∞
e−

1
2
x2dx

for every t ∈ R. Alternatively,

lim
n→∞

P
( n∑

k=1

Xk ≤ pn+ t
√
p(1− p)n

)
=

1√
2π

∫ t

−∞
e−

1
2
x2dx.

But
∑n

k=1Xk has binomial distribution B(n, p), so that the preceding limit explicitly ex-

presses that

lim
n→∞

∑
k∈In

(
n

k

)
pk(1− p)n−k =

1√
2π

∫ t

−∞
e−

1
2
x2dx

where In is the set of integers k in {0, 1, . . . , n} such that k ≤ pn+ t
√
p(1− p)n.
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The proof by A. de Moivre for p = 1
2

(the case of arbitrary p ∈ (0, 1) was settled later by

P.-S. de Laplace, by other means) is then based on the equivalence(
n

k

)
pk(1− p)n−k ∼ 1√

2πnp(1− p)
e−

(k−np)2

2p(1−p)n

as a consequence of Stirling’s formula (just proved a few years before in 1730), justifying (a

posteriori) the factor
√

2π of the density of the normal law.

3 Fourier analytic proof

The standard proof of Theorem 1, presented in most textbooks, uses the Fourier transform

and the Paul Lévy theorem. Assume, after translation and homothety, that E(X) = 0 and

E(X2) = 1. By independence and identical distribution, the characteristic function of Sn√
n

is

given by

ϕ Sn√
n
(u) = E

(
e
iu Sn√

n
)

=
[
E
(
e
i u√

n
X)]n

=
[
ϕX
(
u√
n

)]n
for every u ∈ R, where ϕX(u) = E(eiuX) is the characteristic function of the law of X.

Since E(X) = 0 and E(X2) = 1, ϕX is twice differentiable, and ϕX(0) = 1, ϕ′X(0) = 0,

ϕ′′X(0) = −1. Hence, a Taylor expansion around 0 expresses that

ϕX(v) = 1− 1
2
v2 + v2ε(v)

where ε(v) ∈ C tends to 0 as v → 0. Therefore, for u ∈ R fixed, as n→∞,

ϕ Sn√
n
(u) =

(
1− 1

2n
u2 + 1

n
u2 ε
(
u√
n

))n
.

It is easy to check that for every sequence zn, n ∈ N, of complex numbers converging to

some z ∈ C,

lim
n→∞

(
1 +

zn
n

)n
= ez.

This observation, applied, for u ∈ R fixed, to zn = −1
2
u2 + ε( u√

n
), n ≥ 1, which converges to

z = −1
2
u2, ensures that

lim
n→∞

ϕ Sn√
n
(u) = e−

1
2
u2 .

Since the right-hand side is precisely the Fourier transform of the standard normal distribu-

tion N (0, 1), the central limit theorem follows.
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4 The Lindeberg method

An alternate, most interesting, idea of proof of the central limit theorem is the Lindeberg

replacement method. Assuming again that E(X) = 0 and E(X2) = 1, denote by Gk, k ≥ 1, a

sequence of independent standard normal variables, independent of the sequence Xk, k ≥ 1.

The principle is to replace one by one the variables Xk in the sum Sn by the Gk’s so to obtain

at the end the sum Tn = G1 + · · ·+Gn with is de Moivrian (of variance n). The procedure

may be performed along smooth test functions ψ : R → R to evaluate the differences,

k = 1, . . . , n,

∆k = ψ

(
1√
n

[
X1 + · · ·+Xk +Gk+1 + · · ·+Gn

])
− ψ

(
1√
n

[
X1 + · · ·+Xk−1 +Gk + · · ·+Gn

])
by a Taylor expansion at the third order. Assuming that E(|X|3) <∞ and ‖ψ′′′‖∞ ≤ 1, due

to the moment normalization, the expectation of the preceding expression may be bounded

in absolute value by ∣∣E(∆k)
∣∣ ≤ 1

6n3/2

(
E
(
|X|3

)
+ E

(
|G|3

))
.

Now
n∑
k=1

E(∆k) = E
(
ψ
( Sn√

n

))
− E

(
ψ
( Tn√

n

))
= E

(
ψ
( Sn√

n

))
− E

(
ψ(G1)

)
so that ∣∣∣∣E(ψ( Sn√n)

)
− E

(
ψ(G1)

)∣∣∣∣ ≤ 1

6
√
n

(
E
(
|X|3

)
+ E

(
|G|3

))
.

Since weak convergence may be reduced along families of smooth functions, the central limit

theorem follows. The stronger third moment assumption may be then be weakened to the

second moment condition after a suitable truncation argument, not developed here.

The Lindeberg proof is closely related to Stein’s method [6, 3, 5, 2, 1].

5 The Berry-Esseen inequality

The Berry-Esseen inequality quantifies the convergence of the distribution functions (1) in

the central limit theorem uniformly over t ∈ R (that is in the Kolmogorov distance between

probability laws).
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Theorem 2. Let X be a real random variable such that E(|X|3) <∞, and let Xk, k ≥ 1, be

a sequence of independent copies of X. Then, with σ2 the variance of X, for every n ≥ 1,

sup
t∈R

∣∣∣∣P( 1

σ
√
n

n∑
k=1

[
Xk − E(Xk)

]
≤ t

)
− 1√

2π

∫ t

−∞
e−

1
2
x2dx

∣∣∣∣ ≤ C√
n
E
(
|X|3

)
where C > 0 is a numerical constant.

The currently best possible value for the constant C is 0.469 in the works of I. G. Shevtsova.

6 The multivariate central limit theorem

If X is a random vector on some probability space (Ω,A,P), with values in Rd, the central

limit theorem for a sequence of independent copies of X is equivalent to the central limit the-

orem for 〈u,X〉 for any vector u ∈ Rd. The following statement is then just a reformulation

of the standard Theorem 1.

Let (Xk)k≥1 be a sequence of independent copies of X, and Sn = X1 + · · ·+Xn, n ≥ 1.

Theorem 3 (Multivariate central limit theorem). Under the preceding notation, if

0 < E(|X|2) <∞,
√
n

[
Sn
n
− E(X)

]
→ G in distribution

where G is a de Moivrian random vector in Rd with law N (0,Σ) where Cov(X) = Σ.

7 Unlimited extensions...

It would be an unattainable task to try to describe the (almost!) infinite number illustrations,

occurrences, applications of de Moivrian fluctuation-type results and central limit theorems

for numerous probabilistic and statistical models and instances. This profusion is the best

witness of the Central character of the Central Limit Theorem!
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