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Abstract

In a concise exposition, the note reviews some basic tail inequalities reflecting the

local asymptotics of the eigenvalues (extreme, bulk, spacing) of the Gaussian Unitary

Ensemble, and of related models1, raising at the same time (sometimes implicitly) ques-

tions seemingly not investigated in the literature (at least to the author’s knowledge).

Let X = Xn be a n × n random matrix from the Gaussian Unitary Ensemble (GUE),

with thus complex Gaussian entries with mean zero and variance one, independent save for

the condition that the matrix is Hermitian, with (real) eigenvalues λn1 ≤ · · · ≤ λnn. As is

classical, the (renormalized) spectral measure 1
n

∑n
j=1 δ 1√

n
λnj

converges, as n → ∞, to the

semi-circle distribution with density ρ(x) = 1
2π

√
4− x2 1[−2,+2](x), x ∈ R.

For simplicity, the eigenvalues will be denoted λ1 ≤ · · · ≤ λn.

1 Asymptotics of the GUE eigenvalues

The following are the three main fluctuations results on the local behavior of the eigenvalues

of the GUE. They are presented in general references, such as e.g. [1, 44, 42, 23].

1Only minimal references are provided throughout the text, and the considered models are not detailed

and discussed.
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1.1 Asymptotics of the extreme eigenvalues [47]

The normalized largest eigenvalue 1√
n
λn converges almost surely to 2. In distribution,

n
1
6

(
λn − 2

√
n
)
→ FTW (1)

as n → ∞, where FTW is the Tracy-Widom distribution, firstly described as the Fredholm

determinant

FTW(t) = det
([

Id−KAi

]
L2([t,∞))

)
, t ∈ R,

of the integral operator associated to the Airy kernel

KAi(x, y) =
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x− y
, x, y ∈ R,

with Ai the special Airy function solution of Ai′′ = xAi with the asymptotics Ai(x) ∼ e−
2
3x

3
2

2
√
πx

1
4

as x→∞.

It is part of the main contribution [47] to provide an alternate analytic description of

FTW in terms of some Painlevé equation as

FTW(t) = exp

(
−
∫ ∞
t

(x− t)q(x)2dx

)
, t ∈ R,

where q = q(x) is the solution to the Painlevé II ordinary differential equation with infinite

boundary conditon given by the Airy function

q′′ = xq + 2q3, q(x) ∼ Ai(x) x→∞.

By symmetry, the normalized smallest eigenvalue 1√
n
λ1 converges to −2 with fluctuations

around this value given similarly by the Tracy-Widom distribution.

1.2 Asymptotics of the bulk eigenvalues [30]

Let tj = tnj be the theoretical location of the j-th particule, j = 1, . . . , n, defined by∫ tj
−∞ ρ(x)dx = j

n
. In the bulk, for j

n
= j(n)

n
→ θ ∈ (0, 1),√

2π2

log n
ρ(tj)

√
n
(
λj − tj

√
n
)

(2)

converges weakly to the standard normal law.
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1.3 Asymptotics of spacings of the bulk eigenvalues [45]

Whenever εn ≤ j ≤ (1− ε)n for some ε ∈ (0, 1
2
), in distribution,

ρ(tj)
√
n (λj+1 − λj) → FG (3)

as n → ∞, where FG is the Gaudin distribution, firstly described as the derivative of the

Fredholm determinant

det
([

Id−KSine

]
L2([0,t])

)
, t ≥ 0,

of the integral operator associated to the Sine kernel

KSine(x, y) =
sin(π(x− y))

π(x− y)
, x, y ∈ R.

The contribution [31] (prior to [47]) provides an alternate analytic description of FG in

terms of some Painlevé equation as

FG(t) =
σ(πt)

πt
exp

(∫ πt

0

σ(x)

x
dx

)
, t > 0,

where σ = σ(x) solves the Painlevé V ordinary differential equation

(xσ′′)2 + 4(xσ′ − σ)
(
xσ′ − σ + (σ′)2

)
= 0

with boundary condition σ(x) ∼ −x
π

as x→ 0.

2 Tail inequalities on the GUE eigenvalues

On the basis of the preceding distributional limits, it is of interest to try to quantify the

asymptotics via (sharp) small deviation inequalities for fixed n, reflecting the fluctuation

statements. Without further mention, C > 0 denotes a numerical constant, and n ≥ 1 is a

fixed integer (possibly bigger than some numerical C).

2.1 Tail inequalities on the extreme eigenvalues

The right and left tail asymptotics of the Tracy-Widom distribution FTW are classical (see

e.g. [1])

1− FTW(t) ∼ 1

t
3
2

e−
4
3
t
2
3 , t→∞ ; FTW(t) ∼ 1

|t| 18
e−

1
12
|t|3 , t→ −∞.
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The following statement from [41], relying on a contour analysis of the trace of the

underlying Hermite kernel in the Fredholm determinant representation of the gap probability,

provides sharp right-tail estimates on the largest eigenvalue in the fluctuation regime towards

the Tracy-Widom law in accordance with the preceding asymptotics. (It is mentioned in

[41] that it could also be deduced from classical uniform Plancherel-Rotach asymptotics for

Hermite polynomials.)

Proposition 1. There are constants C > 0 and δ > 0 such that if 1 ≤ t ≤ δn
1
6 ,

1

Ct
3
2

e−
4
3
t
3
2 ≤ P

(
n

1
6 (λn − 2

√
n ) ≥ t

)
≤ C

t
3
2

e−
4
3
t
3
2 . (4)

With less precision, it is shown in [2] (upper bound) by the Fredholm determinant repre-

sentation, and in [37] (both upper and lower bounds) by a tridiagonal matrix representation

(see the next section), that

1

C
e−C t

3
2 ≤ P

(
n

1
6 (λn − 2

√
n ) ≥ t

)
≤ C e−

1
C
t
3
2

for every t ≤ n
2
3 . The large deviation tails are more classically Gaussian in the sense that

P
(∣∣λn − 2

√
n
∣∣ ≥ t

)
≤ C e−

1
C
t2 (5)

for every t ≥
√
n.

Concerning the left-tail estimates, below the mean, the following statement is available

from [37]. It seems that the precise constant in the exponent, and the polynomial prefactor,

have not been worked out so far.

Proposition 2. For some numerical constant C > 0,

1

C
e−C t

3 ≤ P
(
n

1
6 (λn − 2

√
n ) ≤ −t

)
≤ C e−

1
C
t3 (6)

for any t ≤ n
2
3 (t ≤ 1

C
n

2
3 for the lower bound).

2.2 Tail inequalities on the bulk eigenvalues

Gaussian tails are expected from the asymptotics of eigenvalues in the bulk. For every

t ∈ R, let Nt =
∑n

j=1 1{λj≤t} be the eigenvalue counting function. Due to the determinantal

structure of the GUE, it is known (see e.g. [9]) that Nt has the same distribution as a sum

of independent Bernoulli random variables. Bernstein’s inequality for example (although
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other, sharper, inequalities may be used, such as Bennett’s inequality in [46]) may then be

applied to get that for every u ≥ 0

P
(∣∣Nt − E(Nt)

∣∣ ≥ u
)
≤ 2 exp

(
− u2

2σ2
t + u

)
where σ2

t is the variance of Nt. Now, on the one hand [46, 28],

sup
t∈R

∣∣∣E(Nt)− n
∫ t/√n
−∞ ρ(x)dx

∣∣∣ ≤ C

for some numerical constant C > 0, while, for ε ∈ (0, 1
2
) [30],

sup
t∈((−2+ε)

√
n,(2−ε)

√
n )

σ2
t ≤ Cε log n.

Using that Nt ≥ j if and only if λj ≤ t, these observations may be combined to yield the

following proposition [15, 46].

Proposition 3. For every ε ∈ (0, 1
2
), there exist C, c > 0 only depending on ε such that for

all εn ≤ j ≤ (1− ε)n and c ≤ t ≤ Cn,

P
(√

n
∣∣λj − tj√n ∣∣ ≥ t

)
≤ 4 exp

(
− t2

C(log n+ t)

)
. (7)

This inequality captures the order of growth of the variance of eigenvalues in the bulk as

it implies that Var(
√
nλj) ≤ C log n. Sharper tail inequalities may certainly be developed.
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2.3 Tail inequalities on the spacings of bulk eigenvalues

The Gaudin density p and all of its derivatives are smooth, bounded, and rapidly decreasing

on (0,∞). The Wigner surmise predicts that p(s) ∼ 1
2
πs e−πs

2/4 as s → ∞. It is therefore

expected that the tails of
√
n (λj+1 − λj) reflect this decay. The question does not seem

to have been investigated so far. It might even be that the asymptotic result has not been

extended to the Gaussian Orthogonal Ensemble.

3 Related models

3.1 Gaussian Beta Ensemble

The beta analogues of the GUE are point processes defined on R which n-level joint density

extends the formula for the joint density of the eigenvalues of the GUE with a parameter

β > 0, β = 2 corresponding to the GUE, β = 1 to the real Gaussian Orthogonal Ensemble

(GOE). They have been represented by tridiagonal random matrices in [18]. On the basis

of this representation, it is shown in [43] that, with λn the largest particule, or eigenvalue in

the matrix representation, of the GβE,

n
1
6

(
λn − 2

√
n
)
→ FTWβ

(8)

where FTWβ
is a general β-Tracy-Widom distribution, with FTWβ

= FTW when β = 2, and

with similar tails

1− FTWβ
(t) ∼ 1

t
3β
4

e−
2β
3
t
2
3 , t→∞ ; FTWβ

(t) ∼ 1

|t| β16
e−

β
24
|t|3 , t→ −∞.

The upper bound in Proposition 1 has been extended in [24] to the GOE (β = 1) as

P
(
n

1
6 (λn − 2

√
n ) ≥ t

)
≤ C

t
3
4

e−
2
3
t
3
2 (9)

for any 1 ≤ t ≤ n
1
4 , using the uniform Plancherel-Rotach asymptotic estimates for Hermite

polynomials.

In general, it is shown in [37], on the basis of the tridiagonal description, that for some

numerical constant C > 0, and every β ≥ 1,

1

C
e−Cβ t

3
2 ≤ P

(
n

1
6 (λn − 2

√
n ) ≥ t

)
≤ C e−

1
C
β t

3
2 (10)
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and
1

C
e−Cβ t

3 ≤ P
(
n

1
6 (λn − 2

√
n ) ≤ −t

)
≤ C e−

1
C
β t3 (11)

for any t ≤ n
2
3 (t ≤ 1

C
n

2
3 for the lower bound of the left-tail inequality)2.

A version of the asymptotics in the bulk for the GβE is developed in [3]. Beta ensembles

with non-quadratic (non-Gaussian) potentials may also be considered in this framework

(cf. e.g. [10, 11]).

3.2 Wigner matrices

The local asymptotics of eigenvalues as outlined in Section 1 for the GUE have been

extended to large families of Wigner matrices (cf. [44, 23, 45] and subsequent works).

The sharp upper bound in (4) of Proposition 1 has been extended in [24] to families of

(both real and complex) Wigner matrices by the local relaxation flow and Green function

comparison method introduced in [22] (cf. [23]), although only up to the range t ≤ δ(log n)
2
3 .

The lower bound in the left-tail inequality (6) in Proposition 2 is extended up to t ≤ δ(log n)
1
3 .

A weaker version have been discussed previously in [25].

3.3 Wishart matrices and Laguerre Beta Ensemble

The Laguerre Unitary Ensembles LUE is the ensemble Y Y ∗ in which Y is an n×m matrix

comprised of i.i.d. complex Gaussians with mean zero and variance one. The real orthogonal

ensemble may be considered as well, and is in particular of interest towards applications in

multivariate statistics. There is a general beta version LβE of the associated point process of

the eigenvalues (with, as for the GβE, the correspondence β = 2 for the LUE and β = 1 for

the real Laguerre Orthogonal Ensemble), which may be also built from tridiagonal matrices

[18]. The discussion below is presented for this family.

In the asymptotic regime, it is namely proved in [43] that for m + 1 > n → ∞ with
m
n
→ γ ≥ 1, and λn,m the largest particule, or eigenvalue, of the LβE,

(
√
mn )1/3

(
√
m+

√
n )4/3

(
λn,m −

(√
m+

√
n
)2) → FTWβ

. (12)

For simplicity in the exposition, assume m = [γn], γ ≥ 1, and set λn = λn,m. Then the

results in [37], relying again on the tridiagonal representation, show that, for some numerical

2The optimal tail inequalities (10) and (11), with the sharp Tracy-Widom exponents, have been obtained

in the contribution “Optimal tail estimates in β-Ensembles and applications to last passage percolation”,

J. Baslingker, R. Basu, S. Bhattacharjee, M. Krishnapur (2024).

7



constant C > 0, with a = a(γ) = (1 +
√
γ)2,

P
(
n−

1
3 (λn − an ) ≥ t

)
≤ C e−

1
C
β
√
γ t

3
2 (13)

and

P
(
n−

1
3 (λn − an ) ≤ −t

)
≤ C e−

1
C
β
√
γ t3 (14)

for any t ≤ n
2
3 .

The analysis of [41] and [24] towards Proposition 1 and (9) supports the idea that a sharp

form of, at least (13) and its lower bound, should be available for β = 2 and β = 1. The

left-tail lower bound

P
(
n−

1
3 (λn − an ) ≤ −t

)
≥ 1

C
e−Cβ

√
γ t3 (15)

is established in [6] (see also [21])3.

When γ > 1, the lowest eigenvalue exhibits a similar Tracy-Widom asymptotics at the so-

called soft-edge, with expected similar tails. When γ = 1, there is an hard-edge phenomenon.

In this case actually, the law of the least eigenvalue is explicit (at least in the real case), as a

solution of the differential equation for the Tricomi function [19], from which tail inequalities

might potentially be deduced. In the special case m = n + 1, the distribution is simply

exponential.

The right-tail inequality (13) is extended to families of non-Gaussian covariance matrices

with sub-Gaussian entries in [25].

3.4 Directed last passage percolation

Let (Zi,j)(i,j)∈N×N be an infinite array of independent exponential random variables with

parameter 1. For m ≥ n ≥ 1, let

H(m,n) = max

{ ∑
(i,j)∈π

Zi,j ; π ∈ Πm,n

}
,

where Πm,n is the set of all up/right paths in N×N joining (1, 1) to (m,n), be the directed

last passage time on the rectangle [(1, 1), (m,n)] in N×N, also known as point-to-point last

passage time.

It is a result of [32] that, for each γ ≥ 1,

1

bn
1
3

(
H([γn], n)− an

)
→ FTW (16)

3Again, the paper “Optimal tail estimates in β-Ensembles and applications to last passage percolation”,

J. Baslingker, R. Basu, S. Bhattacharjee, M. Krishnapur (2024), provides the expected and sharp lower and

upper tail inequalities. These answer at the same time the issues raised in Section 3.4.
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as n→∞, where a = a(γ) = (1 +
√
γ)2 and b = b(γ) = γ−

1
6 (1 +

√
γ)

4
3 .

The study in [32] also provides large deviation estimates

lim
n→∞

1

n
logP

(
H([γn], n) ≥ (a+ ε)n

)
= −J(ε) (17)

for each ε > 0 where J is an explicit rate function such that J(x) > 0 if x > 0. On the left

of the mean,

lim
n→∞

1

n2
logP

(
H([γn], n) ≤ (a− ε)n

)
= −I(ε) (18)

for each ε > 0 where I(x) > 0 if x > 0. A superadditivity argument allows in (17) for the

upper bound

P
(
H([γn], n) ≥ (a+ ε)n

)
≤ e−J(ε)n (19)

for any n ≥ 1 and ε > 0, the relevant information on J being that J(ε) ∼ 4
3

(
ε
b

) 3
2 as ε → 0.

(cf. [32]).

In the following, set Hn = H([γn], n), γ ≥ 1, for simplicity.

It is actually shown in [32] that H(m,n) has the same distribution as the largest eigen-

value of the LUE (with the only minor modification that the matrix Y of the complex Wishart

matrix Y Y ∗ has entries that are independent complex Gaussian variables with mean zero

and variance 1
2
). As such, the bounds (13) and (14) are available for Hn in the form

P
(
n−

1
3 (Hn − an ) ≥ t

)
≤ C e−

1
C
t
3
2 (20)

and

P
(
n−

1
3 (Hn − an ) ≤ −t

)
≤ C e−

1
C
t3 (21)

for t ≤ n
2
3 , where C > 0 only depends on γ.

The correct leading order terms in the upper tail exponent (20) seems to be obtained

in [7] by asymptotic analysis on the related Totally Asymmetric Simple Exclusion Process

(TASEP) model, at least for the point-to-line (or half-line) model of last passage percolation.

The preceding asymptotic investigation may be considered similarly for random variables

Zi,j with a geometric distribution rather than exponential, as in the original contribution

[32]. (Since then, a number of further distributions and models exhibiting such behaviours

have been investigated.) The fluctuations are actually established initially for geometric

distributions in [32] (with suitable values of a, b), the exponential case being seen as the

limit of the geometric model with parameter tending to 1. The large deviation tail inequality

(19) to the right of the mean holds similarly. Actually, the classical orthogonal polynomial

hierarchy, from the Meixner Ensemble (geometric law) to the Laguerre one (exponential and
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gamma laws), and then the Gaussian Ensemble, suggests that (19) holds true for the GUE

as

P
(
λn ≥ (2 + ε)

√
n
)
≤ e−J(ε)n (22)

with J(ε) =
∫ ε
0

√
x(x+ 4)dx, ε > 0 (cf. [8]). Again J(ε) is of the order of ε

3
2 as ε→ 0.

Below the mean, in the context of geometric random variables, a refined Riemann-Hilbert

analysis on the determinantal structure of the underlying Meixner Ensemble has been devel-

oped in [5] to show that

logP
(
n−

1
3 (Hn − an) ≤ −bt

)
= − 1

12
t3 +O(t4n−

2
3 ) +O(log t) (23)

uniformly over M ≤ t ≤ δn
2
3 for some (large) constant M > 0 and some (small) constant

δ > 0, and every n large enough. Although not written explicitly, it is expected that the

same method (even in a simpler form) may be used above the mean to yield

logP
(
n−

1
3 (Hn − an) ≥ bt

)
= −4

3
t
3
2 +O(t2n−

1
3 ) +O(log t) (24)

uniformly over M ≤ t ≤ δn
1
3 , again for some (large) constant M > 0 and some (small)

constant δ > 0, and every n large enough. The same Riemann-Hilbert analysis on the LUE

yields (or should yield) (23) in the exponential case, and supposedly also (24) (as well as in

the GUE setting). It is not entirely clear however that the preceding expansions can be used

towards sharp forms of (20) and (21).

There is a continuous version of the last passage percolation model in terms of families

of Brownian motions B1, . . . , Bn as

sup
0=t0<···<tn−1<tn=1

n∑
i=1

(Bi
ti
−Bi

ti−1
), (25)

which has the same distribution as the largest eigenvalue of the GUE [40, 29]. As such,

the tail inequalities are described in the GUE section. Tail inequalities at the Tracy-Widom

rates for the associated polymer∫
0<t1<···<tn−1<1

exp

( n∑
i=1

(Bi
ti
−Bi

ti−1
)

)
dt1 · · · dtn−1 (26)

have been determined in [36].
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3.5 Length of the longest increasing subsequence

If `n(σ) denotes the length of the longest increasing subsequence of the permutation σ

of the elements {1, . . . , n}, it has been shown in [4] that, for σ chosen randomly over all

permutations,

n−
1
6

(
`n(σ)− 2

√
n
)

(27)

converges weakly, as n→∞, to the Tracy-Widom distribution FTW.

The Meixner model with geometric parameter q alluded to in the preceding section is also

of interest for the Plancherel measure and the length of the longest increasing subsequence in

a random permutation. It was namely observed in [33] that, as q = θ, n→∞, the Meixner

orthogonal polynomial Ensemble converges to the θ-Poissonization of the Plancherel measure

on partitions. Since the Plancherel measure is the push-forward of the uniform distribution

on the symmetric group by the Robinson-Schensted-Knuth correspondence, in this regime,

the asymptotic Meixner model yields a Poissonized version of `n, which could possibly allow

for tail inequalities in (27).

Some moderate deviation asymptotics are described in [38, 39] following the original

investigation [4].

3.6 Height functions in the KPZ universality class

The directed exponential/geometric last passsage percolation, and the related Totally

Asymmetric Simple Exclusion Process (TASEP) model, are most studied members of the

one-dimensional Kardar-Parisi-Zhang (KPZ) universality class of stochastic growth models.

In both cases, they define a height function h(x, t), where x stands for (one-dimensional)

space and t for time. For height functions in the KPZ universality class, at a large time t,

under the 2
3
− 1

3
scaling in the form

h(ut
2
3 , t)− thm(ut−

1
3 )

t
1
3

(28)

with hm(x) = limt→∞
1
t
h(x, t) being the (deterministic) macroscopic limit shape, a non trivial

limit process should arise, typically related to the GUE Tracy-Widom distribution (Airy

processes). It is therefore expected that tail inequalities, similar to the ones presented in the

prior sections, may be produced for height functions of various models in the KPZ universality

class (including the KPZ equation itself). In this regard, the following non exhaustive recent

references (and related works) may be quoted: [34, 13, 14, 12, 16, 17, 20, 21, 26, 27, 35]...
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[38] M. Löwe, F. Merckl. Moderate deviations for longest increasing subsequences: the upper

tail. Comm. Pure Appl. Math. 54, 1488–1520 (2001).
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