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Abstract

This note reviews the studies of the last decades emphasizing a common principle based

on entropy, logarithmic Sobolev inequality and hypercontractivity, behind four most cel-

ebrated inequalities by M. Talagrand: the convex distance inequality, the L1–L2 variance

inequality, the quadratic transportation cost inequality, and the inequality on the supre-

mum of empirical processes.

1 Four Talagrand inequalities

This section outlines the statements of the four Talagrand inequalities considered in this note, in

the original notation of the author. These inequalities were all established (published) between

1991 and 1996, the first three in relatively short articles.

Talagrand’s convex distance inequality [81, Theorem 1.1 and (1.3)], [83, Theo-

rem 4.1.1]. Let (Ωi, µi), i = 1, . . . , n, be arbitrary probability spaces and provide their product

with the product probability P . Given a set A ⊂ Ω and x ∈ Ω, set

UA(x) =
{

(si)1≤i≤n ∈ {0, 1}
n;∃ y ∈ A; si = 0⇒ xi = yi

}
.

Denote by VA(x) the convex hull of UA(x) considered as a subset of Rn. The set VA(x) contains

0 if and only if x belongs to A. Denote then by dA(x) the Euclidean distance of 0 to VA(x) (in

[83], the notation fc(A, x) is used instead, the letter c refereeing to “convexity”).

For any (measurable) A ⊂ Ω, ∫
Ω

e
1
4
d2
AdP ≤ 1

P (A)
. (1)
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Talagrand’s L1–L2 variance inequality [82, Theorem 1.5]. Let {0, 1}n be the discrete

cube equipped with the product probability measure µp giving weight p to 1 and 1 − p to 0,

0 < p < 1. For 1 ≤ r ≤ ∞, denote by ‖ · ‖r the norm in Lr(µp). For every i = 1, . . . , n and

every x = (x1, . . . , xn) ∈ {0, 1}n, let Ui(x) be the point of {0, 1}n obtained from x by replacing

xi by 1 − xi and leaving the other coordinates unchanged. If f is a function on {0, 1}n, set

∆if(x) = (1− p)(f(x)− f(Ui(x))) if xi = 1 and ∆if(x) = p(f(x)− f(Ui(x))) if xi = 0.

There is a numerical constant K > 0 such that for any function f : {0, 1}n → R such that∫
{0,1}n fdµp = 0,

‖f‖2
2 ≤ K log

( 2

p(1− p)

) n∑
i=1

‖∆if‖2
2

log
(
e
‖∆if‖2
‖∆if‖1

) . (2)

Talagrand’s quadratic transportation cost inequality [84, Theorem 1.1]. For two

probability measures ν and µ on the Borel sets of Rn, define the transportation cost Tw(µ, ν)

as the infimum of ∫
Rn×Rn

w(x, y)dπ(x, y)

over all the probability measures π on Rn × Rn such that µ is the first marginal of π and ν is

the second, and where w(x, y) =
∑n

i=1(xi − yi)2. Let dγ(x) = e−|x|
2/2 dx

(2π)n/2
be the standard

Gaussian measure on the Borel sets of Rn.

For every probability measure µ absolutely continuous with respect to γ with f = dµ
dγ

,

Tw(µ, γ) ≤ 2

∫
Rn
f log f dγ = 2

∫
Rn

log f dµ. (3)

Talagrand’s inequality on the supremum of empirical processes [85, Theorem 1.4].

Let X1, . . . , Xn be independent random variables with values in a measurable space Ω, and let

F be a countable family of measurable functions on Ω. Consider the random variable

Z = sup
f∈F

n∑
i=1

f(Xi).

Set U = supf∈F ‖f‖∞ and V = E
(

supf∈F
∑n

i=1 f(Xi)
2
)
.

For each t > 0,

P
(∣∣Z − E(Z)

∣∣ ≥ t
)
≤ K exp

(
− t

KU
log

(
1 +

tU

V

))
(4)

where K > 0 is a numerical constant.

2 Introduction

M. Talagrand’s mathematical achievements have deeply influenced the scientific developments

over the last decades. His work embraces numerous mathematical fields, including measure
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theory, functional analysis, Banach space geometry, stochastic processes, Boolean analysis,

isoperimetric and concentration inequalities, optimal transportation, statistical physics etc.

It is in particular extremely impressive to hear about four of his inequalities, all called

Talagrand’s inequality, in rather different areas. The precise statements of these inequalities

have been presented in the first section.

– The famous convex distance inequality for product measures, put forward in his celebrated

Publication of the Institut des Hautes Études Scientifiques [83], has very fruitful applications in

numerous areas of probability theory, statistics or optimization, and combinatorial and discrete

mathematics.

– The L1–L2 variance inequality on the discrete cube first provided an alternate, sharper,

approach to the Kahn-Kalai-Linial theorem on influences in Boolean analysis, and became a

central tool in theoretical computer science. As put forward by I. Benjamini, G. Kalai and

O. Schramm, it is besides, at this point, the only generic argument towards sub-diffusive and

super-concentration phenomena which are ubiquitous to many models of the current research

in probability theory (percolation, random matrices, spin glasses etc.).

– Talagrand’s quadratic transportation cost has been one founding stone in the interaction

between partial differential equations, probability theory and geometry, as first emphasized by

F. Otto and C. Villani in connection with the logarithmic Sobolev inequality, leading to the

new field of functional inequalities, curvature lower bounds and analysis on metric measure

spaces by J. Lott, C. Villani, K. T. Sturm, L. Ambrosio, N. Gigli, G. Savaré.

– The methods developed for concentration inequalities for product measures led to the fun-

damental Talagrand inequality for the supremum of empirical processes, a major and essential

tool in modern infinite-dimensional statistics.

The Talagrand inequalities have both shaped the mathematics of the last decades and stand

today as essential and common tools of the current research.

Apart perhaps the L1–L2 variance inequality, the Talagrand inequalities were mostly moti-

vated by aspects of the concentration of measure phenomenon and its applications to Banach

space geometry and probability in Banach spaces [59, 68, 50, 38, 49, 76, 4]. “The idea of con-

centration of measure, which was discovered by V. Milman, is arguably one of the great ideas

of analysis in our times” (M. Talagrand [86]). The concentration of measure phenomenon has

indeed become today a major tool in various areas of mathematics such as asymptotic geo-

metric analysis, probability theory, statistical mechanics, mathematical statistics and learning

theory, random matrix theory or quantum information theory, stochastic dynamics, randomized

algorithms, complexity... Of isoperimetric origin and flavour, it is suited to the investigation of

models involving an infinite number of variables, and emphasizes that, quoting M. Talagrand

again [86], “a random variable that depends (in a “smooth” way) on the influence of many

independent random variables (but not too much on any of them) is essentially constant”. It is

indeed a main feature of the four Talagrand inequalities that they are dimension free (constants

do not depend on the size of the samples, and the statements extend to infinite-dimensional

systems). These inequalities are in particular inspired by, and provide deep and powerful ex-
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tensions of, the model concentration inequality for Gaussian measures expressing that for any

Lipschitz function F : Rn → R with Lipschitz semi-norm ‖F‖Lip,

γ
(
F ≥

∫
Rn Fdγ + r

)
≤ e−r

2/2‖F‖2Lip (5)

for all r ≥ 0 (where dγ(x) = e−|x|
2/2 dx

(2π)n/2
, the standard Gaussian measure on the Borel sets of

Rn).

The Talagrand inequalities look quite different, and have been established by him with dif-

ferent tools and methods (although induction on the dimension towards dimension-free bounds

may be detected as a common background). It is the purpose of this note to show, based on

the mathematical developments of the last decades, that all these four inequalities may be seen

as consequences of a common principle, namely entropy, logarithmic Sobolev inequality and

hypercontractivity.

This observation started with the papers [24] and [1] which revived an unpublished letter by

I. Herbst to L. Gross in 1975 deducing exponential integrability from the logarithmic Sobolev

inequality, just after the fundamental discovery by L. Gross of the latter [39]. The contribution

[1] by S. Aida, T. Masuda and I. Shigekawa has been very influential in this regard. The

relevance of this observation towards the Gaussian concentration inequality (5) was pointed

out next in [45]. Based on this principle, the contribution [47] provided an alternate approach

to the inequality on supremum of empirical processes (4), later developed and extended in

several steps and contributions summarized in the monograph [20] by S. Boucheron, G. Lugosi

and P. Massart. A few years later, these authors also covered the convex distance inequality

(1) by this method. (The monograph [20] actually covers in depth various aspects emphasized

in this note.) Already present in [82] and earlier [44], the hypercontractivity character of the

L1–L2 variance inequality (2) is clarified in [12], and led these authors to a proof of sub-linearity

of percolation times. It is also mentioned in [12] that Talagrand’s variance inequality (2) may

be used to recover the associated concentration inequality for percolation time first obtained

in [83], linking even more the four inequalities. In the early 2000, F. Otto and C. Villani [65]

deduced the Talagrand quadratic transportation cost inequality from the logarithmic Sobolev

inequality of L. Gross, bringing to light the deep link between these two families of inequalities.

The purpose of this note is thus to provide a common, self-contained, approach to the four

Talagrand inequalities based on entropy, logarithmic Sobolev inequality and hypercontractivity,

with for each of them a simple and direct proof. Sub-additivity properties of entropy and

logarithmic Sobolev inequality will encapsulate the dimension-free concentration phenomenon,

and the Talagrand inequalities.

The next paragraph, Section 3, presents the necessary (elementary) material on the entropy

method to this task. It is restricted to the purpose of the subsequent proofs, but wide extensions

and applications of the approach have been developed in the literature. The proofs of the

Talagrand inequalities are addressed in the following four sections. It should be mentioned

that, with respect to the original Talagrand’s formulations, the notation and terminology will

somewhat be adapted in order to follow the common trends in this regard. This is also motivated

by the framework emphasized in Section 3. No attempt is made towards sharp numerical
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constants (besides the one in (3)), favouring the simplicity of the arguments before technical

improvements (with appropriate references for the latter). Each section will be followed by

some comments on historical aspects and further developments, with a few (and only a few)

general pointers to the relevant literature.

3 Entropy, logarithmic Sobolev inequality, hypercontrac-

tivity

This section describes the basic material towards the entropy approach to the four Talagrand

inequalities. As already mentioned, the presentation of the various tools is limited to this specific

task, but, as emphasized in the literature, the power and generality of the principle may be

extended and applied far outside this given purpose. This material is rather elementary, and

most of the statements may be found in standard monographs or lecture notes (see the notes

and references at the end of the paragraph) involved with these objects.

(Ω,Σ, µ) will denote a generic probability space. For each 1 ≤ p ≤ ∞, ‖ · ‖p is the norm

of the Lebesgue space Lp(µ). The various integrability conditions appearing below will be

automatically satisfied in all the subsequent illustrations dealing mostly with bounded functions.

Entropy. For a measurable function f : (Ω,Σ, µ)→ R, non-negative in L1(µ), set

Entµ(f) =

∫
Ω

f log f dµ−
∫

Ω

f dµ log

(∫
Ω

f dµ

)
∈ [0,+∞]

(since u ∈ [0,∞) 7→ u log u is convex bounded from below, with the convention 0 log 0 = 0).

Observe that Entµ(f) is homogeneous of order 1. If dν = fdµ for a density f , Entµ(f) =

H(ν |µ), the relative entropy of ν with respect to µ.

Entropy has a lot of common with variance,

Varµ(f) =

∫
Ω

f 2dµ−
(∫

Ω

f dµ

)2

(for a function f in L2(µ)), in particular the following duality and variational representations.

The duality formula for entropy expresses that

Entµ(f) = sup

{∫
Ω

fg dµ ;

∫
Ω

egdµ ≤ 1

}
(6)

(where g may be assumed to be bounded from above and below). Indeed, assume by homo-

geneity that
∫

Ω
fdµ = 1. By Young’s inequality uv ≤ u log u − u + ev, u ≥ 0, v ∈ R, so that,

for
∫

Ω
egdµ ≤ 1,∫

Ω

fg dµ ≤
∫

Ω

f log f dµ− 1 +

∫
Ω

egdµ ≤
∫

Ω

f log f dµ = Entµ(f).
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For the converse, set fN = min(max(f, 1
N

), N), N ≥ 1, and choose g = log
(

fN∫
Ω fNdµ

)
. The claim

follows as N →∞.

For the further purposes, note that this duality formula justifies the well-known entropic

inequality, for any f ≥ 0 with
∫

Ω
fdµ = 1 and g measurable such that fg is integrable,∫

Ω

fg dµ ≤ Entµ(f) + log

(∫
Ω

egdµ

)
=

∫
Ω

f log f dµ+ log

(∫
Ω

egdµ

)
. (7)

The variational formula on the other hand states that

Entµ(f) = inf
c>0

∫
Ω

[
f(log f − log c)− (f − c)

]
dµ. (8)

Indeed, the infimum of c 7→ c− (log c + 1)
∫

Ω
fdµ is attained at c =

∫
Ω
fdµ giving thus rise to

Entµ(f).

Tensorization of entropy. A fundamental feature of entropy (and of variance) is its product

or sub-additivity property, main source of the approach to the Talagrand inequalities devel-

oped here. Let (Ωi,Σi, µi), i = 1, . . . , n, be probability spaces, and denote by P the product

probability measure µ1 ⊗ · · · ⊗ µn on the product space X = Ω1 × · · · × Ωn equipped with the

product σ-field. A point x in X is denoted x = (x1, . . . , xn), xi ∈ Ωi, i = 1, . . . , n. Given f on

the product space, write furthermore fi, i = 1, . . . , n, for the function on Ωi defined by

fi(xi) = f(x1, . . . , xi−1, xi, xi+1, . . . , xn),

with x1, . . . , xi−1, xi+1, . . . , xn fixed.

Proposition 1. For every non-negative function f on the product space X in L1(P ),

EntP (f) ≤
n∑
i=1

∫
X

Entµi(fi)dP.

It may be pointed out that on the right-hand side, integration in dP is actually, for each

i = 1, . . . , n, over the remaining coordinates (x1, . . . , xi−1, xi+1, . . . , xn).

Proof. Use the duality formula (6). Given g such that
∫
X
egdP ≤ 1, set, for every i = 1 . . . , n,

gi(xi, . . . , xn) = log

(∫
X
eg(x1,...,xn)dµ1(x1) · · · dµi−1(xi−1)∫
X
eg(x1,...,xn)dµ1(x1) · · · dµi(xi)

)
(well-defined for µi⊗· · ·⊗µn-almost every (xi, . . . , xn)). Then g ≤

∑n
i=1 g

i and
∫

Ωi
e(gi)idµi = 1

for every i = 1 . . . , n. Therefore,∫
X

fg dP ≤
n∑
i=1

∫
X

fgi dP

=
n∑
i=1

∫
X

(∫
Ωi

fi(g
i)idµi

)
dP

≤
n∑
i=1

∫
X

Entµi(fi)dP

which is the result.
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Proposition 1 is presented in [47] (in a more general form due to S. Bobkov, the proof

presented here being due to S. Kwapien), and deduced from Han’s inequality in [20]. It has

a classical analogue for the variance, established in the same (even simpler) way, known as

the Efron-Stein inequality (cf. [31, 78, 69, 79, 20]) expressing that for every function f on the

product space X in L2(P ),

VarP (f) ≤
n∑
i=1

∫
X

Varµi(fi)dP. (9)

Actually (9) may be deduced from Proposition 1 applied to f = 1 + εg with ε→ 0.

The tensorization Proposition 1 admits related formulations which will be of fundamental

use in the applications to the Talagrand convex distance inequality and the inequality on the

supremum of empirical processes.

First, by Jensen’s inequality, for every i = 1, . . . , n (and x1, . . . , xi−1, xi+1, . . . , xn fixed),

Entµi(fi) ≤
1

2

∫
Ωi

∫
Ωi

[
fi(xi)− fi(yi)

][
log fi(xi)− log fi(yi)

]
dµi(xi)dµi(yi)

(an analogue of the duplication formula for the variance). Therefore, at a first (mild) level,

Proposition 1 yields by symmetry

EntP (f)

≤
n∑
i=1

∫
X

∫ ∫
{fi(xi)≥fi(yi)}

[
fi(xi)− fi(yi)

][
log fi(xi)− log fi(yi)

]
dµi(xi)dµi(yi)dP (x)

(10)

Proposition 1 may also be combined with the variational representation (8) in the form

EntP (f) ≤
n∑
i=1

∫
X

(
inf
ci>0

∫
Ωi

[
fi(log fi − log ci)− (fi − ci)

]
dµi

)
dP. (11)

Of course, for each i = 1, . . . , n, ci > 0 in the infimum may be chosen to depend on the variables

x1, . . . , xi−1, xi+1, . . . , xn.

Logarithmic Sobolev inequality on the two-point space. A logarithmic Sobolev inequal-

ity bounds the entropy of a function f by an energy, or Dirichlet form. It is the analogue of the

classical Poincaré inequality for the variance. It has been discovered by L. Gross [39] in 1975

together with its equivalence with hypercontractivity (although earlier versions may detected

in the literature).

The most basic logarithmic Sobolev inequality takes place on the two-point space {−1,+1}
with the Bernoulli probability measure µp({+1}) = p, µp({−1}) = 1 − p = q, 0 < p < 1, and

states that for any f : {−1,+1} → R,

Entµp(f
2) ≤ 1

ρ
pq
[
f(+1)− f(−1)

]2
(12)

where ρ = p−q
log p−log q

. The symmetric case p = 1
2

is the simplest and most classical one, but as

will be seen, general values of p are handled below similarly.
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When p = 1
2
, ρ = 1

2
so that the constant on the right-hand side of (12) is 1

2
. A proof in this

case runs as follows. Setting f(+1) = α and f(−1) = β, the inequality amounts to

Φ(α2) + Φ(β2)

2
− Φ

(α2 + β2

2

)
≤ 1

2
(α− β)2

where Φ(u) = u log u, u ≥ 0. That is, if r = 1
2
(α2 + β2) and s = 1

2
(α2 − β2)

Φ(r + s) + Φ(r − s)− 2Φ(r) ≤ (α− β)2.

But the left-hand side is ∫ s

0

[
Φ′′(r + v) + Φ′′(r − v)

]
(b− v)dv

and since the function Φ′′ = 1
u

is convex on the given domain

Φ′′(r + v) + Φ′′(r − v) ≤ 2Φ′′(r) =
2

r
.

It remains to observe that s2

r
≤ (α− β)2. A direct proof for general p may be found in [3].

Hypercontractivity on the two-point space. The logarithmic Sobolev inequality (12) may

be translated equivalently into the famous hypercontractivity property. At this stage, only the

symmetric case p = 1
2

is described for simplicity. Any function f : {−1,+1} → R may be

represented as f(x) = a + bx, x ∈ {−1,+1}, a, b ∈ R. For any t ≥ 0, define the new function

Ptf(x) = a + e−tbx, x ∈ {−1,+1}. The family (Pt)t≥0 defines a semigroup of contractions on

Lp(µ 1
2
) for any 1 ≤ p ≤ ∞. It turns out that (12) allows for the strengthening

‖Ptf‖q ≤ ‖f‖p (13)

whenever 1 < p < q < ∞, e2t ≥ q−1
p−1

. The latter (13) may be translated again as a two-point

inequality (1

2
|a+ e−tb|q +

1

2
|a− e−tb|q

)1/q

≤
(1

2
|a+ b|p +

1

2
|a− b|p

)1/p

.

This inequality was established directly by A. Bonami [18] and W. Beckner [9] but L. Gross [39]

observed that it is actually equivalent to (12) (and as such easier to establish). This connection

is developed next, as well as the case p 6= 1
2
, after the setting is extended to the product model

X = {−1,+1}n, n ≥ 1.

Logarithmic Sobolev inequality and hypercontractivity on the discrete cube. On

the two-point space {−1,+1} equipped with the Bernoulli measure µp, 0 < p < 1, consider the

(Markov) operator Lf =
∫
{−1,+1} fdµp − f . Note that∫

{−1,+1}
f(−Lf)dµp =

∫
{−1,+1}

(Lf)2dµp = Varµp(f) = pq
[
f(+1)− f(−1)

]2
. (14)

On the product space X = {−1,+1}n with the product measure µnp , consider the product

operator L =
∑n

i=1 Li where Li is acting on the i-th coordinate of a function f : X → R as
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Lif =
∫
{−1,+1} fi(xi)dµp(xi)− f , i = 1, . . . , n (with the notation of the tensorization paragraph,

that is fi(xi) = f(x1, . . . , xi−1, xi, xi+1, . . . , xn) with x1, . . . , xi−1, xi+1, . . . , xn fixed).

The Dirichlet form

E(f, g) =

∫
X

f(−Lg)dµnp

for two functions f, g : X → R admits various representations of the form

E(f, g)

=
n∑
i=1

∫
X

Lif Lig dµ
n
p

=
n∑
i=1

∫
X

Corµp(fi, gi)dµ
n
p

=
1

2

n∑
i=1

∫
X

∫
{−1,+1}

∫
{−1,+1}

[
fi(xi)− fi(yi)

][
gi(xi)− gi(yi)

]
dµp(xi)dµp(yi)dµ

n
p(x).

(15)

In particular, from the Efron-Stein inequality (9), the Poincaré inequality

Varµnp (f) ≤ E(f, f) (16)

holds true for any f : X → R.

The operator L generates the Markov semigroup (Pt)t≥0 defined by

Pt =
∞∑
k=0

tk

k!
Lk (17)

(L0 = Id) in the sense that d
dt
Ptf = LPtf = Pt Lf . It is symmetric and invariant with respect

to µnp , that is for functions f, g : X → R,
∫
X
fPtg dµ

n
p =

∫
X
gPtf dµ

n
p . It is immediately checked

that for µ 1
2

on {−1,+1}, Ptf(x) = a+ e−tbx for a function f = a+ bx, x ∈ {−1,+1}.

It is a consequence of the tensorization property, and the representations (14) and (15) of

the associated Dirichlet forms, that the logarithmic Sobolev inequality (12) extends to functions

f on the product space X = {−1,+1}n equipped with the product measure µnp in the form

Entµnp (f 2) ≤ 1

ρ
E(f, f) (18)

for any f : X → R, where it is recalled that ρ = p−q
log p−log q

(= 1
2

if p = 1
2
). In the same way, the

hypercontractivity inequality (13) extends to functions f on X = {−1,+1}n, expressing that

whenever 1 < p < q <∞ and e4ρt ≥ q−1
p−1

,

‖Ptf‖q ≤ ‖f‖p . (19)

While the tensorization of hypercontractivity may be achieved independently (cf. e.g. [9, 6]),

it is fruitful to deduce it from the logarithmic Sobolev inequality as developed by L. Gross [39].
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Given 1 < p < q <∞, the key idea of L. Gross is to differentiate in time the quantity ‖Ptf‖q(t),
q(t) = (p − 1)e4ρt − 1, t ≥ 0. Since |Ptf | ≤ Pt(|f |), it is enough to deal with a non-negative

function f (actually not identically zero). It holds that

d

dt

∫
X

(Ptf)q(t)dµnp = q′(t)

∫
X

(Ptf)q(t) logPtf dµ
n
p + q(t)

∫
X

(Ptf)q(t)−1 LPtf dµ
n
p

and hence

‖Ptf‖q(t)−1
q(t)

d

dt
‖Ptf‖q(t)

= − q
′(t)

q(t)2

∫
X

(Ptf)q(t)dµnp log

∫
X

(Ptf)q(t)dµnp +
1

q(t)

d

dt

∫
X

(Ptf)q(t)dµnp

=
q′

q2
Entµnp

(
(Ptf)q

)
+

∫
X

(Ptf)q−1 LPtf dµ
n
p

where the short-hand notation q = q(t), q′ = q′(t), is used in the last line. Assume now that

−
∫
X

(Ptf)q−1 LPtf dµ
n
p = E

(
(Ptf)q−1, Ptf

)
≥ 4(q − 1)

q2
E
(
(Ptf)q/2, (Ptf)q/2

)
(20)

so that

q2 ‖Ptf‖qq
d

dt
‖Ptf‖q ≤ q′ Entµnp

(
(Ptf)q

)
− 4(q − 1) E

(
(Ptf)q/2, (Ptf)q/2

)
.

Applying the logarithmic Sobolev inequality (18) to (Ptf)q(t)/2 then indicates that for the choice

of q = q(t) = (p−1)e4ρt−1, the right-hand side of the latter inequality is negative. Therefore the

map t 7→ ‖Ptf‖q(t) is decreasing, which amounts to the hypercontractivity inequality (19). The

proof shows in the same way that hypercontractivity is actually equivalent to the logarithmic

Sobolev inequality.

It remains nevertheless to establish (20) which follows from a convexity argument. Namely,

for all u > v ≥ 0, (
uq/2 − vq/2

u− v

)2

=

(
q

2(u− v)

∫ u

v

s
q
2
−1ds

)2

≤ q2

4(u− v)

∫ u

v

sq−2ds

=
q2

4(q − 1)

uq−1 − vq−1

u− v
.

Hence, for any u, v ∈ R,

(
uq−1 − vq−1

)
(u− v) ≥ 4(q − 1)

q2

(
uq/2 − vq/2

)2
.

Recalling (15) then concludes to (20).

10



Logarithmic Sobolev inequality for the Gaussian measure. If dγ(x) = e−|x|
2/2 dx

(2π)n
is

the standard Gaussian (product) measure on the Borel sets of Rn (|x| being the Euclidean

length of x ∈ Rn), the logarithmic Sobolev inequality for γ states that

Entγ(f
2) ≤ 2

∫
Rn
|∇f |2dγ (21)

for every smooth (for example locally Lipschitz in L2(γ)) function f : Rn → R. It might

be worthwhile mentioning that by the tensorization Proposition 1, it is enough to know the

inequality in dimension one.

A proof of this inequality, also due to L. Gross [39], may be obtained from the logarithmic

Sobolev inequality on the discrete cube via the central limit theorem. Roughly speaking,

if ϕ : R → R is smooth with compact support, apply (18) with p = 1
2

to f(x1, . . . , xn) =

ϕ
(

1√
n

∑n
i=1 xi

)
, (x1, . . . , xn) ∈ {−1,+1}n. If ‖ϕ′‖∞ + ‖ϕ′′‖∞ <∞, by a Taylor expansion

fi(xi)− fi(yi) =
xi − yi√

n
ϕ′
(

1√
n

∑
j 6=i

xj

)
+O

( 1

n

)
uniformly in xi, yi, i = 1, . . . , n. Hence,

n∑
i=1

[
fi(xi)− fi(yi)

]2
=

1

n

n∑
i=1

(xi − yi)2 ϕ′
(

1√
n

∑
j 6=i

xj

)2

+O
( 1√

n

)
and from (15),

E(f, f) ≤ 2

∫
X

ϕ′
(

1√
n

n∑
j=2

xj

)2

dµn1
2

+O
( 1√

n

)
.

By the central limit theorem, lim supn→∞ E(f, f) ≤ 2
∫
R ϕ
′2dγ and similarly limn→∞ Entµn1

2

(f 2) =

Entγ(ϕ
2).

In addition to this proof, there are at least 15 different further proofs of the logarithmic

Sobolev inequality for the Gaussian measure. The following introduces the analytic (semigroup)

proof put forward by D. Bakry and M. Émery [7, 6] (which has been recognized as the sim-

plest one by L. Gross in 2010). It is presented with the Ornstein-Uhlenbeck semigroup (with

invariant measure γ); a similar argument may be developed with the standard heat (Brownian)

kernel/semigroup (cf. [8]).

Denote by (Pt)t≥0 the so-called Ornstein-Uhlenbeck semigroup defined by

Ptf(x) =

∫
Rn
f
(
e−tx+

√
1− e−2t y

)
dγ(y), t ≥ 0, x ∈ Rn (22)

(for any f : Rn → R in L1(γ) for example). The Ornstein-Uhlenbeck semigroup is invariant

and symmetric with respect to the standard Gaussian measure γ, with infinitesimal generator

Lf(x) = ∆f(x)− 〈x,∇f(x)〉 for which the integration by parts formula∫
Rn
f(−Lg)dγ =

∫
Rn
〈∇f,∇g〉 dγ

11



holds true for every smooth functions f, g : Rn → R.

Let f : Rn → R be a (measurable) function such that ε ≤ f ≤ 1
ε

for some ε > 0 and∫
Rn fdγ = 1. For every t > 0, Ptf is then a C∞ function, ε ≤ Ptf ≤ 1

ε
, and, as t → ∞,

Ptf →
∫
Rn fdγ = 1 at every point. Therefore∫

Rn
f log f dγ = −

∫ ∞
0

(
d

dt

∫
Rn
Ptf logPtf dγ

)
dt.

By the chain rule

d

dt

∫
Rn
Ptf logPtf dγ =

∫
Rn

LPtf logPtf dγ +

∫
Rn

LPtf dγ

= −
∫
Rn

|∇Ptf |2

Ptf
dγ

where integration by parts is used as well as the fact that
∫
Rn Lgdγ = 0. Next, at any point,

|∇Ptf | ≤ e−tPt(|∇f |) as is clear from the integral representation (22) of Pt, and by the Cauchy-

Schwarz inequality along the same representation,

|∇Ptf |2

Ptf
≤ e−2t Pt(|∇f |)2

Ptf
≤ e−2tPt

(
|∇f |2

f

)
.

Hence, by invariance of Pt with respect to γ,

− d

dt

∫
Rn
Ptf logPtf dγ ≤ e−2t

∫
Rn

|∇f |2

f
dγ

from which it follows by integration that∫
Rn
f log f dγ ≤ 1

2

∫
Rn

|∇f |2

f
dγ. (23)

This is a classical alternate formulation of the logarithmic Sobolev inequality with, on the left-

hand side the relative entropy of fdγ with respect to γ, and on the right-hand side the so-called

Fisher information of f .

Let now f : Rn → R be differentiable with gradient in L2(γ). Apply (23) to, for example,

(PtfN)2 + ε∫
Rn(PtfN)2dγ + ε

where ε, t > 0 and fN = min(max(f,−N), N)). Letting successively ε → 0 and t → 0 yields

that

Entγ(f
2
N) ≤ 2

∫
Rn
|∇f |2dγ

uniformly in N ≥ 1. By means of the entropic inequality (7), for every θ ∈ (0, 1),

(1− θ)
∫
Rn
f 2
Ndγ ≤

∫
Rn
f 2
N1B dγ ≤ 2

∫
Rn
|∇f |2dγ +

∫
Rn
f 2
Ndγ log

(
1 + (e− 1)γ(B)

)
12



where B =
{
f 2
N ≥ θ

∫
Rn f

2
Ndγ

}
, from which it easily follows that supN

∫
Rn f

2
Ndγ < ∞, and

therefore by monotone convergence that
∫
Rn f

2dγ <∞. Then also
∫
Rn f

2 log f 2dγ <∞ which,

altogether, concludes to (21).

The constant 2 is optimal in (21) as can be seen from the choice of the functions f(x) = e〈b,x〉,

x ∈ Rn, b ∈ Rn, which achieve equality.

On the basis of the logarithmic Sobolev inequality (21) for the Gaussian measure, the Gross

argument may be developed similarly along the Ornstein-Uhlenbeck semigroup to show that it

is hypercontractive, with parameter ρ = 1
2

in the notation of (19), a property going back to

E. Nelson [61, 62] in quantum field theory. (It may be pointed out that in this diffusive setting,

the convexity argument (20) is immediate by integration by parts and the chain rule.)

The Herbst argument. The main inspiration connecting a logarithmic Sobolev inequality

to a concentration property is the Herbst argument. It was originally observed by I. Herbst

towards exponential integrability properties, with, in the notation below, the application of the

Gross logarithmic Sobolev inequality for the Gaussian measure to eλF
2
, λ ∈ R. It is developed

here on eλF , λ ∈ R, with in this form direct application to concentration inequalities. This

observation is at the root of the entropic proof of the Talagrand convex distance inequality and

on the supremum of empirical processes, as well actually as the transportation cost inequality.

It is presented here on the Gaussian model (see the references for much more).

Let F be a smooth bounded Lipschitz function on Rn with Lipschitz semi-norm ‖F‖Lip ≤ 1.

Since F is assumed to start with to be regular enough, it can be that |∇F | ≤ 1 at every point.

The aim is to apply the logarithmic Sobolev inequality (21) to f 2 = eλF for every λ ∈ R. With

the notation Λ(λ) =
∫
Rn e

λFdγ, λ ∈ R, it holds that

Entγ(f
2) = λ

∫
Rn
FeλFdγ − Λ(λ) log Λ(λ) = λΛ′(λ)− Λ(λ) log Λ(λ)

while ∫
Rn
|∇f |2dγ =

λ2

4

∫
Rn
|∇F |2eλFdγ ≤ λ2

4
Λ(λ).

Hence from (21),

λΛ′(λ)− Λ(λ) log Λ(λ) ≤ λ2

2
Λ(λ).

If H(λ) = 1
λ

log Λ(λ) (with H(0) = Λ′(0)
Λ(0)

=
∫
Rn Fdγ), λ ∈ R, then H ′(λ) ≤ 1

2
for every λ.

Therefore, H(λ)−H(0) ≤ λ
2

if λ ≥ 0 and ≥ λ
2

if λ ≤ 0 from which

Λ(λ) =

∫
Rn
eλFdγ ≤ eλ

∫
Rn Fdγ+λ2

2 (24)

for every λ ∈ R.

If F is an arbitrary Lipschitz function with ‖F‖Lip ≤ 1, apply the preceding for exam-

ple to Pt(FN), t > 0, N ≥ 1, where Pt is the Ornstein-Uhlenbeck semigroup and FN =

min(max(F,−N), N)), and let then t→ 0 and N →∞ in (24).

13



From (24), let F : Rn → R be Lipschitz with Lipschitz semi-norm ‖F‖Lip. For every r ≥ 0

and λ ≥ 0, by Markov’s inequality,

γ
(
F ≥

∫
Rn Fdγ + r

)
≤ e−λ(

∫
Rn Fdγ+r)

∫
Rn e

λFdγ ≤ e−λr+λ
2/2‖F‖2Lip

where (24) is used after homogeneity. Optimizing in λ, the Gaussian concentration inequality

(5)

γ
(
F ≥

∫
Rn Fdγ + r

)
≤ e−r

2/2‖F‖2Lip , r ≥ 0,

is recovered in this way. Together with the same inequality for −F and the union bound,

γ
(
|F −

∫
Rn Fdγ| ≥ r

)
≤ 2 e−r

2/2‖F‖2Lip , r ≥ 0.

These inequalities describe the fundamental concentration property of Gaussian measures (cf. e.g.

[68, 50, 51, 46, 17, 49]).

Some notes and references. As mentioned at the beginning, this section puts forward

the entropy method, and logarithmic Sobolev and hypercontractivity inequalities, only in the

context required by the proofs of the Talagrand inequalities emphasized in this note. The

framework and methodology may be vastly extended and generalized to various settings and

applications. Introductions to logarithmic Sobolev inequalities are for example [28, 40, 71, 48,

3, 41, 8]... The general monographs and courses from the non-exhaustive list [29, 49, 90, 20,

63, 34]... contain further material and suitable pointers to the literature relevant to the topics

of this section.

4 The convex distance inequality

In order to address the convex distance inequality via the entropy method displayed in the

previous section, it is of interest to first suitably translate the (somewhat obscure) functional

dA of (1).

Recall the framework of a product probability measure P = µ1 ⊗ · · · ⊗ µn on the product

space X = Ω1 × · · · × Ωn. A point x in X has coordinates x = (x1, . . . , xn). There might be

some measurability questions in the forthcoming claims and proofs, but as emphasized in [83]

these are unessential, and one should “treat all sets and functions as if they were measurable.

This is certainly the case if one should assume that the Ωi’s are Polish and the µi’s are Borel

measures, and that one studies only compact sets, which is the only situation that occurs in

applications”. If necessary, it is therefore even possible to assume all sets finite.

The weighted Hamming distance on X, with weight a = (a1, . . . , an) ∈ [0,∞)n, is defined

by

da(x, y) =
n∑
i=1

ai 1{xi 6=yi}, x, y ∈ X.

For every non-empty (measurable) subset A of X and every x ∈ X, let then

FA(x) = sup
|a|=1

da(x,A)

14



where |a| =
(∑n

i=1 a
2
i

)1/2
.

The point is that the functional FA is actually equal to dA of (1) [83, Lemma 4.1.2]. Recall

that, for x ∈ X,

UA(x) =
{
s = (si)1≤i≤n ∈ {0, 1}

n;∃ y ∈ A; si = 0⇒ xi = yi
}

and that dA(x) is the Euclidean distance of 0 to the convex hull VA(x) of UA(x) in Rn. It is

easily seen that, in this definition, UA(x) may be replaced by the collection of the indicator

functions 1{xi 6=yi}, y ∈ A. Now, if dA(x) < r for some r > 0, there exists z in VA(x) with |z| < r.

Let a ∈ [0,∞)n with |a| = 1. Then

inf
y∈VA(x)

〈a, y〉 ≤ 〈a, z〉 ≤ |z| < r.

Since

inf
y∈VA(x)

〈a, y〉 = inf
s∈UA(x)

〈a, s〉 = da(x,A), (25)

it follows that FA(x) < r. Hence dA(x) ≥ FA(x). Conversely, assume that dA(x) > 0 (otherwise

there will be nothing to prove) and let δ > 0. Take z ∈ VA(x) such that 0 < |z|2 ≤ dA(x)2 + δ.

By convexity, for every θ ∈ (0, 1) and every y ∈ VA(x), θy + (1− θ)z ∈ VA(x) so that∣∣z + θ(y − z)
∣∣2 =

∣∣θy + (1− θ)z
∣∣2 ≥ dA(x)2 ≥ |z|2 − δ.

Therefore

2θ〈y − z, z〉+ θ2|y − z|2 ≥ −δ.

Setting a = z
|z| ,

〈a, y〉 ≥ |z| − θ|y − z|2

2|z|
− δ

2θ|z|
≥ |z| − 2θn

|z|
− δ

2θ|z|
.

Now, by (25),

FA(x) ≥ da(x,A) = inf
y∈VA(x)

〈a, y〉 ≥ |z| − 2θn

|z|
− δ

2θ|z|
≥ dA(x)− 2θn

dA(x)
− δ

2θdA(x)
.

Since δ > 0 and θ ∈ (0, 1) are arbitrary, it follows that FA(x) ≥ dA(x).

On the basis of this description, the principle will be to apply the tensorization Proposition 1

to the functional FA together with the Herbst argument. For each da(·, A), or any Lipschitz

function with respect to the Hamming metric da(x, y), a simple Laplace transform argument

together with iteration along the coordinates yields Gaussian concentration bounds (cf. [59, 83,

52, 49]). The challenge is to achieve a similar goal uniformly over all a’s in the unit sphere of

Rn.

To ease the notation, set F = FA throughout the following steps (assuming that P (F > 0) > 0

otherwise there is nothing to prove). Let ε > 0. For each x = (x1, . . . , xn) ∈ X, there exists

a(x) = a = (a1, . . . , an) ∈ [0,∞)n with |a| = 1 such that

F (x) ≤ da(x,A) + ε.
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For 1 ≤ i ≤ n and yi ∈ Ωi, set y = (x1, . . . , xi−1, yi, xi+1, . . . , n). Then, with the notation of

Proposition 1,

Fi(xi)− Fi(yi) = F (x)− F (y) ≤ da(x,A)− da(y, A) + ε.

By the triangle inequality,

Fi(xi)− Fi(yi) ≤ da(x, y) + ε = ai 1{xi 6=yi} + ε ≤ ai + ε.

Apply now Proposition 1 to f = eλF
2
, λ ≥ 0, in the form of (10). Whenever Fi(xi) ≥ Fi(yi)

(≥ 0) for i = 1, . . . , n, by the mean value inequality and the preceding,[
λFi(xi)

2 − λFi(yi)2
][
eλFi(xi)

2 − eλFi(yi)2] ≤ λ2
[
Fi(xi)

2 − Fi(yi)2
]2
eλFi(xi)

2

≤ 4λ2
(
ai(x) + ε

)2
Fi(xi)

2eλFi(xi)
2

.

As
∑n

i=1 ai(x)2 = 1, it therefore follows from (10) that

EntP (eλF
2

) ≤ 4λ2

∫
X

(
1 + 2ε

√
n+ ε2n

)
F 2eλF

2

dP

for any λ ≥ 0. As ε→ 0,

EntP (eλF
2

) ≤ 4λ2

∫
X

F 2eλF
2

dP. (26)

Set Λ(λ) =
∫
X
eλF

2
dP , λ ∈ R, so that the preceding expresses that, in the range λ ≥ 0,

λΛ′(λ)− Λ(λ) log Λ(λ) ≤ 4λ2Λ′(λ).

In the spirit of the Herbst argument, it remains to integrate such a differential inequality. If

K(λ) = log Λ(λ) (> 0 when λ > 0), it reads for 0 < λ < 1
4
,

λ(1− 4λ)K ′(λ) ≤ K(λ),

that is (logK)′(λ) ≤ 1
λ(1−4λ)

. Hence, for every 0 < η ≤ λ < 1
4
,

logK(λ)− logK(η) ≤
∫ λ

η

1

u(1− 4u)
du = log

( λ

1− 4λ
· 1− 4η

η

)
.

As η → 0, K(η) = log
∫
X
eηF

2
dP ∼ ηM2 where M2 =

∫
X
F 2dP . Therefore, in this limit, the

preceding inequality yields

logK(λ)− logM2 ≤ log
( λ

1− 4λ

)
,

that is

K(λ) = log

(∫
X

eλF
2

dP

)
≤ λM2

1− 4λ
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for every 0 ≤ λ < 1
4
. For instance with λ = 1

14
(see below for the significance of this choice),∫

X

e
1
14
F 2

dP ≤ e
1
10
M2 . (27)

As λ → 0 in (26), VarP (F 2) ≤ 8M2. Since F = FA = 0 on A it follows that M2 ≤ 8
P (A)

.

Hence, from (27), ∫
X

e
1
14
F 2

dP ≤ e
4

5P (A) . (28)

In particular, if P (A) ≥ 1
2
,
∫
X
e

1
14
F 2
AdP ≤ 5.

These first conclusions are weaker than (1) in terms of numerical constants, but more im-

portantly in terms of the dependence on P (A), especially for sets A with small probability.

It is nevertheless already good enough for many of the significant applications of Talagrand’s

convex distance inequality. It may be pointed out also that, towards (28), the Herbst argument

may be developed more simply with eλF rather than eλF
2
. The presentation here is motivated

by homogeneity with the second part which is coming next.

To reach better dependence on P (A) as in (1), it is necessary to develop the previous analysis

but for negative values of λ. Consider therefore (10) now applied to f = e−λF
2
, λ ≥ 0. To this

task, it is worthwhile to observe that given x = (x1, . . . , xn) and yi ∈ Ωi, i = 1, . . . , n,

Fi(xi)
2 − Fi(yi)2 = F (x)2 − F (y)2 ≤ 1 (29)

where as usual Fi(yi) = F (x1, . . . , xi−1, yi, xi+1, . . . , xn) = F (y). A proof of this claim may be

given using the identity F (x) = FA(x) = dA(x). Indeed,

dA(x)2 = inf
{
|w|2; w ∈ Conv

(
(1{xj 6=zj})1≤j≤n; z ∈ A

)}
= inf

∣∣∣∣∑ θzs(z)

∣∣∣∣2
where the infimum is over all finite sums

∑
θzs(z) with θz ≥ 0,

∑
θz = 1, s(z) = (1{xj 6=zj})1≤j≤n,

z ∈ A. If then
∣∣∑ θzs

′(z)
∣∣2 witnesses dA(y)2 (up to some δ > 0),

dA(x)2 − dA(y)2 ≤
∣∣∣∣∑ θzs(z)

∣∣∣∣2 − ∣∣∣∣∑ θzs
′(z)

∣∣∣∣2
where s(z) differs from s′(z) only on the i-th coordinate which is 1{xi 6=zi} rather than 1{yi 6=zi}.

That is

dA(x)2 − dA(y)2 ≤
(∑

θz1{xi 6=zi}

)2

−
(∑

θz1{yi 6=zi}

)2

≤ 1

justifying (29).

For f = e−λF
2
, λ ≥ 0, the reasoning of the case f = eλF

2
may then be repeated together

with the new information (29) to get that whenever Fi(xi) ≥ Fi(yi) (≥ 0), i = 1, . . . , n,[
− λFi(xi)2 + λFi(yi)

2
][
e−λFi(xi)

2 − e−λFi(yi)2] ≤ λ2
[
Fi(xi)

2 − Fi(yi)2)
]2
e−λFi(yi)

2

≤ λ2eλ
[
Fi(xi)

2 − Fi(yi)2)
]2
e−λFi(xi)

2

≤ 4λ2eλ
(
ai(x) + ε

)2
Fi(xi)

2e−λFi(xi)
2

.
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Arguing as before and letting ε→ 0 yields that

EntP (e−λF
2

) ≤ 4λ2eλ
∫
X

F 2e−λF
2

dP

for every λ ≥ 0.

Set Λ(λ) =
∫
X
e−λF

2
dP , λ ∈ R, so that the preceding expresses that, in the range 0 ≤ λ ≤ 1

2

(for example),

λΛ′(λ)− Λ(λ) log Λ(λ) ≤ −8λ2Λ′(λ).

This differential inequality is integrated as before, this time with K(λ) = − log Λ(λ) ≥ 0, to

produce that

−K(λ) = log

(∫
X

e−λF
2

dP

)
≤ − λM2

1 + 8λ

for 0 ≤ λ ≤ 1
2
.

Since F = FA = 0 on A, it follows that for λ = 1
2
, 1

10
M2 ≤ log

(
1

P (A)

)
. Together with (27),∫

X

e
1
14
F 2
AdP ≤ 1

P (A)

which, up to the numerical constant, is the announced Talagrand inequality (1).

This thereby concludes the proof of the Talagrand convex hull inequality by the entropy

method. It is not clear (see [20]) whether the constant 1
4

may be reached by this method (nor

than 1
4

is optimal).

Some notes and references. Talagrand’s convex distance inequality was first established

in [81], following an earlier result on the discrete cube [80, 42] – the note [42] by W. Johnson and

G. Schechtman actually motivated M. Talagrand towards the general formulation (observe that

dA(x) ≥ infy∈Conv(A) |x−y| on the discrete cube X = {0, 1}n), with a (rather short) proof going

by induction on the dimension together with geometric arguments. The original statement

[81, 83] actually involves a stronger family of distances rather than only the quadratic d2
A. The

proof presented here via the entropy method was put forward by S. Boucheron, G. Lugosi and

P. Massart in [19] and [20].

Mass transportation proofs of the convex distance inequality have been considered in [54,

55, 26, 25, 73, 27, 37]... (see [20, Chapter 8] for an account).

Talagrand’s convex distance inequality was initially motivated by several issues in prob-

ability in Banach spaces, in particular [80] the analogue of the Gaussian concentration in-

equality for norms of series S =
∑n

i=1 εivi of independent Bernoulli random variables εi,

P(εi = 1) = P(εi = 0) = 1
2
, with vector-valued coefficients vi, i = 1, . . . , n,

P
(∣∣‖S‖ − E

(
‖S‖

)∣∣ ≥ r
)
≤ 4 e−r

2/4σ2

, r ≥ 0,

where σ2 = sup‖ξ‖≤1

∑n
i=1〈ξ, vi〉2 (cf. [50]), a significant strengthening of the famous Khintchine-

Kahane inequality [43].
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Its abstract and powerful potential was then emphasized in the monumental memoir [83] on

concentration inequalities for product measures, describing numerous illustrations in discrete

and combinatorial probability theory. References to this work give an idea of the impact of the

result. It may be refereed in particular to the general reviews and books [83, 79, 52, 49, 60, 30,

87, 88, 20, 2, 89]... for a sample applications and developments.

Among the commonly used forms of the convex distance inequality, one may put forward

the following two.

Corollary 2. Let P = µ1 ⊗ · · · ⊗ µn be a product probability measure on a product space

X = Ω1 × · · · × Ωn. Let F : X → R (measurable) be such that for every x ∈ X there exists

a(x) = a ∈ [0,∞)n with |a| = 1 such that for every y ∈ X,

F (x) ≤ F (y) + da(x, y). (30)

Then, if M is a median of F for P , for any r ≥ 0,

P
(
|F −M | ≥ r

)
≤ 4 e−r

2/4.

Replacing F by −F , this corollary applies similarly if (30) is changed into F (y) ≤ F (x) +

da(x, y).

Corollary 3. Let P be any product probability measure supported on [0, 1]n. For every convex

Lipschitz function F on Rn with ‖F‖Lip ≤ 1, and every r ≥ 0,

P
(
|F −M | ≥ r

)
≤ 4 e−r

2/4

where M is a median of F for P .

At the expense of numerical constants, medians may be replaced by expectations. Integrat-

ing in r ≥ 0 the inequalities of the preceding corollaries yields |
∫
X
FdP −M | ≤ 4

√
π ≤ 8.

Hence

P
(
|F −

∫
X
FdP | ≥ r

)
≤ P

(
|F −M | ≥ r

2

)
≤ 4 e−r

2/16

if r ≥ 16, while P
(
|F −

∫
X
FdP | ≥ r

)
≤ 1 ≤ e16 e−r

2/16 if r ≤ 16. It is also simple to go back

from a concentration inequality around the mean to one around a median (cf. [59, 49]).

5 The L1–L2 variance inequality

With respect to the original formulation of Talagrand’s L1–L2 variance inequality in Section 1,

the argument is developed here with functions on {−1,+1}n and makes use of the framework

presented in Section 3. The end of the proof catches up with the original statement (2). The

main point of the proof will be to use hypercontractivity on the expansion of the variance along

the semigroup (Pt)t≥0 defined in (17).
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The starting point is therefore the variance representation along (Pt)t≥0 of a function f on

X = {−1,+1}n as∫
X

f 2dµnp −
∫
X

(P1f)2dµnp = −
∫ 1

0

(
d

dt

∫
X

(Ptf)2dµnp

)
dt

= −2

∫ 1

0

(∫
X

Ptf LPtfdµ
n
p

)
dt

= 2

∫ 1

0

n∑
i=1

∫
X

(LiPtf)2dµnp dt.

Assume next that
∫
X
fdµnp = 0 so that

∫
X
Psfdµ

n
p = 0 for every s ≥ 0 as well. From the

Poincaré inequality (16), the derivative of the map s 7→ e2s
∫
X

(Psf)2dµnp is negative, so the

map is decreasing and thus ∫
X

(P1f)2dµnp ≤
1

e2

∫
X

f 2dµnp .

Therefore ∫
X

f 2dµnp ≤ 3

∫ 1

0

n∑
i=1

∫
X

(LiPtf)2dµnp dt.

Now LiLf = L Lif so that LiPtf = Pt(Lif) for every i = 1, . . . , n and t ≥ 0. It may thus

be called on the hypercontractivity property (19) to get that, for every i = 1, . . . , n and t > 0,∫
X

(LiPtf)2dµnp =

∫
X

∣∣Pt(Lif)
∣∣2dµnp ≤ (∫

X

|Lif |pdµnp
)2/p

where p = p(t) = 1 + e−4ρt < 2. Recall that ρ = p−q
log p−log q

(= 1
2

if p = 1
2
). After the change of

variables p(t) = v, it holds that∫
X

f 2dµnp ≤
1

ρ
e4ρ

n∑
i=1

∫ 2

1

(∫
X

|Lif |vdµnp
)2/v

dv.

This inequality actually basically amounts to the result (and may be used toward an Orlicz

space formulation – see the comment below). Indeed, by Hölder’s inequality,(∫
X

|Lif |vdµnp
)1/v

= ‖Lif‖v ≤ ‖Lif‖
θ
1 ‖Lif‖

2/θ
2

where θ = θ(v) ∈ [0, 1] is defined by 1
v

= θ
1

+ 1−θ
2

. Hence∫ 2

1

‖Lif‖2
v dv ≤ ‖Lif‖

2
2

∫ 2

1

b2θ(v)dv

where b =
‖Lif‖1
‖Lif‖2

≤ 1 (= 1 if ‖Lif‖2 = 0). It remains to evaluate the latter integral with

2θ(v) = s, ∫ 2

1

b2θ(v)dv ≤
∫ 2

0

bsds ≤ 2

1 + log(1
b
)
.
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As a consequence, for any f : X → R,

Varµnp (f) ≤ 2

ρ
e4ρ

n∑
i=1

‖Lif‖2
2

1 + log
‖Lif‖2
‖Lif‖1

. (31)

It remains to make the comparison with the formulation (2) of Talagrand’s inequality. To

this task, observe that

Lif(x) = (1− p)
[
f(x1, . . . , xi−1,−1, xi+1, . . . , xn)− f(x)

]
if xi = +1 and

Lif(x) = p
[
f(x1, . . . , xi−1,+1, xi+1, . . . , xn)− f(x)

]
if xi = −1, that is what is denoted −∆if in (2) after the change from {−1,+1} to {0, 1}. The

Talagrand inequality (2) therefore follows having observed that 1
ρ
e4ρ is of the order of log 1

p

as p → 0. In fact, from the preceding proof, K = 30 (K = 14 if p = 1
2
) is a valid numerical

constant for (2) (but may be easily improved).

Some notes and references. The original proof in [82] uses some Fourier analysis on the

discrete cube (although the author is claiming that it may not be used in the p 6= 1
2

case). It

does not mention hypercontractivity although it is implicit (Lemma 2.1). A simplified proof,

for p = 1
2
, was proposed in [12] putting forward the hypercontractive argument. The proof

presented here is taken from [23], where it is extended to wider settings. In particular, the

Talagrand L1–L2 inequality also applies to the Gaussian model.

Talagrand’s L1–L2 variance inequality was motivated by a result of L. Russo [72] on a thresh-

old effect for monotone sets depending little on any given coordinate. The result also provided

an alternate proof of the famous result of J. Kahn, G. Kalai and N. Linial [44] about influences

on the cube (that already used hypercontractivity). Actually, M. Talagrand’s approach is an

adaptation of the ideas of [44]. Namely, applying (2) to the (Boolean) function f = 1A − µ(A)

for some set A ⊂ {0, 1}n with µn1
2

(A) = α ∈ (0, 1) (take p = 1
2

for simplicity), it follows that

α(1− α) ≤ 2K
n∑
i=1

Ii(A)

log
(

e√
2Ii(A)

)
where, for each i = 1, . . . , n,

Ii(A) = µn1
2

(
x ∈ A;Ui(x) /∈ A

)
is the so-called influence of the i-th coordinate on the set A. In particular, there is a coordinate

i, 1 ≤ i ≤ n, such that

Ii(A) ≥ α(1− α)

8K

log n

n

which is the main result of [44]. This result remarkably improves by a (optimal) factor log n what

would follow from the Poincaré inequality (16) applied to f = 1A. Since then, the Talagrand
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L1–L2 variance inequality plays a major role in Boolean analysis and its ramifications with

theoretical computer science (cf. e.g. [63]).

The Talagrand inequality (2) indeed represents a sharpening upon the Poincaré inequality

(16) (up to numerical constants). It may actually be interpreted as a dual form of the logarith-

mic Sobolev inequality in the (loose) sense that the latter ensures that if some gradient of a

function f is in L2, then the function belongs to the Orlicz space L2 log L, while the Talagrand

inequality expresses that if the gradient is in L2(log L)−1, then the function (with zero mean)

is in L2 (cf. Theorem 1.6 in [82]). This dual point of view was emphasized in [16]. A specific

feature of the Talagrand inequality (2) is nevertheless that is has a suitable product structure.

Alternate forms of the Talagrand inequality as a direct consequence of the logarithmic Sobolev

inequality are developed in [33] and [70].

With the work [12] by I. Benjamini, G. Kalai and O. Schramm (see further [BR08]), the

Talagrand L1–L2 variance inequality has been identified as one of the rare tool towards sub-

diffusive regimes and super-concentration phenomena, ubiquitous to many models of the current

research (percolation, random matrices, spin glasses etc.). The surveys and monographs [11,

22, 34, 5, 77]... give an account on these recent active developments.

6 The quadratic transportation cost inequality

This section presents the entropic proof of Talagrand’s transportation inequality (3), deducing

it from the logarithmic Sobolev inequality (21).

To start with, recast the transportation metric Tw of (3) as the (quadratic) Kantorovich

distance between probability measures µ and ν on the Borel sets of Rn

W2(µ, ν) = inf

(∫
Rn×Rn

|x− y|2dπ(x, y)

)1/2

where the infimum is taken over all couplings π on Rn×Rn with respective marginals µ and ν,

|x− y| being the Euclidean distance between x and y in Rn.

The classical duality formula (e.g. [90]) for the Kantorovich distance W2(µ, ν) between two

probability measures µ and ν on the Borel sets of Rn expresses that

1

2
W2(µ, ν)2 = sup

(∫
Rn
Q1ϕdµ−

∫
Rn
ϕdν

)
(32)

where the supremum is taken over all bounded continuous functions ϕ : Rn → R and where

Qsϕ(x) = inf
y∈Rn

[
ϕ(y) +

1

2s
|x− y|2

]
, s > 0, x ∈ Rn,

is the infimum-convolution Hopf-Lax semigroup. It is standard (cf. e.g. [32, 90]) that Qsϕ(x),

s > 0, x ∈ Rn, solves the Halmiton-Jacobi equation

d

ds
Qsϕ = −1

2
|∇Qsϕ|2 (33)
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in (0,∞)× Rn with initial condition ϕ.

On the basis of (32), the entropic inequality (7) ensures that if dµ = fdν,∫
Rn
Q1ϕdµ−

∫
Rn
ϕdν =

∫
Rn
Q1ϕf dν −

∫
Rn
ϕdν

≤
∫
Rn
f log f dν + log

∫
Rn
eQ1ϕdν −

∫
Rn
ϕdν.

Assume now that ν is the standard Gaussian measure γ on Rn. The proof will follow the

Herbst argument and deduce the Talagrand transportation cost inequality from the logarithmic

Sobolev inequality (21). Apply namely the latter f 2 = esQsϕ, s > 0, to get that∫
Rn
sQsϕ e

sQsϕdγ − Λ(s) log Λ(s) ≤ s2

2

∫
Rn
|∇Qsϕ|2esQsϕdγ

where Λ(s) =
∫
Rn e

sQsϕdγ. But ∂sQsϕ = −1
2
|∇Qsϕ|2 so that

Λ′(s) =

∫
Rn
Qsϕ e

sQsϕdγ − s

2

∫
Rn
|∇Qsϕ|2esQsϕdγ,

and hence the previous inequality is translated into

sΛ′(s)− Λ(s) log Λ(s) ≤ 0

for every s > 0. Setting H(s) = 1
s

log Λ(s), H(0) =
∫
Rn ϕdγ, it therefore holds true that

H ′(s) ≤ 0, s > 0. Hence

log

∫
Rn
eQ1ϕdγ = H(1) ≤ H(0) =

∫
Rn
ϕdγ,

and plugging this conclusion into the above entropic inequality yields that∫
Rn
Q1ϕdµ−

∫
Rn
ϕdγ ≤

∫
Rn
f log f dγ.

Taking the supremum over all bounded continuous ϕ : Rn → R, the Kantorovich duality (32)

yields

W2(µ, γ)2 ≤ 2

∫
Rn
f log f dγ

which is the Talagrand quadratic transportation cost inequality (3).

As for the logarithmic Sobolev inequality (21), the constant 2 is optimal in (3) as can be

seen by the choice for µ of a shift of γ by b ∈ Rn.

Some notes and references. M. Talagrand’s original proof of (3) in [84] uses monotone

transport in dimension one together with a tensorization argument. The main result of [84]

is actually a corresponding (stronger) inequality for products of the exponential measure, the

Gaussian case being presented as a simpler example to deal with first. Motivation comes from
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the mass transportation approach to the concentration of measure phenomenon put forward by

K. Marton [53, 54], and a sharp form of which for these measures.

Mass transportation proofs directly in dimension n have been provided next, in particular by

means of the Brenier map [21, 13, 90, 91]... That the logarithmic Sobolev inequality implies the

Talagrand quadratic transportation cost inequality is the main achievement of the celebrated

paper [65] by F. Otto and C. Villani. The implication holds in a rather general setting. The

approach in [65] relies on the formal Otto calculus in Wasserstein space [64], and has been

one driving force in the study of functional inequalities and curvature lower bounds in metric

measure spaces (cf. [90, 91, 8]). The proof presented here inspired by the Herbst argument is

taken from [14, 15]. For more on transportation cost inequalities, see in addition [36].

That mass transportation is at the root of the four Talagrand inequalities is an alternate

project of independent interest, already partly understaken in [20, Chapter 8].

7 Supremum of empirical processes

This last section is thus devoted to the proof of the inequality (4), in the following notation

according to the choices adopted so far. Let X1, . . . , Xn be independent random variables on a

probability space (Ω,A,P) with values in some measurable space (S,S). Let F be a countable

family of real-valued uniformly bounded measurable functions on S, and set

Z = sup
g∈F

n∑
i=1

g(Xi). (34)

By (dominated) convergence and homogeneity, it is enough to consider a finite family F =

{g1, . . . , gN} such that |gk| ≤ 1, k = 1, . . . , N . (It is also assumed below that Z is not 0 almost

surely.)

To make use of the framework of Section 3, denote by µ1, . . . , µn the respective probability

distributions of the independent random variables X1, . . . , Xn, and set P = µ1 ⊗ · · · ⊗ µn on

the product space Sn. In accordance

Z = Z(x) = Z(x1, . . . , xn) = max
1≤k≤N

n∑
i=1

gk(xi), x = (x1, . . . , xn) ∈ Sn

(for which nevertheless the probabilistic notation induced by (34) will be used from time to time

below). Following the Herbst argument, the task will be to apply the tensorized logarithmic

Sobolev inequalities of (10) and (11) to eλZ for every λ ∈ R, in much the same way as for the

convex distance inequality in Section 4.

As is classical in the study of exponential inequalities for sums of independent random

variables, the inequality (4) entails a Gaussian tail for the small values of r and a Poisson one

for the large values.

In the first part of the proof, consider Poisson tails for non-negative random variables. Let

thus gk, k = 1, . . . , N , be such that 0 ≤ gk ≤ 1 and apply (11) to f = eλZ , λ ∈ R. For each
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i = 1, . . . , n and x = (x1, . . . , xn) ∈ Sn, choose ci = eλZ
i(x) where

Zi(x) = max
1≤k≤N

∑
j 6=i

gk(xj).

By definition Zi(x) only depends on x1, . . . , xi−1, xi+1, . . . , xn and 0 ≤ Zi(xi) − Zi(x) ≤ 1,

i = 1, . . . , n. Now

λ
[
Zi(xi)− Zi(x)

]
eλZi(xi) − [eλZi(xi) − eλZi(x)] = φ

(
− λ[Zi(xi)− Zi(x)]

)
eλZi(xi)

where φ(u) = eu − 1− u, u ∈ R. Since φ is convex and φ(0) = 0, φ(−λu) ≤ uφ(−λ) for every

λ and 0 ≤ u ≤ 1, so that

n∑
i=1

λ
[
Zi(xi)− Zi(x)

]
eλZi(xi) − [eλZi(xi) − eλZi(x)]

≤
n∑
i=1

[
Zi(xi)− Zi(x)

]
φ(−λ) eλZi(xi)

≤ φ(−λ)Z(x) eλZ(x)

where it is used that

n∑
i=1

[
Zi(xi)− Zi(x)

]
=

n∑
i=1

[
Z(x)− Zi(x)

]
≤ Z(x).

As a consequence therefore of (11), and with probabilistic notation, for any λ ∈ R,

λE(ZeλZ)− E(eλZ) logE(eλZ) ≤ φ(−λ)E(ZeλZ).

If Λ(λ) = E(eλZ) and H(λ) = 1
λ

log Λ(λ), λ ∈ R (H(0) =
∫
X
ZdP ), the preceding reads

H ′(λ) ≤ φ(−λ)

λ2

Λ′(λ)

Λ(λ)
.

Since H ′(λ) = − 1
λ
H(λ) + 1

λ
Λ′(λ)
Λ(λ)

, it follows that for λ > 0,

H ′(λ)

H(λ)
≤ φ(−λ)

λ(λ− φ(−λ))
=

1

λ− φ(−λ)
− 1

λ
. (35)

It is easily seen that, again with λ > 0,∫ λ

0

[ 1

u− φ(−u)
− 1

u

]
du =

∫ λ

0

[ 1

1− e−u
− 1

u

]
du = λ− log λ+ log(1− e−λ)

so that, integrating (35),

H(λ) ≤ H(0)
1

λ
(eλ − 1), λ ≥ 0.

As a conclusion of this analysis, the following statement holds true.
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Proposition 4. If 0 ≤ g ≤ 1 for every g ∈ F ,

E(eλZ) ≤ eE(Z)(eλ−1)

for every λ ≥ 0. As a consequence, for every r ≥ 0,

P
(
Z ≥ E(Z) + r

)
≤ exp

(
− E(Z)h

( r

E(Z)

))
(36)

where h(u) = (1 + u) log(1 + u)− u, u ≥ 0.

The Poisson tail (36) is obtained from Markov’s inequality

P
(
Z ≥ E(Z) + r

)
≤ e−λ(E(Z)+r)+E(Z)(eλ−1)

and optimization in λ ≥ 0.

For functions g taking values in [−1,+1], a similar scheme may be followed on the basis

this time of (10) towards Gaussian tails. Let thus gk, k = 1, . . . , N , be such that |gk| ≤ 1 and

apply (10) to f = eλZ . If Zi(xi) ≥ Zi(yi), xi, yi ∈ S, i = 1, . . . , n, and λ ≥ 0, by the mean value

theorem,

λ
[
Zi(xi)− Zi(yi)

][
eλZi(xi) − eλZi(yi)

]
≤ λ2

[
Zi(xi)− Zi(yi)

]2
eλZi(xi).

By the definition of Z = Z(x),

n∑
i=1

[
Zi(xi)− Zi(yi)

]2
1{Zi(xi)≥Zi(yi)} ≤ max

1≤k≤N

n∑
i=1

[
gk(xi)− gk(yi)

]2
.

Denoting by W̃ = W̃ (x, y) the right-hand side of the preceding inequality, (10) indicates that,

in probabilistic notation,

λE(ZeλZ)− E(eλZ) logE(eλZ) ≤ λ2 E(W̃eλZ) (37)

for any λ ≥ 0.

Working with λ ≤ 0, it still holds that

λ
[
Zi(xi)− Zi(yi)

][
eλZi(xi) − eλZi(yi)

]
≤ λ2e−2λ

[
Zi(xi)− Zi(yi)

]2
eλZi(xi)

as (0 ≤)Zi(xi) − Zi(yi) ≤ 2. Together with (37), it may thus be concluded that, in the range

λ ∈ [−1
4
,+1

4
] (for example),

λE(ZeλZ)− E(eλZ) logE(eλZ) ≤ 2λ2 E(W̃eλZ).

In addition, by independence, E(W̃eλZ) ≤ 2V E(eλZ) + 2E(WeλZ) where W = W (x) =

max1≤k≤N
∑n

i=1 gk(xi)
2 and, in the notation of (4), V = E(W ). As a consequence, for ev-

ery λ ∈ [−1
4
,+1

4
],

λE(ZeλZ)− E(eλZ) logE(eλZ) ≤ 4V λ2 E(eλZ) + 4λ2 E(WeλZ). (38)
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As in the Herbst argument, the latter inequality (38) is transformed into a differential

inequality on Laplace transforms. To start with, observe that for any λ ∈ R,

λE(WeλZ) ≤ λE(ZeλZ)− E(eλZ) logE(eλZ) + E(eλZ) logE(eλW ) (39)

(as another instance of the entropic inequality (7) with f = eλZ

E(eλZ)
and g = λW ).

Start next with the positive values of λ. Setting Λ(λ) = E(eλZ), R(λ) = E(eλW ), λ ∈ R, it

follows from (38) and (39) that for every λ ∈ [0, 1
4
],

(1− 4λ)
[
λΛ′(λ)− Λ(λ) log Λ(λ)

]
≤ 4V λ2Λ(λ) + 4λΛ(λ) logR(λ).

Proposition 4 may be applied to W to get that

logR(λ) ≤ E(W )(eλ − 1) = V (eλ − 1), λ ≥ 0.

Hence

(1− 4λ)
[
λΛ′(λ)− Λ(λ) log Λ(λ)

]
≤ 4V

[
λ2 + λ(eλ − 1)

]
Λ(λ),

and in the usual notation H(λ) = 1
λ

log Λ(λ), for any 0 ≤ λ < 1
4
,

H ′(λ) ≤ 4V

1− 4λ

[
1 +

eλ − 1

λ

]
.

It remains to suitably integrate this differential inequality. Without trying sharp bounds, the

right-hand side may simply be upper-bounded by 20V in the range 0 ≤ λ ≤ 1
8

so to get that

E(eλZ) ≤ eλE(Z)+20λ2V .

Given then r ≥ 0, use Markov’s exponential inequality with λ = r
40V

if r ≤ 5V and λ = 1
8

otherwise to derive that

P
(
Z ≥ E(Z) + r) ≤ e−min( r

16
, r

2

80V
).

Now, the same reasoning may be applied to −Z since (38) holds also for λ ∈ [−1
4
, 0].

Together with the two parts and the union bound, the following statement follows.

Proposition 5. In the preceding notation, for every r ≥ 0

P
(∣∣Z − E(Z)

∣∣ ≥ r
)
≤ 2 e−min( r

16
, r

2

80V
).

This proposition is close to the Talagrand inequality (4) with the Gaussian tail for the small

values of r (≤ 5V ), but only an exponential decay for the large values (describing the so-called

Bernstein inequality, cf. [20]). To reach the Poisson tail and the full conclusion, it should be

combined with Proposition 4.

To this task, let τ > 0 and set

Z1
τ = max

1≤k≤N

n∑
i=1

gk(Xi)1{|gk(Xi)|≤τ}
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and

Z2
τ = max

1≤k≤N

n∑
i=1

∣∣gk(Xi)
∣∣1{|gk(Xi)|>τ}

so that |Z − Z1
τ | ≤ Z2

τ . Then, for r ≥ E(Z2
τ ),

P
(∣∣Z − E(Z)

∣∣ ≥ 4r
)
≤ P

(∣∣Z1
τ − E(Z1

τ )
∣∣ ≥ r

)
+ P

(
Z2
τ ≥ E(Z2

τ ) + r
)
. (40)

By Proposition 5 applied to 1
τ
Z1
τ ,

P
(∣∣Z1

τ − E(Z1
τ )
∣∣ ≥ r

)
≤ 2 e−min( r

16τ
, r2

80τ2V
)

for every r ≥ 0, while by Proposition 4 applied to Z2
τ ,

P
(
Z2
τ ≥ E(Z2

τ ) + r
)
≤ e

− r
2

log(1+ r

E(Z2
τ )

)

since h(u) ≥ u
2

log(1 + u), u ≥ 0.

Choose next τ =
√

4V
5r

(r > 0). In the range 4r ≥ 5V ,

E(Z2
τ ) ≤ V

τ
=

√
5

4
rV ≤ r.

Hence
r

2
log

(
1 +

r

E(Z2
τ )

)
≥ r

2
log

(
1 +

√
4r

5V

)
≥ r

6
log

(
1 +

4r

V

)
.

It also holds in this range that

min

(
r

16τ
,

r2

80τ 2V

)
≥ r

75
log

(
1 +

4r

V

)
.

Since by the choice of τ , r ≥ E(Z2
τ ) whenever 4r ≥ 5V , as a consequence of (40),

P
(∣∣Z − E(Z)

∣∣ ≥ 4r
)
≤ 3 e−

r
75

log(1+ 4r
V

).

Proposition 5 for the values of r ≤ 5V shows that

P
(∣∣Z − E(Z)

∣∣ ≥ r
)
≤ 2 e−

r2

80V ≤ 2 e−
r
80

log(1+ r
V

)

since log(1 + u) ≤ u, u ≥ 0. Together with the previous inequality (after the change from 4r

to r) yields finally that

P
(∣∣Z − E(Z)

∣∣ ≥ r
)
≤ 3 exp

(
− r

300
log

(
1 +

r

V

))
for every r ≥ 0. This is the Talagrand inequality (4), with U = 1 by homogeneity, completing

thereby its proof.
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Some notes and references. The proof of (4) developed in [85] is rather cumbersome,

elaborating on and deepening the investigation [83]. These strengthenings have been clarified

since then by means of information-theoretic and infimum-convolution tools in several contri-

butions, including [54, 55, 26, 25, 73, 66, 74, 75, 27, 20, 37]... It is deduced from the convex

distance inequality after a symmetrization argument in [67]. The approach relying on the en-

tropy method and logarithmic Sobolev inequality was initiated in [47], and expanded and made

precise in [56] and in various subsequent publications (cf. [20]). The truncation argument to

suitably combine the Gaussian and Poisson tails is already present in [85]. The article [56]

by P. Massart provides a much more careful analysis of the involved numerical constants, of

significant relevance in the applications (Proposition 4 is taken from there – it is remarkable

that it is already optimal for a class of functions reduced to one element). The reference [20]

provides an account on these developments and on the various steps and contributions towards

sharper (sometimes optimal) constants in families of inequalities for empirical processes. The

Talagrand inequality (4) on the supremum of empirical processes is indeed nowadays a major

tool in non-asymptotic statistics, where sensitive numerical constants are of importance. The

monographs [57, 58, 20, 35, 92]... and the references therein present numerous illustrations and

applications of this most powerful result in modern statistics.

It is worthwhile mentioning that for the applications, standard symmetrization tools allow

for the bound

V = E
(

sup
f∈F

n∑
i=1

f(Xi)
2

)
≤ U E(Z) + 8 sup

f∈F

n∑
i=1

E
(
f(Xi)

2
)

whenever E(f(Xi)) = 0, i = 1, . . . , n, f ∈ F and the class F is symmetric (−F = F) (see

[50, 20]).
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Probabilités de Saint-Flour 1992, Lecture Notes in Math. 1581, 1–114 (1994). Springer.
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